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Theory of superconducting qubits beyond the lumped-element approximation
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In the design and investigation of superconducting qubits and related devices, a lumped-element cir-
cuit model is the standard theoretical approach. However, many important physical questions lie beyond
its scope, such as the behavior of circuits with strong Josephson junctions carrying substantial currents
and the properties of very small superconducting devices. By performing gauge transformations on self-
consistent solutions of the Bogoliubov–de Gennes equations, we develop here a formalism that treats
Josephson couplings nonperturbatively. We apply the formalism to (a) show that Fermi sea effects can
contribute to the effective capacitance of small charge qubits; (b) demonstrate an asymmetry in clockwise
and counterclockwise current states in small rf superconducting quantum interference device qubits; and
(c) provide a microscopic wave function of superconducting Schrödinger cats suitable for computing the
number of entangled electrons.
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I. INTRODUCTION

Over the past quarter century, superconducting qubits
[1] have attracted growing interest and excitement. Sev-
eral remarkable families of superconducting qubits have
been invented and investigated. Examples include charge,
flux, phase, quantronium, transmon, and fluxonium qubits
[2–8]. These families are distinguished from one another
by circuit topology as well as circuit parameter values like
capacitance and Josephson current [9]. Sustained study
of superconducting qubits has yielded dramatic perfor-
mance improvements. For instance, while coherence times
of early qubits were of the order of nanoseconds [2],
recent devices have achieved coherence times reaching
milliseconds [10].

To describe these designer quantum systems, a quantum
mechanical lumped-element (LE) circuit theory has been
employed very broadly and successfully by researchers
[11–13]. However, as the degree of control achieved over
superconducting qubits becomes ever more exquisite [10,
14–23], a role is emerging for a theoretical description of
increased detail and precision. In this paper, we frame such
a description that, among its important features, treats the
Josephson coupling between islands nonperturbatively.

As shown below, this theory can address physical ques-
tions that are beyond the scope of LE theory, such as the
behavior of strong Josephson couplings supporting sub-
stantial currents or the properties of much smaller super-
conducting qubits. This description also has the potential
to supply answers when ambiguities arise in the applica-
tion of LE theory (for an example in the case of junctions
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with Andreev bound states, see Ref. [24]) and to permit
refined calculations of qubit properties such as perturba-
tions of qubit spectroscopy. This paper presents sample
calculations on a charge qubit (Sec. II) and on an rf super-
conducting quantum interference device (SQUID) qubit
(Sec. III), showing consistency with LE theory and also
revealing uncharted effects. In Sec. IV, we then leverage
the microscopic character of our analysis to study the num-
ber of electrons in a superconducting “Schrödinger cat”
[25–28]. We conclude in Sec. V.

II. THEORY AND APPLICATION TO THE
CHARGE QUBIT

LE theory describes a superconducting circuit as a sys-
tem of distinct islands that are coupled weakly by Joseph-
son junctions. The justification for this description typi-
cally involves treating a tunneling Hamiltonian at second
order in perturbation theory [13,29,30]. To go beyond LE
theory, and gain new insights, we holistically treat all of the
coupled islands of the system as a single superconducting
entity.

Assume a microscopic electronic Hamiltonian

H = T + P + W, (1)

where the kinetic, potential, and interaction energies are

T = −
∑

R

∑

a=±ax ,±ay ,±az

c†
r+a,σ tr+a,rcr,σ , (2)
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FIG. 1. (a) Circuit diagram of a charge qubit. (b) Schematic
of a qubit with a Josephson junction in the dark region. Results
of the simulation described in the text appear in (c) and (d).
(c) Magnitude (blue) of the superconducting gap |�π

r,σ=1,r,σ ′=−1|
depends on the z component of r. Minimum at the Josephson
junction is evident. Rescaled phase function �r (purple). (d)
Diagonal elements 〈θ̄ |H|θ̄〉, corresponding to Josephson energy
(blue). Energy eigenstates of Eq. (12) shown in green, orange,
and purple.

P =
∑

R

(v(r)− μ)c†
RcR, (3)

W = 1
2

∑

R,R′
W(R, R′)c†

Rc†
R′cR′cR. (4)

Here, R ≡ (r, σ) is a combined position and spin coordi-
nate introduced for notational brevity. The operator cR =
cr,σ destroys an electron with position r and spin σ . The
quantity tr+a,r denotes a tunneling matrix element between
site r and site r + a. (Although the notation suggests a
tight-binding approximation, this is inessential to our for-
malism: the sums over R and a in Eq. (2) could be replaced
by an integral and tr+a,r by the negative of a Laplacian
operator.) In Eq. (3), v(r) gives the potential energy at
r, and μ denotes the chemical potential of the system.
The quantity W(R, R′) in Eq. (4) describes the interaction
energy between electrons at R and R′.

Good descriptions of the low-energy eigenstates of H
are obtained by following steps (i)–(iii) below. For con-
creteness, we focus on a charge qubit, or Cooper-pair box
[2], comprising a superconducting grain with a junction
region [Figs. 1(a) and 1(b)].

Step (i) of our approach defines a set of states that will
be superposed to describe the low-energy eigenstates of
Eq. (1). The choice of states is motivated by the following
conventional rationale. Superconductors have low-energy
excited states that allow them to conduct current. To
develop intuition about the form of such current-carrying
states, imagine boosting each electron in the ground state

by a momentum �δq. Such a boost multiplies the super-
conducting order parameter

�R′,R = W(R, R′)〈cRcR′ 〉 (5)

by a position-dependent phase eiδq·(r+r′). This suggests that
low-energy excitations can be expressed in terms of phase
changes of the superconducting order parameter. Guided
by this intuition, we define our set of states as follows.

For a charge qubit, the states are denoted |θ〉, where θ
equals the phase drop of the superconducting order param-
eter from one end of the qubit to the other. The familiar
LE approximation also works with a set of states |θ〉. In
our approach, however, we eschew the assumption of an
abrupt phase drop at the Josephson junction and model the
entire qubit holistically. One consequence is that our θ is
not restricted to (−π ,π ] as it is in the LE approximation:
as the phase increments from one end of the qubit to the
other, it can accumulate a large change of many multiples
of 2π .

We approximate the low-energy eigenstates of Eq. (1)
by superposing many |θ〉. One could imagine various
mathematical definitions of the states |θ〉, and it is not
a priori evident which leads to the best results. Fortu-
nately, one expects that predictions are somewhat insensi-
tive to the precise form of the individual states |θ〉 since
many |θ〉 will be superposed. In this paper, to obtain
the state |θ = 0〉, we self-consistently solve the Bogoli-
ubov–de Gennes (BdG) equations [29,31], collecting the
positive-energy eigenstates into matrices UR,K and VR,K
(see Appendices A and B). Here, K = (k, σ) labels the
solutions, with k denoting some set of quantum numbers,
but not necessarily the momentum.

To define |θ〉 for other values of θ , one option is to repeat
the BdG calculation, fixing the total phase change of the
order parameter at θ . To carry this out, one could return
the order parameter phase, after each iteration toward self-
consistency, to −θ/2 at one end of the qubit and θ/2
at the other end. Such a calculation produces an order
parameter with a fixed total phase change, but whose local
phase change depends upon r according to the microscopic
physics of Eq. (1): the phase changes rapidly where it is
energetically advantageous to do so. In our case of a charge
qubit, the phase will drop rapidly across the Josephson
junction.

In this paper, we take a different approach to defining
|θ〉 that reduces computational effort, leads to results that
are more readily compared to the LE approximation, and
is suitable for application to the rf SQUID as well as the
charge qubit, as shown in Sec. III below. (In Appendix B,
the two different approaches to computing |θ〉 are com-
pared in the case θ = π/2 and are shown to produce
similar states.) Instead of performing a self-consistent BdG
calculation for all θ , we do so for θ = π and use the result
to define |θ〉 for general θ as follows. The calculation at

024030-2



BEYOND THE LUMPED-ELEMENT APPROXIMATION PHYS. REV. APPLIED 21, 024030 (2024)

θ = π yields an order parameter �π
R,R′ with phase −π/2

on one side of the system and π/2 on the other. We rescale
the phase of �π

R,R′ , defining

�r = Arg �π
(r,1),(r,−1)/π , (6)

which takes the value −1/2 on one side of the system
and 1/2 on the other. Then, we define |θ〉 as the state
obtained by applying a gauge transformation to the θ = 0
self-consistent BdG solution

UR,K → eiθ�r/2UR,K and VR,K → e−iθ�r/2VR,K. (7)

This ensures that the phase of the order parameter of |θ〉
indeed changes by θ across the system. Having defined |θ〉,
we have completed step (i).

In step (ii) of our approach, each approximate low-
energy eigenstate of H is written as a superposition of the
states defined in step (i): |ψ〉 = ∑

θ ψ(θ)|θ〉.
Finally, step (iii) entails computing the wave function

ψ(θ) by solving the Schrödinger equation

∑

θ

〈θ |H |θ ′〉ψ(θ ′) = E
∑

θ

〈θ |θ ′〉ψ(θ ′). (8)

The overlaps 〈θ |θ ′〉 appear on the right-hand side of this
equation because the |θ〉 do not form an orthonormal basis
in general. We can quantify 〈θ |θ ′〉 using the Onishi formula
[32], a well-known result in the nuclear physics litera-
ture [33]. Given Eq. (7), the Onishi formula reduces to
|〈θ |θ ′〉|2 = det U , where

UK,K′ =
∑

R

U†
K,Re−i(θ−θ ′)�r/2UR,K′

+ V†
K,Rei(θ−θ ′)�r/2VR,K′ . (9)

By an appropriate choice of the phases of UR,K and VR,K,
we ensure that 〈θ |θ ′〉 is real. Then, 〈θ |θ ′〉 = ±√

det U ,
with the sign determined by continuity starting from
〈θ |θ〉 = 1.

The matrix elements 〈θ |H |θ ′〉 of Hamiltonian (1) can be
computed using [33]

〈θ ′|c†
R1

cR2 |θ〉
〈θ ′|θ〉 = eiθ�r2/2

(
V∗ 1

UT VT
)

R2,R1

e−iθ ′�r1/2 (10)

and

〈θ ′|c†
R1

c†
R2

cR3cR4 |θ〉/〈θ ′|θ〉 = eiθ�r4/2
(

V∗ 1
UT VT

)

R4,R1

e−iθ ′�r1/2eiθ�r3/2
(

V∗ 1
UT VT

)

R3,R2

e−iθ ′�r2/2

− eiθ�r3/2
(

V∗ 1
UT VT

)

R3,R1

e−iθ ′�r1/2eiθ�r4/2
(

V∗ 1
UT VT

)

R4,R2

e−iθ ′�r2/2

− e−iθ�r1/2
(

U∗ 1
UT VT

)

R1,R2

e−iθ ′�r2/2eiθ�r4/2
(

V∗ 1
UT UT

)

R4,R3

eiθ ′�r3/2. (11)

The Onishi formula and the matrix elements (10) and
(11) are derived in Appendix C. Having computed these
quantities, we solve Eq. (8). Various technical details of
the calculation are described in Appendices D and E. It
is convenient to find the solution by orthonormalizing the
basis |θ〉. We denote the state vectors of the orthonormal-
ized basis using an overbar, as in |θ̄〉, and the effective
Hamiltonian in this basis as H. Equation (8) then takes the
form

∑

θ

〈θ̄ |H|θ̄ ′〉ψ̄(θ̄ ′) = Eψ̄(θ̄ ). (12)

This formalism is suitable for first-principles or phe-
nomenological computation as well as analytical study.
Here we present an example computation, carrying out
steps (i)–(iii) on a model charge qubit formed by a rect-
angular lattice of 5 × 5 × 220 tight-binding sites with a =

|ax| = |ay | = |az|. The tunneling matrix element in Eq. (2)
between adjacent lattice sites is set to an energy t, except
we set tr+az ,r = 0.1t across a single plane in the center
of the system to form the Josephson junction. In Eq. (3),
the potential is set to v(r) = 0, and the chemical poten-
tial is set to μ = −3.42t, leading to a mean occupation of
1012 electrons in the system. We follow standard practice
in BdG computations by modeling the electron-electron
attraction that produces superconductivity using a Hubbard
interaction [29–31]. In particular, in Eq. (4), we choose a
spin-independent interaction of the form

W(r, σ ; r′, σ ′) =
⎧
⎨

⎩

−g, r = r′,
λ

|r − r′| , r 	= r′.
(13)

Computations show that g = 2.25t gives rise to a super-
conducting gap of reasonable magnitude [Fig. 1(c)] despite
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the nearly one-dimensional geometry of the system. The
Coulomb repulsion is incorporated into the formalism, but
it is taken negligibly small to avoid disrupting the electron-
electron attraction that produces superconductivity (λ =
5 × 10−5ta). These choices of g and λ lead to a qubit in the
BdG simulation with a tractable number of tight-binding
sites that has reasonable superconducting properties; future
explorations of parameter space are envisioned.

The results are best described by making reference to the
Hamiltonian of a charge qubit in the LE approximation

HLE = 4ECn2 + EJ (1 − cos θ̄ ). (14)

In this equation, θ̄ is an operator corresponding to the
phase drop across the Josephson junction, and n is the
excess number of Cooper pairs on one island of the qubit;
these operators satisfy the commutation relation [θ̄ , n] =
i. The parameter EC = e2/2C is defined in terms of the
mutual capacitance C of the two islands of the qubit
and the electron charge e. The Josephson coupling EJ
characterizes the strength of tunneling across the junction.

The diagonal matrix elements of our effective Hamil-
tonian, 〈θ̄ |H|θ̄〉, correspond to the Josephson term in Eq.
(14) and originate from terms in Eq. (2) associated with
hopping across the junction. They are plotted in Fig. 1(d).
The off-diagonal elements of 〈θ̄ |H|θ̄ ′〉 cause transitions
from one value of |θ̄〉 to another; they correspond to the
capacitive term in Eq. (14). Based on LE theory, one
expects this term to arise from Eq. (4). However, in our
calculations Eq. (4) makes only a small contribution that
even deviates from the quadratic 4ECn2 form; presumably
this is because the Coulomb interaction in Eq. (13) is negli-
gible compared to the short-ranged Hubbard interaction for
our choice of parameters. Surprisingly, the kinetic energy
(2) makes the dominant contribution. The physical reason
is that transferring n Cooper pairs across our small charge
qubit shrinks the Fermi sea of one half of the superconduct-
ing grain and grows the Fermi sea of the other. Expanding
the total energy of the two Fermi seas in n gives a quadratic
term (8EF/3Ntot)n2, where EF and Ntot respectively denote
the Fermi energy and number of electrons on each island
of the charge qubit (see Appendix F).

It may be possible to amplify and exploit such underex-
plored capacitance features in device designs. While the
contribution (8EF/3Ntot)n2 is negligible for large qubits
such as transmons, it is potentially relevant for smaller
devices. (We estimate the dimensions of a capacitor island
of a transmon [34,35] as 250 µm × 500 µm × 50 nm.
Using the density ρAl = 2.7 g/cm3 and EF = 11 eV of
Al, one finds that 8EF/3Ntot ∼ 10−7 GHz. For a merged-
element transmon island [36] of area A = 1 µm2 and thick-
ness 50 nm, without an antenna, 8EF/3Ntot ∼ 10−2 GHz.
These values should be compared to a typical transmon
capacitive energy of order 1 GHz.)
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FIG. 2. (a) Circuit diagram of an rf-SQUID qubit. (b)
Schematic of a qubit; magnetic flux � = h/4e threads the
loop. Results of the simulation described in the text appear
in (c) and (d). (c) Magnitude (blue) of the superconducting
gap |��

r,σ=1,r,σ ′=−1| depends only on the z component of r.
Rescaled phase function �r (purple). (d) Diagonal elements
〈�, θ̄ |H| �, θ̄〉 (solid) and 〈�, θ̄ |H| �, θ̄〉 (dashed) form the
effective potential (the shorthand notation 〈θ̄ |H|θ̄〉 on the y axis
implies both 〈�, θ̄ |H| �, θ̄〉 and 〈�, θ̄ |H| �, θ̄〉). Ground state
(green) and first excited state (yellow) each has a counterclock-
wise (solid) and clockwise (dashed) component [the shorthand
notation ψ̄(θ̄ ) on the y axis implies both ψ̄(�, θ̄ ) and ψ̄(�, θ̄ )].

The eigenstates in Fig. 1(d) take a form in consonance
with the LE solution of Eq. (14). Indeed, Eq. (14) arises
from our formalism in the appropriate abrupt-junction
limit, as shown in Appendix F.

III. APPLICATION TO THE rf-SQUID QUBIT

We now turn from a charge qubit to a more complicated
example: an rf-SQUID qubit threaded by magnetic flux
[see Figs. 2(a) and 2(b)]. In this case, step (i) involves more
than one type of self-consistent BdG solution: | �, θ�〉 car-
ries a current circulating clockwise around the loop and
| �, θ�〉 carries a current circulating counterclockwise. (If
the Josephson energy of the junction is sufficiently large
compared to the inductive energy of the loop, still more
self-consistent solutions arise; they are easily included in
the analysis if needed.) The corresponding self-consistent
BdG solutions are collected into matrices U�

R,K, V�
R,K and

U�
R,K, V�

R,K, respectively. The associated order parameters
are ��

R,R′ and ��
R,R′ . The phase drop θ� equals the change

in Arg ��
(r,1),(r,−1) along the inductance of the loop (i.e.,

the total phase change of the order parameter around the
loop minus the phase change across the junction). This
is computed as the difference between the maximum and
minimum values of Arg ��

(r,1),(r,−1). The phase drop θ� is
defined analogously.

Next, we define states | �, θ〉 and | �, θ〉 for a gen-
eral phase drop θ . As in the charge qubit case, one could
imagine performing a self-consistent BdG calculation, fix-
ing the phase drop along the inductance of the loop after
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each iteration toward self-consistency. (Although such an
approach is complicated by the fact that, because of the
loop geometry of the qubit, there are no self-evident posi-
tions at which to fix phases.) However, again as for the
charge qubit, we take a different approach. We define a
rescaled phase function in analogy to Eq. (6). In this case,
we set

�r = Arg ��
(r,1),(r,−1)/θ

�. (15)

Note that Eq. (15) is defined using��
R,R′ rather than��

R,R′ ;
this choice is made so �r does not have any vortices that
accumulate multiples of 2π as �r proceeds around the
qubit loop. This property is evident in Fig. 2(c). If the
direction of applied flux were flipped, ��

R,R′ would appear
in the definition instead.

In terms of Eq. (15), | �, θ〉 is defined as the BdG
state obtained by performing a gauge transformation
U�

R,K → ei(θ−θ� )�r/2U�
R,K and V�

R,K → e−i(θ−θ� )�r/2V�
R,K.

This definition ensures that the phase of the order param-
eter of | �, θ〉 changes by θ instead of θ� along the
inductor. Analogously, | �, θ〉 is defined as the BdG state
obtained by performing a gauge transformation U�

R,K →
ei(θ−θ� )�r/2U�

R,K and V�
R,K → e−i(θ−θ� )�r/2V�

R,K.
In step (ii), we write

|ψ〉 =
∑

θ

ψ(�, θ)| �, θ〉 + ψ(�, θ)| �, θ〉. (16)

Step (iii) then requires us to solve

∑

θ ′

[〈�, θ |H | �, θ ′〉 〈�, θ |H | �, θ ′〉
〈�, θ |H | �, θ ′〉 〈�, θ |H | �, θ ′〉

] [
ψ(�, θ ′)
ψ(�, θ ′)

]

= E
∑

θ ′

[〈�, θ | �, θ ′〉 〈�, θ | �, θ ′〉
〈�, θ | �, θ ′〉 〈�, θ | �, θ ′〉

] [
ψ(�, θ ′)
ψ(�, θ ′)

]
.

(17)

After transforming to an orthonormal basis with states
| �, θ̄〉, | �, θ̄〉 denoted using an overbar, we produce a
2 × 2 effective Hamiltonian H.

We carry out steps (i)–(iii), performing a numerical
computation on a model rf-SQUID qubit analogous to the
charge qubit computation above. The 5 × 5 × 220 lattice
is retained, but, to capture the loop geometry, periodic
boundary conditions are imposed in the z direction. To
incorporate the magnetic flux h/4e threading the loop,
tunneling matrix elements in the z direction are assigned
a phase according to tr+az ,r = te−iπ/2(220), while tr+az ,r =
0.3te−iπ/2(220) at the junction. Other tunneling matrix ele-
ments are set to t. Because of the 2 × 2 structure of
matrix H, its diagonal gives rise to the two potentials 〈�,
θ̄ |H| �, θ̄〉 and 〈�, θ̄ |H| �, θ̄〉 depicted in Fig. 2(d); the
curve formed by taking the lower potential at each θ̄

produces an rf-SQUID double-well potential as expected.
Indeed, under suitable conditions discussed in Appendix F,
H reduces to the LE Hamiltonian

HLE = 4ECn2 + EJ (1 − cos θ̄ )+ EL(θ̄ − φ)2/2, (18)

where θ̄ ∈ R is unbounded, [θ̄ , n] = i, and φ = 2π(2e/h)�
is fixed by the applied flux �.

The energy eigenstates of H, shown in Fig. 2(d), accord
with those expected within LE theory. However, they
exhibit an asymmetry between the two peaks of each wave
function, best seen by comparing the solid and dashed
green lines in Fig. 2(d). This asymmetry arises for the
following reason. The microscopic electronic Hamiltonian
(1) possesses an exact symmetry at half an electronic
flux quantum h/2e, but not at half a superconducting flux
quantum h/4e. At h/4e, the symmetry between clock-
wise and counterclockwise superconducting states in the
loop emerges only approximately when electrons bind into
Cooper pairs of charge 2e. Since this binding is incom-
plete in mesoscopic scale qubits [37]—qubits with length
scales under the superconducting coherence length—the
wave function exhibits asymmetry. This effect is captured
by our formalism, but neglected in LE theory in which
complete binding of electrons in Cooper pairs is taken for
granted. The effect might be observable in Al supercon-
ducting qubits with dimensions smaller than 1 µm, the
scale of the superconducting coherence length.

IV. SCHRÖDINGER CAT STATES

The microscopic character of our theory makes it par-
ticularly suitable for investigating Schrödinger cat states
in superconducting loops. Several remarkable experiments
[25,26] have realized these cats, formed by superposing a
clockwise supercurrent and a counterclockwise supercur-
rent. To assess the implications [38] of these experiments,
it is of central importance to quantify the size of the
cat—the number of entangled particles. We focus on Ref.
[25] since it raises the breathtaking possibility that billions
of electrons might have been entangled.

Computing the number of entangled electrons, �N ,
is beyond the scope of LE theory, as discussed in
Appendix G. The state-of-the-art calculation is due to
Korsbakken et al. [27,28]. Given a partition of the many-
body Schrödinger cat state into two terms

√
1/2 | �〉 +√

1/2 | �〉, they introduced

�N = 1
2

∑

Q

|〈� |c†
QcQ| �〉 − 〈� |c†

QcQ| �〉| (19)

to count how many particles are in different modes in | �〉
and | �〉. Here, Q labels a state in whichever basis of
single-particle electron states maximizes �N , which is the
basis in which the matrix 〈� |c†

QcQ′ | �〉 − 〈� |c†
QcQ′ | �〉
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FIG. 3. LE theory potential EJ (1 − cos θ)+ 1
2 EL(θ − φ)2 is

shown in blue. LE wave function of the Schrödinger cat state
of Ref. [25] is shown in green. The two-symmetric-peak form
assumed by Korsbakken et al. [27,28] is depicted in red. We
use parameters that are suitable for Ref. [25]: EC = 9.0 mK =
0.19 GHz, EJ = 76 K = 1.6 THz, EL = 645 K = 13.5 THz, and
φ = 2π(0.514 25).

is diagonal. Korsbakken et al. evaluated Eq. (19) by
approximating | �〉 and | �〉 as Galilean-boosted BCS
states rather than using LE theory. They thereby derived
the approximation �N = 3ILz/4evF . A compact deriva-
tion of this result appears in Appendix G. As a check,
we evaluate Eq. (19) using the rf-SQUID qubit eigen-
states that we obtained numerically above. For these, their
approximation differs from Eq. (19) by about 30%.

Applying their approximation to the experiment [25],
they concluded [27,28] that �N ∼ 3800–5750 electrons.
However, note that the wave function realized experimen-
tally in Ref. [25] takes the form of the green curve in
Fig. 3 according to LE theory. It differs dramatically from
a Schrödinger cat form

√
1/2 | �〉 + √

1/2 | �〉 and par-
ticularly so from the pristine wave function assumed by
Korsbakken et al. [27,28] (red curve in Fig. 3). A defini-
tive evaluation of the number of entangled electrons in
Ref. [25] would therefore require a tractable alternative
to Eq. (19) that does not assume a Schrödinger cat form√

1/2 | �〉 + √
1/2 | �〉. Unfortunately, defining such a

metric is a vexatious problem [39] out of the scope of our
study.

V. CONCLUSION

In conclusion, we have developed a microscopic theory
of superconducting qubits that goes beyond the standard
LE approximation. It accords with LE theory both for
charge and rf-SQUID qubits and yields several insights
inaccessible to LE theory. Numerous applications of
this tool are anticipated as experimental progress allows
increasingly precise study of superconducting qubits. For
instance, it would be particularly interesting to incor-
porate microscopic calculations of qubit decoherence by
adding impurities or other sources of environmental noise
in Eq. (1).
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APPENDIX A: BOGOLIUBOV–DE GENNES
EQUATIONS

In this appendix we derive the BdG equations, following
Ref. [29, pp. 137–145]. We begin with the definition of the
Bogoliubov transformation

cR =
∑

K

UR,KαK + V∗
R,Kα

†
K,

c†
R =

∑

K

U∗
R,Kα

†
K + VR,KαK.

(A1)

Imposing anticommutation relations, we obtain

{cR, cR′ } = V∗
R,KUR′,K + UR,KV∗

R′,K = 0, (A2)

which becomes

V∗UT + UV†=0 (A3)

as a matrix equation. Similarly,

{cR, c†
R′ } = UR,KU∗

R′,K + V∗
R,KVR′,K = δR,R′ , (A4)

where a Kronecker delta appears on the right-hand side. As
a matrix equation, this becomes

UU†+V∗VT = I . (A5)

Now, the Bogoliubov transformation (A1) can be written
as a matrix equation

[
cR

c†
R

]
=

[
U V∗
V U∗

] [
αR

α
†
R

]
. (A6)

Relations (A3) and (A5) imply that
[

U V∗
V U∗

] [
U† V†

VT UT

]
=

[
I 0
0 I

]
. (A7)

Since the right inverse of a square matrix is also a left
inverse, we also have

[
U† V†

VT UT

] [
U V∗
V U∗

]
=

[
I 0
0 I

]
. (A8)

This equation gives two identities; collecting them together
with Eqs. (A3) and (A5) gives a total of four identities:

UU†+V∗VT = I , U†U + V†V = I ,

V∗UT + UV† = 0, VTU + UTV = 0.
(A9)
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Equation (A8) implies that the inverse of the Bogoliubov
transformation is

αK =
∑

R

U∗
R,KcR + V∗

R,Kc†
R,

α
†
K =

∑

R

UR,Kc†
R + VR,KcR.

(A10)

We use the Bogoliubov transformation to find eigenstates
of a mean-field approximation to the Hamiltonian. Starting
with

H =
∑

R,R′
c†

R′hR′,RcR + 1
2

W(R′, R)c†
R′c

†
RcRcR′ , (A11)

we make a mean-field approximation

H ′ =
∑

R,R′
c†

R′hR′,RcR + 1
2 W(R′, R)[c†

R′cR′ 〈c†
RcR〉 + 〈c†

R′cR′ 〉c†
RcR − 〈c†

R′cR′ 〉〈c†
RcR〉

− c†
R′cR〈c†

RcR′ 〉 − 〈c†
R′cR〉c†

RcR′ + 〈c†
R′cR〉〈c†

RcR′ 〉
+ c†

R′c
†
R〈cRcR′ 〉 + 〈c†

R′c
†
R〉cRcR′ − 〈c†

R′c
†
R〉〈cRcR′ 〉]. (A12)

In each of the three lines in brackets, we have
paired the first operator c†

R′ in the interaction term
1
2 W(R′, R)c†

R′c
†
RcRcR′ with one of the remaining three

operators (c†
R′ is paired with cR′ in the first line, then cR

in the second line, then c†
R in the third line). Within each

line, we applied the approximation

ab = [(a − 〈a〉)+ 〈a〉][(b − 〈b〉)+ 〈b〉]
≈ (a − 〈a〉)〈b〉 + 〈a〉(b − 〈b〉)+ 〈a〉〈b〉
= a〈b〉 + 〈a〉b − 〈a〉〈b〉,

taking a to be the product of c†
R′ and its pair, and taking b to

be the product of the remaining two operators. The approx-
imation assumes that (a − 〈a〉)(b − 〈b〉) is the product of
two small quantities and can be neglected. It is convenient
to set

H ′ ≡
∑

R,R′
c†

R′h′
R′,RcR + �R′,R

2
c†

R′c
†
R + (�R′,R)

∗

2
cRcR′

+ const, (A13)

where

�R′,R = W(R, R′)〈cRcR′ 〉 (A14)

and

h′
R′,R = hR′,R + δR′,R

∑

R′′
W(R, R′′)〈c†

R′′cR′′ 〉

− W(R, R′)〈c†
RcR′ 〉. (A15)

To obtain this form of h′
R′,R, we have used W(R, R′) =

W(R′, R). Note that the final term of h′
R′,R is the exchange

interaction.

We next demand that the Bogoliubov transformation
diagonalize the mean-field Hamiltonian, so that H ′ =
Eg + ∑

K εkα
†
KαK. This implies that [αK, H ′] = εkαK and

[α†
K, H ′] = −εkα

†
K. We compute

[cR, H ′] =
∑

R′
h′

R,R′cR′ +�R,R′c†
R′ (A16)

and substitute in the Bogoliubov transformation (A1).
Comparing the coefficients of αK and α†

K on each side, we
obtain the two BdG equations

εkUR,K =
∑

R′
h′

R,R′UR′,K +�R,R′VR′,K,

εkVR,K =
∑

R′
(−h′

R,R′)∗VR′,K + (�R,R′)∗UR′,K.
(A17)

Substituting the Bogoliubov transformations into the def-
initions of h′

R′,R and �R′,R and using the fact that αK

annihilates the ground state, we obtain

h′
R′,R = hR′,R + δR′,R

∑

R′′
W(R, R′′)

∑

K

VR′′,KV∗
R′′,K

− W(R, R′)
∑

K

VR,KV∗
R′,K (A18)

and

�R′,R = W(R, R′)
∑

K

UR,KV∗
R′,K. (A19)

The BdG equations are to be solved self-consistently with
these expressions for h′

R′,R and �R′,R.
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It is sometimes useful to express the BdG many-body
ground state in Thouless form [33]. To do so, we define
Z ≡ (VU−1)∗ and write

|0〉 = N exp
[

1
2

∑

R,R′
c†

RZR,R′c†
R′

]
|vac〉. (A20)

Here, N is a normalization constant. This is a gener-
alization of the standard BCS ground-state wave func-
tion N exp[

∑
k(vk/uk)c

†
k,1c†

−k,−1]|vac〉. It is more general
because it does not assume the Cooper pairs form specifi-
cally in the momentum basis.

To show that Eq. (A20) is the many-body ground state
of the BdG equations, we need to demonstrate that it is
annihilated by αK. Using the inverse Bogoliubov transfor-
mation (A10), we compute

[
1
2

∑

R,R′
c†

RZR,R′c†
R′ ,αK

]
=

∑

R

V∗
R,Kc†

R. (A21)

The argument uses identities (A9). Note that the right-hand
side commutes with 1

2

∑
R,R′ c†

RZR,R′c†
R′ . Now, according

to a well-known lemma,

eX Ye−X = Y + [Y, X ] (A22)

when [X , [X , Y]] = 0. (This is proven straightforwardly
by differentiating esX Ye−sX with respect to s.) Thus, we
deduce that

exp
[

− 1
2

∑

R,R′
c†

RZR,R′c†
R′

]
αK exp

[
1
2

∑

R,R′
c†

RZR,R′c†
R′

]

= αK −
∑

R

V∗
R,Kc†

R

=
∑

R

U∗
R,KcR. (A23)

It follows that

αK exp
[

1
2

∑

R,R′
c†

RZR,R′c†
R′

]
|vac〉 = exp

[
1
2

∑

R,R′
c†

RZR,R′c†
R′

]

×
∑

R

U∗
R,KcR|vac〉 = 0. (A24)

We see that Eq. (A20) is indeed the many-body ground
state of the BdG equations.

The states |θ〉 are defined in the text using the
gauge transformation UR,K → eiθ�r/2UR,K and VR,K →
e−iθ�r/2VR,K. Given the form (A20) for |0〉, this implies
that

|θ〉 = N exp
[

1
2

∑

R,R′
eiθ(�r+�r′ )/2c†

RZR,R′c†
R′

]
|vac〉.

(A25)

APPENDIX B: COMPUTATIONAL SOLUTION OF
THE BOGOLIUBOV–DE GENNES EQUATIONS

Our formalism is compatible with detailed first-
principles approaches to solving the BdG equations. How-
ever, in this paper, for simplicity, we model the super-
conducting qubits using a rectangular lattice with lattice
vectors ax, ay , and az. The number of tight-binding sites
in the x, y, and z directions are Nx, Ny , and Nz, respec-
tively, giving rise to lengths Lx = Nx|ax|, Ly = Ny |ay |, and
Lz = Nz|az|. Symmetries can facilitate solution of the BdG
equations. We employ periodic boundary conditions in the
x and y directions; as a result of the translational sym-
metry, our self-consistent quantities (A18) and (A19) are
homogeneous in the x and y directions.

We choose a spin-independent interaction of the form

W(r, σ ; r′, σ ′) = w(x − x′, y − y ′, z − z′)

=
⎧
⎨

⎩

−g, r = r′,
λ

|r − r′| , r 	= r′,
(B1)

where the attractive Hubbard interaction at r = r′ gives
rise to superconductivity. The BdG equations can be writ-
ten as

εkUmx ,my ,z,σ ,K =
∑

z′,σ ′
h′

mx ,my ,z,σ ,z′,σ ′Umx ,my ,z′,σ ′,K

+�mx ,my ,z,σ ,z′,σ ′Vmx ,my ,z′,σ ′,K, (B2a)

εkVmx ,my ,z,σ ,K =
∑

z′,σ ′
(−h′

−mx ,−my ,z,σ ,z′,σ ′)∗Vmx ,my ,z′,σ ′,K

+ (�−mx ,−my ,z,σ ,z′,σ ′)∗Umx ,my ,z′,σ ′,K,
(B2b)

where the transverse momenta 2πmx/Lx and 2πmy/Ly are
good quantum numbers and

Umx ,my ,z,σ ,K = 1√
NxNy

∑

x,y

e−i2πmxx/Lx−i2πmy y/Ly Ux,y,z,σ ,K,

Vmx ,my ,z,σ ,K = 1√
NxNy

∑

x,y

e−i2πmxx/Lx−i2πmy y/Ly Vx,y,z,σ ,K,

(B3)

with inverse relations

Ux,y,z,σ ,K = 1√
NxNy

∑

mx ,my

ei2πmxx/Lx+i2πmy y/Ly Umx ,my ,z,σ ,K,

Vx,y,z,σ ,K = 1√
NxNy

∑

mx ,my

ei2πmxx/Lx+i2πmy y/Ly Vmx ,my ,z,σ ,K.

(B4)
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To specify the forms of the operators on the right-hand side of Eqs. (B2), we define

1
NxNy

∑

x,y,x′,y ′
e−i2π�xx/Lx−i2π�y y/Ly ei2πmxx′/Lx−i2πmy y ′/Ly hx,y,z,σ ,x′,y ′,z,σ ′

≡ δ�x ,mxδ�y ,my hmx ,my ,z,σ ,z′,σ ′ , (B5)

where

hmx ,my ,z,σ ,z′,σ ′ =
∑

x,y

e−i2πmx(x−x′)/Lx−i2πmy (y−y ′)/Ly hx,y,z,σ ,x′,y ′,z,σ ′ . (B6)

This definition is reasonable because hx,y,z,σ ,x′,y ′,z,σ ′ depends on x, x′, y, and y ′ only via x − x′ and y − y ′. (The use of
periodic boundary conditions in the x and y directions is essential for this translational invariance.) Similarly, we define

1
NxNy

∑

x,y,x′,y ′
e−i2π�xx/Lx−i2π�y y/Ly ei2πmxx′/Lx−i2πmy y ′/Ly w(x − x′, y − y ′, z − z′)

≡ δ�x ,mxδ�y ,my w̃(mx, my , z − z′). (B7)

Here, we have

w̃(mx, my , z − z′) =
∑

x,y

e−i2πmx(x−x′)/Lx−i2πmy (y−y ′)/Ly w(x − x′, y − y ′, z − z′)

= NxNys(mx, my)e−2π
√
(mx/Lx)2+(my/Ly )2|z−z′| −

∑

nx ,ny

s(nx, ny)δz,z′ − gδz,z′ (B8)

with

s(mx, my) = λ

LxLy

⎧
⎨

⎩

2
√
πLxLy , mx = my = 0,

1√
(mx/Lx)2 + (my/Ly)2

, otherwise. (B9)

Then,

h′
mx ,my ,z′,σ ′,z,σ = hmx ,my ,z′,σ ′,z,σ

+ δz′,zδσ ′,σ
∑

z′′,σ ′′
w̃(0, 0, z − z′′)

1
NxNy

∑

�x ,�y ,K

V�x ,�y ,z′′,σ ′′,KV∗
�x ,�y ,z′′,σ ′′,K

−
∑

�x ,�y

w̃(mx − �x, my − �y , z − z′)
1

NxNy

∑

K

V�x ,�y ,z,σ ,KV∗
�x ,�y ,z′,σ ′,K (B10)

and

�mx ,my ,z,σ ,z′,σ ′ =
∑

�x ,�y

w̃(mx + �x, my + �y , z − z′)
1

NxNy

∑

K

U�x ,�y ,z′,σ ′,KV∗
�x ,�y ,z,σ ,K. (B11)

Alternatively, we also have
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�mx ,my ,z,σ ,z′,σ ′ = −
∑

�x ,�y

w̃(mx − �x, my − �y , z − z′)
1

NxNy

∑

K

U�x ,�y ,z,σ ,KV∗
�x ,�y ,z′,σ ′,K. (B12)

The total energy of the system is given by

〈H 〉 =
∑

�x ,�y ,z,σ ,z′,σ ′
[h�x ,�y ,z,σ ,z′,σ ′ρ�x ,�y ,z,σ ,z′,σ ′ + 1

2NxNy

∑

mx ,my

w̃(0, 0, z − z′)ρ�x ,�y ,z,σ ,z,σ ρmx ,my ,z′,σ ′,z′,σ ′

− w̃(�x − mx, �y − my , z − z′)ρ�x ,�y ,z′,σ ′,z,σ ρmx ,my ,z,σ ,z′,σ ′ + w̃(�x − mx, �y − my , z − z′)κ∗
�x ,�y ,z,σ ,z′,σ ′κmx ,my ,z,σ ,z′,σ ′].

(B13)

Here,

ρx,y,z,σ ,x′,y ′,z′,σ ′ = 〈c†
R′cR〉 =

∑

K

Vx′,y ′,z′,σ ′,KV∗
x,y,z,σ ,K, (B14)

leading to

ρ�x ,�y ,z,σ ,z′,σ ′ =
∑

x,y

e−i2π�x(x−x′)/Lx−i2π�y (y−y ′)/Lyρx,y,z,σ ,x′,y ′,z′,σ ′

=
∑

K

V−�x ,−�y ,z′,σ ′,KV∗
−�x ,−�y ,z,σ ,K (B15)

with the minus signs in front of �x and �y in the final expression resulting from the flip in the order of the primed and
unprimed variables in Eq. (B14). Similarly,

κx,y,z,σ ,x′,y ′,z′,σ ′ = 〈cR′cR〉 =
∑

K

Ux′,y ′,z′,σ ′,KV∗
x,y,z,σ ,K (B16)

and

κ�x ,�y ,z,σ ,z′,σ ′ =
∑

x,y

e−i2π�x(x−x′)/Lx−i2π�y (y−y ′)/Lyκx,y,z,σ ,x′,y ′,z′,σ ′

=
∑

K

U−�x ,−�y ,z′,σ ′,KV∗
−�x ,−�y ,z,σ ,K. (B17)

In the main text, we describe numerical simulations for a charge qubit and for an rf-SQUID qubit performed using this
framework. In the charge qubit case, the self-consistent solution to the BdG equations is labeled |θ = 0〉. The main text
describes the computation of additional states |θ〉 using a modified self-consistent procedure that fixes a given phase
drop θ by returning the order parameter phase, after each iteration toward self-consistency, to −θ/2 at one end of the
qubit and θ/2 at the other end. Carrying out this procedure for θ = π and again for θ = π/2 yields states |θ = π〉BdG
and |θ = π/2〉BdG. The subscript BdG emphasizes that these states were obtained by self-consistent solution of the BdG
equations. As described in the main text, the θ = π solution is used to define |θ〉 via Eq. (7). In particular, we can define
|θ = π/2〉 this way. It is then of interest to compare |θ = π/2〉 to |θ = π/2〉BdG. We find that the magnitude of the order
parameters of the two states agree everywhere to within 3%. The phases of the order parameters of the two states differ
near the Josephson junction, as shown in Fig. 4.

APPENDIX C: DERIVATION OF THE MATRIX ELEMENTS

As described in the text, we need to compute the matrix elements that appear in the Schrödinger equations (8) and (17).
For concreteness, we focus on the charge qubit case (8); the rf-SQUID case is very similar. The desired matrix elements
take the form 〈θ ′′|O|θ ′〉 = 〈θ ′′|O(c†

R1
, cR2)|θ ′〉, where the right-hand side makes explicit the dependence of O on the

operators c†
R1

and cR2 . To compute these matrix elements, we follow the derivation in Ref. [33].
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FIG. 4. Comparison of phases of the order parameters of the
two states |θ = π/2〉BdG (purple) and |θ = π/2〉 (blue). Close
overall agreement is evident, with the phase of the order param-
eter of |θ = π/2〉 changing slightly more abruptly near the
Josephson junction.

The states |θ ′〉 and |θ ′′〉 are defined in the text by per-
forming gauge transformations from the BdG solutions of
Eqs. (A17):

U′
R,K = eiθ ′�r/2UR,K, V′

R,K = e−iθ ′�r/2VR,K,

U′′
R,K = eiθ ′′�r/2UR,K, V′′

R,K = e−iθ ′′�r/2VR,K.
(C1)

These equations imply that |θ ′〉 is annihilated by the
quasiparticle operator βK, where

cR =
∑

L

U′
R,LβL + (V′)∗R,Lβ

†
L,

c†
R =

∑

L

(U′)∗R,Lβ
†
L + V′

R,LβL,
(C2)

and |θ ′′〉 is annihilated by the quasiparticle operator γK,
where

cR =
∑

L

U′′
R,LγL + (V′′)∗R,Lγ

†
L ,

c†
R =

∑

L

(U′′)∗R,Lγ
†
L + V′′

R,LγL.
(C3)

The inverses of these last definitions are

γK =
∑

R

(U′′)∗R,KcR + (V′′)∗R,Kc†
R,

γ
†
K =

∑

R

U′′
R,Kc†

R + V′′
R,KcR;

(C4)

combined with Eqs. (C2), these imply that

γK =
∑

L

U∗
L,KβL + V∗

L,Kβ
†
L,

γ
†
K =

∑

L

UL,Kβ
†
L + VL,KβL,

(C5)

where U = (U′)†U′′ + (V′)†V′′ and V = (V′)TU′′ + (U′)TV′′.

To proceed, we use Thouless’s theorem, which asserts
that Bogoliubov states |θ ′′〉 and |θ ′〉 are related by

|θ ′′〉 = 〈θ ′|θ ′′〉e
∑

K,K′ β†
KZK,K′β†

K′/2|θ ′〉, (C6)

where Z = (VU−1)∗. The theorem assumes that 〈θ ′|θ ′′〉 	=
0, which we will see implies that U−1, and therefore Z ,
exists. To prove Thouless’s theorem, one needs to show
that γK annihilates the expression on the right-hand side of
Eq. (C6). The proof closely parallels the argument leading
up to Eq. (A24) with αK, cR, UR,K, VR,K, and ZR,R′ replaced
by γK, βL, UL,K, VL,K and ZK,K′ , respectively. In the first
step of the proof, we calculate

e
∑

K,K′ βK′Z∗
K,K′βK/2βLe−∑

K,K′ βK′Z∗
K,K′βK/2 = βL (C7)

and

e
∑

K,K′ βK′Z∗
K,K′βK/2β

†
Le−∑

K,K′ βK′Z∗
K,K′βK/2

= β
†
L +

[ ∑

K,K′
βK′Z∗

K,K′βK/2,β†
L

]

= β
†
L −

∑

K′
βK′Z∗

K′,L (C8)

by applying lemma (A22). Then, we employ definition
(C4) to obtain the analogues of Eqs. (A23) and (A24). Note
that Eq. (C6) reduces to Eq. (A20) when we set U′ equal to
the identity matrix and V′ equal to the zero matrix.

Thouless’s theorem allows us to evaluate the overlap
〈θ ′|θ ′′〉. To do this, we simplify our expression for |θ ′′〉
into a BCS-like form. The theorem of Bloch and Messiah
states that there are unitary matrices C and D for which
Ū = D†UC† and V̄ = DTVC† are real and take simple
block-diagonal forms. The matrix Ū has 2 × 2 blocks of
the form uJ

[
1 0
0 1

]
in which the two states J and J̄ are paired

with uJ = uJ̄. In the usual BCS case in which pairing
occurs in the momentum basis, we would have J = k, σ
and J̄ = −k, −σ . The matrix V̄ has 2 × 2 blocks of the
form vJ

[
0 1

−1 0

]
, involving the same two states J and J̄. The

coefficients satisfy the normalization condition u2
J + v2

J =
1. Defining β̂†

J = ∑
K β

†
KDK,J in terms of matrix D, we find

that
∑

K,K′ β
†
KZK,K′β†

K′/2 = ∑
J β̂

†
J (vJ/uJ)β̂

†
J̄
. Thus,

|θ ′′〉 = 〈θ ′|θ ′′〉 exp
( ∑

J

β̂
†
J
vJ

uJ
β̂

†
J̄

)
|θ ′〉

= 〈θ ′|θ ′′〉�J

(
1 + β̂

†
J
vJ

uJ
β̂

†
J̄

)
|θ ′〉

= 〈θ ′|θ ′′〉�J
1
uJ
�J

(
uJ + β̂

†
JvJβ̂

†
J̄

)
|θ ′〉. (C9)

The normalization condition 〈θ ′′|θ ′′〉 = 1 then implies
that |〈θ ′|θ ′′〉|2 = �Ju2

J = det U . The Onishi formula
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|〈θ ′|θ ′′〉|2 = det U leaves the phase of 〈θ ′|θ ′′〉 undeter-
mined; by choosing the phases of UR,K and VR,K appropri-
ately, we can ensure that 〈θ ′|θ ′′〉 is real. Then, the correct

sign of 〈θ ′|θ ′′〉 = ±√
det U is fixed using continuity in θ ′′

starting with 〈θ ′|θ ′′〉 = 1 at θ ′′ = θ ′.

Using Thouless’s theorem, we can also calculate matrix elements of the form

〈θ ′′|O|θ ′〉/〈θ ′′|θ ′〉 = 〈θ ′′|O(c†
R1

, cR2)|θ ′〉/〈θ ′′|θ ′〉
= 〈θ ′|e

∑
K,K′ βK′Z∗

K,K′βK/2O(c†
R1

, cR2)|θ ′〉
= 〈θ ′|e

∑
K,K′ βK′Z∗

K,K′βK/2O(c†
R1

, cR2)e
−∑

K,K′ βK′Z∗
K,K′βK/2|θ ′〉

= 〈θ ′|O(e
∑

K,K′ βK′Z∗
K,K′βK/2c†

R1
e−∑

K,K′ βK′Z∗
K,K′βK/2

× e
∑

K,K′ βK′Z∗
K,K′βK/2cR2e−∑

K,K′ βK′Z∗
K,K′βK/2)|θ ′〉, (C10)

where we have inserted e
∑

K,K′ βK′Z∗
K,K′βK/2

e− ∑
K,K′ βK′Z∗

K,K′βK/2 = 1 as needed between adjacent oper-
ators in O to derive the final line.

To proceed, we insert Eqs. (C7) and (C8) into the
definitions of the Bogoliubov operators (C2), obtaining

e
∑

K,K′ βK′Z∗
K,K′βK/2cRe−∑

K,K′ βK′Z∗
K,K′βK/2

=
∑

L

U′
R,LβL + (V′)∗R,L

(
β

†
L −

∑

K′
βK′Z∗

K′,L

)

(C11)

and

e
∑

K,K′ βK′Z∗
K,K′βK/2c†

Re−∑
K,K′ βK′Z∗

K,K′βK/2

=
∑

L

(U′)∗R,L

(
β

†
L −

∑

K′
βK′Z∗

K′,L

)
+ V′

R,LβL.

(C12)

It follows that

〈θ ′′|c†
R1

cR2 |θ ′〉/〈θ ′′|θ ′〉
=

∑

L,L′
(V′

R1,LδL,L′ − (U′)∗R1,LZ∗
L′,L)(V

′)∗R2,L′

= (V′(V′)†−(U′)∗Z†(V′)†)R1,R2

=
(

V′U 1
U (V

′)†+(U′)∗V 1
U (V

′)†
)

R1,R2

=
(

V′((U′)†U′′ + (V′)†V′′)
1
U (V

′)†+(U′)∗((V′)TU′′

+ (U′)TV′′)
1
U (V

′)†
)

R1,R2

=
(
(V′)∗

1
UT (V

′′)T
)

R2,R1

. (C13)

The third equality uses Z = −ZT, and the final equality
is derived using the orthogonality relations (U′)∗(V′)T +
V′(U′)† = 0 and (V′)∗(V′)T + U′(U′)† = I . Similarly,

〈θ ′′|c†
R1

c†
R2

|θ ′〉/〈θ ′′|θ ′〉 = −〈θ ′′|c†
R2

c†
R1

|θ ′〉/〈θ ′′|θ ′〉
= −(V′(U′)†−(U′)∗Z†(U′)†)R2,R1

= −
(
(U′)∗

1
UT (V

′′)T
)

R1,R2
(C14)

and

〈θ ′′|cR3cR4 |θ ′〉/〈θ ′′|θ ′〉 = (U′(V′)†−(V′)∗Z†(V′)†)R3,R4

=
(
(V′)∗

1
UT (U

′′)T
)

R4,R3

. (C15)

Finally, we have

〈θ ′′|c†
R1

c†
R2

cR3cR4 |θ ′〉/〈θ ′′|θ ′〉
= (V′(V′)†−(U′)∗Z†(V′)†)R1,R4(V

′(V′)†

−(U′)∗Z†(V′)†)R2,R3 − (V′(V′)†−(U′)∗Z†(V′)†)R1,R3

(V′(V′)†−(U′)∗Z†(V′)†)R2,R4

+ (V′(U′)†−(U′)∗Z†(U′)†)R1,R2 ,

(U′(V′)†−(V′)∗Z†(V′)†)R3,R4

024030-12



BEYOND THE LUMPED-ELEMENT APPROXIMATION PHYS. REV. APPLIED 21, 024030 (2024)

=
(
(V′)∗

1
UT (V

′′)T
)

R4,R1

(
(V′)∗

1
UT (V

′′)T
)

R3,R2

−
(
(V′)∗

1
UT (V

′′)T
)

R3,R1

(
(V′)∗

1
UT (V

′′)T
)

R4,R2

−
(
(U′)∗

1
UT (V

′′)T
)

R1,R2

(
(V′)∗

1
UT (U

′′)T
)

R4,R3

.

To compute 〈θ ′′|H |θ ′〉/〈θ ′′|θ ′〉, we use expression (B13),
but replace ρ with

ρ̄�x ,�y ,z,σ ,z′,σ ′ =
∑

K,K′
V′′

−�x ,−�y ,z′,σ ′,K′

(
1
U

)

K′,K
(V′

−�x ,−�y ,z,σ ,K)
∗

(C16)

and κ with

κ̄�x ,�y ,z,σ ,z′,σ ′ =
∑

K,K′
U′′

−�x ,−�y ,z′,σ ′,K′

(
1
U

)

K′,K
(V′

−�x ,−�y ,z,σ ,K)
∗.

(C17)

APPENDIX D: FIXING THE ORDER PARAMETER
PHASE ADDITIVE CONSTANT

Note that any self-consistent solution of the Bogoli-
ubov–de Gennes equations remains a self-consistent solu-
tion under the transformation

�R,R′ → eiξ�R,R′ ,

UR,K → eiξ/2UR,K,

VR,K → e−iξ/2UR,K,

where ξ is a real constant. Because Z ≡ (VU−1)∗, the
ground state (A20) becomes

|0, ξ〉 = N exp
[

1
2

∑

R,R′
eiξc†

RZR,R′c†
R′

]
|vac〉. (D1)

Expanding the exponential, one sees that |0, ξ〉 is a super-
position

|0, ξ〉 =
∑

n

einξ |0, n〉,

where |0, n〉 = ∫ 2π
0 (dξ/2π)e−inξ |0, ξ〉 is an unnormalized

state with n total pairs (2n total particles) in the system.
Clearly, ξ shows up as the relative phase between states
with different numbers of particles. If a superconducting
system with a fixed number of pairs n̄ is modeled using
the Bogoliubov–de Gennes equations, the state of the sys-
tem can be described by one of the terms in the sum,
i.e., |0, n̄〉/√〈0, n̄|0, n̄〉. For mathematical convenience, we
often calculate physical properties of the system using

the entire superposition |0, ξ〉. However, correct physical
predictions about the system cannot depend on the value
of ξ .

It is therefore jarring that adding a constant to the
rescaled order parameter phase (6) does in fact alter the
predictions of Eq. (8). Indeed, taking �r → �r + ξ mul-
tiplies each c†

R in Eq. (A25) by an extra factor of eiθξ/2.
Comparing definition (D1), we see that |θ〉 has changed to
|θ , θξ〉. If we expand

|θ , ξθ〉 =
∑

n

einθξ |θ , n〉,

the matrix elements in Eq. (8) depend on ξ as

〈θ , θξ |θ ′, θ ′ξ〉 =
∑

n

ein(θ−θ ′)ξ 〈θ , n|θ ′, n〉,

〈θ , θξ |H |θ ′, θ ′ξ〉 =
∑

n

ein(θ−θ ′)ξ 〈θ , n|H |θ ′, n〉.
(D2)

In light of this expansion, one realizes that, for a system
with a fixed number of pairs n̄, one would actually like
to solve a modified version of Eq. (8) with fixed particle
number

∑

θ

〈θ , n̄|H |θ ′, n̄〉ψ(θ ′) = E
∑

θ

〈θ , n̄|θ ′, n̄〉ψ(θ ′). (D3)

This equation does not depend on ξ , as required physically.
Nevertheless, the original Eq. (8) can be used provided

that we choose a specific value of ξ satisfying

〈θ , θξ |θ ′, θ ′ξ〉 ≈ ein̄(θ−θ ′)ξ 〈θ , n̄|θ ′, n̄〉√〈θ , n̄|θ , n̄〉〈θ ′, n̄|θ ′, n̄〉

= ein̄(θ−θ ′)ξ 〈θ , n̄|θ ′, n̄〉
〈0, n̄|0, n̄〉 ,

〈θ , θξ |H |θ ′, θ ′ξ〉 ≈ ein̄(θ−θ ′)ξ 〈θ , n̄|H |θ ′, n̄〉√〈θ , n̄|θ , n̄〉〈θ ′, n̄|θ ′, n̄〉

= ein̄(θ−θ ′)ξ 〈θ , n̄|H |θ ′, n̄〉
〈0, n̄|0, n̄〉 ,

(D4)

for n̄ equal to the number of pairs in the system. If this
condition is satisfied, Eq. (8) approximately reduces to Eq.
(D3). To satisfy Eqs. (D4), in this paper we choose ξ such
that Eq. (6) is an antisymmetric function of z, as in Fig.
1(c). This implies that ein(θ−θ ′)ξ 〈θ , n|θ ′, n〉 is real for all n:

(ein(θ−θ ′)ξ 〈θ , n|θ ′, n〉)∗ = e−inθξ 〈−θ , n|−θ ′, n〉einθ ′ξ

= einθξ 〈θ , n|R̂†R̂|θ ′, n〉e−inθ ′ξ

= ein(θ−θ ′)ξ 〈θ , n|θ ′, n〉.
In the second equality, we introduced an operator R̂ that
takes z to −z, and we used the z ↔ −z reflection symme-
try of the problem about the Josephson junction. The third
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FIG. 5. (a) Plot of the overlap |〈0|0, n〉|2 versus the number
of particles 2n for the charge qubit parameters detailed in the
main text. Strong peak is evident near 2n = 1012 particles. (b)
Expanded plot in the range 2n = 982 to 1042 particles shows the
shape of the peak.

equality uses the fact that two reflections R̂†R̂ in succes-
sion produce an identity operation. Similarly, our choice
of ξ ensures that ein(θ−θ ′)ξ 〈θ , n|H |θ ′, n〉 is real for all n:

(ein(θ−θ ′)ξ 〈θ , n|H |θ ′, n〉)∗ = ein(−θ+θ ′)ξ 〈−θ , n|H ∗|−θ ′, n〉
= ein(θ−θ ′)ξ 〈θ , n|R̂†H ∗R̂|θ ′, n〉
= ein(θ−θ ′)ξ 〈θ , n|H |θ ′, n〉.

Now, numerically, we find that the terms in Eqs. (D2) are
strongly peaked as a function of n about n = n̄. A sample
calculation, performed using the charge qubit parame-
ters described in the main text, is shown in Fig. 5 for
ein(θ−θ ′)ξ 〈θ , n|θ ′, n〉 in the case θ = θ ′ = 0. Since they are
real and do not have a rapidly varying phase, the terms with
n close to n̄ add constructively and determine the value
of the sum. As a result, Eqs. (D4) are satisfied: we have
numerically verified agreement to within about 1% for the
overlap 〈θ , θξ |θ ′, θ ′ξ〉 and for the one-body operators in
the Hamiltonian 〈θ , θξ |c†

RcR′ |θ ′, θ ′ξ〉 at a few choices of θ ,
θ ′, R, and R′. [We expect that Eqs. (D4) would also be sat-
isfied for the two-body operators in the Hamiltonian, but
did not check this numerically.] Had we chosen ξ injudi-
ciously, there would have been differences in phase leading
to cancelations within the sums (D2). As a result, Eqs. (D4)
would not be well satisfied.

Although this discussion has focused on the case of the
charge qubit, analogous remarks apply to the rf-SQUID
qubit. The rescaled phase function (15) is chosen so that
it is antisymmetric on z, as shown in Fig. 2(c). This allows
us to get physically relevant results by solving Eq. (17)
without projecting on to states of fixed particle number.

APPENDIX E: DEFINITION OF THE
ORTHONORMAL BASIS

In the limit of large systems, the states |θ〉 approach
orthonormality. This follows from the Onishi formula
|〈θ |θ ′〉|2 = det U in the limit in which matrix (9) becomes
large. To solve Eq. (8) for a finite system, though, it is con-
venient to construct an orthonormal basis explicitly. Our
nonorthonormal basis, defined in the main text, comprises

states |θ〉, where −θmax < θ ≤ θmax. The value of θmax is
determined by |θ〉 = |θ + 2θmax〉; based on Eq. (A25) a
sufficient condition is

ei2θmax(�r+�r′ )/2 = 1 for all r and r′. (E1)

For instance, if we have a charge qubit in which �r/2
changes from −1/4 to 1/4 abruptly across the Joseph-
son junction from one lattice site to the next then we
have θmax = 2π . If instead �r/2 changes from −1/4 to
1/4 linearly over �z lattice sites, with �z referring to the
thickness of the Josephson junction, then θmax = 2π�z.

We define orthonormal states |n〉 as follows. Using
expression (A25) for |θ ′〉 and defining

c̄†
R=eiθ ′�R/2c†

R, (E2)

one sees that the overlap matrix elements satisfy 〈θ |θ ′〉 =
〈θ − θ ′|0〉. Fourier transforming, we define on by

1
2θmax

∫ θmax

−θmax

dθeiθn 1
2θmax

∫ θmax

−θmax

dθ ′e−iθ ′n′ 〈θ − θ ′|0〉

=
{

on, n = n′,
0, otherwise,

(E3)

where

n = 2πm/2θmax (E4)

for m an integer in the range −M/2, . . . , M/2 with M an
even integer. It follows that the states

|n〉 = 1√
on

1
2θmax

∫ θmax

−θmax

dθe−iθn|θ〉 (E5)

satisfy the orthonormality condition

〈n|n′〉 =
{

1, n = n′,
0, otherwise.

(E6)

Some eigenvalues on approach zero because the basis of
|θ〉 states is overcomplete; we exclude the corresponding
states |n〉 from our basis.

Given the definition of |n〉, it is possible to perform a
unitary transformation to a coarse-grained θ̄ basis defined
by an inverse Fourier transform over the valid |n〉 states:

|θ̄〉 =
∑

n

eiθ̄n|n〉/√M + 1. (E7)

The number of such states is M + 1, and they lie in value
between −θmax and θmax, so their allowed values are θ̄ =
2θmaxm/(M + 1) with m = −M/2, . . . , M/2 integral.
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An upper bound on M is given by θmaxNpairs/π , where
Npairs is the total number of pairs occupying the sys-
tem. This estimate is obtained by applying the theorem of
Bloch and Messiah to Eq. (A25). As noted previously, this
theorem states that there are unitary matrices C and D for
which Ū = D†UC† and V̄ = DTUC† are real and take sim-
ple block-diagonal forms. The matrix Ū has 2 × 2 blocks
of the form uJ

[
1 0
0 1

]
, while these blocks take the form

vJ
[

0 1
−1 0

]
in the case of V̄. Here, the 2 × 2 block involving

state J involves a paired state that we label J̄. Defining

d†
J =

∑

R

c†
Reiθ�r/2DR,J, (E8)

we find that 1
2

∑
R,R′ eiθ(�r+�r′ )/2c†

RZR,R′c†
R′ = ∑

J d†
J

(vJ/uJ)d
†
J̄
. Inserting this into Eq. (A25) yields

|θ〉 = N exp
(∑

J

d†
J
vJ

uJ
d†

J̄

)
|vac〉

= N�J

(
1 + d†

J
vJ

uJ
d†

J̄

)
|vac〉

≈ N
∏

J∼Fermi sea

(
1 + d†

J
vJ

uJ
d†

J̄

)
|vac〉

= N
(

1 +
∑

J∼Fermi sea

d†
J
vJ

uJ
d†

J̄

+ · · · +
∏

J∼Fermi sea

d†
J
vJ

uJ
d†

J̄

)
|vac〉. (E9)

The notation J ∼ Fermi sea indicates states that are within
the Fermi sea or not too far above the Fermi surface.
The approximate equality in the third line uses that fact
that high-energy states well above the Fermi surface have
vJ → 0. The final equality comes from multiplying out the
product into a sum of terms. Inserting this expression into
Eq. (E5) yields

|n〉 ≈ N√
on

1
2θmax

∫ θmax

−θmax

dθe−inθ
(

1 + · · · +
∏

J∼Fermi Sea

d†
J
vJ

uJ
d†

J̄

)
|vac〉

= N√
on

1
2θmax

∫ θmax

−θmax

dθe−inθ
(

1 + · · · +
∏

J∼Fermi sea

∑

R,R′
c†

Reiθ�r/2DR,J
vJ

uJ
c†

R′eiθ�r′/2DR′,J̄

)
|vac〉, (E10)

where Eq. (E8) has been used in the final line. If n is too large, the right-hand side will vanish. To see this, note that

1
2θmax

∫ θmax

−θmax

dθe−inθeiθ(�r1+···+�r2T )/2 =
{

1, n = (�r1 + · · · +�r2T)/2,
0, otherwise,

(E11)

using Eq. (E1). Assuming that�r is at most 1/2, the largest possible value of (�r1 + · · · +�r2T)/2 is T/2; the Kronecker
delta then enforces n = T/2. Thus, the largest possible value of n that could possibly give a nonvanishing result for
Eq. (E10) is n = Npairs/2, where Npairs is the number of occupied pairs appearing in

∏
J∼Fermi sea. Similarly, the smallest

possible value of n is −Npairs/2. Given Eq. (E4), we find that 2π(M/2)/2θmax ≤ Npairs/2, or M ≤ Npairsθmax/π as claimed
above.

In the case of a charge qubit composed of two weakly coupled superconducting islands with a relatively abrupt phase
change, as in Fig. 1(c), we can find a better estimate of M + 1. The basis size M + 1 turns out to scale as the number of
pairs Nshared in |θ〉 that are shared on both islands, which is roughly the number of pairs near the chemical potential of
the system. To show this, we write

|θ〉 = N
∏

J∼Fermi sea

(
1 + d†

J
vJ

uJ
d†

J̄

)
|vac〉 = N

∏

J left

(
1 + d†

J
vJ

uJ
d†

J̄

) ∏

J right

(
1 + d†

J
vJ

uJ
d†

J̄

) ∏

J shared

(
1 + d†

J
vJ

uJ
d†

J̄

)
|vac〉

≈ N ′ ∏

J left

d†
Jd†

J̄

∏

J right

d†
Jd†

J̄

∏

J shared

(
1 + d†

J
vJ

uJ
d†

J̄

)
|vac〉, (E12)
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where J left and J right refer to states that are localized
well within the Fermi sea of the left or right island, respec-
tively. These states have vJ/uJ very large, permitting the
final approximate equality. Let Nleft be the number of pairs
in the J left product, Nright be the number of pairs in the
J right product, and Nshared be the number of pairs in the
J shared product. We are considering the case of an abrupt
phase change, in which the electrons in the system have
�R = −1/2 or 1/2 depending on whether they inhabit the
left island or the right island. Thus, when we calculate Eq.
(E10), the integrals take the form

1
2θmax

∫ θmax

−θmax

dθe−inθeiθ(Nright−Nleft)/2eiθ(�r1+···+�r2T )/2

with the largest possible value of T given by the number
of pairs Nshared that can wander from the left island to the
right island. We see that n ranges from (Nright − Nleft)/2 −
Nshared/2 to (Nright − Nleft)/2 + Nshared/2. Recalling Eq.
(E4), we see that the size of the basis is determined by
2π(M/2)/2θmax ≤ Nshared/2, so that M ≤ Nsharedθmax/π .
Physically, |n〉 is a state with 2n more pairs on the right
island than on the left island.

The construction of an orthonormal basis for Eq. (17)
closely parallels the construction for Eq. (8). In the
limit of large systems, the states | �, θ〉 and | �, θ〉
approach orthonormality. For smaller systems, we con-
struct an orthonormal basis explicitly as follows. The
original nonorthogonal basis is composed of | �, θ〉 and
| �, θ〉 with −θmax < θ ≤ θmax and θmax fixed by Eq. (E1).
For an rf-SQUID qubit, θmax will approach 2πNz, with Nz
the number of sites around the circumference of the sys-
tem. This greatly exceeds the value of θmax in the charge
qubit case, consistent with the fact that θ is unbounded in
LE theory in the case of an rf SQUID. The overlap matrix
is composed of 2 × 2 blocks

[〈�, θ | �, θ ′〉 〈�, θ | �, θ ′〉
〈�, θ | �, θ ′〉 〈�, θ | �, θ ′〉

]
(E13)

=
[〈�, θ − θ ′| �, 0〉 〈�, θ − θ ′| �, 0〉
〈�, θ − θ ′| �, 0〉 〈�, θ − θ ′| �, 0〉

]

for −θmax < θ , θ ′ ≤ θmax. After a Fourier transform, the
overlap matrix becomes block diagonal with 2 × 2 blocks
of the form

∫ θmax

−θmax

dθ
∫ θmax

−θmax

dθ ′ e
iθn−iθ ′n′

(2θmax)2

[〈�, θ | �, θ ′〉 〈�, θ | �, θ ′〉
〈�, θ | �, θ ′〉 〈�, θ | �, θ ′〉

]

=
{

On, n = n′,
0, otherwise,

(E14)

where On is a 2 × 2 matrix and n, n′ satisfy (E4). The
eigenvalues of On, labeled o1,n and o2,n, have correspond-
ing eigenvectors

On

[
ai,n
bi,n

]
= oi,n

[
ai,n
bi,n

]

for i = 1, 2. We can define orthonormal states in terms of
these eigenvectors by

|i, n〉 = 1√oi,n

1
2θmax

∫ θmax

−θmax

dθe−iθn(ai,n| �, θ〉 + bi,n| �, θ〉)
(E15)

for i = 1, 2. They satisfy

〈i, n|i′, n′〉 =
{

1, i = i′ and n = n′,
0, otherwise.

(E16)

Because the original nonorthogonal basis is overcomplete,
some eigenvalues oi,n approach zero; the corresponding
states |i, n〉 are omitted from our basis. We denote by
2(M + 1) the number of valid orthogonal basis states |i, n〉.

Given this definition of |i, n〉, it is possible to perform
a unitary transformation to a coarse-grained phase basis
defined by an inverse Fourier transform over the valid |i, n〉
states:

|i, θ̄〉 =
M/2∑

n=−M/2

eiθ̄n|i, n〉/√M + 1. (E17)

Since the number of such states for a given i is M + 1, the
spacing between them is �θ̄ = 2θmax/(M + 1). As M + 1
grows with system size, this spacing shrinks to zero.

Applying the theorem of Bloch and Messiah as above
to | �, θ〉 and | �, θ〉, we can argue that a rough upper
bound on M + 1 is given by the number of occupied pairs
in the system. It is important to emphasize that the quantum
number n in |i, n〉 does not admit a simple interpretation in
terms of the positions of Cooper pairs in the system.

APPENDIX F: DERIVATION OF THE
LUMPED-ELEMENT EQUATIONS

In the coarse-grained θ̄ basis, the Schrödinger equation
(8) becomes an (M + 1)× (M + 1) matrix equation

∑

θ̄ ′
〈θ̄ |H|θ̄ ′〉ψ(θ̄ ′) = Eψ(θ̄ ′), (F1)
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where

〈θ̄ |H|θ̄ ′〉 = 1
M + 1

1
(2θmax)2

M/2∑

n=−M/2

e−iθ̄n

√
on

∫ θmax

−θmax

dθeiθn

M/2∑

n′=−M/2

eiθ̄ ′n′

√
on′

∫ θmax

−θmax

dθe−iθ ′n′ 〈θ |H |θ ′〉. (F2)

As the size of the system, and the basis size M + 1, grows,
the overlap matrix elements 〈θ |θ ′〉 decay rapidly for θ 	=
θ ′ as a consequence of Eq. (9). The original |θ〉 basis
tends toward orthonormality, and one expects the orthonor-
mal basis |θ̄〉 that we constructed to approach |θ〉|θ=θ̄ ,
the original basis state with θ evaluated at θ̄ . Thus, in
this limit we approximate 〈θ̄ |H|θ̄ ′〉 ≈ 〈θ |H |θ ′〉|θ=θ̄ ,θ ′=θ̄ ′ .
Recall decomposition (1), 〈θ |H |θ ′〉 = 〈θ |T + P + W|θ ′〉.
Employing Eq. (E2), we can show that the potential and
interaction energies satisfy 〈θ |P + W|θ ′〉 = 〈θ − θ ′|P +
W|0〉. Therefore, along the diagonal of the Hamilto-
nian matrix in Eq. (F1), 〈θ |P + W|θ〉 = 〈0|P + W|0〉 con-
tributes an overall constant that simply shifts E in Eq.
(F1). Only 〈θ |T|θ〉 depends upon θ ; this dependence is
physically important and should not be neglected. How-
ever, in the off-diagonal elements, we approximate 〈θ |T|θ ′〉
as 〈θ − θ ′|T|0〉, which is reasonable if the error incurred
thereby is small: |〈θ − θ ′|T|0〉 − 〈θ |T|θ ′〉| � |〈θ − θ ′|T +
P + W|0〉|. Summarizing, we have

〈θ̄ |H|θ̄ ′〉 ≈ δθ ,θ ′(〈θ |T|θ〉 − 〈0|T|0〉)|θ=θ̄ ,θ ′=θ̄ ′

+ 〈θ − θ ′|T + P + W|0〉|θ=θ̄ ,θ ′=θ̄ ′ . (F3)

Clearly, the first line is diagonal in the phase basis. The
second line, since it depends only on θ − θ ′, becomes
diagonal in the basis of |n〉 states (E5).

We can develop the analysis further in the case of a
charge qubit composed of two weakly coupled supercon-
ducting islands with a relatively abrupt phase change, as in
Fig. 1(c). The matrix element of the tunneling Hamiltonian
is

〈θ |T|θ ′〉 = −〈θ − θ ′|
∑

R

∑

a=±ax ,±ay ,±az

tr+a,reiθ ′(�r−�r+a)/2

c†
r+a,σ cr,σ |0〉, (F4)

where we have used Eq. (E2). It is useful to decom-
pose T = Tnear + Tfar, where Tnear contains the small
fraction of terms in which r is right near the junc-
tion and Tfar contains all other tunneling terms. As a
result of the form of Fig. 1(c), far from the junction,
�r ≈ �r+a, so that eiθ ′(�r−�r+a)/2 ≈ 1. Equation (F4) then
implies that 〈θ |Tfar|θ ′〉 ≈ 〈θ − θ ′|Tfar|0〉. So, neglecting
the contribution of Tnear, we conclude that Tfar + P +
W is diagonal in basis (E5). A reasonable approxima-
tion is 〈n|Tfar|n′〉 = Eseasn2δn,n′ , 〈n|W|n′〉 = 4ECn2δn,n′ , and

〈n|P|n′〉 = −μ̃nδn,n′ . Here, μ̃ denotes the electrochemi-
cal potential difference between the islands. The capaci-
tive energy, 4EC = (2e)2/2C in terms of an appropriate
capacitance C, is familiar from LE theory. The unfamil-
iar coefficient Eseas is determined by the total energy of
the two Fermi seas residing in the two superconducting
islands. For simplicity, assume that each of the islands has
volume L3. Let the total number of electrons in the sys-
tem be 2Ntot, with Ntot + 2n residing on one island and
Ntot − 2n residing on the other island. Then total energy of
the two Fermi seas is 3

5�2/2mL2(3π2)2/3((Ntot + 2n)5/3 +
(Ntot − 2n)5/3). Taylor expanding this expression to second
order, we deduce that Eseas = �2/2mL2(3π2)2/3 8

3 N−1/3
tot =

8EF/3Ntot, where EF is the Fermi energy of each island
when n = 0. For physical devices, Eseas is much smaller
than 4EC. However, in simulations such as that performed
in the text, where the Coulomb interaction is replaced
with a short-range Hubbard interaction, Eseas becomes the
important energy.

The contribution of Tnear to the diagonal matrix elements
takes the form 〈θ |Tnear|θ〉 ≈ −EJ cos θ/2. Here, we have
introduced the parameter EJ and used the fact that �r −
�r+a ≈ 1 when r and r + a stand on opposite sides of the
junction, implying that eiθ ′(�r−�r+a)/2 ≈ eiθ ′/2 in Eq. (F4).

Assembling these results, we make a continuum approx-
imation to our matrix equation (F1) for M + 1 large,
obtaining the lumped-element equation

4EC

(
−i

d
dθ̄

− n0

)2

ψ(θ̄)

+ EJ

(
1 − cos

θ̄

2

)
ψ(θ̄) = Eψ(θ̄), (F5)

where n0 = μ̃/8EC. This should be compared with the
standard lumped-element expression (14). There is a fac-
tor of 2 difference in the potential stemming from the
fact that −2π < θ̄ ≤ 2π in our theory. Setting θ̃ = θ̄/2,
ẼC = EC/4, and ñ0 = 2n0, we have

4ẼC

(
−i

d

dθ̃
− ñ0

)2

ψ(θ̃)+ EJ (1 − cos θ̃ )ψ(θ̃) = Eψ(θ̃)

(F6)

with −π < θ̃ ≤ π . This agrees with Eq. (14).
We can make a similar argument in the case of an rf-

SQUID qubit. The transformation to the orthogonal basis
changes Eq. (17) to the matrix equation

∑

θ̄ ′

[〈1, θ̄ |H|1, θ̄ ′〉 〈1, θ̄ |H|2, θ̄ ′〉
〈2, θ̄ |H|1, θ̄ ′〉 〈2, θ̄ |H|2, θ̄ ′〉

] [
ψ(1, θ̄ ′)
ψ(2, θ̄ ′)

]

= E
[
ψ(1, θ̄ )
ψ(2, θ̄ )

]
,
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where 〈i, θ̄ |H|i′, θ̄ ′〉 satisfies a definition analogous to Eq. (F2):

〈i, θ̄ |H|i′, θ̄ ′〉 = 1
M + 1

1
(2θmax)2

M/2∑

n=−M/2

e−iθ̄n

√
on

∫ θmax

−θmax

dθeiθn
M/2∑

n′=−M/2

eiθ̄ ′n′

√
on′

∫ θmax

−θmax

dθ ′e−iθ ′n′

×
[

ai,n
bi,n

]† [〈�, θ |H | �, θ ′〉 〈�, θ |H | �, θ ′〉
〈�, θ |H | �, θ ′〉 〈�, θ |H | �, θ ′〉

] [
ai′,n′
bi′,n′

]
. (F7)

For large systems, the overlap matrix (E13) tends to that of an orthonormal set of states, so we can approximate
|1, θ̄〉 = | �, θ〉|θ=θ̄ and |2, θ̄〉 = | �, θ〉|θ=θ̄ . Then, our matrix equation becomes

∑

θ̄ ′

[〈�, θ |H | �, θ ′〉 〈�, θ |H | �, θ ′〉
〈�, θ |H | �, θ ′〉 〈�, θ |H | �, θ ′〉

]∣∣∣∣
θ=θ̄ ,θ ′=θ̄ ′

[
ψ(�, θ̄ ′)
ψ(�, θ̄ ′)

]
= E

[
ψ(�, θ̄ )
ψ(�, θ̄ )

]
. (F8)

The potential and interaction matrix elements satisfy

[〈�, θ |P + W| �, θ ′〉 〈�, θ |P + W| �, θ ′〉
〈�, θ |P + W| �, θ ′〉 〈�, θ |P + W| �, θ ′〉

]

=
[〈�, θ − θ ′|P + W| �, 0〉 〈�, θ − θ ′|P + W| �, 0〉
〈�, θ − θ ′|P + W| �, 0〉 〈�, θ − θ ′|P + W| �, 0〉

]
,

which can be verified using a substitution like Eq. (E2).
For θ 	= θ ′, we adopt the approximation

[〈�, θ |T| �, θ ′〉 〈�, θ |T| �, θ ′〉
〈�, θ |T| �, θ ′〉 〈�, θ |T| �, θ ′〉

]
≈

[〈�, θ − θ ′|T| �, 0〉 〈�, θ − θ ′|T| �, 0〉
〈�, θ − θ ′|T| �, 0〉 〈�, θ − θ ′|T| �, 0〉

]

for the tunneling matrix elements. This relies on the approximation eiθ ′(�r−�r+a)/2 ≈ 1, which is roughly true since �r
changes gradually along the long circumference of the rf-SQUID qubit [see Fig. 2(c)]. When θ = θ ′, on the diagonal of
the Hamiltonian matrix, we retain the explicit θ dependence seen in the double-well potential in Fig. 2(d). This leads to

[〈1, θ̄ |H|1, θ̄ ′〉 〈1, θ̄ |H|2, θ̄ ′〉
〈2, θ̄ |H|1, θ̄ ′〉 〈2, θ̄ |H|2, θ̄ ′〉

]

≈ δθ ,θ ′

[〈�, θ |T| �, θ〉 − 〈�, 0|T| �, 0〉
〈�, θ |T| �, θ〉 − 〈�, 0|T| �, 0〉

]∣∣∣∣
θ=θ̄ ,θ ′=θ̄ ′

+
[〈�, θ − θ ′|T + P + W| �, 0〉 〈�, θ − θ ′|T + P + W| �, 0〉
〈�, θ − θ ′|T + P + W| �, 0〉 〈�, θ − θ ′|T + P + W| �, 0〉

]∣∣∣∣
θ=θ̄ ,θ ′=θ̄ ′

. (F9)

In the first term on the right-hand side, we approximate

〈�, θ |T| �, θ〉 − 〈�, 0|T| �, 0〉 = −EJ cos 1
2 (θ − θ�)+ 1

2 EL(θ − θ�)2,

〈�, θ |T| �, θ〉 − 〈�, 0|T| �, 0〉 = −EJ cos 1
2 (θ − θ�)+ 1

2 EL(θ − θ�)2.

In each equation, the contribution proportional to EL comes from tunneling terms in Eq. (2) distant from the Josephson
junction, while the contribution proportional to EJ comes from tunneling through the Josephson junction.

The third line of Eq. (F9) depends only on θ − θ ′. It therefore simplifies in basis (E15). As the system size grows and
the overlap matrix (E13) tends to that of an orthonormal set of states, matrix On becomes nearly diagonal: its eigenvectors
tend to ai,n = 1, bin = 0 and ai,n = 0, bin = 1. Considering expression (E15), it becomes reasonable to adopt the notation
| �, n〉 = |1, n〉 and | �, n〉 = |2, n〉. In this basis, the third line of Eq. (F9) is block diagonal with 2 × 2 blocks
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[
E�,n;�,n E�,n;�,n
E�,n;�,n E�,n;�,n

]
. (F10)

Now, the matrix elements in the third line of Eq. (F9) can be assumed real since one can introduce phases if necessary
into the state definitions. (It is true that conditions such as | �, θmax〉 = | �, −θmax〉 could prevent the introduction of
such phases consistently for all θ − θ ′ in Eq. (F9). However, since θmax is so large for an rf-SQUID qubit, states such as
| �, θmax〉 have extremely high energy and play no role in the accessible energy eigenstates of the system. Therefore, the
matrix elements in the third line of Eq. (F9) can be written as a real part plus a correction that vanishes for energetically
accessible states.) Because the third line of Eq. (F9) should decay with |θ − θ ′|, we make a tight-binding approximation,
retaining neighbors with θ − θ ′|θ=θ̄ ,θ ′=θ̄ ′ = 0, ±�θ̄ . [Recall that �θ̄ = 2θmax/(M + 1) as argued after Eq. (E17).] Then,
each of the four functions in Eq. (F10) equals a constant plus a term proportional to cos n�θ̄ . As system size increases
and �θ̄ shrinks, we can truncate the cosine at second order to obtain

[
E�

E�

]
+

[
E�;� E�;�
E�;� E�;�

]
n2. (F11)

This result may be reminiscent of the energy proportional to n2 obtained in the case of a charge qubit with an abrupt
junction, where |n〉 is a state with 2n extra Cooper pairs on one side of the Josephson junction. [See the discussion below
Eq. (F4).] However, it has been derived quite differently here; in particular, we avoided any claim that the states |i, n〉 have
a simple physical interpretation in terms of the positions of Cooper pairs.

Assembling our results, we find the continuum limit of our matrix equation (F8):

−
[

E�;� E�;�
E�;� E�;�

]
d2

dθ̄2

[
ψ(�, θ̄ )
ψ(�, θ̄ )

]
+

[
(E� − EJ cos 1

2 (θ̄ − θ�)+ 1
2 EL(θ̄ − θ�)2)ψ(�, θ̄ )

(E� − EJ cos 1
2 (θ̄ − θ�)+ 1

2 EL(θ̄ − θ�)2)ψ(�, θ̄ )

]

= E
[
ψ(�, θ̄ )
ψ(�, θ̄ )

]
. (F12)

An approximate one-component equation can be obtained by adopting the ansatz

[
ψ(�, θ̄ )
ψ(�, θ̄ )

]
≈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
ψ(θ̄)

0

]
, θ̄ ≤ θ̄m

[
0

ψ(θ̄)

]
, θ̄ > θ̄m

=
[

1 − f (θ̄)
f (θ̄)

]
ψ(θ̄). (F13)

Here f (θ̄) is a step function that increases from 0 to 1 when θ̄ transitions through the local maximum θ̄m defined by
E� − EJ cos 1

2 (θ̄m − θ�)+ 1
2 EL(θ̄m − θ�)2 = E� − EJ cos 1

2 (θ̄m − θ�)+ 1
2 EL(θ̄m − θ�)2. When the rf-SQUID qubit is

threaded by a half superconducting flux quantum, the symmetric double-well potential depicted in Fig. 2(d) has a local
maximum at θ̄m = 0. Inserting the ansatz, we are left with

−4EC(θ̄)
d2

dθ̄2
ψ(θ̄)+ EI (θ̄ )ψ(θ̄) = Eψ(θ̄), (F14)

where

4EC(θ̄) =
{

E�;�, θ̄ ≤ θ̄m,
E�;�, θ̄ > θ̄m,

and

EI (θ̄) =
{

E� − EJ cos 1
2 (θ̄ − θ̄�)+ 1

2 EL(θ̄ − θ̄�)2, θ̄ ≤ θ̄m,
E� − EJ cos 1

2 (θ̄ − θ̄�)+ 1
2 EL(θ̄ − θ̄�)2, θ̄ < θ̄m.
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In this derivation, we neglect the off-diagonal val-
ues E�,� and E�,�, assuming that they are small com-
pared to EI (θ̄). We also neglect terms proportional to
(df (θ̄)/dθ̄ )(dψ(θ̄)/dθ̄ ) or (d2f (θ̄)/dθ̄2)ψ(θ̄). This is jus-
tified if ψ(θ̄) and dψ(θ̄)/dθ̄ are small at the local
maximum θ̄m, the only point at which df (θ̄)/dθ̄ and
d2f (θ̄)/dθ̄2 do not vanish. For instance, this approxima-
tion seems particularly appropriate for low-energy eigen-
states of a double-well potential that nearly vanish inside
the potential barrier [see Fig. 2(d)].

APPENDIX G: NUMBER OF ENTANGLED
ELECTRONS

Computing the number of entangled electrons in an
rf-SQUID qubit is beyond the scope of LE theory. One
might attempt an answer within LE theory (see, e.g., Ref.
[40]) by working in the basis |n〉 and regarding n as the
number of Cooper pairs on the capacitors shunting the
Josephson junction of the qubit. For example, one might
associate the uncertainty �n with the number of Cooper
pairs participating in the supercurrent by flowing on and off
the junction capacitance. However, this association leads
to unphysical conclusions. For the parameters of the rf-
SQUID qubit experiment [25], for example, one computes
�n ∼ 50 pairs in the entangled state. Traveling with speed
v around a ring of circumference Lz, they should produce a
current I satisfying�n ∼ ILz/2ev. Inserting Lz ∼ 500 µm
and I ∼ µA, we find agreement only if v approaches the
speed of light c. But physically, the maximum plausible
speed is the Fermi velocity vF ∼ 0.01c.

Our theory provides a microscopic many-body quan-
tum state of the rf-SQUID qubit, which is not provided
by LE theory. We use this quantum state in the main
text to evaluate Eq. (19). In this section, we give a short
derivation of an approximate expression [27,28] for Eq.
(19) that assumes that the many-body state is a superposi-
tion of displaced Fermi seas counterpropagating in a ring
of circumference Lz. A displaced Fermi sea is a sphere
of momentum eigenstates that is centered at a nonzero
momentum. Thus, the basis that diagonalizes the expres-
sion 〈� |c†

QcQ′ | �〉 − 〈� |c†
QcQ′ | �〉 appearing in Eq. (19)

is given by momentum and spin: Q = (q, σ).
If the displaced Fermi seas carry current ±I/2 and

are centered at momentum ±q then the total number of
electrons below the Fermi surface of each sea is N ∼
ILz/2e(q/m), where m is the electron mass. However, not
all N electrons are entangled when we superpose displaced
Fermi seas. The core electronic states are occupied in both
displaced Fermi seas; these core electronic states do not
participate in the entanglement [27,28], and the sum (19) is
deliberately defined so that they do not contribute. In Fig.
6(a), which depicts the two displaced Fermi seas graphi-
cally, these core electrons occupy the white region. Only
the four colored slivers in Fig. 6(a) make contributions to

(a)

q

−q

(b)

q pF q/2

p2
F − (q/2)2

FIG. 6. (a) Cross section of three displaced Fermi seas, one
shifted up by q, one shifted down by −q, and one undisplaced.
If the blue slivers are exchanged and the purple approximate
slivers are exchanged, the displaced Fermi seas are mapped into
one other. Thus, the number of entangled electrons is the num-
ber of electronic states occupying one blue sliver and one purple
sliver. (b) Diagram used to evaluate the volume of the sliver in
momentum space. Upper circle, centered at q, and middle circle,
centered at 0, from (a) are depicted. Sliver is decomposed into
several regions [the first term in Eq. (G1) proceeds over the light
blue part and the second term in Eq. (G1) over the dark blue part].

Eq. (19). And, recalling the factor of 1/2 in Eq. (19), the
quantity �N equals the number of electronic states in one
blue sliver plus one purple sliver. The slivers are approx-
imately congruent, and we evaluate the volume of a blue
sliver with the assistance of Fig. 6(b). If pF is the Fermi
momentum, the volume of the blue sliver in momentum
space is

∫

Sliver
d3p =

[
2π

∫ √
p2

F −(q/2)2

0
dprpr

∫ q+
√

p2
F−p2

r

√
p2

F −p2
r

dpz

+ 2π
∫ pF

√
p2

F −(q/2)2
dprpr

∫ q+
√

p2
F−p2

r

q−
√

p2
F −p2

r

dpz

]

= πp2
Fq − π

24
q3 ≈ πp2

Fq. (G1)

We have performed the integral using cylindrical coordi-
nates. In the final line, we assume that pF � q. Intuitively,
the light blue region of Fig. 6(b), rotated around the z
axis, has approximately the volume of a cylinder of base
πp2

F and height q. The number of electronic states in one
blue sliver plus one purple sliver in Fig. 6(a) is �N ≈
N (2πp2

Fq)/(4πp3
F/3) = N3q/2pF , using the fact that the

Fermi sea has volume 4πp3
F/3 in momentum space. Sub-

stituting in the expression for N above, we find that�N ∼
3ILz/4e(pF/m) = 3ILz/4evF .
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