
PHYSICAL REVIEW APPLIED 21, 014012 (2024)

Optimized Bayesian system identification in quantum devices

Thomas M. Stace ,1 Jiayin Chen,1 Li Li ,1 Viktor S. Perunicic,1 Andre R. R. Carvalho,1
Michael Hush,1,* Christophe H. Valahu ,2,3 Ting Rei Tan ,2,3 and Michael J. Biercuk1,2,3

1
Q-CTRL, Sydney, NSW 2000, Australia

2
School of Physics, University of Sydney, Sydney, NSW 2006, Australia

3
ARC Centre of Excellence for Engineered Quantum Systems, University of Sydney, Sydney, NSW 2006, Australia

 (Received 20 January 2023; revised 19 May 2023; accepted 13 September 2023; published 9 January 2024)

Identifying and calibrating quantitative dynamical models for physical quantum systems is important
for a variety of applications. Here we present a closed-loop Bayesian learning algorithm for estimat-
ing multiple unknown parameters in a dynamical model, using optimized experimental “probe” controls
and measurement. The estimation algorithm is based on a Bayesian particle filter, and is designed to
autonomously choose informationally optimized probe experiments with which to compare to model pre-
dictions. We demonstrate the performance of the algorithm in both simulated calibration tasks and in
an experimental single-qubit ion-trap system. Experimentally, we find that, with 60 times fewer sam-
ples, we exceed the precision of conventional calibration methods, delivering an approximately 93 times
improvement in efficiency (as quantified by the reduction of measurements and resets required to achieve
a target residual uncertainty and multiplied by the increase in accuracy). In simulated and experimental
demonstrations, we see that successively longer pulses are selected as the posterior uncertainty iteratively
decreases, leading to an exponential improvement in the accuracy of model parameters with the number
of experimental queries, and a commensurate increase in the per-query time.
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I. INTRODUCTION

Accurately and efficiently identifying parameters in
quantitative dynamical models that describe quantum sys-
tems is an open challenge in the development of quan-
tum technologies [1]. This is an important task broadly
known as system identification, which enables various
applications, including system tuneup, error budgeting,
and control design. More specifically, in the context of
quantum computing, possession of an accurate and pre-
dictive system model can be used to develop high-fidelity
error-robust quantum logic gates [2]; the accuracy of
such models will be a key determinant [3] in our abil-
ity to reduce gate errors substantially below fault-tolerant
error-correction thresholds [4,5].

Increasing the accuracy of parameter estimates typically
involves the performance of comprehensive—but resource
intensive—experimental processes [6] that can conflict
with the fundamental premise that in real experiments
quantum measurements are generally expensive. This is a
consequence of both the exponential growth of the parame-
ter space with system size, and fundamental measurement-
induced noise, requiring repeated state preparation and
evolution cycles to build up statistics of measurement
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outcomes. Furthermore, measurements in real quantum
devices are typically up to an order of magnitude slower
than other quantum gates [7–11]. Finding measurement-
efficient routines enabling high-fidelity parameter esti-
mates is therefore critical for the advancement of useful
experimental methods in parameter estimation.

Here we introduce a closed-loop learning-control
algorithm that iteratively finds information-maximizing
control pulses [12,13] in order to improve the accuracy of
uncertain model parameters, such as Hamiltonian coeffi-
cients, with high efficiency in the number of measurements
employed. The approach we adopt adaptively adjusts an
interrogating control pulse waveform (duration, ampli-
tude, phase, etc) in a manner similar to techniques used
for high-dimensional control-parameter optimization [14];
here, informationally optimized probe waveforms are cho-
sen based on a user-defined system model and the prior
state of knowledge of the system parameters in a Bayesian
framework. Importantly, this approach can accommodate
realistic system constraints in the optimization process,
such as control band limits, known linear or time-invariant
transfer functions, and nonlinearities. The algorithm tracks
the distribution of model-parameter values with a sam-
ple population, which is filtered and repopulated using
a particle filter as new experimental data become avail-
able. This results in a sequence of posterior populations
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[15,16] that incorporate the measured data and enable
rapid convergence. We demonstrate that this algorithm
delivers an exponential reduction in parameter uncertainty
over iterations in both simulated and experimental tests
using trapped atomic ions. In these tests the algorithm
learns to make a commensurate increase in the probe
duration in order to optimize the trade-off of probe sen-
sitivity and uncertainty due to aliasing, and fully utilizes
its freedom to design control probes for high-dimensional
systems.

In Sec. II we introduce the context for system iden-
tification, including an illustrative two-parameter system
model that also serves as a testbed for subsequent bench-
marking. We then use the Fisher information [1,17] to
elucidate important factors in system identification of
uncertain model parameters. Section III describes in detail
our optimized Bayesian system identification (OBSID)
protocol, illustrated in Fig. 1, which is the central inno-
vation in this manuscript. In Sec. IV we demonstrate
the algorithm on simulated one- and two-qubit systems,
described by models with up to five parameters. We also
validate the protocol in an experimental calibration of a
ion-trap system, and achieve parameter estimates in agree-
ment with standard metrological approaches but requiring
about 20 times fewer experimental measurements. We
conclude with a discussion of OBSID applications and
usage.

II. SYSTEM IDENTIFICATION CONTEXT

Formally, by system identification we mean the mea-
surement and calibration of initially uncertain parameters,
g, in a quantitative model for some experimental system.
This may include terms in a Hamiltonian, decay rates in a
dissipative system, or calibration constants relating control
pulses produced by a signal generator to the field experi-
enced by a physical system, including, e.g., distortion or
crosstalk.

To make explicit the ingredients for system identifica-
tion, we assume the following.

(A1) Initialization—the experimental system can be
reliably initialized into a specific reference state |0〉, such
as the ground state or a separable product state.

(A2) Control fields—the system evolves under applica-
tion of externally specified time-dependent control fields,
c = {c1(t), c2(t), . . .} of duration T, which can be modu-
lated by a programmable signal generator. For example,
several qubits may be simultaneously addressed by several
control fields.

(A3) Measurements—projective measurements are per-
formed in orthogonal subspaces {�0,�1, . . .}, returning
empirical probabilities P̂(c) = {P̂0, P̂1, . . .} and their cor-
responding uncertainties σ = {σ0, σ1, . . .}. We assume that

(S1)

(S2)

(S3)

(S4)

(S5)

FIG. 1. A loop of the OBSID algorithm, shown in the dark gray box. The inputs to the OBSID algorithm are the prior negative
loglikelihood (NLL) L0 (blue square), representing the prior uncertainty over the system parameters g = {g1, g2, . . .}, and the system
model. The prior NLL is used in (S1) to sample a prior population of model parameters, G0 (gray points). (S2) An optimized control
pulse c(1)(t) is found using the response P0(g, c) predicted by the system model to maximize the anticipated parameter information
gain, based on the cost C averaged over G0. (S3) The optimized control is used to drive an experiment. The experimental measurement
outcome m1 is used to (S4) update the posterior NLL, L1 = L0 + δL1, and (S5) subsample a posterior population, G′

1 ⊂ G0 (green
points), which is used to compute the posterior sample mean ḡ1 and covariance matrix �1. The updated NLL L1 (green square)
becomes the prior for the next iteration of OBSID (light arrow). The output from the OBSID algorithm is the sequence of posterior
NLLs Lj and parameter populations Gj determined after each measurement. The algorithm completes after it reaches a target accuracy,
iteration limit Jmax, or other termination criteria. Further details are given in Sec. III.

014012-2



OPTIMIZED BAYESIAN SYSTEM IDENTIFICATION. . . PHYS. REV. APPLIED 21, 014012 (2024)

measurement outcomes are normally distributed around
their mean P̂i ∼ NPi,σ 2

i
.

(A4) Model—evolution of the system under investi-
gation is well described by a quantitative model with p
model parameters g = {g1, g2, . . . , gp} that determine the
evolution. For a given choice of g and time-dependent con-
trol pulses c, we use the model to compute probabilities
P(g, c) = {P0, P1, . . .} for subspaces {�0,�1, . . .}. Com-
paring the experimental measurement P̂(c) with model
predictions P(g, c) provides information about g.

(A5) Prior uncertainty—the model parameters have a
prior uncertainty that we assume is a multivariate nor-
mal distribution g ∼ P0 = Nḡ0,�0 , with prior mean ḡ0 and
covariance matrix �0.

Here, we write an abstract distribution over the p-
dimensional model parameter space as g ∼ Pj , and the
corresponding probability density as PDFj (g).

Assumptions (A1) to (A5) are practically reasonable,
and are sufficient to define the goals of OBSID. A key
insight from these assumptions is that, since we have a
choice about what probe pulse to deliver to the experiment,
there is an opportunity to optimize this choice of control in
order to maximize the information gained about g.

Within OBSID (Fig. 1), at each iteration of the
algorithm, we numerically search for control pulses c that
maximize the anticipated information gain of proposed
experiments, averaged over the prior parameter uncer-
tainty. We then apply the optimized control to the physical
(or simulated) system and measure the response P̂. This is
compared with the model prediction P, in order to update
a posterior distribution over model parameters under a
Bayesian framework.

We note that various of these assumptions can be relaxed
if required. For example, mixed initial states in (A1) and
open evolution in (A4) can be accommodated, albeit with
additional computational cost. In (A3), generalized quan-
tum measurements can be accommodated if necessary, as
well as non-normal distributions in (A3) and (A5).

A. Illustrative model for probe-control optimization

We introduce an illustrative model that highlights the
role of the control probe pulse in the efficiency of the
system-identification procedure. The physical model we
build upon embodies many salient features in OBSID, and
is also used later in some of the one- and two-qubit bench-
marking results we report in Sec. IV. It is a two-parameter
model, g(1q) = {�,�}, for a single qubit driven by one
control field, c(t), with Hamiltonian

H (1q)(t) = −�Z/2 +�(c(t)L + c(t)∗L†)/2, (1)

where � is the detuning, �c(t) is the Rabi frequency, �
is the Rabi calibration factor, Z is a Pauli operator, and

L is the corresponding lowering operator for a two-level
system. We note that c(t) has arbitrary units specified at
the output of a signal generator (e.g., “volts”).

For this single-qubit model, we assume that the qubit
is initialized in the ground state of the undriven Hamilto-
nian, |0〉, and measured in the undriven energy eigenba-
sis �0 = {|0〉} and �1 = {|1〉}, so that P0 = |〈0|ψ(t)〉|2,
and P1 = 1 − P0. Indeed, for the rest of this paper, we
assume that system measurements are two-state projectors,
in which we measure the return probability P0 and the
complement P1.

Using this model, Figs. 2(a)–2(c) illustrate the prototyp-
ical system response, P0(g(1q); c(T)) that reflects assump-
tions (A1) to (A5). Here T is the control pulse duration,
assuming a Rabi-type control pulse of unit amplitude,
c(t) = 1. We plot the response for three different pulse
durations, T = 1, 2 and 8 “seconds” (using a normalized
energy basis), in each case starting from the ground state
|0〉. Shown in Figs. 2(a)–2(c) as a purple diamond is a
putative (but arbitrary) “true” system parameter, g(1q)

t =
{�t,�t} Hz. For a given pulse, measurement of the system
response will yield a measured probability P̂0, indicated by
the green contours that pass through g(1q)

t , up to measure-
ment noise. Illustrating assumption (A5), the white 1σ -
uncertainty disk in each panel represents prior uncertainty
in the parameters.

This model gives us a simple example to illustrate
the effect of different pulse choices (e.g., durations) on
the posterior uncertainty. For the shortest pulse shown in
Fig. 2(a), P0 is a relatively slowly varying function over
parameter space. For longer pulses [Figs. 2(b) and 2(c)],
P0 becomes increasingly oscillatory. The slowly varying
response landscape of the shortest pulse has a unique con-
tour cutting the uncertainty disk, highlighted in green.
However, because the response is slowly varying (i.e.,
shallow gradient), the posterior distribution will be loosely
clustered around the green cutting contour, with relatively
large spread off the contour. That is, the response has low
sensitivity, so the posterior distribution will have relatively
large posterior uncertainty.

By contrast, for the long-duration control pulse shown in
Fig. 2(c), the rapidly varying landscape has high sensitiv-
ity to the parameter values and, consequently, the posterior
distribution would be relatively tightly clustered around
the consistent cutting contours (green lines). However,
since there are multiple consistent contours cutting through
the uncertainty disk, the posterior distribution will still
have wide support across the disk. For an experimentalist,
this is a manifestation of the familiar mod 2π uncertainty
associated with a periodic function such as the measured
population under Rabi oscillations.

The response at the intermediate duration shown in
Fig. 2(b) with T = 2 is ideal (in this example). Its sensi-
tivity is as large as possible, giving a posterior distribution
that is tightly clustered around the green contour, while still
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FIG. 2. Contours of the return probability landscape P0(�,�; T) for the one-qubit, two-parameter model from Eq. (1), driven by
a uniform (Rabi-type) control pulse c(t) = 1 of duration (a) T = 1, (b) T = 2, and (c) T = 8 “seconds”; note that the units here are
entirely nominal. In each plot, we indicate a specific point at g(1q)

t = {�t,�t} Hz (purple diamond). For a system whose true parameters
were g(1q)

t , the green contour cutting through g(1q)
t represents the set of parameter values that would be consistent with an experimental

measurement, P̂0, using a control pulse of the corresponding pulse duration, T. The white 1σ -uncertainty disk pictured is helpful for
illustrating the competing effects that lead to an optimal pulse duration, as described in the main text. Panel (d) shows the Fisher
information for this model, which grows as T2 with an oscillatory modulation.

having a unique contour cutting the disk. This illustrates a
pulse for which the anticipated posterior uncertainty will
be small. Qualitatively, the intermediate pulse duration
represents a “Goldilocks” choice with highest information
gain about the parameters, given the indicated uncertainty
region.

More generally, the trade-off identified above between
the response sensitivity and the density of consistent con-
tours within a prior uncertainty region illustrates the pos-
sibility for varying the duration (and shape) of the control
signal c to maximize the information gain about the model
parameters g. Iterating, as the uncertainty region shrinks,
the control pulse should be adapted accordingly.

B. Sensitivity, uncertainty, and Fisher information

To help formalize these observations, we introduce the
Fisher information (FI), which is a widely used proxy for
the sensitivity of a probability distribution with respect
to its parameters [17]. Typically, larger FI corresponds
to higher sensitivity with respect to the model parame-
ters, and correspondingly higher potential information gain
about unknown parameters. The FI also provides intuition
about the “geometry” of information in the p-dimensional
model parameter space.

For a multiparameter problem, with the two-state
response probabilities {P0, P1 ≡ 1 − P0}, the Fisher infor-
mation matrix (FIM) [1] is given by

FIM(g; c) = 	f (g; c)� 	f (g; c), (2)

where 	f (g; c) = (P0 − P2
0)

−1/2∇gP0(g; c) is the FI eigen-
vector, and a � b denotes the outer product of a and b. For
a two-state response, the FIM is a rank-1 matrix. The FI is

the unique nonzero eigenvalue of the FIM

FI(g; c) = |	f (g; c)|2. (3)

For later discussion, we refer to the unit vector

f̃ (g; c) = 	f (g; c)/|	f (g; c)| = ∇gP0/|∇gP0| (4)

as the information direction. This defines the direction at
each point in parameter space along which measurement of
P̂0(c) reveals information, and is locally orthogonal to con-
tours of constant P0. It follows that, for a p-dimensional
model space, we need at least p independent control fields,
{c(1), c(2), . . . , c(p)}, to generate a spanning set of informa-
tion directions, {f̃ (g; c(1)), . . . , f̃ (g; c(p))}, that constrain
the posterior distribution over all p parameters. These
statements can be generalized to multistate measurement
outcomes.

The FI is a function of the control pulse envelope, and
it is generally very strongly dependent on the overall con-
trol pulse duration T. This is illustrated in Fig. 2(d), which
shows the FI as a function of T for the single-qubit model
generated by Eq. (1) with c(t) = 1. The envelope grows as
T2, with an oscillatory modulation.

The quadratic growth of FI with pulse duration is a fairly
generic property [18]. For unitary evolution, when gi ∈ g
are energetic scales in a Hamiltonian, then

FI(g, T) = T2ϑ(g, T), (5)

where ϑ is a bounded and generally oscillatory function
of pulse duration and the Hamiltonian parameters (see the
supporting discussion in Appendix A). It follows that large
FI will be obtained by increasing T → ∞. However, given
the foregoing “Goldilocks” argument that the optimal finite
duration, T(opt) < ∞, should depend on the prior parameter
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uncertainty, we see that maximizing FI alone is not suffi-
cient to define informationally optimal control pulses given
finite prior uncertainty.

This qualitative discussion gives rise to a rough esti-
mate of the optimal control pulse duration, assuming that
parameters in g are energy scales in a Hamiltonian. Firstly,
we assume that the prior parameter uncertainty is specified
by a covariance matrix, �, that determines an uncertainty
ellipse in parameter space [19] (e.g., illustrated in Fig. 2
as a white disk). Then the length of the major axis of the
ellipse is given by the largest eigenvalue λmaj of the devi-
ation matrix �1/2, which corresponds to the maximally
uncertain combination of model parameters. Secondly,
both P0 and the FI oscillate in parameter space with a
period |δg| ∼ 1/T (and taking � = 1 so that energy and
time are reciprocal units).

Optimal pulses tend to be those for which the oscillation
period in parameter space matches the major uncertainty,
i.e., |δg| ≈ λmaj, corresponding to the “Goldilocks” situa-
tion depicted in Fig. 2(b). It follows that the duration of
the optimal pulse is T(opt) ∼ 1/λmaj � Tr(�−1/2). This is
an important estimate for two reasons: it gives intuition for
how optimal pulse durations relate to the size of the param-
eter uncertainty ellipse, and it gives a practically useful
order of magnitude for initializing numerical optimization
over T in OBSID.

III. OPTIMIZED BAYESIAN SYSTEM
IDENTIFICATION PROTOCOL

A. OBSID algorithm overview

The OBSID protocol starts from a prior uncertainty in
the model parameters, P0, and with the aid of the sys-
tem model that computes P, finds a control pulse that is
likely to optimally improve our knowledge of the model
parameters. We encode the anticipated knowledge gain
from an arbitrary pulse in terms of a cost function, C.
Using this optimized control, an experiment is performed,
and the measurement results are incorporated into a poste-
rior distribution, P1, over model parameters. Iterating this
yields a sequence of probability distributions Pj , quanti-
fied by their density functions, PDFj (g), that iteratively
and autonomously localizes the model parameters.

A loop of the OBSID algorithm is illustrated in Fig. 1.
The inputs to the algorithm are the system model with
which to compute P0(g, c), and the initial prior distribu-
tion, P0 over parameters g, represented as a negative-
loglikelihood (NLL) function, L0(g) = − ln(PDF0(g)),
shown as a two-dimensional surface inside the blue square
in Fig. 1. Numerically, we track the sequence of posterior
distributions, Pj , using a Bayesian population filter [15],
which form the output of the algorithm.

The algorithm itself, shown inside the dark gray box in
Fig. 1, loops over the following sample, optimize, measure,
and inference steps, initialized with j = 1, and terminating

after reaching a desired accuracy, iteration limit J , or other
terminal conditions.

(S1) Sample a prior population, Gj −1 = {gs}S
s=1, from

the prior distribution PDFj −1(g) = exp(−Lj −1(g)), so that
gs ∼ Pj −1.

(S2) Minimize a population cost function C(Gj −1, c)
over pulses c, to find an optimal pulse c(j ) = argminc C
(Gj −1, c). The optimization uses the model predictions,
P0(gs, c), at each gs ∈ Gj −1, and also model gradients
∇gP0(gs, c).

(S3) Run an experiment with the optimal pulse c(j ) to
measure mj = P̂0(c(j )), with uncertainty σj determined by
the measurement statistics.

(S4) Update the posterior NLL over gs ∈ Gj −1, so that
Lj (gs | mj ) = Lj −1(gs)+ δLj (gs, mj ), where

δLj (g, mj ) = − ln(δLj (mj | g),

≡ (P0(g, c(j ))− mj )
2/(2σj )

2, (6)

assuming that δLj (m | g) = NP0(g,c(j )),σj
(m).

(S5) Return
(1) a posterior likelihood subsample G′

j ⊂ Gj −1, i.e.,
retain gs ∈ Gj −1 with probability δLj (gs, mj ),

(2) the posterior sample mean, ḡj (mj ) = ES(g | mj ),
(3) the posterior sample covariance �j (mj ) = ES((g −

ḡj )� (g − ḡj ) | mj ),

where the sample expectation of x conditioned on m
is ES(x | m) = ∑

s xsδ̃Lj (gs, m), and we have defined the
sample-normalized likelihood

δ̃Lj (g, m) = δLj (m | g)/Nj (m), (7)

where Nj (m) = ∑
s δLj (m | gs) and δLj is defined implic-

itly in Eq. (6).
(S6) Increment j or terminate.

The iterative outputs of the loop constitute a sequence
of posterior quantities {ḡj (mj ),�j (mj ), Gj }J

j =1, which
increasingly localize the system parameters as measure-
ment data are accumulated and processed.

B. Comments on implementation

Step (S1) is implemented using importance sampling
to sample a population from the prior NLL, Lj −1 [20].
This is depicted as a population point cloud in Fig. 1.
Importance sampling is implemented by generating a
trial presample Tj −1 = {gT

s } from a proposal distribution,
which we take to be the multinormal distribution so that
gT

s ∼ TJ−1 = Nḡj −1,�j −1 , and then assigning an importance
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score

is ∝ PDFj −1(gT
s )/Nḡj −1,�j −1(g

T
s ) ∈ (0, 1]. (8)

We retain gT
s ∈ Gj −1 ⊆ Tj −1 with probability is. If neces-

sary, we repeat this procedure until the resampled poste-
rior population reaches a predefined size, typically a few
thousand sample points.

Step (S2) finds a control pulse that optimizes the antic-
ipated information gain, as quantified in a cost func-
tion, C. In Sec. III C below, we describe cost functions
that are suitable for OBSID. We have implemented the
OBSID algorithm, including the cost function evaluation,
in a graph-based machine-learning environment [21,22],
building on TensorFlow [23], which facilitates automatic
differentiation for the purpose of efficient computation
and gradient-based optimization of C. This environment
is designed for automated quantum control and learning
applications, and it efficiently scales to handle controls
with many optimizable parameters. It also straightfor-
wardly accommodates soft constraints in the cost function
that encode desirable properties of control pulses, such
as limited bandwidth, slew rate, etc. This computational
approach delivers greater flexibility to efficiently search
the control space relative to previous discrete optimiza-
tions constrained to changing only the number of repeti-
tions of a fixed probe control in related experiments [16].

Step (S3) requires an interface to a physical (or sim-
ulated) experiment. The interface should communicate
pulse specifications provided by OBSID to the experi-
mental apparatus’ control system, which then implements
the pulse with high fidelity on the physical target sys-
tem. Care needs to be taken that the control system does
not produce unmodeled distortion (e.g., nonlinearities,
crosstalk, or dead time in buffers) in the pulse as received
by the physical target. If such effects are present, they
should be included in the system model’s parameteriza-
tion. The interface waits for the experiment and measure-
ment process to complete, and then receives the measure-
ment outcome mj along with the standard measurement
error σj .

Step (S4) is a direct application of Bayes’ rule to com-
pute the posterior NLL given the measurement outcome
mj . Internally, the NLL is stored as an interpolating func-
tion that can be evaluated anywhere inside the convex hull
of the sample points in Gj −1; this implements a consistent
probability density estimator for amortizing the computa-
tion of previous predictive calculations and experimental
measurements, as described in [24]. The right-hand side of
Eq. (6) implements assumption (A3) that the measurement
statistics are normally distributed. However, this can be
generalized to other statistical distributions, e.g., the bino-
mial distribution for a finite number of Bernoulli trials, if
necessary.

Step (S5) uses rejection sampling [20] based on the
acceptance likelihood δLj to generate a posterior subpop-
ulation G′

j , shown as green points in Fig. 1, and computes
the posterior sample mean and covariance matrix, which
are reported as part of the output of the protocol.

Lastly, the posterior NLL from (S4) becomes the prior
NLL to start the next iteration of the OBSID loop, illus-
trated in the green square in Fig. 1.

C. Cost functions

The cost function that is minimized in (S2) is a critical
part of the protocol. We have implemented two suitable
cost functions. The first, CAPC, is based on the anticipated
posterior covariance (APC), which was described in [16].
The second, CMFI, is based on a modified Fisher infor-
mation that penalizes highly oscillatory responses, and is
described in Appendix A.

In practice, we find that both cost functions work com-
parably well. However, CAPC is more straightforward to
describe and is more generalizable, so for benchmarking
OBSID in later sections, we only present results based on
CAPC, which we describe presently. The existence of at
least two cost functions is conceptually useful as a foil
to abstract the OBSID protocol from any specific choice
of cost function. This abstraction opens avenues to find-
ing other cost functions with desirable properties, such
as reduced computational overhead [12,13], or enhanced
robustness. We comment on alternative cost functions in
Appendix B.

The motivation for the APC is that, for a given pulse
c(j ), the experiment will return some measurement out-
come, mj = P̂0(c(j )), with statistical uncertainty σj . Of
all the prior parameter samples, gs ∈ Gj −1, those that are
consistent with mj are those for which

P0(gs, c(j )) ≈ mj ± σj . (9)

More precisely, under assumption (A3), the relative likeli-
hood of a prior sample gs ∈ Gj −1 point to be represented
in a posterior population Gj is given by

δLj (gs, mj ) = e−(P0(gs,c(j ))−mj )
2/(2σj )

2
, (10)

consistent with Eq. (9). Rejection sampling with this rel-
ative likelihood produces a statistically consistent poste-
rior subsample, G′

j . The posterior sample covariance �j

depends implicitly on c(j ), and so the APC cost function
is designed to reward control pulses that minimize �j , in
some measure.

Since we must choose c(j ) prior to the measurement that
determines�j , we average the posterior sample covariance
over all possible measurement outcomes [12] to produce
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the anticipated posterior covariance

�j =
∫

dm Qj (m)�j (m), (11)

where Qj (m) = Nj (m)/
∫

dm′ Nj (m′) is the likelihood of
anticipated measurement outcomes, and Nj (m) is defined
in step (S5). The APC matrix � that was introduced in
Ref. [16] is positive definite and depends implicitly on
pulse c(j ).

A well-chosen pulse is one for which the eigenvalues
of � are small, with a particular bias towards minimiz-
ing the largest eigenvalue, which is the major posterior
uncertainty. A convenient cost function that captures this
is

CAPC(c(j )) = Tr(A ·�j ),

=
∫

dm Qj (m)Tr(A ·�j (m)), (12)

where A is a diagonal preconditioning matrix that rescales
parameter uncertainties if required (e.g., if the model
parameters carry different units, or are of greatly differ-
ing orders of magnitude). For benchmarking in the rest of
this paper, we take A = I. In practice, we approximate the
nested integrals in Eqs. (11) and (12) over m and m′ as a
discretized sum over the range of possible measurement
outcomes represented across the prior parameter sample
population Gj −1.

IV. PERFORMANCE BENCHMARKING

In this section, we benchmark the performance of
OBSID in estimating Hamiltonian parameters for both
simulated and experimental systems. The scope for param-
eterizing control pulses is essentially unlimited, for exam-
ple, superpositions of smooth basis functions, or piecewise
continuous (PWC) functions. In these demonstrations we
use PWC controls with a user-defined segment count, and
with variable segment amplitudes and durations, so that the
overall pulse shape and duration are included in the opti-
mization. In this section, we first demonstrate OBSID on
the simulated single-qubit calibration of a two-parameter
Hamiltonian model described by Eq. (1). We then validate
this with the experimental calibration of an ion-trap sys-
tem. Finally, we demonstrate the calibration of a simulated
two-qubit system characterized by a five-parameter model,
with two independent control fields.

A. Simulated single-qubit parameter estimation

We begin by demonstrating parameter estimation for the
pair g(1q) used to specify the model introduced in Eq. (1)
via numerical simulation of the physical model. The sim-
ulator calculates the time evolution of the system under
an arbitrary control and generates measurement statistics,

mj and σj , replicating experimentally realistic finite sam-
pling errors. We assume that the true parameter values
are g(1q)

t = {�t,�t} = {4, 6} Hz (noting that in all simula-
tions units are entirely nominal). We assume independent
normally distributed priors �0 ∼ 4.1 ± 0.5 Hz and �0 ∼
6.2 ± 0.5 Hz (here x ∼ μ± σ signifies that x ∼ Nμ,σ 2 ).

1. Automated, optimized Rabi-Ramsey measurements

Measuring g(1q) = {�,�} is a standard single-qubit
calibration scenario, which requires a minimum of two
independent parameterizations. This is conventionally
accomplished by a combination of experiments that use a
uniform Rabi-type pulse,

cRabi(t) = (TRabi − t), (13)

where (x) is the unit-step function, and experiments that
use a Ramsey-type pulse,

cRamsey(t) = π

2�
(δ(t)− δ(t − TRam)), (14)

which begins and ends with approximate ±π/2 pulses.
These two control parameterizations are shown schemat-
ically in Fig. 3(a). Rabi-type experiments are sensitive to
the combination (�2 +�2)1/2 ≡ �eff, while Ramsey-type
experiments are sensitive to the free evolution determined
by �. In combination, the interleaved experiments are
sufficient to localize both parameters.

We first illustrate the performance of OBSID in a simu-
lated scenario that optimizes this conventional single-qubit
tuneup procedure. At each iteration, OBSID autonomously
optimizes over Rabi or Ramsey pulse types, choosing
the pulse type and duration that minimizes CAPC. The
simulated experiment is then addressed with the optimal
pulse, and returns mj = P̂0(c(j )) and the simulated sample
uncertainty σj .

Figures 3(b) and 3(c) show the outputs from the first two
iterations of the OBSID loop, with the prior population at
each iteration shown as gray points, and the posterior pop-
ulation after importance resampling as green points. Dark
contours show the predicted response P0 over the parame-
ter space, and the contour consistent with the “measured”
value mj returned from the simulated experiment is shown
in green. Because this is a simulation, we know the true
parameter values g(1q)

t (shown as a purple diamond), which
are contained inside the convex hull of the posterior pop-
ulation (green points), illustrating the ability of OBSID to
rapidly converge on an effective estimate of g(1q).

Figure 3(d) shows the optimal duration and pulse
type chosen at each OBSID iteration. The algorithm
autonomously determines a procedure that alternates
between Ramsey- and Rabi-type pulses. The effect of the
alternating pulse types chosen by OBSID is seen in Figs.
3(b) and 3(c). The first iteration selected a Ramsey-type
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FIG. 3. Results of simulated single-qubit calibration using
conventional “Ramsey”- and “Rabi”-type control pulses. Panel
(a) shows the pulse envelopes for the two control types, in which
the duration T(j ) is optimizable. The first and last segments in
the Ramsey control pulse are (approximate) ±π/2 pulses. Panels
(b) and (c) show the first two iterations of the prior population
(black circles) and posterior population (green dots), superim-
posed on the predicted response P0 (contours) for the optimally
chosen pulse. The green contour is the measured value mj = P̂0
(from simulation). The posterior mean (yellow cross) and true
parameter value (purple diamond) are also shown. The posterior
population (green) at iteration 1 becomes the prior population
for iteration 2 (black). (d) Pulse durations and types selected to
optimally estimate single-qubit parameters, and (e) the iterative
improvement in the absolute parameter errors, |ḡj − gt|, and the
uncertainty characterized by the eigenvalues of �1/2

j .

pulse, which principally localizes � and whose insensi-
tivity to � is evident in the orientation of the contours of
Fig. 3(b); the second iteration chose a Rabi-type pulse that
localizes along a contour of constant �eff, which is locally
a linear combination of � and � in the neighborhood of
the “true” value g(1q)

t .
The estimated posterior uncertainty after each iteration

is measured by the largest (major) eigenvalue of the poste-
rior sample deviation matrix, λmaj

j = MaxEval[�j (mj )
1/2].

This is shown in Fig. 3(e) (dashed black line), and is a sta-
tistical upper bound for the uncertainty of all marginals.
We also plot the absolute error between the estimated
population mean and the known values used in the sim-
ulation, shown as points. We expect that the absolute error
in the parameters |ḡj − g(1q)

t | � λ
maj
j . This is borne out in

practice.
Returning to Fig. 3(d) we also observe that the opti-

mized pulse duration grows by an approximately constant
factor from iteration to iteration, consistent with the Fisher
information tending to grow with T. This results in an over-
all exponential growth in the pulse duration with iteration
count j . Thus, the optimal pulse duration varies approxi-
mately inversely with the major uncertainty, as discussed
earlier. This is a general characteristic of all simulations
we have performed.

2. Automated, optimized arbitrary pulse measurements

The example optimization over Rabi and Ramsey
pulses uses predefined control envelopes that have well-
understood sensitivity to the model parameters. However,
the general approach in OBSID is capable of finding
good control pulses directly, without relying on intuition
or predefined control types. This becomes important for
parameter estimation in multidimensional systems that
are complex enough that well-understood calibration and
control pulse families are not available.

We demonstrate this capability leveraging the same
simulation, but now using a PWC control pulse whose
segment amplitudes and total pulse duration are indepen-
dently optimized. To demonstrate the flexibility of OBSID,
we show the results using 10-segment pulses (using fewer
segments also works in practice). During optimization, the
segment amplitudes are constrained to the real interval
[−1, 1], and the maximum duration of each pulse is con-
strained by T(j ) ≤ 2T(j −1), so that the overall duration does
not grow too quickly. Figure 4(a) shows the pulses chosen
by the OBSID protocol for the first five iterations. Clearly
the pulse durations tend to grow with iteration.

Figures 4(b) and 4(c) show the prior and posterior sam-
ple populations, along with the model-predicted response
in the first two OBSID iterations. Figure 4(d) shows the
typical exponential growth in overall pulse duration, and
(e) shows the major uncertainty, and the absolute param-
eter errors. These outcomes are qualitatively the same
as in Fig. 3 for the Rabi-Ramsey calibration discussed
above.

Again, we observe that the OBSID algorithm selects
exponentially growing pulse durations, T(j ), with iteration
count [Figs. 4(d) and 4(e)]. Furthermore, the contours of
the predicted response P0, which depend on c(j ), charac-
teristically rotate in parameter space from one iteration
to the next: contours and the posterior population in the
first iteration are broadly aligned to the � axis, while for
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FIG. 4. Results of simulated single-qubit calibration using
fully optimized 10-segment piecewise-continuous pulses. (a) The
sequence of pulses generated in each iteration of OBSID, in
which the segment amplitudes and the total pulse duration T(j )

are all optimized. Panels (b) and (c) show populations for the first
two iterations, showing prior (gray points) and posterior (green
points) populations, superimposed on the predicted response P0
(interpolated contours) for the optimally chosen pulses. (d) Pulse
durations for each iteration, and (e) the iterative improvement in
the parameter error and uncertainty.

the second iteration, they are more aligned with the �
axis. This behavior, in which sequential iterations produce
roughly orthogonal “cuts” through parameter space, is a
consequence of the APC cost function that minimizes the
major uncertainty.

The pulses selected by the OBSID algorithm achieve
performance that is marginally better than results from
using Rabi-Ramsey control pulses. Specifically, compar-
ing panels (d) and (e) in Figs. 3 and 4 shows that after

several iterations, the arbitrary pulse optimization proce-
dure returns pulses of somewhat shorter duration while
maintaining similar accuracy in the resulting parameter
estimates. Unlike the Rabi-Ramsey sequences, the effect
of the 10-segment PWC pulses is not readily interpretable
except by direct simulation.

B. Experimental single-qubit parameter estimation in
a trapped-ion system

Having benchmarked the OBSID protocol for a sin-
gle qubit using simulated experiments, we now validate it
using a real trapped-ion experimental system. The qubit is
encoded in the 2S1/2 electronic ground state of a 171Yb+

ion, where we assign the qubit states |F = 0, mF = 0〉 ≡
|0〉 and |F = 1, mF = 0〉 ≡ |1〉. Considering a 12.64-GHz
microwave field near resonance with the |0〉 ↔ |1〉 transi-
tion, the system’s dynamics are described by the same two-
parameter Hamiltonian of Eq. (1). The detuning � corre-
sponds to the frequency difference between the microwave
control signal and the qubit’s resonance frequency, while
� is the calibration factor relating the actual Rabi fre-
quency experienced by the ion to the microwave driving
voltage amplitude from a signal generator, so it has units
of “Hz/V”.

The experimental apparatus consists of a linear Paul trap
held at room temperature [25]. The degeneracy of the F =
1 Zeeman levels is lifted by applying a static magnetic field
of 0.44 mT. The native, uncompensated qubit coherence
time is measured to be T∗

2 = 8.7(7) s with a Ramsey-type
experiment. A set of laser beams addressing the 2S1/2 →
2P1/2 transition near 369.5 nm is used for Doppler cooling,
state preparation, and measurement [26]. State detection is
performed by discriminating between the differing number
of scattered photons collected on an avalanche photodiode
for each of the two qubit states, when turning on the 369.5-
nm laser.

The microwave control field is obtained from a synthesis
chain in which a direct digital synthesizer (DDS; AD9910)
is mixed with an arbitrary waveform generator (AWG;
Keysight M8190A). The resulting signal is up-converted
to 12.64 GHz. The DDS has a frequency resolution of 0.23
Hz and the clock speed of the AWG is 5.8 GHz; they both
have an amplitude resolution of 14 bits. The 12.64-GHz
signal is amplified and delivered to the ion by an antenna
positioned 2.37 cm from the trap center. The amplifier
chain in the synthesizer system has been independently
calibrated to assure linearity between the amplitude speci-
fied in a pulse sequence and the amplitude experienced by
the ion.

We use two-stage calibration measurements, imple-
mented with DDS, to determine the best initial estimate
of the “true” physical parameters that will later serve
as the “ground truth” for the OBSID results. The true
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detuning �t is determined using 150 samples of a stan-
dard Ramsey-locking method [27] with up to a 50-ms
Ramsey interrogation time. The Rabi frequency �t is
measured by fitting resonant Rabi oscillations over approx-
imately 28 Rabi cycles. The oscillations were sampled with
300 uniformly spaced samples in time, so that there were
about 11 samples per Rabi cycle. Each data point in these
experiments used between 50 and 100 individual, binary-
valued single-qubit fluorescence readouts to estimate P̂0.
In total, 450 experimental measurement samples were
taken (i.e., 150 for Ramsey and 300 for Rabi), giving cal-
ibrated values �t = 1249.1 ± 0.1 Hz/V and �t = 500 ±
0.4Hz, where the uncertainty is given as the standard error.

To initialize the OBSID protocol, we assume uncorre-
lated, normally distributed priors for each parameter, with
�̄0 ∼ 525 ± 52.5 Hz/V and �̄0 ∼ 1311 ± 131.1 Hz. This
was chosen to reflect a scenario in which the prior standard
deviation is 10% of the prior mean parameter values. The
prior uncertainty is large enough that it includes the pre-
calibrated “ground-truth” parameter values within a region
of high probability density, and so is statistically consis-
tent with the conventionally calibrated system parame-
ters. Such a circumstance is conventionally encountered
experimentally in which a “coarse” spectroscopy scan is
followed by experimental fine tuning to estimate exper-
imental parameters. The OBSID waveform is generated
with an AWG.

Figure 5(a) shows the first five PWC control pulses
chosen by OBSID. The control pulse profiles specify the
amplitudes input to the AWG to modulate the experimental
drive, at a fixed carrier frequency.

Figures 5(b) and 5(c) show the prior and posterior pop-
ulations of parameters for the first two OBSID iterations.
As before, the posterior population mean (yellow cross)
converges to the “ground truth” (purple diamond). Figure
5(d) shows the characteristic growth in control pulse dura-
tion, by roughly an order of magnitude over five iterations,
consistent with the simulated results in Fig. 4(d).

Lastly, Fig. 5(e) illustrates the convergence between
the OBSID posterior and the ground-truth values, along
with the estimated major uncertainty from the population
covariance matrix. Again, we see consistency between the
internal estimate of the major parameter uncertainty and
the error relative to the ground truth. Given the accuracy
of the conventional calibration measurements, the floor in
each of the absolute errors is the same as the calibrated
uncertainty of 0.1 and 0.4 Hz for both � and �.

We see from Fig. 5(e) that the major uncertainty estimate
from OBSID reaches ±2.6 Hz after j = 5 samples. This is
a statistical upper bound on the absolute error, which is 2.2
and 0.8 Hz for both � and �. The total iteration number j
is limited by the AWG memory in our system due to a high
sample rate, and does not pose a fundamental limit for the
protocol. We compare OBSID to the conventional method
of simultaneously estimating � and �, fitting a detuned
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(d) (e)
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FIG. 5. Experimental OBSID results in a single-ion qubit cal-
ibration, using optimized five-segment pulses. (a) The sequence
of pulses generated in the first five iterations of OBSID, in which
the segment amplitudes and the total pulse duration T(j ) are
all optimized. Panels (b) and (c) show populations for the first
two iterations, showing prior (gray points) and posterior (green
points) populations, superimposed on the predicted response P0
(interpolated contours) for the optimally chosen pulses. (d) Pulse
durations for each iteration, and (e) the iterative improvement in
the parameter accuracy. The floor in the absolute errors is set by
the inferred uncertainty in the conventional calibration methods,
which has a standard error of ±0.3 Hz for both � and �.

Rabi flop, in order make a quantitative comparison of
protocol efficiency. We sample 300 equally spaced points
up to OBSID’s longest duration, 22.1 ms, and use the same
number of experimental shots at each sample as in OBSID.
The resulting uncertainties are 3.4 and 7.9 Hz for � and
�, which are greater than the absolute error obtained by
OBSID for a 60 times larger number of samples (300 vs
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5). Overall, this shows that, for a comparable number of
samples, and using the smaller residual uncertainty on� as
a bound, OBSID is approximately 93 times more efficient
than standard parameter estimation techniques

The experimental results shown in Fig. 5 are qualita-
tively indistinguishable from the simulated results shown
in Fig. 4. In both simulation and experiment, the OBSID
protocol treats the simulation or experimental system as a
black-box probability generator, and chooses information-
ally optimized pulses based on the model and the sample
population. This experimental demonstration of OBSID
illustrates one of its main strengths: OBSID is able to
efficiently characterize a device without being provided
knowledge of “good” calibration pulses used in standard
techniques. This will become increasingly important in
larger systems, which we treat next. Note that this strength
of OBSID exists as long as a system has structural identifi-
ability [28,29], which means that there is sufficient control
and measurements available to observe information about
all the parameters in the system. This is further discussed
in Sec. V.

Beyond the demonstrations in Fig. 5 we have experi-
mentally implemented other parameterizations of control
pulses for use with OBSID in this experimental system.
We present summary results for experimental implemen-
tations of these alternative pulse parameterizations in
Appendix C.

(1) The Rabi-Ramsey pulse parameterization described
in Sec. IV A 1, and illustrated schematically in Fig. 3(a).
OBSID autonomously selects the optimal pulse type and
pulse duration at each iteration.

(2) Optimized “bang-bang” control, which uses PWC
pulses alternating between “on” (unit magnitude) and “off”
(zero magnitude) segments. OBSID independently opti-
mizes each of the segment durations, as well as the carrier
phases eiφ(t) during the “on” segments. This pulse param-
eterization has the advantage that, since the “on”-pulse
carrier magnitude is constant, linearity of the transfer chain
from the AWG to the target ion is not required.

In both cases, the results appear qualitatively the same as
in Figs. 3–5.

C. Simulated two-qubit parameter estimation

We next demonstrate the operation of the OBSID pro-
tocol for a more complicated simulated five-parameter
system, consisting of two coupled qubits, each of which
is driven by an independent control field, specified by
time-dependent control fields cq(t) for q ∈ {1, 2}. The
Hamiltonian for this system is chosen to be

H (2q) =
∑

q
H (1q)

q (t)+ J (L†
1L2 + L†

2L1), (15)

where H (1q) was introduced in Eq. (1). The Hamiltonian is
characterized by the five parameters

g(2q) = {�1,�1,�2,�2, J }, (16)

with detunings �q, Rabi frequencies �q cq(t), and the
interqubit coupling strength J . We note in passing that
this Hamiltonian could be derived from a system of two
qubits driven by control fields that have a common car-
rier frequency [30,31]; however, we use it here simply
as a multiparameter, multiqubit demonstration of the SID
technique.

As in the single-qubit case, we assume that the qubits
are initialized in the ground state of the undriven Hamil-
tonian, |ψ(0)〉 = |0, 0〉. We assume a two-state measure-
ment process that discriminates between the initial state
�0 = {|0, 0〉} and the complementary subspace �1 =
{|0, 1〉 , |1, 0〉 , |1, 1〉} to yield the return probability P0 =
|〈0, 0|ψ(t)〉|2. This measurement model represents incom-
plete information for the two-qubit system, since only the
return probability is distinguished. This can be general-
ized to include an informationally complete measurement,
which will be the subject of future work.

For the purpose of simulation, we take the true
parameter values to be g(2q)

t = {4.1, 5.5, 4, 6, 0.5} Hz,
and assume a prior deviation matrix given by �

1/2
0 =

diag{0.3, 0.3, 0.3, 0.3, 0.03} Hz. We initialize the OBSID
prior with a mean value sampled from ḡ0 ∼ N

g(2q)
t ,�0

, and
then set the prior to be P0 = Nḡ0,�0 , that is, the relative
uncertainty in each parameter is around 7% of the true
value.

Figure 6 shows the results obtained using OBSID for the
two-qubit model, using PWC control pulses with 10 seg-
ments. Figure 6(a) shows the optimized pulse pairs, c(j )1 (t)
and c(j )2 (t), chosen by OBSID for the first three iterations.
In the pulse parameterization shown here, at each iteration,
the duration of the two control pulses are constrained to be
the same. This sequence of control-pulse pairs shows that
OBSID is capable of optimizing both control pulses simul-
taneously. This would be particularly important in cases
where calibrating crosstalk is necessary [25].

Figures 6(b) and 6(c) show the prior and posterior pop-
ulation samples obtained during the first two iterations of
OBSID. To partially visualize the five-dimensional param-
eter space, we project onto two particular unit vectors.
For the vertical axis of the projected plots, the direction
is chosen to align with the maximum average informa-
tion direction λ̂grad ∝ ES(f̃ (g; c(j ))), where the information
direction f̃ is defined in Eq. (4). The unit vector defining
the horizontal axis is chosen to align with the maxi-
mum deviation between the population mean and the true
value used in the simulation, λ̂dev ∝ ḡj − g(2q)

t . These unit
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FIG. 6. Results of SID on a simulated two-qubit system with five parameters and two control fields. (a) The sequence of optimized
control pulse amplitudes, c(j )1 (t) and c(j )2 (t), applied to each qubit for the first three iterations of OBSID. Panels (b) and (c) show scatter
plots and contours of the response, P0, as a function of parameters. To represent the points in five-dimensional parameter space, we
project onto two composite coordinates, defined by the unit vectors λ̂dev along the deviation between the true value and the population
mean (horizontal axis), and λ̂grad along the direction of steepest gradient of P0 (vertical axis). Both unit vectors vary with iteration
count j , indicated by the numerical arrays shown in the axis labels. Panel (d) shows that pulse durations tend to grow with iteration,
and (e) shows that the uncertainties, estimated from both the five-dimensional population covariances and absolute errors, improve
consistently over iterations. We have highlighted the error in�1 and�1 relative to the simulated “true” value; fainter curves show that
other parameter errors evolve similarly.

vectors evolve over OBSID iterations, and we list the unit-
vector coefficients in the axis labels with respect to the
parameter ordering given in Eq. (16).

Figures 6(b) and 6(c) illustrate that, as for the two-
parameter case, OBSID tends to choose control pulses
whose response, P0, varies by a large amount along some
direction in parameter space, and without oscillations in
that direction. Here, due to the dimensionality of the
parameter space the axes in these graphs correspond to
nontrivial cuts rather than the parameters themselves in
previous figures (see the caption). Importantly, the true
value is located within the convex hull of the prior and
posterior populations. Furthermore, the posterior distri-
butions projected in Figs. 6(b) and 6(c) are distinctly
non-Gaussian.

Figure 6(d) again shows the tendency of the optimal
control pulses to become longer with iteration count,
which leads to a corresponding reduction in the estimated
uncertainty in the parameters, shown in Fig. 6(e). The
largest (smallest) estimated uncertainty is computed from
the major (minor) eigenvalue of the population deviation
matrix. The major uncertainty is seen to provide a good
approximate bound on the absolute parameter error |λ̂dev|,
shown as points in panel (e). For clarity, in Fig. 6(e),

we highlight the error in parameters �1 and �1, with
other parameter errors indicated by fainter lines. Exper-
imentally, the true parameter values and absolute errors
are unknown, but we reiterate that the posterior sample
deviation provides a reliable estimate for the parameter
uncertainty.

V. DISCUSSION

These results, including simulated and experimental
tests, illustrate that OBSID is able to efficiently converge
on estimates that closely approximate the true parameter
values for a system. Comparing the single-qubit, two-
parameter results in Fig. 4(e) with the two-qubit, five-
parameter results in Fig. 6(e), we see empirically that the
number of iterations to improve the parameter uncertainty
by a fixed factor has scaled with the number of unknown
parameters p .

A heuristic argument supporting this observation is as
follows. Suppose that the prior uncertainty density was
a spherically symmetric distribution in the p-dimensional
model parameter space. Each iteration of OBSID com-
presses the prior distribution in some direction in param-
eter space by a factor α < 1. [For example, by inspecting

014012-12



OPTIMIZED BAYESIAN SYSTEM IDENTIFICATION. . . PHYS. REV. APPLIED 21, 014012 (2024)

panels (b) and (c) in all the OBSID outputs given ear-
lier, the compression of the posterior population samples
relative to the prior samples shows that α ≈ 0.1 to 0.2.]
Since OBSID preferentially compresses the most uncer-
tain direction, after p iterations, it will have compressed
the spherical prior approximately symmetrically in all p
dimensions, and each will be compressed by approxi-
mately the same factor α. So after p iterations, the initially
spherical uncertainty prior will have been compressed
approximately uniformly. Iterating, it follows that the num-
ber of iterations to uniformly shrink the prior uncertainty
scales with p .

A natural question to ask is whether the fixed fac-
tor (exponential) improvement of the parameter precision
will continue with more iterations. We argue heuristically
that the exponential reduction of the error is directly con-
nected to the exponential increase in the length of the
pulses. In most circumstances, there is a maximum pulse
duration that can be achieved in the experiment, such as
when the pulse duration approaches a T1 limit. The limit
is rapidly approached because the pulse duration scales
exponentially. If further experiments were completed at
this maximum duration, improvements to estimates would
largely be due to statistical averaging, which typically fol-
lows a power-law relationship 1/

√
N with the number

of samples N . Hence, we recommend halting the OBSID
algorithm once this maximum duration is reached, as fur-
ther measurements will improve the precision according to
a power law rather than an exponential scaling.

Most naturally occurring nonunitary (Markovian) evo-
lution will limit the advantage of increasingly long pulse
durations. This follows because dynamics governed by
master equations typically reduce the distinguishability of
states [32]. That is, the distinguishability of states gov-
erned by a master equation with a unique steady state will
go to zero. Once a system has reached its steady state, mea-
suring the dynamics will no longer provide any additional
insight into the system parameters.

OBSID as we have designed and implemented it is
extremely flexible. For standard calibration tasks, it is
capable of optimizing the conventional Rabi-Ramsey-
based calibration schedule for a single qubit that alternates
between localizing the detuning and the Rabi frequencies.
As shown in Figs. 3(b) and 3(c), these choices correspond
to cuts through parameter space that are approximately ori-
ented orthogonal to the corresponding parameter at each
iteration. This has merit for “human interpretability,” in
situations where it is desirable to calibrate model parame-
ters individually. In this case, the pulse shapes in Fig. 3(a)
that isolate a given parameter are known from conventional
practice. For more general problems, the APC cost func-
tion could be straightforwardly adapted to select pulses
that preferentially constrain parameters along the named
parameter axes, that is, to include a “parameter-selective”

preference in the cost function. However, for highest effi-
ciency, OBSID accesses the full p-dimensional parameter
space, as illustrated in Figs. 4 and 6. In doing so, OBSID
tends to introduce nonzero covariances, which correlates
the uncertainty of different parameters.

The power of OBSID comes from increasing the control
pulse duration T as the estimated uncertainty decreases.
For suitable control-pulse parameterizations, this allows
the difference in the dynamical states generated by differ-
ent prior model parameter samples to grow in the system
Hilbert space, amplifying the effect of small parameter
uncertainty into large differences in Hilbert space evo-
lution without introducing additional uncertainty due to
oscillatory behavior.

We understand this through the FI, which ideally grows
as T2. In such cases, for r repetitions of a measurement, the
parameter uncertainty scales as σ ∝ 1/

√
FI r ∼ 1/(T

√
r).

Since the total accumulated measurement time scales as
τmeas ∼ Tr, the overall measurement time resource is best
utilized by choosing as long a pulse duration T as possible.
OBSID does this dynamically: it increases T as quickly as
possible, implicitly constrained by the prior uncertainty at
each iteration.

The computational cost of optimizing population-
averaged model predictions over control pulses is non-
trivial. Our current implementation of OBSID builds on
TensorFlow [23], a graph-based toolbox for machine
learning optimization. This gives it great flexibility in
searching for optimal pulses, and automatically distributes
highly parallelizable tasks across computational resources
[21,22]. For example, we have run the optimization
tools on systems ranging from few-core laptops to high-
performance workstations with many cores, with run times
that scale with the resource availability. However, the opti-
mization task is necessarily computationally demanding,
typically taking tens of seconds to run on a 64-core work-
station running at 4 GHz. Improving this performance by
using alternative less-intensive cost functions is a subject
of recent [12,24] and ongoing research.

Using OBSID effectively requires some care. It relies on
statistical sampling, and so has some possibility to fail in
any give run of system identification. This was noted in
Ref. [16], and can be mitigated by including more sample
points, at the cost of slower optimization or greater parallel
resources. As the initial uncertainty in the priors increases,
the statistical sampling issue becomes more challenging.
This typically requires more samples in the particle filter,
which increases the computational resources.

There is a more subtle issue, related to statistical and
structural identifiability [28,29], which determine whether
OBSID succeeds. Not all control parameterizations are
suitable for effectively extracting model parameters with
arbitrarily high accuracy. For example, if the control pulse
parameterization has fewer free control parameters than
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there are model parameters to fit, we expect OBSID will
not be able to identify all system parameters, as described
in Sec. II B. In this situation, the span of the informa-
tion direction unit vectors does not cover the parame-
ter space, and the control parameterization will not be
able to structurally identify the system model parameters.
In practice, when a system is not structurally identifi-
able for a specific control parameterization, the major
uncertainty reported by OBSID will stall after several
iterations, ceasing to improve with additional iterations.
In Sec. D we describe an example of a control param-
eterization that is not structurally identifiable and that
illustrates this stalling behavior. In practical usage of
OBSID, simulations can be used to establish whether a
system is structurally identifiable under a chosen control
parameterization, before applying it to an experimental
system.

Characterization of large quantum computers is an
important application of OBSID. A direct simulation of
the complete Hamiltonian of a large quantum computer
on a classical computer is too complex. Therefore, OBSID
must assume that characterizing the quantum computer can
be broken down into subsystems. OBSID can estimate the
parameters in the Hamiltonians of these subsystems in par-
allel. For example, the system identification of the Rabi
rate and detuning of all the individual qubits on a quan-
tum computer could be done in parallel, as each qubit has
individual addressability. When run in this mode, the num-
ber of iterations required to parameterize all the qubits on
a quantum computer should equal the number of iterations
for an individual qubit.

The biggest practical challenge with running character-
ization of devices in parallel is individual addressability
of the qubits. For example, in superconducting devices,
engineering the electronics to ensure that there is no clas-
sical crosstalk between the microwave control lines is a
challenging engineering feat. Fortunately, we have seen
significant technical progress on this front and there is
good experimental evidence that individual qubit parame-
ters in superconducting quantum computers can be charac-
terized in parallel simultaneously [33,34], and theoretical
evidence in trapped ion devices [35].

Characterizing multiqubit coupling presents a more dif-
ficult challenge, but experimental evidence in supercon-
ducting devices suggests that this can be done in parallel
with pairs of qubits [33]. When characterizing multiqubit
coupling in this way, the scalability is limited by the maxi-
mum number of qubits that any given qubit can be coupled
to, rather than the total number of qubits. Therefore, the
total number of iterations required would typically be the
amount of iterations required to identify one coupling,
multiplied by the highest connectivity of the qubits. Inves-
tigating the viability of this subsystem approach to system
identification is the most important next step for research
on OBSID.

VI. CONCLUSIONS

We have described and demonstrated a general-purpose
optimized Bayesian system identification protocol that
uses model-based optimization over a statistically sampled
prior population to choose control pulses that optimally
extract information about unknown system parameters.
Once the optimized pulse is applied experimentally, the
system uses standard Bayesian update and resampling
methods to produce a posterior distribution that is consis-
tent with the new measurement information.

The implementation we have demonstrated in this paper
is autonomous and hardware agnostic, and requires only
that the system is well described by a quantitative numer-
ical or analytical model. The typical performance of the
scheme is demonstrated in several simulated systems, as
well as in a single-ion experiment. We have shown exper-
imentally that OBSID uses far fewer experiments to reach
the same level of accuracy as conventional calibration
methods; in the example presented, OBSID used just five
different experiments to reach the accuracy of conventional
single-ion calibration methods, which used 300 different
experiments.

There are a variety of areas to explore, including quan-
tifying the robustness and reliability of using OBSID in
experimental systems with many parameters, and in open
quantum systems with dissipative effects. There are also
opportunities for optimizing the algorithmic and compu-
tational runtime performance using alternative cost func-
tions.
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APPENDIX A: QUADRATIC TIME DEPENDENCE
IN THE FISHER INFORMATION

The quadratic growth in the FI with pulse duration can
be derived straightforwardly in the case of a term, gihi with
gi ∈ g, appearing in a time-independent Hamiltonian, H =
· · · + gihi + · · · . Then P0(T) = |ψ0(T)|2, where ψ0(T) =
〈0| U(T) |0〉 and U(t) = e−itH . Using an integral expres-
sion for derivatives of operator exponentials (see Eq. 13

014012-14



OPTIMIZED BAYESIAN SYSTEM IDENTIFICATION. . . PHYS. REV. APPLIED 21, 014012 (2024)

of Ref. [36]), we find that

∂giP0(T) = 2 Re[ψ∗
0 (T) 〈0| ∂giU(T) |0〉],

= 2 Re
[

ψ∗
0 (T) 〈0| U(T)

∫ 1

0
dτU†

(τT)∂gi(−iTH)U(τT) |0〉
]

= 2 T Im[ψ∗
0 (T) 〈0| U(T)h̄i |0〉], (A1)

where h̄i = ∫ 1
0 dτhi(τT) with hi(t) ≡ U†(t)hiU(t) is the

time-averaged expectation of hi(t) on the interval t ∈
[0, T]. In the last line, the term in square brackets is an
oscillatory, bounded function of T, and the prefactor is
linear in T. It follows that (∂giP0(T))2 scales as T2, and
so F = (

∂giP0(T)
)

2/(P0 − P2
0) = T2ϑ(g, T), as stated in

Eq. (5). This is consistent with specific simulations shown
in Fig. 2(d) and in Ref. [18].

This property generalizes straightforwardly for time-
dependent PWC controls whose segment durations scale
with overall control duration. Briefly, we transform to a
suitable rotating frame and make a rotating-wave approxi-
mation to remove explicit time dependence. In this frame,
the evolution is given by a concatenation of unitary-
evolution operators, each generated by a time-independent
Hamiltonian (in the rotating frame) that depends linearly
on gi. The proportionality in Eq. (A1) will hold for each
segment, and using the product rule for differentiation, we
see that the growth of the FI will then also be quadratic in
the total duration.

APPENDIX B: ALTERNATIVE COST FUNCTIONS

The Q-weighted averaging over m and m′ implicit in
Eq. (12) gives the statistically correct expectation value
for the APC, but it also means that low-probability mea-
surement outcomes are weakly represented. This could
lead to some fragility in OBSID if these rare outcomes
have a posterior distribution with high covariance, or other
pathologies such as having very few samples represented
in the prior population. We are free to modify the cost
function to penalize the risk of such situations occurring.

We comment here briefly on alternative cost functions
that are more robust, or enjoy other advantages. While we
do not use them in the results reported in the main body of
this paper, it is conceptually useful to abstract away from
the specific choice of purely information-maximizing cost
functions.

One way to make the cost function more robust is to
use different aggregate measures over m. For example, a
conservative “variance-averse” cost function would track
the worst-case posterior covariance for any possible exper-
imental measurement. In this case, the maximum posterior

covariance (MaxPC) cost would be

CMaxPC(c(j )) = maxmTr(A ·�j (m)). (B1)

Clearly, a continuum of variations are possible using dif-
ferent norms to measure the distribution of �j (m) over m
or the prior population Gj −1.

Other cost functions are also available based on approx-
imations for the expected information gain [12,13]. In
general, cost functions may be derived based on different
uncertainty estimators [37]. We have developed a further
alternative, based on a modified Fisher information, CMFI,
which relies on both the Cramer-Rao bound as an estimate
of the sensitivity of the response P0 and a bespoke penalty
function designed to disfavor oscillatory responses. For
completeness, we formulate this below.

The APC requires averaging over hypothetical mea-
surement outcomes that are computationally intensive [12,
13,16]. Conversely, the MFI requires no such averaging,
but does use gradients directly in the cost to evaluate
the Fisher information, and in a penalty term that dis-
counts oscillatory responses. These gradients are provided
by automatic differentiation, so add a constant computa-
tional cost. However, optimizing MFI with gradient-based
optimizers introduces an additional round of automatic dif-
ferentiation, so that the cost gradients include second-order
derivatives of the response, which add further computa-
tionally overhead as well. Both cost functions therefore
have significant computational overheads. In both cases
the computation is parallelizable over the prior popu-
lation gs ∈ Gj −1, and so the computation benefits from
high-performance multiprocessor computing resources.

1. Modified Fisher information cost function

Choosing control pulses that maximize the FI is a
conceptually appealing approach to choosing maximally
informative control pulses. Given a prior distribution
PDFj −1(g) over the system parameters, we seek to max-
imize the expected FI

F̄I(c) =
∫

dpg FI(g; c)PDFj −1(g). (B2)

However, if the evolution is unitary, and gi is a coefficient
in the system Hamiltonian, then FI(g, T) ∼ T2ϑ(g, T),
where ϑ is some generally oscillatory function of pulse
duration and the Hamiltonian parameters, as shown in
Fig. 2. Optimizing F̄ will then yield arbitrarily long pulse
sequences.

This reflects the fact that the FI is a point estimator of
the sensitivity of a probability distribution to infinitesimal
variations in a parameter, and this sensitivity can grow
unboundedly (at the cost of longer pulse duration).

For parameter estimation however, we have a finite prior
uncertainty (illustrated as the white disk in Fig. 2), and so
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we have to discriminate amongst plausible model param-
eters distributed according to the prior Pj −1. If the pulse
duration T is too long then the predicted response P0(g, c)
will typically be highly oscillatory over the support of
PDFj −1(g), so a measurement of P̂0(c) will not effec-
tively constrain the posterior range of plausible parameter
values g, as illustrated in Fig. 2(c). Instead, for a given
prior covariance matrix �j −1, the optimal pulse duration
typically scales as T(j ) ∼ Tr(�−1/2

j −1 ), as discussed in Sec.
II B.

We therefore define a modified Fisher information
(MFI) designed to penalize oscillatory behavior in the
response:

CMFI(c,Pj −1) = −F̄I(c)(1 − α�M (c,Pj −1)− β�). (B3)

Here �x� ≡ max[x, 0] is the ramp function, M is a func-
tional that penalizes oscillatory responses, β > 0 defines
the tolerable penalty threshold, and α ∼ 1 scales the
penalty.

The prior distribution Pj −1 is characterized by a prior
mean ḡj −1 and deviation matrix �1/2

j −1 whose maximum

eigenvalue λmaj
j −1 is associated with the prior major uncer-

tainty direction γ̂
maj
j −1 in parameter space. A function that

penalizes oscillations in P0 along the direction of γ̂
maj
j −1 is

M (c,Pj −1) =
∫

dpg PDFj −1(g)

×
[

− γ̂
maj
j −1 · ∇gP0(g; c)

γ̂
maj
j −1 · ∇gP0(ḡj −1; c)

]

,

where [x] is the unit-step function. Qualitatively, if
the gradient of the response, ∇gP0, projected along γ̂

maj
j −1

(i.e., the directional derivative of P0) has a constant sign,
either + or −, over the support of PDFj −1(g), then the
penalty will be zero. Changes in the sign of the directional
derivative reveal oscillatory behavior, and are penalized
accordingly.

For a population sampled from the prior distribution
gs ∼ Pj −1, we estimate the integrals in F̄ and M as discrete
averages over the sample populations:

F̄I(c) = 1
S

∑S

s=1
FI(gs; c), (B4)

M (c,Pj −1) = 1
S

∑S

s=1


[

− γ̂
maj
j −1 · ∇P0(gs; c)

γ̂
maj
j −1 · ∇P0(ḡj −1; c)

]

.

(B5)

We reiterate that these are implemented in a graph-based
computational framework that allows for efficient auto-
matic differentiation. This allows us to compute the gra-
dients that appear explicitly in F̄I and M , and also to

(a) (b)

Maj. unc.
Min. unc.

FIG. 7. Experimental OBSID results in a single-ion qubit cal-
ibration, using optimized Rabi or Ramsey pulse types, as illus-
trated in Fig. 3(a). (a) Pulse durations are shown at each iteration,
with the autonomously selected pulse type indicated by color.
(b) The iterative improvement in the parameter accuracy, indi-
cated by the major uncertainty of the posterior population, and
verified by the absolute error relative to conventionally calibrated
parameter values. The floor in the absolute errors for � and �
is set by the inferred uncertainty in the conventional calibration
methods, which has a standard error of about 0.3 Hz for both �
and �.

implement efficient gradient-based optimization of the cost
function.

APPENDIX C: SUMMARY RESULTS OF
ALTERNATIVE EXPERIMENTAL PULSE

PARAMETERIZATIONS

As described in Sec. IV B, we have implemented other
experimental control pulse sequences within the OBSID
loop for calibration of the ion-trap experiment. Specifi-
cally, these are (1) optimizable Rabi-Ramsey pulses and
(2) optimizable bang-bang control pulses. Here we present
the results of experimental OBSID with these pulse param-
eterizations.

We note that the prior and posterior population plots
look qualitatively similar to those shown in the main text,
so we do not plot them here.

1. OBSID-selected Rabi-Ramsey pulses

Figure 7(a) shows the optimized pulse durations and
types for the Rabi-Ramsey parameterizations illustrated
in Fig. 3(a). The pulse type and the duration are
autonomously chosen by OBSID for in situ experimental
calibration of a single ion. The pulse durations grow by a
factor � 2 per iteration.

Figure 7(b) shows the progression in the absolute error
(points) and the major uncertainty (dashed black line) with
iteration count. The major uncertainty provides a good esti-
mate for the absolute error, although not a strict upper
bound. At the last iteration, j = 5, the major uncertainty
is ±3 Hz, consistent with the absolute error in �.

The experimental results from the OBSID-selected
Rabi-Ramsey sequence of pulses are very similar to those
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in the equivalent simulated results shown in Fig. 3. In par-
ticular, at j = 5, comparing Figs. 3 and 7, we see that the
pulse duration has grown by a factor of about 20 to 30 rel-
ative to the initial duration, and the major uncertainty has
reduced by a similar factor.

2. OBSID-selected bang-bang pulses

Bang-bang control involves repeatedly switching a con-
trol field between an “on” state, with unit magnitude, and
an “off” state, with zero magnitude. This is implemented
here as a PWC with varying segment phases and dura-
tions, and allowing the carrier phase to vary from segment
to segment.

This control type may be useful if there is a nonlin-
ear transfer function between the control field generator
(which in this experiment is an AWG) and the target sys-
tem (which in this experiment is an ion). In this case, fixing
the “on”-state magnitude removes the need to fully cal-
ibrate the nonlinear transfer function for a continuum of
different pulse magnitudes.

Figure 8(a) shows the optimized complex-valued bang-
bang pulses [represented as in-phase (I) and quadrature
(Q) pairs] for the first three iterations of OBSID. In this
example, the control pulses are five-segment PWCs, and
the first segment is always “on,” with zero phase. The seg-
ment durations are optimized independently with a lower
bound of zero.

Figure 8(b) shows that in this experimental run, the
pulse durations grow by a factor of 2 to 3 per iteration, up
to a maximum duration of about 60 ms at OBSID iteration
j = 5.

The final pulse duration is somewhat longer in this
example than the other experimental single-qubit pulse
parameterizations reported in Figs. 5 and 7. There is a
corresponding improvement in the final major uncertainty,
which is shown in Fig. 8(c). We see that at iteration
j = 5, the major uncertainty is ±1 Hz, which is close to
the ±0.3 Hz floor set by standard experimental calibra-
tion methods used to independently determine the “true”
parameter values for the system being measured. The abso-
lute error in the parameters remains consistent with the
major uncertainty as an estimated bound.

APPENDIX D: PRACTICAL SYSTEM
IDENTIFIABILITY

There is a more subtle issue, related to statistical iden-
tifiability [28], which we first describe, and then illus-
trate with further simulations. The goal of OBSID is to
accurately approximate the true parameter values gt that
determine the system dynamics. At each iteration, OBSID
improves its estimate by optimally discriminating between
different plausible values gs in a prior sample popula-
tion, and it achieves this by choosing pulses that minimize
the posterior uncertainty. However, for some control-pulse

(a)

(b) (c)

Maj. unc.
Min. unc.

Five-seg. pulse

FIG. 8. Experimental OBSID results in a single-ion qubit cal-
ibration, using optimized five-segment bang-bang pulses, in
which the control is either “on” (unit magnitude) with optimized
phases or “off” (zero magnitude). (a) The sequence of complex-
valued pulses [represented as in-phase (I) and quadrature (Q)
components] generated in the first three iterations of OBSID,
which optimizes over segment durations and phases. (b) Pulse
durations for each iteration, and (c) the iterative improvement in
the parameter accuracy. The floor in the absolute errors for� and
� is set by the inferred uncertainty in the conventional calibra-
tion methods, which has a standard error of about 0.3 Hz for both
� and �.

parameterizations, there may be a manifold of model
parameter values that give statistically close measurement
results for all available pulses within the parameterization.
In this case, the OBSID protocol will eventually stall, with
a distribution whose major uncertainty is independent of
the pulse duration. At this point, OBSID will simply report
a nearly stationary posterior parameter distribution.

In control theory and statistics, a parameterized proba-
bility distribution is called identifiable if empirical obser-
vations allow the parameters of the distribution to be
identified uniquely, with no limitation on the number of
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(a) (b)

(c) (d)

1.0

0.8

0.6

0.4

0.2

0.0

Maj. unc.
Min. unc.

FIG. 9. A control example where OBSID fails to improve
parameter estimates. The control pulse has uniform amplitude,
but with n = 10 tunable phase segments φn(t), so that c(t) =
eiφn(t). Panels (a) and (b) show the prior populations and poste-
rior populations after the first and seventh iterations, respectively.
The magenta line indicates the contour �2 +�2 = �2

t +�2
t ,

showing that the control successfully collapses the posterior
distribution onto the contour, but fails to constrain the poste-
rior distribution along the contour tangent direction. Panel (c)
shows that OBSID chooses increasingly long pulses, as in pre-
vious examples; however, (d) shows that improvement in the
major uncertainty “stalls” at a marginal uncertainty of around
±0.02 Hz.

observations allowed. If more than one set of parameters
yields the same distribution then it is not structurally iden-
tifiable [29]. In some cases, the response may be very
shallow along some submanifold of parameter space, in
which case the parameters may not be practically identi-
fiable [29] given a finite number of measurements; this is
the cause of OBSID stalling.

Practically, OBSID is limited to a finite number of
empirical observations, and so practical statistical identifi-
ability asks: for a given control pulse parameterization, and
an upper limit on the number of measurements, r, can we
improve the posterior parameter uncertainty by increasing
the pulse duration (while tuning other control parameters,
e.g., segment phases or amplitudes)? As we now demon-
strate, there are poorly parameterized control pulses for
which the model is not practically identifiable.

An example of this effect is a parameterization with
a smaller number of free control parameters than the
number of unknown system parameters, p . For exam-
ple, with a finite number of observation repetitions, r,
only using Rabi pulses with only a controllable duration
parameter, T(opt)

Rabi , to identify the two parameters {�,�}

in Eq. (1) yields statistically significant information only
about the combination �2 +�2. Consider two “nearby”
models in parameter space, described by ga = {�a,�a}
and gb = {�b,�b}, with �a ≈ �b and �a ≈ �b. These
will give almost identical predictions for the Rabi response
whenever �2

a +�2
a = �2

b +�2
b. That is, within the two-

dimensional parameter space, there is one-dimensional
submanifold of models constrained by �2 +�2 = �2

t +
�2

t that are statistically indistinguishable, given a finite r.
It follows that, within this submanifold, � and � cannot
be independently determined. The model is not practically
identifiable with “Rabi-pulse-only” control.

We illustrate practical nonidentifiability with a gener-
alization of the “Rabi-pulse-only” example. Suppose that
we attempt to use OBSID to identify the single-qubit, two-
parameter model in Eq. (1), using a pulse with uniform
amplitude, but with controllable, time-dependent phases,
so that c(t) = eiφn(t), where the control phase φn(t) is a
real-valued PWC with n ≥ 2 segments. For this control
parameterization, there are more control parameters avail-
able than unknown model parameters, which is a necessary
condition for OBSID to succeed. Figures 9(a) and 9(b)
show the prior and posterior population samples at the
first and last of seven OBSID iterations; the final distri-
bution is confined to a (nearly) one-dimensional manifold
aligned with the contour �2 +�2 = �2

t +�2
t , indicated

by the dashed magenta line. This posterior distribution is
strongly covariant, so that neither parameter can be accu-
rately fixed. Figure 9(c) shows that the optimally chosen
pulses still grow in duration; however, Fig. 9(d) illus-
trates that the major uncertainty saturates around iteration
j = 4. Further iterations decrease the major uncertainty
of this distribution slowly as 1/

√
r, rather than quickly

as 1/T(j ). This is a symptom that this “phase-only” con-
trol parameterization is unable to practically identify the
system [29].

This example shows how OBSID can fail for poorly
adapted control parameterizations that are unable to iden-
tify the system in practice. Importantly, it also illustrates
a symptom of this failure, which is that major uncertainty
stalls after several iterations of OBSID. The resolution is to
extend the control parameterization to access more of the
model parameter space. This self-diagnostic capability is
a key advantage of the protocol. In the example described
above, including control pulse amplitudes in the control
parameterization would suffice.
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