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Implementation of high-fidelity gate operations on integrated-qubit systems is vital for fault-tolerant
quantum computation. Qubit-frequency allocation is an essential part of improving control fidelity. A
metric for qubit-frequency allocation, frequency collision, has been proposed on simple systems of only
a few qubits driven by a monomodal microwave drive. However, frequency allocation for quantum pro-
cessors for more advanced purposes, such as quantum error correction, needs further investigation. In
this study, we propose a Floquet analysis of frequency collisions. The key to our proposed method is a
reinterpretation of frequency collisions as an unintended degeneracy of Floquet states, which allows a
collision analysis on more complex systems with many qubits driven by multimodal microwave drives.
Although the Floquet state is defined in an infinite-dimensional Hilbert space, we develop algorithms,
based on operation perturbation theory, to truncate the Hilbert space down to the optimal computational
complexity. In particular, we show that the computational complexity of the collision analysis for a sparse
qubit lattice is linear with the number of qubits. Finally, we demonstrate our proposed method on cross-
resonance-based experimental protocols. We first study the cross-resonance gate in an isolated three-qubit
system, where the effectiveness of our method is verified by comparing it with previous studies. We next
consider the more complex problem of syndrome extraction in the heavy-hexagon code [Christopher
et al., Phys. Rev. X 10, 011022 (2020). doi:10.1103/PhysRevX.10.011022]. Our proposed method
advances our understanding of quantum control for quantum processors and contributes to their improved
design and control.
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I. INTRODUCTION

There has been remarkable progress in quantum com-
puter engineering toward the realization of large-scale
fault-tolerant quantum computation [1]. In particular,
superconducting circuits are among the most promising
quantum platforms due to their compatibility with conven-
tional transistor fabrication processes, microwave control
technology in communication wavelength bands [2–4],
and progress towards long-range three-dimensional (3D)
integration [5–7]. Superconducting quantum processors
with several hundred qubits [8] allow demonstrations of
quantum error correction [9–11], [11–17]. However, the
number of physical qubits required for fault-tolerant quan-
tum computing is strongly dependent on physical gate
fidelity. It is therefore imperative to further improve phys-
ical gate fidelity.

Superconducting circuits can be broadly classified into
those with and without a tunable Josephson junction [18].
Tunable-circuit architectures allow dynamic control of cir-
cuit parameters and are generally superior in terms of the
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execution time of entangling gates and system flexibil-
ity, but they suffer from sensitivity to external flux noise
[19–25]. The fixed-circuit architectures, on the other hand,
use fixed-circuit parameters, resulting in a relatively sim-
ple implementation with excellent scalability, stability, and
coherence [26–35]. However, fixed-circuit architectures
lack flexibility as their performance is highly dependent
on designed circuit parameter values. Qubit-frequency
allocation is therefore highly significant, especially for
fixed-frequency architectures.

Frequency collisions [36–40] were introduced as a
guideline for designing circuits that use the cross-
resonance (CR) gate [41–43], a widely used microwave-
activated entangling gate amenable to fixed-frequency
architectures. Frequency collisions can be estimated
numerically by time-domain simulation of the full CR
Hamiltonian [39] or analytically using time-independent
or time-dependent Schrieffer-Wolff perturbation under the
rotating-wave approximation (RWA) of the drive Hamil-
tonian [43–46]. Reference [36] characterizes frequency
collisions for the standard CR gate with consideration of
a spectator qubit by looking into the poles of the effective
Hamiltonian while sweeping system parameters. Effective
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and adequate for isolated systems, numerical approaches
are impractical for larger systems, and time-independent
perturbation under RWA is only valid for the time-periodic
monomodal Hamiltonian. In general, for a multimodal
Hamiltonian, there is no obvious choice of a rotating
frame that makes the Hamiltonian time independent [47].
Therefore, the standard methods are not applicable, for
example, to simultaneous CR gates [17], other multimodal
gates, such as cross-cross resonance gate [29], or sys-
tems where interactions with detuned spectator qubits are
relevant [47]. In Ref. [38], on the other hand, an anal-
ysis of frequency collisions in flux-activated entangling
gates [21] reveals that collisions are caused by acciden-
tal degeneracies of energy levels during flux-bias sweeps,
both in isolation and in parallel with simultaneous flux-bias
sweeps. Note, however, this analysis applies only when the
Hamiltonian is approximately time independent during the
gate.

In this paper, we redefine frequency collision by means
of a more general and unified framework based on Floquet
theory [48]. Floquet theory introduces frequency-domain
analysis to frequency collisions, which are commonly
analyzed in the time domain [39,49]. It characterizes fre-
quency collisions as the breakdown of strong-dispersive
condition of the Floquet Hamiltonian expressed in the
desired operation basis. To distinguish such frequency-
domain frequency collisions from the previous notions, we
call them “Floquet collisions.” The degree of Floquet col-
lision is quantified as a collision angle between Floquet
states, and the degree of fidelity deterioration caused by
Floquet collisions can also be estimated from the collision
angle and the effective coupling strength between the col-
liding Floquet states. Because the Floquet Hamiltonian is
infinite dimensional, we propose a perturbative approach
[50] to derive the collision angles with a finite computa-
tional cost. We also discuss a relationship between Floquet
collision and qubit lattice structure in real space, and pro-
pose an efficient collision analysis method for the sparse
qubit lattice that requires only a linear computational cost
with respect to the number of qubits.

We demonstrate our Floquet-based collision analysis
on analytical and numerical simulations. First, for CR
gates on an isolated-transmon system, we provide ana-
lytical solutions of Floquet collisions in terms of colli-
sion angles between Floquet states and re-examine the
frequency collisions in Ref. [46]. Our Floquet-based col-
lision analysis can be applied to an arbitrary parameter
region, and allows for the calculation of the intensity and
bounds of collisions, which extends the discussion in Refs.
[39,49]. Second, we calculate and visualize the collision
angles numerically while sweeping various system param-
eters such as qubit frequencies, CR drive amplitude, and
rotary tone drive amplitude [42,51]. Our numerical simu-
lations reveal collisions originating from microwave drive,
which have not been reported before. These findings will

contribute to the optimal pulse shaping of the CR gate
in the future. Third, we consider a more complex system
of an error-correction code. Here, we focus on syndrome
extraction in heavy-hexagon codes [17,52], quantitatively
estimating the difficulty of system-frequency allocation.
Our measures provide an approximate estimate of the com-
putational cost to improve the system-frequency allocation
for large-scale error correction in the future.

The rest of the main text is organized as follows: In
Sec. II, we review Floquet theory, and our reinterpretation
of frequency collisions. In Sec. III, we review generalized
perturbation theory and apply it to find Floquet collisions.
We also discuss the relationship between Floquet collision
and distance in Floquet and real space. In Sec. IV, we sum-
marize our Floquet-based collision analysis, and estimate
the computational complexity of collision analysis. In Sec.
V, we demonstrate our Floquet-based collision analysis by
applying it to actual experimental conditions. Lastly, in
Sec. VI, we summarize our results and provide directions
for future work.

II. FREQUENCY COLLISION AND FLOQUET
THEORY

Floquet theory [48] applies to linear differential equa-
tions with time-periodic generators, having a wide range
of applications such as stability analysis [53,54], chem-
istry [55], and material physics [56,57]. In the context
of quantum mechanics, a time-periodic Hamiltonian with
continuous-wave (CW) drive is a prime example of a
time-periodic generator [58,59]. We can also find recent
applications to quantum information science such as ana-
lyzing time crystals [60], gate calibration [61], controlling
driven qubits [33,34,62], protecting qubits from noise [63–
65], improving a quantum parametric amplifier [66], and
designing the adiabatic microwave-activated entangling
gates [67].

In this section, we apply Floquet theory to the analy-
sis of frequency collisions. Using Floquet theory, we can
transform a finite-dimensional periodic time-dependent
Hamiltonian into an infinite-dimensional time-independent
Floquet Hamiltonian, instead of the common practice of
transforming into a rotating frame under the RWA. Floquet
theory enables analyzing frequency collisions in a multi-
modal Hamiltonian [29,33,62–65,68] and provides deeper
insights into frequency collisions.

A. Floquet theory

Let us assume a d-dimensional system Hamiltonian
H(t). The Schrödinger equation in natural units is given
as

(
H(t)− i

d
dt

)
�(t) = 0, (1)
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where �(t) represents the fundamental solution matrix.
According to Floquet theory, the fundamental solution
matrix of a differential equation reads

�(t) = e−iEt�(t), (2)

where �(t) is a d-dimensional square matrix and E is a
d-dimensional diagonal matrix. �(t) has the same time
periodicity as H(t) and can be decomposed by the discrete
Fourier series expansion as

H(t) =
∑

�n∈Z
‖�ω‖0

H(�n)ei�n·�ωt, (3)

�(t) =
∑

�n∈Z
‖�ω‖0

�(�n)ei�n·�ωt, (4)

where A(�n) represents the �nth coefficient of the discrete
Fourier series expansion of the matrix A, and ‖�x‖p rep-
resents the Lp norm of the vector �x. Then, we obtain the
following eigenequation from the Schrödinger equation:

Eii�
(�n)
ij =

∑
k, �m

{
H(

�n− �m)
ik + (�n·�ω) δikδ�n �m

}
�
( �m)
kj , (5)

where Aij represents the (i, j ) elements of the matrix A.
Note that Eq. (5) is invariant except for a constant offset
for any translation operation �r on the vector �n.

Equation (5) can be interpreted as a time-independent
energy-level diagram in infinite dimensions. In the

following, we refer to this extended energy level diagram
as the Floquet Hamiltonian and the subspace associated
with index �n as the Brillouin zone BZ

(�n) [69]. The
state |ψ〉 in BZ

(�n) is denoted as |ψ ; �n〉. We refer to the
eigenvalues and eigenvectors of the Floquet Hamiltonian
as Floquet quasiexcitation energies and Floquet states,
respectively. The system time evolution U(t′; t) can be
reconstructed as

U(t′; t) = �(t′)�(t)† (6)

= e−iEt′�(t′)�†(t)eiEt. (7)

B. Frequency collision

In the context of quantum gates, a frequency colli-
sion refers to proximity to unwanted resonances that are
detrimental to gate performance. The frequency collision
can be static or dynamic, depending on the nature of the
underlying transition and the role of drive photons. In a
perturbative analysis, the position of frequency collisions
can be identified as poles, while the collision width and
nature is determined by the makeup of transition matrix
elements in the numerator [36–40,49]. Using Floquet the-
ory, collisions can be formulated more rigorously as a
breakdown of the strong-dispersive condition [70,71] in
the Floquet Hamiltonian. Figure 1 shows the general con-
cept of our proposal. In this section, we calculate a fidelity
between ideal propagators and those in the presence of a
collision. This gives us a metric to numerically evaluate
the impact of collisions on gate performance.
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FIG. 1. Concept of our Floquet-based collision analysis. The left figure shows a general quantum control schematic. The qubits align
in a planar lattice, and multiple microwaves are simultaneously irradiated. Some of the microwaves can be resonant with each other.
Using Floquet theory and applying the Fourier transform (FT) to the Schrödinger equation corresponding to the left figure, we obtain
a Floquet Hamiltonian and a corresponding energy-level diagram shown on the right. The black bold and purple dotted lines represent
Floquet states and their couplings, respectively. If the Floquet Hamiltonian satisfies the strongly dispersive condition in the operation
basis described in Sec. II B, we can control our system sufficiently. On the other hand, if Floquet states are degenerate, as shown in the
right figure, Floquet collision occurs and the control fidelity deteriorates significantly.
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To describe a given quantum gate, we pick a suitable
Floquet basis {ψi}, which we generally refer to as the
operation basis. In the context of the CR gate, this is often
called the block-diagonal basis. To illustrate our method,
consider the simple case of a Floquet subspace Hamilto-
nian spanned by two Floquet states |ψA; n + m〉, |ψB; n〉 in
the operation basis with a drive frequency ωd as follows:

HAB = �AB
ZAB

2
+ 2gAB

XAB

2
, (8)

where�AB and gAB represent the energy detuning and cou-
pling strength between the Floquet states, and XAB and
ZAB represents the Pauli X and Z operator defined on the
subspace. The first and second terms represent the diago-
nal and nondiagonal elements of the Floquet Hamiltonian
in the operation basis, respectively. Figure 2 shows the
schematic of the energy level diagram corresponding to the
Floquet subspace Hamiltonian.
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FIG. 2. (Top) A schematic for anticrossing between Floquet
states |ψA,B〉. The top figure shows how Floquet quasiexcitation
energy changes while sweeping a system parameter. We can find
that an anticrossing occurs near a degenerate point of two Flo-
quet states, where Floquet the quasiexcitation energy acquires an
energy gap proportional to an effective coupling strength between
the Floquet states. (Bottom) Dependence of collision angle θAB
between the Floquet states |ψA,B〉 while sweeping system param-
eter. The collision angle becomes π/2 at the degenerate point and
close to 0 under a strong-dispersive condition.

The matrix can be exactly diagonalized by the following
rotational matrix:

RY(θ) ≡ exp
(

−iθ
YAB

2

)
, (9)

θ = arctan
(∣∣∣∣2gAB

�AB

∣∣∣∣
)

, (10)

where YAB and θ represent the Pauli Y operator and the
collision angle between the Floquet states, respectively.
Thus, the diagonalized Floquet subspace Hamiltonian EAB
is found as

EAB = RY(θ)HFRY(−θ) = r
ZAB

2
, (11)

where r =
√
�2

AB + 4g2
AB represents the energy detuning

between the Floquet states. From Eq. (4), the periodic
functions on the subspace spanned by the Floquet states
are reconstructed as

�(t) = RY(θ)RZ(mωdt)
( |ψA〉

|ψB〉
)

, (12)

where a global phase is omitted for simplicity. Then, from
Eqs. (2) and (7), the propagator from time 0 to T is found
as

UAB(T; 0) = RZ(rT)�(T)�†(0) (13)

= RZ(rT)RY(θ)RZ(mωdT)RY(−θ). (14)

Without impact from a collision, we would expect
UAB(T; 0) = RZ(�ABT)RZ(mωdT), so from Eq. (14),
Floquet collisions cause two types of gate errors
simultaneously: axial rotation RY(θ) and phase shift
RZ((r −�AB)T).

In the ideal case, Floquet Hamiltonian satisfies the
strong-dispersive condition gAB � �AB or θAB ∼ 0 in the
operation basis. The ideal subspace propagator VAB(T; 0)
designed under the strong-dispersive condition is obtained
by linearly approximating the real subspace propagator
UAB(T; 0) as

VAB(T; 0) = RZ (v0)

(
v1 v3
v3 v2

)
, (15)

024035-4



FLOQUET ANALYSIS OF FREQUENCY COLLISIONS PHYS. REV. APPLIED 21, 024035 (2024)

where vi read

v0 = �ABT

{
1 + 1

2

(
2gAB

�AB

)2
}

, (16)

v1 = 1 + eimωdT
(

2gAB

�AB

)2

, (17)

v2 = eimωdT +
(

2gAB

�AB

)2

, (18)

v3 = (1 − eimωdT) (2gAB

�AB

)
. (19)

Thus, the inner product of the gates in the subspace is
written as follows:

fAB = 1
2

Tr
[
UAB(0; T)V†

AB(0; T)
]

(20)

≥ 1
2

Tr [UAB(0; T)RZ (−(�AB + mωd)T)] (21)

= cos2
(
θ

2

)
cos
(
δrT
2

)
+ sin2

(
θ

2

)

× cos
((

δr
2

+ mωd

)
T
)

, (22)

where δr = r −�AB.
Let us assume a D-dimensional Hilbert space, where we

have no Floquet collision except for the two Floquet states
|ψA,B〉. Then, the Floquet Hamiltonian of the whole space
is expressed as follows:

H =
(

H⊥ Hint
Hint HAB

)
, (23)

where H⊥ and Hint represent the Floquet Hamiltonian
in the outside of the subspace and the interaction term
between the inside and the outside of the subspace, respec-
tively. From Eq. (11), we can diagonalize the Floquet
subspace Hamiltonian HAB as

E = (I⊥ ⊗ RY(θ))H (I⊥ ⊗ RY(−θ)) , (24)

=
(

H⊥ HintRY(−θ)
RY(θ)Hint EAB

)
, (25)

where I⊥ represent the identity operator in the outside of
the subspace. Because the subspace-diagonalized Floquet
Hamiltonian E satisfies the strong-dispersive condition, we
can solve the time evolution driven by E perturbatively.
Thus, the inner product of the gates in the whole space is

approximated as follows:

f = D − 2
D

+ 2
D

fAB + O(gABH 2
int). (26)

Consequently, the entangling fidelity [72] derived from the
Floquet collision is calculated as follows:

F(U, V) ≡ |f |2 . (27)

In the above, we dealt with the case where two Floquet
states are degenerate with each other. However, in realistic
cases as described in Sec. V B, it is possible for multiple
Floquet states to collide simultaneously under certain sys-
tem parameters. In such a situation, we can follow the same
procedure by diagonalizing the subspace spanned by the
colliding Floquet states. We also have a simpler approach
to account for individual Floquet collisions independently,
and estimate approximate lower bounds of the gate fidelity.
From a derivative of Gershgorin circle theorem [73], we
can bound the shift of the Floquet quasiexcitation energy
detuning δrij , and the collision angles δθij between ith
and j th Floquet states, defined on the Floquet subspace
S spanned by simultaneously colliding Floquet states, as
follows:

|δrij | ≤ δrmax
ij =

∑
k∈S

(|gik| + |gjk|
)

, (28)

|θij | ≤ θmax
ij = arctan

(∣∣∣∣δrij

�ij

∣∣∣∣
)

, (29)

where gij and �ij are the coupling strength and the energy
detuning between the ith and j th Floquet states. Note that
we defined gii = gjj = 0. From Eqs. (22), (27), and (29),
we can estimate the lower bound of the control fidelity
under such simultaneous Floquet collisions.

III. COLLISION ORDER AND GENERALIZED
PERTURBATION THEORY

To find Floquet collisions, we need to search for the
degeneracies of the Floquet Hamiltonian in the opera-
tion basis. Note that degeneracies not only occur between
directly coupled Floquet states, but also between remote
Floquet states via intermediate coupling paths between
them. We compute such degeneracies by diagonalizing
the Floquet Hamiltonian. If the components of two Flo-
quet eigenstates are hybridized beyond a non-negligible
fraction (threshold), we identify it as a Floquet collision.
However, as shown in Eq. (3), Floquet Hamiltonians are
generally infinite dimensional, and exact diagonalization
is impossible with finite computational cost. However,
depending on the complexity of the problem, we can per-
form such a diagonalization analytically using perturbation
theory.
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Perturbation theory gives a method for finding approx-
imate order-by-order solutions that are slightly different
from a solvable unperturbed system. In quantum mechan-
ics, various perturbative analyses of Hamiltonian dynamics
have been proposed such as Rayleigh-Schrödinger per-
turbation theory [74], Schrieffer-Wolff perturbation the-
ory [44], Dyson series [75], Magnus expansion [76], aver-
age Hamiltonian theory [77], and multiscale perturbation
theory [78]. We can also find several attempts of perturba-
tive analysis on Floquet Hamiltonian in previous studies
[79–81]. In this section, we propose a method for eval-
uating Floquet collisions with finite computational cost
by applying generalized perturbation theory [50] on the
Floquet Hamiltonian.

A. Generalized perturbation theory

Generalized perturbation theory [50] is formulated in
superoperator notation, and hence unifies the aforemen-
tioned perturbation theories. We assume the following
Hamiltonian:

H = K + V, (30)

where K and V correspond to the “bare” and “perturba-
tion” terms, respectively, and generally do not commute
with each other. The goal of generalized perturbation the-
ory is to transform the perturbation V to commute with the
bare term K by finding an appropriate frame operator G to
satisfy the following equation:

[
eG(H)K

] = 0, (31)

where G(H) = [G, H ]. As a consequence of the detailed
discussion about the generalized perturbation theory in
Sec. A, we obtain the kth-order effective Hamiltonian H (k)

from K and V. Note that the difference between the diag-
onal terms, and the off-diagonal terms, of the kth-order
effective Hamiltonian correspond to the effective energy
detuning �

(k)
ij , and the effective coupling strength g(k)ij ,

respectively:

�
(k)
ij = H (k)

ii − H (k)
jj , (32)

g(k)ij = H (k)
ij . (33)

Therefore, we can verify the Floquet collisions between the
ith and j th diagonal elements by a collision angle defined
as

θ
(k)
ij ≡ arctan

(∣∣∣∣∣
2g(k)ij

�
(k)
ij

∣∣∣∣∣
)

. (34)

In the following, when the kth-order effective coupling
strength becomes non-negligible with respect to the kth-
order effective energy detuning between them, we will call
this a kth-order Floquet collision.

B. Collision order and distance in Floquet space

We identified Floquet collisions as the breakdown of
the strong-dispersive conditions in the Floquet Hamilto-
nian, which can be detected via the collision angles defined
in Eq. (34). However, the infinite dimensionality of the
Floquet representation makes the exact diagonalization
impossible. Hence, a systematic truncation procedure is
necessary. In this subsection, we show that it is possible
to verify the Floquet collisions below a certain order using
only a finite-dimensional Floquet subspace Hamiltonian.

Let us define a Floquet subspace S(k)(|ψ〉) spanned
by Floquet states with nonzero effective couplings to a
Floquet state |ψ〉 on the kth-order effective Floquet Hamil-
tonian H (k) as follows:

S(k)(|ψ〉) ≡ span
(
H (k) |ψ〉) , (35)

where “span” represents the subspace spanned by all the
Floquet states in the argument. As a consequence of the
detailed discussion in Sec. B, we prove that the subspace
S(k≤)(|ψ〉) is encompassed in a finite dimensional Floquet
subspace as

S(k≤)(|ψ〉) ∈ Kk(V, |ψ〉), (36)

where Kk(V, |ψ〉) represents a kth-order Krylov subspace
[82] with the perturbation V and the Floquet state |ψ〉
defined as follows:

Kk(V, |ψ〉) ≡ span
({

Vj |ψ〉}k
j =0

)
. (37)

Suppose that the perturbation V can be expanded in the
operation basis as follows:

V =
∑

i,j

vij |ψi〉 〈ψj | . (38)

From Eq. (38), we can define a graph GF consisting of
nodes and edges corresponding to the indices of the diago-
nal and the nonzero off-diagonal elements of the perturba-
tion V, respectively. The kth power of V is decomposed as
follows:

Vk =
∑
l(k)i

⎧⎨
⎩
⎛
⎝ ∏
(l,m)∈l(k)

vlm

⎞
⎠ |ψi〉 〈ψi|

⎫⎬
⎭

+
∑
w(k)i �=j

⎧⎨
⎩
⎛
⎝ ∏
(l,m)∈w(k)

vlm

⎞
⎠ |ψi〉 〈ψj |

⎫⎬
⎭ , (39)

where l(k)i and w(k)
i�=j correspond to a length-k loop around

a node i and a length-k walk between nodes i and j on the
graph GF , respectively. The graphical interpretation of the
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perturbation is sometimes called the path-sum approach
[83,84]. For verifying up to the kth-order Floquet collisions
between a pair of Floquet states, we need to calculate up to
the kth-order energy shifts and effective coupling strengths
between them. From Eq. (39), we can find that kth-order
energy shifts and effective couplings correspond to the
length-k loop around the Floquet states and the length-k
walk between them, respectively. As shown in Fig. 3(a),
such loops and walks are encompassed in the region within
the distance d = �k/2� from both Floquet states. Thus, to
verify up to kth-order Floquet collisions caused on a Flo-
quet state, we need to apply the same procedure for all
Floquet states at distance k from the Floquet state. Such
a process is encompassed in the region within distance
d = �3k/2� from the Floquet state on the Floquet subspace
Hamiltonian.

Finally, we discuss the search and verification of all pos-
sible Floquet collisions for a given Floquet Hamiltonian.
The periodicity of the Floquet Hamiltonian indicates that
the Floquet collisions that occur between |x, �nx〉-|y, �ny〉
also occur between |x, �nx + �r〉-|y, �ny + �r〉 for any transla-
tion operation �r to the BZ. Therefore, all Floquet collisions
that occur in the Floquet Hamiltonian can be ascertained
by verifying only the Floquet collisions that occur in the
�0th BZ.

C. Collision order and distance in real space

In Sec. III B, we laid out a correspondence between col-
lision order and distance on the Floquet Hamiltonian. For
applications to quantum systems involving many qubits, it
is also crucial to know the correspondence between colli-
sion order and distance in real space, in order to truncate
our model down to the optimal complexity.

First, we note that Floquet states at distance d do
not always experience dth-order Floquet collisions. As
an example, suppose two isolated qubits individually
irradiated by microwave drives as shown in Fig. 3(b).
Despite no qubit-qubit interaction, there is a walk of dis-
tance 2 between |0, 0; 0, 0〉 and |1, 1; −1, −1〉 mediated
by |0, 1; 0, −1〉 and |1, 0; −1, 0〉 on the Floquet Hamilto-
nian. However, they cannot collide with each other in any
parameter regime, because the effective couplings between
them caused by the two coupling walks always cancel each
other out.

Such a relationship can be written more generally as
follows. Floquet states are coupled to each other by
off-diagonal terms in the Floquet Hamiltonian. Each off-
diagonal term corresponds to an interaction in real space
according to Eq. (5). Consider an arbitral x-body interac-
tion HI acting on the qubits {Qi}x

i=1. The interaction then
corresponds to node {Qi}x

i=1 and the edge that joins them

Fl
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qu
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ita
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n 
en

er
gy

(a) (b)

FIG. 3. (a) Graphical interpretation of the kth-order perturbations acting on the Floquet states |ψA,B〉. A loop of length k around
Floquet states |ψA,B〉 and a walk of length k between them on the Floquet Hamiltonian correspond to kth-order Floquet quasi-excitation
energy shifts and effective coupling, respectively. To verify the kth-order Floquet collision, we compare the Floquet quasiexcitation
energy detuning, accounting for up to kth-order energy shifts, to the kth-order effective coupling strength. Such loops and walks are
contained in a region within distance d ≤ �k/2� of each state, such that we can use the Floquet subspace Hamiltonian corresponding to
this region to verify the kth-order Floquet collision with finite computational cost. All Floquet collisions up to the kth-order caused on
the Floquet state |ψA〉 include only Floquet collisions with the Floquet states within distance d ≤ k. Thus, all Floquet collisions caused
on |ψA〉 can be calculated with the Floquet subspace Hamiltonian corresponding to the region within distance d ≤ �3k/2� from |ψA〉 in
the Floquet Hamiltonian. (b) The circuit and the corresponding low-excitation Floquet energy-level diagram of two isolated transmon
qubits irradiated by independent microwave drives. Even though there is no qubit-qubit interaction, there is a walk of distance 2
between states |0, 0; 0, 0〉 and |1, 1; −1, −1〉 mediated by |0, 1; 0, −1〉 and |1, 0; −1, 0〉 on the Floquet Hamiltonian. However, the
effective couplings between them, mediated by two coupling walks, always cancel each other out.
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all. Let {HI } now be the pair of such interactions that relay
a particular walk between particular Floquet states on the
Floquet Hamiltonian. Consider a graph GR that consists of
all the nodes and edges corresponding to the interactions
{HI }. If GR is not a connected graph, such a walk must be
ignored because it will always cancel out with other simi-
lar walks. In the following, such a walk is called an invalid
walk and the converse is called a valid walk. We will also
refer to the qubits relevant to the nodes of the connected
graph GR as the qubits involved in the walk.

Consider a qubit lattice where qubits couple via two-
body interactions under strong-dispersive conditions. A
valid walk simultaneously involving qubits in a distance
d on the lattice must relay at least d two-body interactions,
and thus always has a length d or more. From the dis-
cussion in Sec. III B, kth-order Floquet collisions caused
on a Floquet state are complete within a subspace of dis-
tance d = �3k/2� from the state. Thus, we can say that the
only qubits that can simultaneously be involved in a kth-
order Floquet collisions involving a qubit are those within
a distance d = �3k/2� from that qubit.

IV. COLLISION ANALYSIS AND
COMPUTATIONAL COMPLEXITY

In Sec. III, we have shown that for the analysis of Flo-
quet collisions it is sufficient to work with a truncated
finite-dimensional Floquet subspace Hamiltonian in the
�0th BZ. However, the dimension of the �0th BZ scales expo-
nentially with the number of qubits, making its analysis
computationally difficult. In this section, we propose a col-
lision analysis method that scales linearly with the number
of qubits by considering the lattice structure of multiqubit
systems. In the following, we consider the case where the
operation basis can be expressed as a tensor product state
for each qubit. Note that we can also treat the cases with
an entangling operation basis using Algorithm 3 in Sec. D.

A. Collision analysis for general qubit lattice

Based on the discussions of the previous sections,
we summarize our Floquet-based collision analysis for
the general qubit lattice in Algorithm 1. Consider the

computational complexity C1(k, n, d, m) of kth-order col-
lision analysis on a general n-qudit lattice, with all-to-all
connectivity, where each qudit has d levels and is irradi-
ated with at most m different microwave drive frequencies.
The corresponding �0th BZ of the Floquet Hamiltonian has
dimensionO(dn). There areO((m + n)�3k/2�) nodes within
�3k/2� distance from a particular node in the Floquet
Hamiltonian, which becomes the dimension of the Floquet
subspace Hamiltonian to compute all possible kth-order
Floquet collisions. The leading term of the computational
complexity C1(k, n, d, m) comes from the kth-order pertur-
bative diagonalization of the Floquet subspace Hamilto-
nian. The computational complexity of the kth-order per-
turbative diagonalization of an N × N -dimensional matrix
is O(2kN 3). Therefore, the total computational complexity
C1(k, n, d, m) is given as follows:

C1(k, n, d, m) = O
(

2k
{

dn (m + n)�
3k
2 �
}3
)

. (40)

From Eq. (14), we can find that the gate errors caused by
Floquet collisions depend mainly on the subspace spanned
by the colliding Floquet states. Therefore, the Floquet col-
lisions of the computational Floquet states deteriorate the
gate fidelity, and we can apply d = 2 to Eq. (40). Because
the dimension of the �0th BZ increases exponentially with
the number of qubits, Algorithm 1 is feasible only for a
limited number of qubits.

B. Collision analysis for sparse qubit lattice

Promising error-correction codes, such as the surface
code [85–87] and the color code [88], require qubits to
be arranged in a periodic lattice structure with sparse con-
nectivity. The distance between qubits can be defined by
taking the qubits as nodes and the nonzero exchange inter-
action between them as edges. As discussed in Sec. III C,
only qubits in the sublattice within a distance d = �3k/2�
from a particular qubit can be involved in up to kth-order
Floquet collisions affecting the qubit. Therefore, we can
verify all possible kth-order Floquet collisions in the whole
lattice by analyzing the corresponding sublattice around
each qubit sequentially. Thus, the collision analysis for
the sparse qubit lattice is summarized in Algorithm 2.

Algorithm 1. Collision analysis for general qubit lattice
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Algorithm 2. Collision analysis for sparse qubit lattice

Consider the computational complexity C2(k, n, d, m, r)
of kth-order collision analysis on a sparse n-qudit lat-
tice of maximum degree r, where each qudit has d lev-
els and is irradiated with at most m different microwave
drive frequencies. The sublattice needed to compute the
kth-order frequency collisions caused at each qubit con-
tains O(r�3k/2�) qubits. We apply Algorithm 1 to all
sublattices. Therefore, the total computational complexity
C2(k, n, d, m, r) is given as follows:

C2(k, n, d, m, r) = nC1(k, r�3k/2�, d, m, r)

= O
(

n2k
{

dr�
3k
2 �
(m + r)�

3k
2 �
}3
)

, (41)

which is linear with respect to the number of qudits n. Sim-
ilar to Eq. (40), we can apply d → 2 when dealing only
with fidelity deterioration caused by the Floquet collisions.

V. DEMONSTRATION

In this section, we apply our Floquet-based collision
analysis to relevant experimental systems and protocols.
First, we apply Algorithm 1 to CR gates [41–43] on
isolated two- or three-transmon systems, then calculate
analytical solutions of the collision bounds, which have
been studied numerically so far [49]. Next, we apply
Algorithm 2 to a heavy-hexagon code [17,52] for quan-
titative estimation of the difficulty of system-frequency
allocation.

A. Model

We first describe our model of fixed-frequency trans-
mon qubits [89,90] coupled via exchange interactions as
follows:

H =
∑

i

{
ωia

†
i ai + αi

2
a†

i a†
i aiai

}

+
∑

i,j

{
Jij

(
a†

i +ai

) (
a†

j +aj

)}

+
∑

k

{
�k cos (ωdkt + φk)

(
a†

tk+atk

)}
, (42)

where ωi, αi, and Jij are qubit frequencies, anharmonic-
ities, and pairwise exchange interactions. Moreover, �k,
ωdk, and φk are the amplitude, frequency, and phase of the

kth-microwave drive on the target qubit tk, respectively.
The annihilation operator for the ith qubit is shown as ai.

B. Cross-resonance gate on an isolated-transmon
system

In this subsection, we apply Algorithm 1 to Floquet col-
lisions of CR gates on isolated few-transmon systems, then
present analytical solutions up to second-order in pertur-
bation. We first consider an isolated CR gate consisting of
control and target qubits. Next, we present a generalization
with a third spectator qubit [36].

To implement the CR gate, the control qubit is irradiated
with a microwave drive resonant with the dressed fre-
quency of the target qubit. Following Eq. (42), the system

FIG. 4. Floquet energy-level diagram of the CR Hamiltonian
[Eq. (43)]. For simplicity, the CR drive frequency is set to the
bare target qubit frequency ωt . Also, the BZ index of the Flo-
quet states is omitted. The gray regions represent the distance
from the computational states {|g±〉 , |e±〉}, respectively, with
darker shades further away. Although the |x±〉 states appear to
be degenerate for x ∈ [g, e, f , h, i · · · ], they are in fact detuned by
a second-order energy shift originating from the CR interaction,
preserving the strong-dispersive condition.
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TABLE I. Analytical solution of Floquet collisions for the two-transmon CR system up to second-order in perturbation. The first
column represents the degenerate Floquet state pairs in the operation basis, where we omitted the BZ index for simplicity. The second
column shows the labels for the frequency collisions under which the collision factors of the corresponding Floquet collisions diverge
as in Table III. From the second column, we find that multiple Floquet state pairs can become degenerate for a given frequency
condition. The third column shows the order of the Floquet collisions defined in Sec. III B. The fourth column shows the collision
factors, i.e., the linearized collision angles. We can verify Floquet collisions by checking whether the collision factors are sufficiently
smaller than 1.

|c, t〉 Type Order Collision factor

|g±〉 ↔ |e±〉 1 1
Jct ±�c

2�ct

|g±〉 ↔ |e∓〉 1 1
Jct

2�ct

|gf 〉 ↔ |e±〉 3 1
Jct

�ct − αt

|e±〉 ↔ |f ±〉 3 1
Jct ±�c√

2 (�ct + αc)

|e±〉 ↔ |f ∓〉 3 1
Jct√

2 (�ct + αc)

|g+〉 ↔ |g−〉 3 2
�ctJct(αc + αt)

2�c(�ct + αc)(�ct − αt)

|g±〉 ↔ |gf 〉 1,3 2 ±�cJct

4αt

(
1

�ct − αt
+ 1
�ct

)

|g±〉 ↔ |f ±〉 1,2,3 2

√
2�cαc(�c ± 2Jct)

8�ct(�ct + αc)(2�ct + αc)

|g±〉 ↔ |f ∓〉 1,2,3 2 ±
√

2�cαcJct

4�ct(�ct + αc)(2�ct + αc)

|e+〉 ↔ |e−〉 3,8 2
�ctJct(αc + αt)

2�c(�ct − αc)(�ct − αt)

|e±〉 ↔ |ef 〉 1,3,9 2 ±�cJct

2αt

(
1

�ct + αc
+ 1
�ct + αc − αt

− 2�ct − αt

2�ct(�ct − αt)

)

|e±〉 ↔ |h±〉 3,10,11 2

√
6�cαc(�c ± 2Jct)

8(�ct + αc)(�ct + 2αc)(2�ct + 3αc)

|e±〉 ↔ |h∓〉 3,10,11 2 ±
√

6�cαcJct

4(�ct + αc)(�ct + 2αc)(2�ct + 3αc)

Hamiltonian is

H =
∑

i∈[c,t]

{
ωia

†
i ai + αi

2
a†

i a†
i aiai

}
+ Jct

(
a†

c+ac
) (

a†
t +at

)

+�c cos (ω̃tt)
(
a†

c+ac
)

, (43)

with indices “c” and “t” referring to the control and the
target qubits, respectively. The drive frequency should be
set to the dressed target frequency ω̃t found perturbatively
up to O(J 4

ct) as

ω̃t ≈ ωt − J 2
ct

�ct
+ (αc + αt)J 2

ct

(�ct + αc)(�ct − αt)
, (44)

where �ct ≡ ωc − ωt. Moreover, for the spectator prob-
lem, we consider a third transmon qubit, coupled to the
control, denoted by index s.

Under such a CR drive scheme, a controlled-X rotation
occurs in the computational subspace of the target qubit
depending on the state of the control qubit. We therefore
choose the Floquet operation basis as

|c, t; n〉 = |c〉 ⊗ |t; n〉 , (45)

|±; n〉 = 1√
2
(|g; n〉 ± |e; n − 1〉) , (46)

with c ∈ [g, e, f , . . .], t ∈ [+, −, f , . . .], and the BZ index
n ∈ Z. In the following, we omit BZ index n for simplicity.

Figure 4 shows the Floquet energy-level diagram
in the operation basis. Using Algorithm 1, we ver-
ify up to second-order Floquet collisions involving the
computational basis {|g, ±〉 , |e, ±〉}. First, we extract the
subgraph consisting of nodes within a distance of 3 from
the computational subspace. Next, we apply perturbative
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TABLE II. Analytical solution of Floquet collisions for the three-transmon CR system with a control spectator qubit up to second
order. We show the Floquet state pairs, corresponding frequency collisions, collision orders, and collision factors for various Floquet
collisions similar to Table I.

|c, t, s〉 Type Order Collision factor

|g ± e〉 ↔ |e ± g〉 1 1 − Jcs

�cs

|g ± f 〉 ↔ |e ± e〉 3 1

√
2Jcs

αs −�cs

|e ± e〉 ↔ |f ± g〉 3 1 −
√

2Jcs

αc +�cs

|g ± g〉 ↔ |g ± e〉 1,5 2
�cJcs

4�st

(
1
�ct

+ 1
�cs

)

|g ± e〉 ↔ |g ± f 〉 1,3,6 2

√
2�cJcs

�st + αs

(
1
�ct

− 1
�sc + αs

)

|g ± e〉 ↔ |f ± g〉 1,3,7 2

√
2�cαcJcs

4(�ct +�cs + αc)

(
1

�ct(�ct + αc)
+ 1
�cs(�cs + αc)

)

|e ± g〉 ↔ |e ± e〉 1,3,5 2
�cJcs

4�st

(
2

�cs + αc
+ 2
�ct + αc

− 1
�cs

− 1
�ct

)

|e ± e〉 ↔ |e ± f 〉 1,3,6,9 2
√

2�cJcs

(
1

(�st + αs)(�cs + αc − αs)
− 1

4(�cs − αs)(�st + αs)

− 1
2(�ct + αc)(�cs + αc − αs)

− 1
4�ct(�st + αs)

)

|e ± e〉 ↔ |h ± g〉 3,10,12 2

√
6�cαcJcs

4(�ct +�cs + 3αc)

(
1

(�ct + αc)(�ct + 2αc)
+ 1
(�cs + αc)(�cs + 2αc)

)

diagonalization on a Floquet subspace Hamiltonian recon-
structed from the subgraph. Finally, we calculate collision
factors: fractions of the off-diagonal terms to the detuning
between the diagonal terms as linearized collision angles
between the corresponding Floquet states. For simplicity,
we omitted terms O(J x

ct�
y) for x + y ≥ 3 in the following.

Table I shows the pairs of Floquet states involved in up
to second-order Floquet collisions and their correspond-
ing collision factors. Here, from the discussion in Sec. IV,
we chose only the pairs with at least one computational
state. We also calculate the case with a spectator qubit cou-
pled to the control qubit and show the results in Table II,
where ωs and Jcs are the spectator qubit frequency and the
control-spectator coupling strength, respectively. We show
only Floquet collisions with the factor of O(J x

ctJ
y
cs�

z) with
x + y < 2 and z < 3 for brevity, but in principle our anal-
ysis can provide further higher-order Floquet collisions.
From Tables I and II, we find several frequency condi-
tions under which some of the collision factors diverge.
They correspond to conventional frequency collisions [36,
39,49]. We have summarized the frequency collisions in
Table III and given the properties of each in Appendix E.

Tables I and II also show for which type of frequency
collisions the collision factors diverge and the correspond-
ing perturbation order in the effective coupling strength
between Floquet states. The collision factor diverges

when the strong-dispersive condition is completely broken
down, i.e., two of the Floquet states are precisely degen-
erate, in the valid walk between the target Floquet states
on the Floquet Hamiltonian. Thus, as shown in Tables I
and II, the first-order Floquet collisions with no medi-
ating Floquet states have only one frequency collision,
whereas the second-order Floquet collisions with mul-
tiple mediating Floquet states have multiple frequency
collisions.

The frequency collisions in Table III agree mostly with
the results in the previous studies [36,49]. The differences
from the previous studies are type 4 and type 8. Type 4 was
proposed in Refs. [39,49] as an empirical straddling regime
frequency allocation requirement for the coupled-transmon
systems to have stronger CR interaction. We, however,
note that the type-4 collision does not correspond to an
actual frequency collision under our Floquet-based colli-
sion analysis. On the other hand, type 8 is a new frequency
collision not mentioned previously [36,39,49]. As shown
in Table I, type 8 appears only in the Floquet collision
between |e+〉 and |e−〉 states, which can be understood
in terms of the effective CR Hamiltonian [43]:

HCR = �ZX
ZX
2

+�IX
IX
2

. (47)
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TABLE III. Analytical solutions of the frequency collisions
where the corresponding collision factors cited in Tables I and II
diverges. The labels used here follow the previous empirical clas-
sification of the frequency collisions [39,49]. We note, however,
that the previously labeled type-4 collision does not correspond
to an actual frequency collision under our Floquet-based colli-
sion analysis. It is an empirical frequency allocation requirement
to have control-target detuning in the straddling regime to have
stronger CR interaction. On the other hand, type 8 is an alter-
native frequency collision, which has not been reported in the
previous studies. Type 8 is caused by the mutual cancellation of
entanglement interaction and quantum crosstalk in the CR drive.
Detailed discussion is found in Sec. V B.

Type Frequency condition Order

1 �ct = 0 1
�cs = 0 1

2 2�ct + αc = 0 2
3 �ct + αc = 0 1

�ct − αt = 0 1
�cs + αc = 0 1
�cs − αs = 0 1

5 �st = 0 2
6 �st + αs = 0 2

�st − αt = 0 2
7 �ct +�cs + αc = 0 2
8 �ct − αc = 0 2
9 �ct + αc − αt = 0 2

�cs + αc − αs = 0 2
10 �ct + 2αc = 0 2

�cs + 2αs = 0 2
11 2�ct + 3αc = 0 2
12 �ct +�cs + 3αc = 0 2

The energy detuning between the |e+〉 and |e−〉 states is
expressed as �IX −�ZX ∝ �ct − αc, and thus the colli-
sion factor is inversely proportional to �ct − αc.

From our perturbative estimates for the collision fac-
tors, we can also provide analytical bounds on fidelity
degradation for a given Floquet collision as Sec. II B. Our
analytical collision factors would provide more flexible
and precise system-frequency allocation. From Tables I
and II, we find that the collision factors depend not only
on the qubit frequency, anharmonicity, and the coupling
strength, but also on the microwave drive amplitude. It
suggests drive-induced Floquet collisions and can explain
why the CR gate fidelity and execution time are lim-
ited in the previous experiments [29,91]. More rigorous
analysis on adiabatic conditions for the Floquet collisions
would enable faster CR gates.

The discussion so far provides an analytical formulation
of (i) mechanism, (ii) type, and (iii) bounds of frequency
collisions in two- or three-qubit CR systems. We can also
perform numerical Floquet simulations to visualize the
Floquet collisions. Figure 5 shows the simulation results
of Algorithm 1 for a two-qubit CR gate with fixed CR

drive amplitude of �c/2π = 30 MHz while sweeping the
control-target detuning�ct/2π between −1 to 1 GHz. The
top panel shows the Floquet quasiexcitation energies of
the system. As shown in the figure, some of the Floquet
quasiexcitation energies change linearly with the detun-
ing sweep and exhibit avoided crossings that we refer to
as Floquet collisions. The second and third rows of the
figure show the maximum values of the collision angles
corresponding to first- and second-order Floquet collisions,
respectively. Note that we plotted collision angles only for
Floquet collisions involving the computational subspace.
The red and black vertical lines label the underlying first-
and second-order frequency collisions, respectively. Under
the first-order frequency collisions, we find type 1 and
type 3. Among the type-3 cases, the case where the ef -
transition frequency of the control qubit is degenerate to
the ge-transition frequency of the target qubit has larger
collision bound than the opposite case. This is because
the former corresponds to |e±〉-|f ±〉 Floquet collision
whose collision factor is proportional to �c, while the lat-
ter corresponds to a |gf 〉-|e±〉 Floquet collision whose
collision factor is proportional to Jct. Under the second-
order frequency collisions, we find types 2, 8, 9, 10, 11 in
addition.

Figure 6 shows the simulation results of Algorithm 1
for a CR drive on two (a),(b) or three (c) qubits with two-
dimensional (2D) sweep of system parameters. One of the
sweeping system parameters is always the control-target
detuning�ct/2π from −1 to 1 GHz. In each figure, the top
and bottom figures show grayscale plots of the maximum
collision angles corresponding to first- and second-order
Floquet collisions, respectively. The colored lines and their
labels represent the corresponding frequency or Floquet
collisions.

In Fig. 6(a), we sweep the CR drive amplitude �c/2π
from −100 to 100 MHz in addition to the control-target
detuning. The first-order collision angle (top panel) reveals
one type-1 and two type-3 frequency collisions the same
as Fig. 5. The width of the type 1 (�ct = 0) and one of the
type-3 frequency collisions (�ct + αc = 0) increases with
stronger drive amplitude in agreement with Table I, where
the collision factors are proportional to �c. The other
type-3 frequency collision (�ct − αt = 0), corresponding
to the Floquet collision |gf 〉 ↔ |e±〉, is independent of the
CR drive amplitude. Second-order collision angles (bot-
tom panel) exhibit both an increase and decrease in the
linewidth as well as a Stark shift in frequency collisions
with increasing CR drive amplitude. Decreasing linewidth
is observed only for type 8, i.e., Floquet collisions between
|g+〉 (|e+〉) and |g−〉 (|e−〉), where the collision factor
in Table I is inversely proportional to �c, and therefore
occurs independently of �ct at �c = 0. This is due to the
static-ZZ interaction, causing the frequency of the target
qubit to depend on the control qubit. When the CR drive
amplitude is 0, in the operation basis, |g+〉 (|e+〉) and
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FIG. 5. Numerical simulations of Algorithm 1 for a two-qubit
CR system while sweeping the control-target detuning �ct/2π
from −1 to 1 GHz. Qubits anharmonicity and qubit-qubit cou-
pling are set to −330 and 3.8 MHz, respectively. The top panel
shows the Floquet quasiexcitation energies in the Floquet sub-
space generated for searching up to the second-order Floquet
collisions. As a function of detuning, certain Floquet quasiexcita-
tion energies shift and anticross with each other. The middle and
lower panels represent the maximum collision angles between
the Floquet state pairs corresponding to first- and second-order
Floquet collisions, respectively. The vertical lines and their labels
represent the frequency collisions shown in Table III.

|g−〉 (|e−〉) have no energy gap caused by the CR drive
and are therefore degenerate.

In Fig. 6(b), we add a rotary-tone drive [42,51] into the
system and sweep its amplitude�t/2π from −5 to 5 MHz.
A rotary-tone drive is a kind of spin-locking technique,
which is a resonant drive to the target qubit employed to
eliminate unwanted error terms having an anticommuta-
tive relation to IX in the effective CR Hamiltonian. The
top panel shows that the frequency collision, correspond-
ing to the Floquet collision between |gf 〉 and |e±〉, splits
with increasing |�t|, as a result of drive-induced Stark
shift of the Floquet quasiexcitation energies of states |e±〉.
The bottom panel shows that the two peaks in the colli-
sion angles, corresponding to Floquet collisions between
|g+〉 (|e+〉) and |g−〉 (|e−〉), are strongly dependent on
�t. The rotary tone causes the Floquet quasiexcitation
energies of |g±〉 and |e±〉 to shift, where the detuning

obeys

�g± = �t +�IX +�ZX , (48)

�e± = �t +�IX −�ZX , (49)

with �ZX and �IX being the ZX and IX term in the CR
effective Hamiltonian [Eq. (47)]. In the bottom panel, the
red and blue curves correspond to �g± = 0 and �e± =
0, respectively, which are well aligned with the peaks.
Therefore, our Floquet analysis clarifies the role of the
rotary tone as a technique to artificially widen the detuning
between |g+〉 (|e+〉) and |g−〉 (|e−〉), which suppresses
the type-8 collision due to static-ZZ interaction.

In Fig. 6(c), we introduce a spectator qubit, coupled
only to the control qubit, and sweep the control-spectator
detuning �cs/2π from −1 to +1 GHz. In the top panel,
the vertical and horizontal peaks correspond to indepen-
dent first-order Floquet collisions between the control-
spectator and control-target qubits, respectively. This is the
case as first-order Floquet collisions involve only nearest-
neighboring qubits following Sec. III C. The bottom panel,
however, shows diagonal peaks corresponding to the fre-
quency collisions between the target and spectator qubits,
allowed in second-order Floquet collisions. Moreover, the
red diagonal lines corresponding to types 5, 6, 7, and 12,
which are well aligned with the diagonal peaks. An inter-
esting observation is that the peaks anticross each other at
the intersections, which we refer to as “collision avoided
crossing.” As discussed in Sec. II B, when multiple Floquet
collisions involve the same Floquet state simultaneously,
the collision conditions are derived by diagonalizing the
subspace spanned by the colliding Floquet states. The fre-
quency collisions shown in Table III do not assume the
simultaneous Floquet collisions, so the red diagonal lines
overlook the collision avoided crossings. These obser-
vations suggest that frequency allocation for large-scale
quantum processors requires more involved analysis com-
pared to the previous plans derived based on small-scale
system considerations [39,49].

C. Syndrome extraction on a heavy-hexagon lattice

In Sec. V B, we analyzed the CR gate on an isolated
system, i.e., a monomodal drive on a system with a few
number of qubits. In this subsection, we analyze the heavy-
hexagon code [17,52], which is a subsystem stabilizer code
[92–94], with qubits forming a heavy-hexagonal lattice as
in Fig. 7(a). We note that the Floquet analysis is substan-
tially more involved due to the multimodal nature of the
problem.

In the heavy-hexagon code, qubits belong to one of the
data (D), ancilla (A), or flag (F ) qubits shown as yel-
low, white, or blue circles, respectively. The data qubits
are aligned in a square lattice, as shown in Fig. 7(a). Let
us assume a d × d square lattice consisting of the data
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(a) (b) (c)

FIG. 6. Numerical simulations of Algorithm 1 for a CR drive on two (a),(b) or three (c) transmon system with 2D sweep of system
parameters. One of the sweeping system parameters is always control-target detuning�ct/2π from −1 to 1 GHz. Qubit-qubit coupling
strength and the qubit anharmonicities are set to −330 and 3.8 MHz, respectively. The top (bottom) panels show the grayscale plot
of first-order (second-order) Floquet collision angles, respectively. The colored lines and their labels represent the corresponding
frequency or Floquet collisions. (a) Sweeping the CR drive amplitude �c/2π from −100 to 100 MHz. (b) Sweeping the rotary-tone
drive amplitude�t/2π from −5 to 5 MHz. (c) Sweeping the frequency detuning between control and spectator qubits�cs/2π from −1
to 1 GHz.

qubits, where σi,j denotes the Pauli operator of the data
qubit in the jth row and the ith column. The gauge and
stabilizer groups of the heavy-hexagon code are given as
follows:

Ghex = 〈Zi,j Zi+1,j , Xi,j Xi,j +1Xi+1,j Xi+1,j +1,

X1,2m−1X1,2m, Xd,2mXd,2m+1〉, (50)

Shex = 〈Zi,j Zi,j +1Zi+1,j Zi+1,j +1, Z2m,dZ2m+1,d,

Z2m−1,1Z2m,1,
∏

i

Xi,j Xi,j +1〉, (51)

where m ∈ [1, 2, . . . , (d − 1)/2], and i + j is constrained
to be even for the second term in the gauge group and
odd for the first term in the stabilizer group. Figure 7(a)
shows a geometrical layout of the simultaneous CR drives
named {Pi}6

i=0 in an error syndrome extraction procedure of
the heavy-hexagon code. Arrows represent the CR drives
in the syndrome extraction, from the control to the target,
where those with index i belong to the simultaneous CR
drives Pi, and are executed simultaneously.

In principle, each qubit in the heavy-hexagon lattice
can have different parameters, which makes the colli-
sion anlaysis too high a degree of freedom to discuss.
Therefore, we focus on the topological analysis of the Flo-
quet Hamiltonian of the heavy-hexagon code, and discuss

potential Floquet (frequency) collisions in a parameter-
independent way. Here, we count up to the second-order
potential Floquet (frequency) collisions in the heavy-
hexagon code by applying Algorithm 2. A potential
kth-order Floquet collision involving the center qubit is
defined as a pair of Floquet states satisfying the following
conditions:

(1) Pairs that are mapped by translation of the BZ index
are treated as identical (Sec. II).

(2) The pair must contain at least one computational
state (Sec. IV).

(3) The pair must be coupled via a walk of length k in
the Floquet Hamiltonian (Sec. III B).

(4) The walk must be valid and involves the center qubit
(Sec. III C).

The corresponding potential kth-order frequency collisions
are then defined as the frequency conditions under which
bare Floquet quasiexcitation energies of any two of the
Floquet states in the valid walk of the kth-order Floquet
collision become degenerate.

According to Sec. III C, for the quantitative calcula-
tion of the values of the collision angles of the Floquet
collisions involving a center qubit, we have to consider
the sublattice consisting of qubits within distance �3k/2�.
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(a) (b)

FIG. 7. Procedures of the error syndrome extraction for the heavy-hexagon code [52], consisting of seven types of simultaneous CR
drives labeled {Pi}6

i=0. Yellow, blue, or white circles correspond to the data, ancilla, and flag qubits, respectively. Blue and orange tiles
represent the Z- and X -type parity measurements. Red frames represent sublattices SD,A,F consisting of qubits only within a distance
of 2 from the center data, ancilla, or flag qubit, respectively. The red labels of the qubits represent the qubit correspondence between
(a),(b). (a) Geometrical layout of the qubits and simultaneous CR drives on the heavy-hexagonal lattice. Arrows represent CR drives
from the control to the target qubit, where the label i belongs to the scheduling Pi. (b) Quantum circuit representations of the syndrome
extraction procedures on the sublattices SD,A,F . Each circuit consists of the simultaneous CR drives {Pi}6

i=0 separated by black dotted
lines and the parity measurements. The rectangles labeled with MZ,X represent the projective measurements on the respective axes. If
the control or target qubits are outside the sublattices, the other end of the CNOT gate is shown as the open end.

For counting the number of the up to kth-order poten-
tial Floquet (frequency) collisions, however, the distance
is reduced to k, because we do not need to calculate the
energy shifts on the colliding Floquet states, but only
search for the valid walks of length k between them. In
Fig. 7(a), red frames represent sublattices SD,A,F con-
sisting of qubits only within a distance of 2 from the
center data, ancilla, or flag qubit, respectively. Figure 7(b)
shows the quantum circuit representations of the syndrome
extraction procedures on the sublattices SD,A,F . If the con-
trol or target qubits are outside the sublattices, the other
end of the CNOT gate is shown as the open end. As shown in
Fig. 7(b), the simultaneous CR drives correspond to mono-
to quadmodal Hamiltonian on seven-qubit systems.

Consider the operation basis of simultaneous CR drives.
Suppose n simultaneous CR drives, with the ith CR drive
between the control qubit ci and target qubit ti. In the
heavy-hexagon code, the control and target qubits of each

CR drive do not overlap with those of other CR drives. All
CR drives have different drive frequencies and are assigned
different BZ index ni. Therefore, the operation basis of the
simultaneous CR drives is given as the tensor product of
the operation basis of the ith CR drive [Eq. (46)]:

|�c,�t; �n〉 =
⊗

i

|ci, ti; ni〉 . (52)

In the heavy-hexagon code, there are also spectator qubits,
which should be sufficiently detuned from any CR drives,
and hence idle under ideal control. The operation basis
with spectator qubits �s is written as follows:

|�c,�t, �s; �n〉 =
(⊗

i

|ci, ti; ni〉
)

⊗
⎛
⎝⊗

j

|sj 〉
⎞
⎠ , (53)
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TABLE IV. Numerical simulations of Algorithm 2 for syndrome extraction procedures on the heavy-hexagon code. The vertical
and horizontal axes of the table correspond to the sublattices SD,A,F and simultaneous CR drives {Pi}6

i=0 subject to Algorithm 2,
respectively. In each column, n(k)F and n(k)f are the number of kth-order Floquet (frequency) collisions, respectively. A more detailed
discussion is provided in Sec. V C.

P0 P1 P2 P3 P4 P5 P6

SD n(1)F 416 416 640 1344 416 640 640

n(2)F 2432 4224 5312 9728 2432 4992 4992

n(1)f 6 6 6 6 6 6 6
n(2)f 77 77 71 94 77 97 97

SA n(1)F 416 416 192 416 416 640 640

n(2)F 2432 4224 1920 4224 2432 4992 4992
n(1)f 6 6 6 6 6 6 6
n(2)f 77 77 57 77 77 97 97

SF n(1)F 288 1664 736 512 960 960 960

n(2)F 1728 10624 4736 4480 4224 7488 7488
n(1)f 9 9 9 9 9 9 9

n(2)f 63 110 87 75 95 95 95

where sj ∈ [g, e, f , . . .] represents the j th spectator qubit
state. Note that even in the case where multiple CR drives
share their control or target qubits [29,95,96], we can
define the operation basis as an entangling Floquet state
between qubits and analyze Floquet collisions. However,
for systems with a nonlocal operation basis, the sublat-
tice extraction procedure in Algorithm 2 requires some
adjustments, which is discussed in Appendix D.

Following the procedures of Algorithm 2, we apply
Algorithm 1 to simultaneous CR drives {Pi}6

i=0 on the
sublattices SD,A,F as a subroutine of Algorithm 2. The
numerical calculation consists of the following proce-
dures. First, an empty graph GF is created. Based on the
given sublattice Sx and the simultaneous CR drives Py , 27-
computational states are computed as the operation basis,
based on Eq. (53), and added to the graph GF as nodes.
Note that due to the translational symmetry of the Floquet
Hamiltonian with respect to the BZ index, the same results
are obtained for any choice of the BZ indices of the ini-
tial computational states. Since the operation basis is in
a tensor product state, even if one of the control and tar-
get qubits is outside the sublattice, the operation basis of
the other qubit remains intact. The exchange interactions
and microwave drives in the sublattices are transformed
into perturbations in the Floquet Hamiltonian according to
Eq. (3), and regarded as the edges in the graph GF . We
then extract the region, which is reachable by tracing the
edges k times from the initial nodes. Finally, in this region,
we search for up to second-order potential frequency and
Floquet collisions.

Table IV shows the results of the numerical Floquet
analysis. The indices n(k)F and n(k)f represent the number of

potential kth-order Floquet (frequency) collisions, respec-
tively. An interesting observation is that two symmetric
sequences have the same number of Floquet (frequency)
collisions. Here, symmetric sequences are those that are
equivalent by mirroring while preserving the center qubit.
In particular, P0 and P4, P5 and P6 in SD, and P0 and
P4, P1 and P3, P5 and P6 in SA fall under the symmet-
ric sequences. Moreover, from Table IV and Fig. 7(a),
we find that the number of first- and second-order Flo-
quet collisions depends only on the position of the target
qubits within the distances 1 and 2 from the center qubit,
respectively. As shown in the region within the distance
of 2 from the computational Floquet states in Fig. 4, there
are no Floquet states accessible only via the microwave
drives. Since the number of potential Floquet collisions is
only determined by the topological structure of the Floquet
energy-level diagram, it can be seen that only the posi-
tion of the target qubits matters. The microwave drives,
however, have a quantitative effect on the collision factors,
as found in Tables I and II. Table IV shows also that the
number of frequency collisions is much smaller than those
of Floquet collisions, suggesting that for a given frequency
collision, numerous Floquet collisions occur simultane-
ously, as in Sec. V B. Table IV shows also that the number
of first-order frequency collisions, involving a center qubit,
is independent of the sequence and is always 3 times the
number of neighboring qubits, since the first-order Flo-
quet collision factor is always nonzero, regardless of the
CR drive as found in Tables I and II. Therefore, the center
qubit always has one type-1 and two type-3 collisions with
the neighboring qubits independently. On the other hand,
the number of second-order frequency collisions depends
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on the CR drives, since the corresponding Floquet collision
factors can be zero depending on the presence or absence
of the CR drive based on Tables I and II.

The number of potential Floquet (frequency) collisions
for the desired control on a given lattice is a useful
quantitative indicator of the difficulty of system-frequency
allocation. In principle, we can also calculate the val-
ues of the collision angles quantitatively for a given set
of system parameters. In reality, system parameters may
get finite variation due to fabrication imperfection [49].
Such parameter variation can be also considered by Monte
Carlo sampling [97] and our method can provide robust
parameter design for the syndrome extraction operation
of the heavy-hexagon code. Our current implementation
takes about several hours to check up to second-order
Floquet collisions involving a particular qubit in the heavy-
hexagon code for a given system parameter. However,
we expect that methods compatible with high-performance
computing, such as tensor networks [98], can drastically
reduce the computational time in the future.

VI. SUMMARY AND DISCUSSION

In this paper, we employ Floquet theory to the analysis
of frequency collisions. We quantitatively formulate Flo-
quet collisions by collision angles between Floquet states
in the operation basis. We show that the collision angles
can be calculated with finite computational complexity
using a perturbative approach. In the perturbative analy-
sis of Floquet collisions, we introduce a collision order and
show the relation between the lower bound on the collision
order and the distance in Floquet and real space. Using this
relation, we propose an efficient collision analysis method
for general and sparse qubit lattices and estimate their
computational complexities.

We apply these methods to relevant experimental sit-
uations. First, for an ideal two-transmon qubit CR gate
and a three-transmon extension, we performed analytical
perturbative calculations of the collision bounds, which
have been investigated numerically so far [49]. Next,
we observed the nature of the Floquet (frequency) col-
lisions through numerical simulations. The simulations
show two overlooked collision mechanisms: the type-8
collision and the collision avoided crossing. Type 8 is
the collision caused by the ZZ interaction between qubits,
which implies that unless the ZZ interaction is eliminated
[31,99], CR gates always have the Floquet collision at the
pulse edges, regardless of the control-target detuning. We
also show that the rotary tone [51] can modulate the Flo-
quet Hamiltonian and potentially mitigate the type-8 col-
lision. Collision-avoided crossing is the anticrossing effect
between the frequency collisions derived from simultane-
ous Floquet collisions. It suggests that frequency alloca-
tion in large-scale quantum processors requires additional

attention compared to the conventional frequency alloca-
tion in small-scale quantum processors [39,49]. Finally,
we analyzed the more complex problem of frequency
collisions in heavy-hexagon codes, where we give a quan-
titative estimation of the difficulty of the system-frequency
allocation.

We note that our proposal has a wide range of applica-
tions beyond microwave-activated quantum gates between
transmon qubits [26–35]. In principle, our proposal is
applicable to general quantum operations using periodic
drives, including parametric quantum gates [100–103],
pulsed qubit reset [104–108], or active qubit-frequency
allocation using drive-induced Stark shifts [40,109,110].
Our proposal is also applicable to the quantum processors
based on the other solid-state qubits such as fluxonium
qubits [111], semiconductor spin qubits [112], trapped ions
[113], or N-V centers [114]. Our Floquet-based collision
analysis provides a way to compare the stability of differ-
ent quantum controls in various quantum processors on a
unified scale.

Our analysis imposed several approximations to the con-
sidered system and control. For a more realistic analysis,
we have the following prospects. First, we modeled trans-
mon qubits as weakly nonlinear Duffing oscillators, as
the leading approximation of the Josephson nonlinearity
[89]. In particular, the higher excited levels of transmon
are more sensitive to charge dispersion [89,90]. Therefore,
collisions that involve such high-energy excited states,
e.g., due to high-power off-resonant drive in dispersive
protocols [115–121], are very sensitive to charge noise.
Transmon qubits also have finite coherence times due to
coupling to the environment and noise. Since transitions
are generally broadened by the finite coherence time, col-
lision bounds are also expected to be broadened. Some
extensions of the Floquet [122] and perturbation theory
[123] are applicable to open systems. Taking into account
such overlooked features will allow for a more precise
characterization of frequency collisions.

Second, we approximated control signals as CW drives,
while in practice the control signals have a finite duration
pulse envelope. Control signal envelopes lead to a time
variation of the effective Hamiltonian [46]. The steep time
variation of the Hamiltonian induces nonadiabatic tran-
sitions between the instantaneous eigenstates [124,125].
A closed loop in the control parameter space is known
to induce a Berry phase to the final state [126]. Simi-
lar phenomena is also reported for the Floquet Hamilto-
nian [127–129]. A Floquet analysis, while incorporating
the control signal envelopes [67,129], will provide robust
control against frequency collisions.

The data that support the findings of this study and
the code that is deemed central to the conclusions are
available from the corresponding author upon reasonable
request.
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APPENDIX A: GENERALIZED PERTURBATION
THEORY

In this Appendix, we provide the detailed discussion
to derive the higher-order effective Hamiltonian using the
generalized perturbation theory. As in Sec. III, let H denote
the Hamiltonian consisting of the bare term K and pertur-
bation term V, and G the frame operator for diagonalizing
the Hamiltonian. Let us assume the polynomial expansions
of G and G with respect to V as follows:

G =
∞∑

i=1

Gi (Gi ∝ Vi), (A1)

G =
∞∑

i=1

Gi (Gi(H) = [Gi]H) . (A2)

Then, the transformed Hamiltonian will be written as

eG(H) =

⎧⎪⎨
⎪⎩

∞∑
i=0

(∑∞
j =1 Gj

)i

i!

⎫⎪⎬
⎪⎭ (H), (A3)

and its polynomial expansions with respect to V are written
as follows:

eG(H) =
∞∑

i=0

W(i) (
W(i) ∝ Vi) , (A4)

where W(i) represents a ith-order energy shift and is written
as follows:

W(i=0) = K , (A5)

W(i=1) = G1(K)+ V, (A6)

W(i≥2) =
i∑

j =1

⎧⎪⎪⎨
⎪⎪⎩

1
j !

∑
�n∈N

j
‖�n‖1=i

(∏
n∈�n

Gn

)
(K)

⎫⎪⎪⎬
⎪⎪⎭

+
i−1∑
j =1

⎧⎪⎪⎨
⎪⎪⎩

1
j !

∑
�n∈N

j
‖�n‖1=i−1

(∏
n∈�n

Gn

)
(V)

⎫⎪⎪⎬
⎪⎪⎭

. (A7)

We then enforce Eq. (31) at each order:

[W(i), K] = 0, (A8)

from which the frame operators Gi for i ≥ 1 are derived
sequentially as follows:

Gi = (DK ◦ PK)
(
W(i) − Gi(K)

)
, (A9)

where we use the spectrum decomposition

K ≡
∑

n

κnKn, (A10)

and the following superoperators:

DK(X ) ≡
∑
n�=m

KnXKm

κn − κm
, (A11)

PK(X ) ≡ X −
∑

n

KnXKn. (A12)

From Eqs. (A7) and (A9), we note that the term W(i) −
Gi(K) consists of only K , V and

{
Gj
}

j<i.
Suppose the frame operator G(k), truncated up to kth

order in perturbation, is as follows:

G(k) =
k∑

i=1

Gi. (A13)

The kth-order approximation of the Hamiltonian trans-
formed by G(k−1) is found as

H (k) =
k∑

i=0

W(i) − Gk(K). (A14)

From Eq. (A14), the frame change with operator G(k) can
be regarded as a perturbative diagonalization up to the kth
order. Finally, we obtained the Hamiltonian H (k) as the kth-
order effective Hamiltonian.
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FIG. 8. Numerical tests of the distance law of the collision order in Sec. III B, for a two-transmon system with a CR drive. Each
figure shows the grayscale log plot of the convergence error δθ(k) of the kth-order Floquet collisions from k = 1 to 4. In each figure, we
perform a 2D sweep of the control-target detuning �ct/2π from −1 to 1 GHz and the collision search distance d from 1 to 7. Qubits
anharmonicity and qubit-qubit coupling are set to −330 and 3.8 MHz, respectively.

APPENDIX B: PROOF OF EQ. (36)

In this Appendix, we give a proof of Eq. (36). From
Eq. (A7), we can represent the kth-order effective Floquet
Hamiltonian H (k) as follows:

H (k) = Poly
(
Vk, Kx,Dy

K ,Py
K

)
, (B1)

where x, y ∈ N. Since K and DK are diagonal in the oper-
ation basis, they do not change the dimension of S(k)(|ψ〉)
such that

S(k)(|ψ〉) = span
(
Poly

(
Vk,Py

K

) |ψ〉) . (B2)

For a space S and matrix X , PK holds the following
property:

span (PK(X )S) ∈ span(XS). (B3)

Therefore, we prove Eq. (36) as follows:

S(k)(|ψ〉) ∈ span
(
Vk |ψ〉)⇒ S(k≤)(|ψ〉) ∈ Kk(V, |ψ〉).

(B4)

APPENDIX C: NUMERICAL TEST OF THE
DISTANCE LAW OF THE COLLISION ORDERS

In Sec. III B, we proved an analytical distance law of the
collision order on the Floquet space. In this Appendix, we
re-examine the distance law using numerical simulations.
Let us assume the CR drive on a two-transmon system,
as in Sec. V B. In Sec. V B, we analyzed the kth-order
Floquet collision from the Floquet subspace within the

search distance d = �3k/2� from the computational states.
In this Appendix, we numerically check the convergence
of the collision angles while sweeping the search distance.
In the simulation, we define the convergence error δθ(k)

as the difference between the kth-order collision angle
derived with a sufficiently large search distance (d = 7)
and with a smaller search distance (d ≤ 6). Figure 8 shows
a grayscale log plot of the convergence error for up to
the fourth-order Floquet collisions with 2D sweep of the
control-target detuning and the search distance. Figure 8
shows that the convergence error decreases monotonically
with increasing the search distance and converges to zero
at a particular search distance corresponding to the col-
lision order. From Fig. 8, we can find that the search
distance d = �3k/2� is sufficient to converge δθ(k) = 0 for
any control-target detuning �ct as predicted in Sec. III B.

APPENDIX D: COLLISION ANALYSIS FOR
SPARSE QUBIT LATTICE WITH NONLOCAL

OPERATION BASIS

In this paper, we have mainly focused on two-qubit
gates with a local operation basis, such as the CR gates.
As shown in Eq. (46), the operation basis of the CR gate
can be written by tensor product states for each qubit. The
same applies to other local gates such as CZ and Tof-
foli gates. On the other hand, the operation basis of the
nonlocal gates, such as iSWAP and SWAP gates, form entan-
gling states between qubits. For example, in the case of the
cross-cross resonance gate [29], the operation basis in the
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Algorithm 3. Collision analysis for sparse qubit lattice with nonlocal gates

computational subspace is given as

|ψ0〉 = 1
2
(− |00〉 + |01〉 + |10〉 + |11〉) , (D1)

|ψ1〉 = 1
2
(+ |00〉 − |01〉 + |10〉 + |11〉) , (D2)

|ψ2〉 = 1
2
(+ |00〉 + |01〉 − |10〉 + |11〉) , (D3)

|ψ3〉 = 1
2
(+ |00〉 + |01〉 + |10〉 − |11〉) , (D4)

where we have omitted the BZ indices for simplicity.
In such cases, we should be careful about the sublattice
extraction procedure in Algorithm 2, because the qubits
sharing the entangling operation basis are indivisible. We
summarise our Floquet-based collision analysis for the
sparse qubit lattice with nonlocal gates in Algorithm 3.
In Algorithm 3, we first map a subset of qubits sharing

the entangling operation basis as a single collective node.
Then, we reconstruct the graph G′

R from such nodes, where
each collective node couples to all the nodes originally
coupled to the qubits in that node. Next, we select the
center node of the graph G′

R and extract the sublattice
consisting only of nodes within a distance d = �3k/2�.
The rest of the procedure is the same as in Algorithm 2.
Figure 9 shows an overview of the sublattice extraction in
Algorithm 3.

Consider the computational complexity of Algorithm 3.
If the entire system is contained in a single many-body
nonlocal gate, the computational complexity of Algorithm
3 is equal to Eq. (40). On the other hand, for the case
where the system is filled with at most x-body nonlocal
gates, the computational complexity C3(k, n, d, m, r, x) is
calculated as follows. From the discussion in Sec. IV, con-
sider a system of n qudits with d levels, m drives, and
degree r. The graph G′

R corresponding to the system then
consists of n/x nodes and has degree xr. Each nodes can

(b)

Nonlocal gate

(a)

Qubit

FIG. 9. Schematic of the distance law of the perturbation order on the sparse qubit lattices without (a) and with (b) the nonlocal
gates. The blue circles and black lines represent the qubits and the couplings between them, respectively. (a) The sparse qubit lattice
without the nonlocal gates. The gray regions represent the order of the perturbation derived from the center qubit, with darker shades
indicating higher order, which depends only on the qubit lattice structure. (b) The sparse qubit lattice with the nonlocal gates. Each
subset of qubits grouped in the red region is the target qubit of the each nonlocal gate. The gray regions represent the order of the
perturbation derived from the center qubit, with darker shades indicating higher order, which depends both structures of the qubit
lattice and non-local gates.
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be regarded as dx-level system with xm drives. Therefore,
the computational complexity C3(k, n, d, m, r, x) is given as
follows:

C3(k, n, d, m, r, x) = C2

(
k,

n
x

, dx, xm, xr
)

. (D5)

Equation (D5) increases exponentially with the parameter
x and suggests that the presence of nonlocal gates tends to
make the collision analysis more difficult.

APPENDIX E: PROPERTIES OF EACH
FREQUENCY COLLISION

In this Appendix, we give the properties of each of the
frequency collisions introduced in Sec. V B. Types 4 and 8
are omitted here because they were explained in Sec. V B.

Types 1, 3, and 9 correspond to cases where the tran-
sition frequencies of the nearest-neighbor qubit pairs are
degenerate. In Sec. V B, we dealt with a three-qubit system
in which a target and a spectator qubit are coupled to a con-
trol qubit, where control and target qubit pairs or control
and spectator qubit pairs are corresponding to the nearest-
neighbor condition. In type 9, the ef -transition frequencies
of both qubits are degenerate.

Types 5 and 6 correspond to the frequency collisions
between the next-nearest-neighbor qubit pair. In the sys-
tem we treated in Sec. V B, the target and spectator qubit
pairs correspond to the next-nearest-neighbor condition. In
type 5, the ge-transition frequency of one of the qubits is
degenerate to that of the other qubit. In type 6, the ge-
transition frequency of one of the qubits is degenerate to
the ef -transition frequency of the other qubit.

Types 2, 7, 10, 11, and 12 correspond to cases
where the cross-resonance transitions are degenerate with
microwave-activated transitions. Types 2 and 7 correspond

to cases where |f , g〉-|g, e〉 [28] transition between control
and target or spectator qubits are degenerate, respectively.
Type 10 corresponds to the case where |h, g〉-|f , e〉 tran-
sition degenerate. Types 11 and 12 correspond to cases
where |h, g〉-|e, e〉 transition between control and target or
spectator qubits are degenerate, respectively. Types 2, 11,
10 also have degenerate two-photon gf , two-photon eh,
and fh transitions in the control qubits, respectively.

APPENDIX F: COMPARISON TO THE
TIME-DOMAIN SIMULATION

In this Appendix, we compare the predictions of
Floquet-based collision analysis, including the collision-
avoided crossing, with actual pulse control errors in time-
domain simulations. We consider the case where a single
CR drive is applied to a three-qubit system, including the
spectator qubit introduced in Sec. V B. The CR drive has a
raised cosine flattop pulse shape with a maximum inten-
sity of 30 MHz and a full width of 140 ns with a rise
time of 20 ns. In the simulation, the propagator driven by
the CR drive was calculated while sweeping the detuning
between the qubits. To save the simulation time, all qubits
were treated up to the third excited level. Figure 10(a)
shows a color plot of the collision components, which are
defined as the sum of the off-diagonal components in the
propagator on the operation basis as

pout = 1
4

∑
s∈[0,1]

∑
c∈[0,1]

(
2 − |〈sc0| U |sc0〉|2 (F1)

− 2 |〈sc0| U |sc1〉|2 − |〈sc1| U |sc1〉|2) , (F2)

where the |sct〉 state represents the tensor product state of
the s, c, and t states of the spectator, control, and target

(a) (b) (c)

FIG. 10. Numerical simulations of frequency collisions for a CR drive on three transmon system with 2D sweep of system param-
eters. The sweeping system parameters is the control target �ct/2π and control spectator �cs/2π detuning from −1 to 1 GHz. Qubit
anharmonicities qubit-qubit coupling strength is set to −330 and 3.8 MHz, respectively. The red lines represent the preknown fre-
quency collisions. (a) All collision components in the propagator given by the time-domain simulation. (b) The specific collision
components in the propagator given by the time-domain simulation. (c) The specific collision components in the propagator given by
the Floquet-based collision analysis.
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qubits, respectively. In Fig. 10(a), higher-order frequency
collisions also appear as peaks in addition to the up to the
second-order frequency collisions predicted in the paper
shown by the red line. To confirm the existence of the
collision-avoided crossing, we extract the specific transi-
tions |01+〉 ↔ |11+〉 from Fig. 10(a) and plot them in
Fig. 10(b). Figure 10(c) shows the same transitions com-
puted by Floquet-based collision analysis. Conventional
theory [36,43,45] suggests that this transition occurs only
in the type-5 condition, which is indicated by the off-
diagonal red line in Fig. 10(b). However, in Fig. 10(b), this
transition is confirmed to have a collision avoided crossing
at the intersection of type 5 and types 1 and 3. This result
is qualitatively consistent with the result of the Floquet-
based collision analysis in Fig. 10(c). These results show
that the collision-avoided crossings can appear in actual
pulse control.
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