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Decoy-state methods are essential to perform quantum key distribution (QKD) at large distances in
the absence of single-photon sources. However, the standard techniques apply only if laser pulses are
used that are independent and identically distributed. Moreover, they require that the laser pulses are fully
phase randomized. However, realistic high-speed QKD setups do not meet these stringent requirements. In
this work, we generalize decoy-state analysis to accommodate laser sources that emit imperfectly phase-
randomized states. We also develop theoretical tools to prove the security of protocols with lasers that
emit pulses that are independent, but not identically distributed. These tools can be used with recent
work [G. Currás-Lorenzo, S. Nahar, N. Lütkenhaus, K. Tamaki, and M. Curty, Quantum Sci. Technol.
(2023)] to prove the security of laser sources with correlated phase distributions as well. We quantitatively
demonstrate the effect of imperfect phase randomization on key rates by computing the key rates for a
simple implementation of the three-state protocol.
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I. INTRODUCTION

Quantum key distribution (QKD) is a method to realize
quantum-safe cryptography [1]. Since QKD does not
rely on computational assumptions, QKD protocols can
be proved to be information-theoretically secure [2–4].
However, practical implementations suffer from security
loopholes, which arise from a gap between the theoretic
models for which security is proved, and the experimen-
tal devices that perform QKD [5]. Thus, better model-
ing of devices as well as theoretical tools to perform
security analysis with these more detailed models is
essential for the implementation security of QKD proto-
cols.

There have been recent advances to theoretically accom-
modate general source imperfections [6–8]. However,
these techniques cannot be used at present with the decoy-
state method [9–11], which is essential to get secret key
rates at large distances with coherent states. To this end,
there has been more work on doing decoy-state QKD with
intensity correlations [12,13].

Besides the absence of intensity correlations, standard
decoy-state methods still assume that the laser outputs
fully phase-randomized states. For phase randomization
in gain-switched laser diodes, it is essential that no pho-
tons from previous pulses remain in the lasing cavity at
the start of the next lasing [14]. However, as discussed in
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Ref. [15], Eve could perform an active laser-seeding attack
[16], which would invalidate such an assumption. Thus,
we attempt to fill this security gap by proving the security
for decoy-state protocols for a source that emits indepen-
dent (i.e., noncorrelated) pulses whose phase is distributed
nonuniformly.

Further, for lasers with a high repetition rate [17] there is
not enough time for the laser cavity to empty out between
pulses. In this case, the laser pulses might even have corre-
lated phase distributions. Techniques to prove the security
of decoy-state QKD in the presence of phase correlations
were developed in Ref. [15], which crucially build on the
tools described in this paper. Their proof technique reduces
the security analysis of phase-correlated laser pulses to that
of laser pulses that have an independent and nonidentically
distributed phase distribution. The decoy-state analysis for
such phase-independent states was described by one of the
authors in Ref. [18]. Note that as shown in Ref. [15], the
proof techniques described in Ref. [18] only work for laser
pulses that have no phase correlations.

In Sec. III A, we develop tools to reduce the security
of phase-independent laser pulses to the security of an
independent identically distributed (IID) partially phase-
randomized laser. For this reduction, the phase distribution
of the laser pulses must be partially characterized by a
single parameter. This is practically useful only if this
parameter is experimentally measurable. So, we include
a discussion on the methods and difficulties of measuring
this quantity in Sec. III B.
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In order to use decoy-state analysis for partially phase-
randomized laser pulses, we draw an analogy with channel
tomography to state our generalized decoy-state meth-
ods in Sec. IV. However, as outlined with the requisite
background in Sec. II, a full decoy-state analysis in this
approach requires the diagonalization of the laser states.
Thus, we describe how to approximately diagonalize a
density matrix in Sec. V. Additionally, we note that these
methods are quite general with imperfect phase random-
ization being just one possible application.

In summary, we develop tools that enable us to perform
decoy-state QKD with lasers that have imperfect phase
randomization. We then use these tools to analyze the secu-
rity of the three-state protocol with phase imperfections in
Sec. VI as an example. We also plot our results to depict
the effect of the phase imperfections for this protocol.

II. BACKGROUND

In this section we first summarize the steps in a generic
prepare and measure (PM) protocol. We then review the
key rate optimization problem, and discuss the concept of
source maps, a proof technique used to find lower bounds
on the key rate.

A. QKD protocol steps

Here we outline the steps in a generic PM protocol with
n rounds. We focus in particular on the asymptotic limit,
where the number of protocol rounds n tends to infinity.

(1) State preparation: Alice randomly prepares one
of a set of quantum states {ρμ1 . . . ρμn } with an a priori
probability distribution {p(i,μ)}, where the signal modula-
tion i and signal intensity μ denote which state she chose.
The prepared states are called signal (and decoy) states.
We model Alice’s signal preparation procedure as different
channels acting on some fixed base state ρμi = �i(ρ

μ). We
denote the quantum system associated with each of these
signal states A′

m for the mth round of the protocol.
(2) Signal transmission: Alice sends her prepared

states to Bob via an insecure quantum channel

E : A′
1 . . .A

′
n −→ B1 . . .Bn

where each Bm denotes the quantum system associated
with each of the states Bob receives in round m.

(3) Measurement: Bob measures the states that he
receives by a k-outcome positive operator-valued mea-
sure (POVM) {�j }k

j =1 and records the outcome from each
round.

After repeating the above steps multiple times, we proceed
to the next part of the protocol.

(4) Acceptance testing: Alice and Bob randomly
choose a subset of the rounds for testing. For the rounds

chosen for testing, they both publicly announce the signal
modulation i and signal intensity μ chosen, and measure-
ment outcome j to form a frequency distribution. They
then check if this frequency distribution belongs to the
acceptance set agreed upon before running the protocol.
If it does, they proceed with the protocol after discarding
the test results. Otherwise, they abort.

In the asymptotic limit, assuming that Eve’s
attack is IID, i.e., E = �⊗n, the frequency distribu-
tion converges to a probability distribution p(i,μ, j ) =
p(i,μ)Tr

[
�j�(ρ

μ
i )
]
. This probability distribution effec-

tively constrains �, and thus Eve’s actions on the states
that Alice sent Bob.

(5) Announcements and sifting: Alice and Bob make
announcements over the authenticated classical channel.
They sift the nontested data based on the announcements
made, i.e., they choose a subset of signal and measure-
ment data to keep and discard the rest based on the
announcements.

(6) Key map: Alice uses her signal modulation data i
as well as the announcements to map her data into a key
string x. This is called the raw key. We assume here that
the key is a bit string for simplicity, but all the steps can be
applied more generally.

(7) Error correction: Alice and Bob then perform
error correction over the authenticated classical channel to
make Bob’s measurement outcomes match with Alice’s bit
string x. We denote the data communicated per key bit to
Eve in this process as δleak.

(8) Privacy amplification: Alice and Bob produce
their final secret key by applying an appropriate hash
function on the raw key (Theorem 5.5.1 of Ref. [19]).

PM protocols are typically implemented in experiments.
However, it is easier to analyze the security of another class
of protocols, entanglement-based (EB) protocols where
Alice and Bob share an entangled bipartite state instead
of step (1) of the PM protocol.

Fortunately, we can reduce the analysis of any PM proto-
col to the analysis of an EB protocol with added constraints
via a source-replacement scheme [20–22] as follows. First,
define

∣∣ρμi
〉
ASA′ to be a purification of ρμi . The purifying

system AS, termed the shield system [23], is useful for
the security proof if Alice sends Bob mixed states. Nei-
ther Alice nor Bob interacts with the shield system at any
point.

Alice prepares the state

|ψ〉AASA′ =
∑

i,μ

√
p(i,μ) |i,μ〉A ⊗ ∣∣ρμi

〉
ASA′ (1)

and sends system A′ to Bob through the insecure quantum
channel to get the state ρAASB. In addition to the constraints
from step (4) of the protocol that take the form p(i,μ, j ) =
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Tr
[(|i,μ〉 〈i,μ|A ⊗ IAS ⊗ �j

)
ρAASB

]
, we get the con-

straint TrB
[
ρAASB

] = Tr′A
[|ψ〉 〈ψ |AASA′

]
. Intuitively, this

represents the fact that Eve cannot change the states in
Alice’s lab and shield system, although she can act freely
on the state sent to Bob. We shall now briefly outline how
we can use these constraints to reliably lower bound the
secret key rate that we can obtain from a QKD protocol.

B. Numerical asymptotic key rate

The secret key rate in the asymptotic limit under the
IID assumption can be found using the Devetak-Winter
formula: R∞ = H(Z | E)− δleak where Z is the key reg-
ister, E is Eve’s register, and δleak is the number of bits
per round leaked to Eve during step (7) of the protocol.
A lower bound for the key rate can be found by minimiz-
ing the first term over all possible marginal states that Eve
could hold. The Devetak-Winter key rate can be lifted to
coherent attacks if the protocol is permutation invariant via
the quantum de Finetti theorem [24] or the postselection
technique [25].

Following Refs. [26,27], the Devetak-Winter key rate
formula for an EB protocol can be reformulated as an SDP

R∞ = min
ρAASB

D
(G (ρAASB

) ||Z (G (ρAASB
)))− δleak

such that Tr
[
�j�(ρ

μ
i )
] = γj | i,μ ∀ i, j ,μ

TrB
[
ρAASB

] = ρAAS ,

(2)

where A, AS, and B are Alice and Bob’s registers
together with the shield system. The statistics γj | i,μ
can be understood to be the conditional probability of
Bob observing outcome j given that Alice sent sig-
nal state i and intensity μ. Here, the relative entropy
D
(G (ρAASB

) ||Z (G (ρAASB
)))

is the objective function
where G is a map that represents the protocol (including
announcements), and Z is a map that can be constructed
from the key map.

Since we do not use most of the specific details of
these maps, we abstract the objective function as f (ρAASB).
For details, see Refs. [26,27]. Note that although ρAASB
contains all signal and decoy intensities μ, we choose to
include only the signal intensity μ = μS in the objective
function for computational simplicity by using a key map
that assigns key value only for the signal intensity μS.

This SDP is infinite dimensional, and so following
Eq. (49) from Ref. [28] we use the dimension reduction
method. This technique involves taking a projection 	N
onto the subspace containing less than N + 1 photons, to
construct a finite-dimensional SDP that would lower bound
the infinite-dimensional SDP. The finite-dimensional SDP
is given as

RN = min
ρN

AASB

f (ρN
AASB)− δleak

s.t. γj | i,μ − Wμ ≤ Tr
[
�N

j �(ρ
μ
i )
]

≤ γj | i,μ ∀ i, j ,μ

1 − W ≤ Tr
[
ρN

AASB

]
≤ 1

TrB

[
ρN

AASB

]
≤ ρAAS ,

(3)

where ρN
AASB = (IAAS ⊗	N )ρAASB(IAAS ⊗	N ) and �N

j =
	N�j	N . W is a parameter that needs to be estimated
from Bob’s observations that signifies the weight of ρAASB
that lies outside the subspace we are projecting on, i.e.,
W ≥ 1 − Tr

[
ρN

AASB

]
. Note that we have used

[
�j ,	N

] =
0 to obtain tighter constraints. This condition is commonly
satisfied when we talk about photon-counting receiver
modules that are block diagonal in the total photon number.
However, it is not crucial to use this and more details on
obtaining the key rate for the fully general case are given
in Ref. [28].

The SDP can be further simplified if the signal states
have some block-diagonal structure and can be written as
a direct sum ρ

μS
i =⊕∞

ñ=0 pñρ
ñ
i where the block-diagonal

structure is the same for all the signals i. Here, μS denotes
the signal intensity. This is obviously the case when we use
fully phase-randomized states where |ñ〉 directly represents
the photon number. As we shall show in Sec. IV D, we can
obtain similar structure with partially phase-randomized
states as well.

Following Eqs. (D.6) and (D.9) from Ref. [29], we can
exploit the block-diagonal structure to write f (ρAASB) =∑∞

ñ=0 pñ f (ρ ñ
AB) as a sum of positive terms. Thus, taking

finitely many of these terms is sufficient to lower bound
the key rate. In practice, just one of these terms is usu-
ally enough to give a good bound on the key rate for most
protocols. For example, in a standard decoy-state protocol
with fully phase-randomized states, considering just the
term corresponding to single photons is sufficient to give
a useful lower bound on the key rate.

If we could find the statistics to constrain each of these
terms as YL

ñ(i, j ) ≤ Tr
[
�N

j �(ρ
ñ
i )
]

≤ YU
ñ (i, j ), we could

obtain the set of SDPs

RN
ñ = min

ρñN
AB

pñ f (ρ ñN
AB )

such that YL
ñ(i, j ) ≤ Tr

[
�N

j �(ρ
ñ
i )
]

≤ YU
ñ (i, j )

TrB

[
ρ ñN

AB

]
≤ ρ ñ

A

1 − Wñ ≤ Tr
[
ρ ñN

AB

]
≤ 1

ρ ñN
AB ≥ 0,

(4)
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which can be related to the key rate as RN =∑ñ RN
ñ −

δleak. Note that solving each of these SDPs independently
will introduce some looseness since we do not take into
account the fact that the constraints of different blocks are
in general correlated. We describe improved methods to
upper and lower bound Tr

[
�N

j �(ρ
ñ
i )
]

via the generalized
decoy-state analysis described in Sec. IV.

To summarize, if we have an IID protocol, signal states
that are all block diagonal in the same basis, and we have
bounds on the statistics of each signal state block, then the
set of SDPs described in Eq. (4) help us reliably lower
bound the key rate of the protocol.

C. Source maps

We will now describe a commonly used class of source-
replacement schemes, which we call source maps, with
ideas similar to squashing maps [30]. In general, source
maps simplify security proofs at the cost of loosening our
key-rate bounds and giving Eve more power than she has
in reality.

Definition 1 (Source map).—Let {ρi} ∈ D(H) and {τi} ∈
D(K) be the set of states Alice prepares for two QKD pro-
tocols where the rest of the protocol is the same. A channel
� from D(K) to D(H) is a source map if ρi = �(τi) for
all i. We call the protocol where Alice produces the states
{ρi} ({τi}) a real (virtual) protocol with real (virtual) states.

Let R∞
ρ and R∞

τ be the asymptotic key rates for identi-
cal observations γj |i of the real and virtual QKD protocols,
respectively. The key rates are related as R∞

τ ≤ R∞
ρ . Intu-

itively, this can be seen from Fig. 1 where giving Eve the
source map gives her more power. A more formal proof of
this fact is given in Appendix A 1.

Note that in the above definition, the different signal
states {ρi} and {τi} that Alice prepares could represent the
joint state sent for multiple key generation rounds of the
protocol. Thus, this does not assume either IID signal states
or IID attacks by Eve, and is completely general.

As an example of a source map that we shall use, we
describe virtual states call block-tagged states [31]. Con-
sider a protocol with an IID source that produces real
states ρμS

i = Viρ
μS V†

i where ρμS can be diagonalized as
ρμS =∑ñ pñ |ñ〉〈ñ|. We can then define the virtual “block-
tagged” states as τi =∑ñ pñVi (|ñ〉〈ñ|)V†

i ⊗ |ñ〉〈ñ|, and
the source map � = I ⊗ Tr that reproduces the real states
from the virtual states is the partial trace over the second
system. We call this simplification block tagging.

The block-diagonal structure of the block-tagged states
simplifies the objective function by breaking it up into
individual blocks [22] as f (ρN ) =∑ñ pñ f (ρN

ñ ) where

ρN
ñ =

∑

i,j

√
p(i)p( j ) |i〉〈i|A

⊗	N�
(

Vi(|ñ〉〈ñ|)V†
j ⊗ |ñ〉〈ñ|

)

B
	N .

Virtual

Source

Source
Map

EveAlice
Real Source

Virtual

Source

Eve's
Replacement

EveAlice
Real Source

?

(b)

(a)

FIG. 1. The real source can always be replaced by the virtual
source in security proofs if they are related via a source map since
the virtual source gives Eve more power. (a) We can model the
real source as a virtual source followed by a source map since
they both have the exact same output and (b) once we give Eve
control of the source map, she can perform any physical opera-
tion on the output of the virtual source, including the source map
� if reproducing the real state is optimal for her.

Thus, we can use Eq. (4) to bound the key rate even if
the real states do not have the block-diagonal structure.
This simplification comes at the cost of key rate in the case
that the isometries do not retain the block-diagonal struc-
ture of the state, i.e., 〈ñ| V†

i Vj |m̃〉 �= 0 for some ñ �= m̃.
We note that a key rate simplification similar to Eq. (4)
was first seen in the context of discrete-phase-randomized
decoy-state QKD in Ref. [32], although they use different
techniques to arrive at the result.

III. PHASE IMPERFECTIONS IN QKD

We shall first discuss a simplified model of phase imper-
fections that we consider. We then describe a source map
that connects a model IID state to the imperfect state
for a large class of QKD protocols. Finally, we also dis-
cuss some of the difficulties in characterizing the relevant
parameters to construct the model IID state from the actual
laser state.

We model a sequence of laser pulses as a probabilistic
mixture of coherent states, where different laser pulses are
independent of each other. Since we consider only phase
imperfections, we assume that the intensity of each laser
pulse is the same. Such a state can be the result of an active
laser-seeding attack [16] as discussed in Ref. [15]. Under
these assumptions, the general state for the sequence of
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laser pulses can be written as

ρ
μ

laser =
∫

dφ1. . .dφn p�1(φ1) . . . p�n(φn)

× ∣∣√μeiφ1
〉〈√
μeiφ1

∣∣⊗ . . .⊗ ∣∣√μeiφn
〉 〈√

μeiφn
∣∣ .
(5)

We will show that we can replace this general source
state by a simplified state that is IID and is of the form

(
ρ
μ

model

)⊗n =
(

q
∫

dφ
1

(2π)n
∣∣√μeiφ 〉 〈√μeiφ

∣∣

+ (1 − q)
∣∣√μ〉 〈√μ∣∣

)⊗n

, (6)

where q := min
k

min
φk

2πp�k (φk) is a parameter that must

be characterized, which represents the degree to which the
sequence of laser pulses are phase randomized. Although
characterizing this parameter might pose some practical
difficulties, it is still significantly easier than characterizing
each probability density function p�k .

A. Source map for non-IID laser

We now explicitly construct a physical map that con-
nects the model laser state to the actual laser state with
phase distribution p�1...�n(φ1 . . . φn) = p�1(φ1) . . . p�n
(φn) with associated parameter q as shown in Fig. 2. As
a first step toward the source map construction, we con-
sider the action of a phase modulator on the model laser
state. The phase modulator modulates the phase of the ith
pulse with probability (p�i(φi)− q/2π)/1 − q for all i.
The model laser source together with this phase modulator
will imitate the actual laser source i.e., ρμlaser = �(ρ

μ

model)

where � represents the action of the phase modulator as
described above. We give a proof of this in Appendix A 2.

However the definition of the source map � requires
that �⊗n

i (ρ
μ

laser) = �(�i(ρ
μ

model)
⊗n) for all signal states i

where �i denotes the preparation channel that acts on a

Model

Laser

Phase
Modulator

EveAlice
Actual Laser

FIG. 2. Replace the actual laser source with a model laser
source and a phase modulator. We can then give the phase modu-
lator to Eve. This would increase the power that Eve has and thus
the key rate using the model laser source would lower bound the
key rate using the actual laser source.

single pulse to prepare the final signal state for a single
round of the protocol. We can construct the source map
� for a large class of QKD protocols analogously to how
we constructed the map �. Intuitively, this construction
holds when the preparation channels �i for the protocol
“commute” with the action of the phase modulator �.

For example, consider a QKD protocol that uses time-
bin encoding �i where a single laser pulse is split into a
block of two pulses with possible phase coherences across
pulses. We construct the source map � through the action
of a phase modulator that modulates the phase of the laser
pulses as follows: the ith block of pulses (which all are the
output of the action of�i on the ith laser pulse from ρ

μ

model)
are all modulated with the same phase φi with probability
(p�i(φi)− q/2π)/1 − q for all i. Note that this source map
can be naturally extended to blocks with more than two
pulses.

The source map we constructed would commute with
any intensity modulation of the laser pulse. So, this would
also be a valid source map for decoy-state protocols. Thus,
the key rate of the virtual protocol with an IID character-
ized laser source and preparation channels �i would lower
bound the key rate of the real protocol with the partially
characterized nonidentically distributed laser source and
preparation channels �i.

B. Experimental characterization of laser

We have constructed a source map from an uncorrelated
laser source with different probability density functions p�i
for each pulse, all satisfying p�i(φi) ≥ q/2π ∀i,φi. Thus,
the experimental problem has been reduced from charac-
terizing the probability density function for each pulse,
to characterizing a single parameter q that represents the
degree of phase randomization. Although this problem is a
significantly simpler problem to solve, standard visibility
measurements do not directly measure this quantity.

The visibility experiment as described in Sec. II. A. of
Ref. [14], is performed with a train consecutive laser pulses
passed through an interferometer with a phase shifter in
one arm. We have illustrated this with two pulses in Fig. 3.
The intensity of the light arriving at the middle time slot of
the detector is measured for different values of the phase
shift θ . We assume that the pulses have the same intensity.

The phase difference θ between the paths is varied to
calculate the visibility V given by

FIG. 3. Schematic illustration of the experimental setup
described in Ref. [14]. The phase difference θ between the paths
can be modulated with the phase shifter �.
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V = Imax − Imin

Imax + Imin
, (7)

= 〈cos (θ + φ)〉max − 〈cos (θ + φ)〉min

2 + 〈cos (θ + φ)〉max + 〈cos (θ + φ)〉min
, (8)

where the maximum and minimum is over all θ , and φ is
the difference in the phase of the adjacent pulses.

Note that the measurement as described in Ref. [14]
is used to measure phase correlations between adjacent
pulses. However, due to limitations in our security proof
techniques, we assume that the pulses are independent
of each other. Moreover, the visibility measurement does
not directly measure the degree of phase randomization q
directly as visibility measures other effects like the tem-
poral distribution of the laser pulses. Thus, using this
experiment to obtain the extent of phase randomization
q requires us to make further model assumptions for the
probability distribution.

As an illustrative example consider two different model
assumptions for the phase distribution:

(i) The phase distribution is the same as in the model
laser state, i.e., p�i(φi) = (q/2π)+ (1 − q)δ(φi). We can
then calculate

q = 1 −
√

V. (9)

(ii) The phase distribution of each pulse is a
wrapped normal distribution with standard deviation
σ centered about the origin, i.e., p�i(φi) = 1/

√
2πσ 2

∑∞
k=−∞ exp

[−(φi + 2πk)2/2σ 2
]
. We can relate the visi-

bility to the standard deviation as

V = exp
[−σ 2]. (10)

As this completely characterizes the wrapped normal dis-
tribution, we can use this to numerically find the extent of
phase randomization q.

These values of q computed under different model assump-
tions are, in general, different. Thus, it would be interesting
to develop other techniques that more directly measures
this quantity and reduces the number of assumptions that
we need to make.

To summarize, we have made two model assumptions
on the laser state.

(1) The first model assumption is a limitation of our
security proof techniques and can be stated as follows. The
laser outputs a

(a) probabilistic mixture of coherent states
(b) same intensity, and
(c) independent phase distribution.

Thus, the state can be written as

ρ
μ

laser =
∫

dφ1. . .dφn p�1(φ1) . . . p�n(φn)

× ∣∣√μeiφ1
〉〈√
μeiφ1

∣∣⊗ . . .⊗ ∣∣√μeiφn
〉 〈√

μeiφn
∣∣ .

Assumption B has been lifted in Ref. [15].
(2) The second assumption is due to limitations in the

current experiments used to quantify the degree of phase
randomization q. These further model assumptions on
p�i(φi) might be physically motivated. For example,

(a) p�i(φi) = (q/2π)+ (1 − q)δ(φi),
(b) p�i(φi) is a wrapped normal distribution centered

about the origin with standard deviation σ .
Thus, it would be of practical interest to design other
experiments to bound the minimum of the phase distribu-
tion without making such model assumptions.

IV. GENERALIZED DECOY-STATE ANALYSIS

The standard decoy-state analysis relies on the assump-
tion that the laser pulses are completely phase random-
ized, hence block diagonal. Additionally, it requires that
the weight of each block is independent of the encoding
used. However, the methods described in Sec. III result
in partially phase-randomised states of the form shown
in Eq. (6). We first formulate the decoy-state problem
abstractly by drawing an analogy to channel tomography
in Sec. IV A.

For an IID fully phase-randomized source, we show in
Sec. IV B how the general formulation simplifies to the
standard decoy-state analysis [10,11]. We stress the rele-
vance of the generalized decoy-state analysis for nonideal
sources as seen in Sec. III since the standard decoy-
state analysis cannot be used for laser states of the form
described by Eq. (6).

The general framework of our generalized decoy-state
analysis typically takes the form of infinite-dimensional
SDPs. In Sec. IV C, we introduce finite projections to
construct a related finite-dimensional SDP that facilitates
numerical evaluation. Finally, in Sec. IV D we describe
a useful loosening of the SDP to reduce the dimensions
while using it for typical QKD protocols.

A. General framework

First, to set up notation, let ρk
μ, σi ∈ D(H) be density

operators on H, which we shall call the state space. Let
�l, Fj ∈ Pos(K) be POVM elements on K, which we shall
call the measurement space. Let � : L(H) −→ L(K) be a
quantum channel.

We are given the statistics {γl | k,μ} of the input states
{ρμk } to the unknown channel � where the output is mea-
sured by the POVM elements {�l} as Tr

[
�l�(ρ

μ

k )
] =

γl | k,μ. We call these the actual states and POVM elements,
respectively. From this we seek to bound the statistics for
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a possibly different set of input states {σi} and POVM ele-
ments {Fj } measuring the output of the same channel �,
which can be written as Tr

[
Fj�(σi)

]
. We call these virtual

states and POVM elements, and define a matrix Y whose
elements are the statistics Y(i, j ) = Tr

[
Fj�(σi)

]
.

More formally, we are interested in the set Y of all
matrices Y with elements Y(i, j ) = Tr

[
�(σi)Fj

]
with con-

straints on � given by

Tr
[
�(ρ

μ

k )�l
] = γl | k,μ ∀k, l,μ

� is CPTP.
(11)

Note that here the different elements Y(i, j ) are not inde-
pendent of each other for Y ∈ Y. This makes it hard to
find and use Y. Thus, to make it easier to use, we define
YL(i, j ) = inf

Y∈Y

Y(i, j ), and YU(i, j ) = sup
Y∈Y

Y(i, j ). These can

now be independently written as the solution to the set of
optimisation problems as follows:

YL(i, j ) = min
�

Tr
[
�(σi)Fj

]

s.t. Tr
[
�(ρ

μ

k )�l
] = γl | k,μ ∀ k, l,μ

� is CPTP.

(12)

YU(i, j ) = max
�

Tr
[
�(σi)Fj

]

s.t. Tr
[
�(ρ

μ

k )�l
] = γl | k,μ ∀ k, l,μ

� is CPTP.

(13)

This simplification is a relaxation of our initial problem to
independent optimisations for each virtual state i and out-
come j . As a result of this relaxation, we might sometimes
see counterintuitive behavior as illustrated by the follow-
ing example. In the absence of this relaxation, we know
that computing bounds for the sum of virtual POVM ele-
ments would be the same as computing and then summing
the individual bounds. However, counterintuitively solving
these relaxed SDPs for sums of virtual POVM elements
might lead to better bounds than solving and then sum-
ming the optimal values of the individual SDPs. This is not
a fundamental limitation as it does not affect the original
optimization. It is a direct consequence of the relaxation
we have made to bound these statistics.

The optimization problems described in Eqs. (11)
and (12) can be reframed as SDPs by considering the
Choi-Jamiolkowski isomorphism of the channel J

opt.
J

Tr
[
(σ T

i ⊗ Fj )J
]

s.t. Tr
[
(ρ
μ

k
T ⊗ �l)J

]
= γl | k,μ ∀ k, l,μ

J ≥ 0

TrK [J ] = IH

, (14)

where opt. indicates that we have to optimize the objective
function to find both the maximum and the minimum as
separate SDPs. In order to simplify notation, let S∞ be the
feasible set of the SDP, i.e.,

S∞ :=
{

J ∈ B(H ⊗ K)
∣∣∣∣TrK [J ] = IH, J ≥ 0,

Tr
[
(ρ
μ

k
T ⊗ �l)J

]
= γl | k,μ ∀ k, l,μ

}
. (15)

B. Standard decoy

In the special case where the laser emits states ρμPR that
are fully phase-randomized states with intensity μ, we
show how our general analysis given in Eq. (14) reduces
to the standard decoy-state analysis.

The actual states {ρμk } are obtained by the action of the
preparation channels {�k} on the fully phase-randomized
laser state as ρμk = �k

(
ρ
μ
PR

)
. The virtual states that we can

use in Eq. (14) are the n-photon states for different encod-
ings, i.e., σ n

i = �i (|n〉 〈n|). The crucial assumption here is
that each of the actual states can be written as a classical
mixture of the virtual states as

ρ
μ
i =

∑

n

pμ(n)� (|n〉〈n|)

=
∑

n

pμ(n)σ n
i . (16)

The actual POVM elements �j are obtained from the
measurement setup. The virtual POVM elements whose
outcomes we bound are the same as the actual POVM
elements Fj = �j .

With these definitions, we can rewrite the SDPs in
Eq. (14) as

opt.
J

Tr
[(
�i(|n〉 〈n|)T ⊗ �j

)
J
]

such that Tr
[
(ρ
μ

k
T ⊗ �l)J

]
= γl | k,μ ∀ k, l,μ

J ≥ 0

TrK [J ] = IH.

(17)

The constraints in this case simplify as follows:

Tr
[
(ρ
μ

k
T ⊗ �l)J

]
= Tr

[
�
(
ρ
μ

k

)
�l
]

(18)

= Tr

[

�

(
∑

n

pμ(n)�k (|n〉 〈n|)
)

�l

]

(19)

=
∑

n

pμ(n)Tr [�(�k (|n〉 〈n|)) �l]

(20)

=
∑

n

pμ(n)p(l | k, n) = γl | k,μ, (21)
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where p(l | k, n) is the probability of a detection corre-
sponding to the POVM �l given that Alice sent n photons
encoded with the preparation channel �k.

Noting that the objective function of the SDPs in
Eq. (17) can be written as p(j | i, n), the SDPs simplify to
the set of linear programs

opt.
p

p(j | i, 1)

such that
∑

n

pμ(n)p(l | k, n) = γl | k,μ ∀ k, l,μ

0 ≤ p(l | k, n) ≤ 1 ∀ k, l, n,μ.

(22)

Having described the reduction of the generalized
decoy-state analysis to the standard decoy-state analysis,
we remark on a subtle difference in their application to
QKD. The objective function in Eq. 17 corresponds to
Tr
[
(σ T

i ⊗ �j )J
]
. However, bounds on the finite projection

Tr
[
(σ T

i ⊗ �N
j )J
]

are needed in the key rate SDP shown in
Eq. ((4)). We would then need to use the dimension reduc-
tion method described in Ref. [28]. In contrast, using the
generalized decoy-state analysis we can directly choose the
virtual POVM elements Fj = �N

j to estimate bounds on
the statistics of the projected POVM elements.

C. Finite projections

The set of SDPs described in Eq. (14) are typically infi-
nite dimensional as in the case for optical setups. The prob-
lem of numerically finding bounds on infinite-dimensional
SDPs when optimizing over quantum states has been con-
sidered in Ref. [28]. We use similar ideas to extend this
analysis to SDPs where we optimize over quantum chan-
nels instead to find bounds on the set of SDPs described in
Eq. (14).

The idea is to construct a carefully chosen set of finite-
dimensional SDPs whose optimal values can be related to
the optimal values of the infinite-dimensional SDPs. Recall
from Eq. (15) the definition of the feasible set S∞ of the
infinite-dimensional SDPs. In Secs. IV C 1 and IV C 2, we
construct a feasible set SMN of the finite-dimensional SDPs
such that SMN ⊇ (	M ⊗	N ) S∞ (	M ⊗	N ) for finite-
dimensional projectors 	M and 	N . Here, and in the rest
of this paper we use the notation (	M ⊗	N ) S∞ (	M ⊗
	N ) = {(	M ⊗	N )ρ(	M ⊗	N ) | ρ ∈ S∞}. This condi-
tion is used in Sec. IV C 3 to relate the optimal value of
the infinite-dimensional SDPs to the optimal values of the
finite-dimensional SDPs.

We shall now proceed by considering a sequence of
relaxations corresponding to each of the three constraints
that define S∞. We add each constraint one by one so that
each lemma only has the constraints needed to prove the
required inclusion, till we finally construct SMN in Lemma
3 such that (	M ⊗	N ) S∞ (	M ⊗	N ) ⊆ SMN .

We begin with the positivity constraint, J ≥ 0. Note that
projecting does not affect the positivity of an operator, as
can be shown from the definition of positivity. Thus,

(	M ⊗	N ) Pos(H ⊗ K) (	M ⊗	N ) ⊆ Pos(HM ⊗ KN ),
(23)

where HM and KN are the subspaces of H and K onto
which	M and	N project, respectively. This gives the first
relaxation.

1. Partial trace constraint

We refer to the constraint TrK [J ] = IH, and the corre-
sponding modification described in this subsection as the
partial trace constraint.

Lemma 1.—Let

T∞ := {J ∈ B(H ⊗ K) |TrK [J ] = IH, J ≥ 0} , and

TMN := {J MN ∈ B(HM ⊗ KN ) |TrK
[
J MN ] ≤ 	M ,

J MN ≥ 0
}

.

Then (	M ⊗	N )T∞ (	M ⊗	N ) ⊆ TMN .
Proof.—Eq. (23) shows that (	M ⊗	N ) J (	M ⊗

	N ) ≥ 0 for any J ∈ T∞. Thus, it is sufficient to
show that TrK [(	M ⊗	N ) J (	M ⊗	N )] ≤ 	M for any
J ∈ T∞. Using Eqs. (4.95)–(4.99) from Ref. [33] we
get that TrK [J ] − TrK [(IH ⊗	N ) J (IH ⊗	N )] ≥ 0. For
any element of (	M ⊗	N )T∞ (	M ⊗	N ), we find

TrK [(	M ⊗	N ) J (	M ⊗	N )]

= 	M TrK [(IH ⊗	N ) J (IH ⊗	N )]	M

≤ 	M TrK [J ]	M

= 	M , (24)

where we have used the fact that TrK [J] − TrK [(IH ⊗
	N)J (IH ⊗	N )] ≥ 0 to obtain the inequality, and that
TrK [J ] = IH to get the final equality. This completes the
proof. �

2. Expectation value constraints

We refer to the constraints

Tr
[
(ρ
μ

k
T ⊗ �l)J

]
= γl | k,μ ∀ k, l,μ (25)

and the corresponding modifications described in this sub-
section as the expectation value constraints. For these
constraints, we proceed in two steps. We would first con-
struct in Lemma 2 a set belonging to B(HM ⊗ K). We then
construct the final finite-dimensional set on B(HM ⊗ KN )

in Lemma 3. Recall that we have considered HM and KN
to be finite-dimensional spaces embedded in H and K.
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First, we set up some notation. Given a projection 	M ,
we can define the off-diagonal blocks Hμ

k := ρ
μ

k − ρ
μM
k −

ρ
μM
k where ρμM

k := 	Mρ
μ

k 	M , and ρ
μM
k := 	Mρ

μ

k 	M .

We also define the weight wμkM := Tr
[
ρ
μM
k

]
of the kth

input state outside the 	M projected subspace. This can

be further used to define εμkM := λ
μ

kM

√
wμkM , which mea-

sures how “big” the off-diagonal block is where λμkM :=∥∥∥∥

√
ρ
μM
k

g
	Mρ

μ

k 	M

√
ρ
μM
k

g∥∥∥∥
∞

and Ag is the generalized

inverse of A. These definitions are used in the following
lemma whose proof can be found in Appendix B 3.

Lemma 2.—Define

EM := {J M ∈ B(HM ⊗ K) | TrK
[
J M ] ≤ 	M ,

J M ≥ 0, Tr
[
(ρ
μ

k
T ⊗ �l)J M

]
≤ γl | k,μ + ε

μ

kM ,

Tr
[
(ρ
μ

k
T ⊗ �l)J M

]
≥ γl | k,μ − wμkM − εμkM ∀ k, l,μ

}
.

(26)

Then, (	M ⊗ IK)S∞ (	M ⊗ IK) ⊆ EM where S∞ is as
defined in Eq. (15).

The last step to construct the set SMN requires that we
estimate an additional quantity. We need to find bounds on
the weight Wμ

kN of the transmitted state �(ρμk ) outside the
	N projected subspace defined as Tr

[
�(ρ

μ

k )	N
] ≥ 1 −

Wμ

kN . Equivalently, this can be written as

Tr
[
(ρ
μ

k
T ⊗	N )J

]
≥ 1 − Wμ

kN , (27)

where J ∈ S∞. The method to find this bound is protocol
dependent, and can be derived from the expectation value
constraints on J ∈ S∞. As an example, we have described
one such method to find the bound for the three-state
protocol in Appendix C.

This leads us to the explicit construction of SMN when
the POVM elements �l commute with the projection 	N .

Lemma 3.—Let [	N ,�l] = 0 ∀l, and define

SMN := {
J MN ∈ B(HM ⊗ KN )

∣
∣

TrK
[
J MN ] ≤ 	M , J MN ≥ 0,

Tr
[
(ρ
μ

k
T ⊗ �l)J MN

]
≥ γl | k,μ − Wμ

kN − wμkM − 2εμkM ,

Tr
[
(ρ
μ

k
T ⊗ �l)J MN

]
≤ γl | k,μ + ε

μ

kM ∀ k, l,μ
}

.

(28)

Then, (IH ⊗	N )EM (IH ⊗	N ) ⊆ SMN where EM is as
defined in Eq. (26).

The proof of the above lemma can be found in
Appendix B 4. The following corollary is a direct conse-
quence of Lemma 2 and Lemma 3.

Corollary 3.1.—(	M ⊗	N )S∞ (	M ⊗	N ) ⊆ SMN .
Proof.—

(	M ⊗	N )S∞ (	M ⊗	N )

= (IH ⊗	N ) ((	M ⊗ IK)S∞ (	M ⊗ IK)) (IH ⊗	N )

⊆ (IH ⊗	N )EM (IH ⊗	N )

⊆ SMN ,

where the first inclusion follows from Lemma 2, and the
second follows from Lemma 3. �

3. Objective function

Having constructed SMN , we now relate the objective
function Tr

[
(σ T

i ⊗ Fj )J MN
]

to Y(i, j ) = Tr
[
(σ T

i ⊗ Fj )J
]

where J MN ∈ SMN and J ∈ S∞. This subsection thus com-
pletes the construction of the finite-dimensional SDP and
relates it to the infinite-dimensional SDP of interest as
outlined at the start of Sec. IV C.

We first define wiM := Tr
[
σM

i

]
, and λiM

:=
∥∥∥∥

√
σM

i

g
	Mσi	M

√
σM

i

g∥∥∥∥
∞

similar to the definitions

at the start of Sec. IV C 2. Recall also that we
defined YU(i, j ) = max

J∈S∞
Tr
[
(σ T

i ⊗ Fj )J
]

and YL(i, j ) =
min
J∈S∞

Tr
[
(σ T

i ⊗ Fj )J
]
.

First, we consider virtual POVM elements F ∈ B(KN )

that live in the finite-dimensional subspace described by
	N . This is indeed the case of interest for the key-rate SDP
described in Eq. (4).

Theorem 4.—Let Fj ∈ B(KN ) be POVM elements such
that Fj = 	N Fj	N . Then

YL(i, j ) ≥ min
J MN ∈SMN

Tr
[
(σ T

i ⊗ Fj )J MN ]− εiM , (29)

YU(i, j ) ≤ max
J MN ∈SMN

Tr
[
(σ T

i ⊗ Fj )J MN ]+ wiM + εiM ,

(30)

where εiM := λiM
√

wiM .
Proof.—Let J U and J L be the optimal operators in S∞

such that

YU(i, j ) = Tr
[
(σ T

i ⊗ Fj )J U] , (31)

YL(i, j ) = Tr
[
(σ T

i ⊗ Fj )J L] . (32)

Noting that 	N Fj	N = Fj , we infer from Lemma 2 that

YL(i, j ) ≥ Tr
[(
σi

T ⊗ Fj
)
(	M ⊗	N ) J L (	M ⊗	N )

]

− εiM , (33)

YU(i, j ) ≤ Tr
[(
σi

T ⊗ Fj
)
(	M ⊗	N ) J U (	M ⊗	N )

]

+ wiM + εiM . (34)
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Corollary 3.1 implies that (	M ⊗	N ) J L (	M ⊗
	N ) ∈ SMN , and (	M ⊗	N ) J U (	M ⊗	N ) ∈ SMN . Thus
we get

min
J MN ∈SMN

Tr
[
(σ T

i ⊗ Fj )J MN ]

≤ Tr
[(
σi

T ⊗ Fj
)
(	M ⊗	N ) J L (	M ⊗	N )

]
, (35)

max
J MN ∈SMN

Tr
[
(σ T

i ⊗ Fj )J MN ]

≥ Tr
[(
σi

T ⊗ Fj
)
(	M ⊗	N ) J U (	M ⊗	N )

]
. (36)

Chaining these inequalities completes the proof. �
Next, we consider the more general case where the

POVM elements do not live in a finite-dimensional
subspace. We first use Theorem 4 to find the bound
Tr
[
(σi

T ⊗	N )J
] ≥ 1 − WiN by choosing Fj = 	N and

numerically solving the finite-dimensional SDP
min

J MN ∈SMN
Tr
[
(σ T

i ⊗	N )J MN
]
. This can be used to state the

following, more general theorem.
Theorem 5.—Let Fj ∈ B(K) be a POVM element such

that Fj = FN
j + FN

j . Then

YL(i, j ) ≥ min
J MN ∈SMN

Tr
[
(σ T

i ⊗ Fj )J MN ]− εiM , (37)

YU(i, j ) ≤ max
J MN ∈SMN

Tr
[
(σ T

i ⊗ Fj )J MN ]+ WiN

+ wiM + 2εiM . (38)

Proof.—Similar to the proof of Theorem 4, pick J U and
J L as the optimal operators in S∞ such that

YU(i, j ) = Tr
[
(σ T

i ⊗ Fj )J U] , (39)

YL(i, j ) = Tr
[
(σ T

i ⊗ Fj )J L] . (40)

From Lemma 3, we can show that

YL(i, j ) ≥ Tr
[(
σi

T ⊗ Fj
)
(	M ⊗	N ) J L (	M ⊗	N )

]

− εiM , (41)

YU(i, j ) ≤ Tr
[(
σi

T ⊗ Fj
)
(	M ⊗	N ) J U (	M ⊗	N )

]

+ WiN + wiM + 2εiM . (42)

The rest of the proof uses Corollary 3.1 and is identical
to the proof of Theorem 4. �

Theorems 4 and 5 let us bound Y(i, j ) in terms of the
solution to a finite-dimensional SDP. This can be done
numerically. We note here that this generalized decoy-state
analysis is fairly general and can also be applied outside
decoy-state QKD, for example, to bound the statistics of
cat states in Ref. [34] by sending fully phase-randomized
states.

D. Application to decoy-state QKD

We shall now detail how we can apply these methods
to a general decoy-state QKD protocol. We also detail
a protocol-dependent relaxation that reduces dimensions
for more efficient computation. To this end, consider a
QKD protocol with signal states ρμS

i that are compatible
with isometric preparation channels �i as ρμS

i = �i (ρ
μS ).

Assume that the base state ρμS can be diagonalized as

ρμS =
∑

ñ

pñ |ñ〉〈ñ| . (43)

We can block tag these signal states with the eigen-
vectors |ñ〉 as described in Sec. II C. Our key-rate opti-
mization then reduces to the SDP given in Eq. (4). As
shown in Eq. (4), we need to compute upper (YU

ñ (i, j ))

and lower (YL
ñ(i, j )) bounds on Tr

[
�N

j �(|ñ〉〈ñ|)
]
. This

can be done directly by using the generalized decoy-state
analysis described above. We choose the virtual states
σi,ñ = �i (|ñ〉〈ñ|), actual states {ρμi }, actual POVM ele-
ments {�j }, and virtual POVM elements {�N

j } for the
analysis. The set of finite-dimensional SDPs resulting from
the generalized decoy-state analysis can be written as

opt.
J MN

Tr
[
(σM

i,ñ
T ⊗ FN

j )J
MN
]

such that Tr
[
(ρ
μM
k

T ⊗ �N
l )J

MN
]

≤ γl | k,μ + ε
μ

kM

Tr
[
(ρ
μM
k

T ⊗ �N
l )J

MN
]

≥ γl | k,μ − Wμ

kN − wμkM

− 2εμkM ∀ k, l,μ

J MN ≥ 0

TrK
[
J MN ] ≤ 	M ,

(44)

where we have an independent SDP for each actual state
and POVM element indexed by i, ñ and j , respectively.

In some cases, it is more convenient to perform a relaxed
version of this generalized decoy-state analysis that does
not involve the preparation channels �i as follows. Con-
sider the set of infinite-dimensional SDPs described in
Eq. (14)

opt.
J

Tr
[(
(�i (|ñ〉 〈ñ|))T ⊗ Fj

)
J
]

such that Tr
[(
(�k (ρ

μ))
T ⊗ �l

)
J
] = γl | k,μ ∀ k, l,μ

J ≥ 0

TrK [J ] = IH,
(45)

where we have made the dependence of the actual and vir-
tual states on the preparation channels �i explicit. Recall
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that the constraints are equivalent to J being the Choi
isomorphism of a channel �. So Eq. (45) is equivalent to

opt.
�

Tr
[
Fj �(�i (|ñ〉 〈ñ|))]

such that Tr [�l�(�k (ρ
μ))] = γj | k,μ ∀ k, l,μ

� is CPTP.

(46)

Two relaxations can now simplify these optimization prob-
lems:

(1) Ignoring all constraints where k �= i.
(2) Taking �′ = � ◦�i to be the new optimization

variable. Note that since the composition of two channels
is also a channel, �′ is also a channel.

This expands the set being optimized over as we no longer
fix �i as can be seen by writing the resulting set of
optimization problems

opt.
�′

Tr
[
Fj �

′ (|ñ〉 〈ñ|)]

such that Tr
[
�l�

′ (ρμ)
] = γj | i,μ ∀ l,μ

�′ is CPTP.

(47)

Since these relaxations expand the feasible set, the max
(min) will be upper (lower) bounds of the original SDPs
given in Eq. (45).

Rewriting this as an SDP using the Choi matrix formal-
ism we get

opt.
J

Tr
[(|ñ〉 〈ñ|T ⊗ Fj

)
J
]

such that Tr
[(
ρμ

T ⊗ �l
)

J
] = γl | i,μ ∀ l,μ

J ≥ 0

TrK [J ] = IH.

(48)

Finally, use the results stated in Sec. IV C to replace
Eq. (48) with the finite-dimensional SDP

Yñ(i, j ) = opt.
J MN

Tr
[(
σM

ñ ⊗ FN
j

)
J MN

]

such that Tr
[
(ρμM T ⊗ �N

l )J
MN
]

≤ γl | i,μ + ε
μ
M

Tr
[
(ρμM T ⊗ �N

l )J
MN
]

≥ γl | i,μ − Wμ
iN − wμM − 2εμM ∀ l,μ

J MN ≥ 0

TrK
[
J MN ] ≤ 	M ,

(49)

where σñ := |ñ〉〈ñ|.

For some preparation channels, the dimension of the
SDPs in Eq. (49) are smaller than the dimensions of the
SDPs in Eq. (44) for the same wμkM = wμM . An example
where this is the case is the three-state protocol described
in Sec. VI. Thus, it is sometimes advantageous to relax
the problem to the more computationally tractable SDPs
described in Eq. (49).

V. APPROXIMATE DIAGONALIZATION

The eigendecomposition shown in Eq. (43) is crucial for
block tagging and generalized decoy-state analysis. The
eigenvalues pñ are used in the objective function of Eq. (4).
The eigenvectors |ñ〉 are used in Eq. (4) when determining
ρ ñ

A for the partial trace constraint, and in Eqs. (44) or (49)
when determining σi,ñ or σñ, respectively.

Unfortunately, the eigendecomposition might be hard
to find exactly as these are infinite-dimensional opera-
tors that cannot be numerically diagonalized. However, the
eigendecomposition of a finite projection can be numer-
ically found. This motivates the following definitions.
Let ρ represent the infinite-dimensional density opera-
tor whose eigendecomposition we would like to estimate.
Define ρ ′ = ρ	 + ρ	 where ρ	 = 	ρ	 and ρ	 = 	ρ	

for some finite projection 	.
Note that ρ	 can be numerically diagonalized, and this

would constitute a subset of the eigenvalues and eigen-
vectors of ρ ′. How closely the eigendecomposition of ρ ′
will estimate the eigendecomposition of ρ depends on the
choice of projection	. A useful choice of	 would be one
where the off-diagonal blocks are “almost” 0 so that intu-
itively the eigendecomposition ρ	 is “nearly” that of ρ.
This is formalized in the following theorem whose proof is
given in Appendix B 5.

Theorem 6.—Let ρ =∑ñ pñ |ñ〉 〈ñ| where p0 ≥ p1 ≥
. . ., and ρ ′ have eigendecomposition

ρ ′ =
∑

ñ

p ′
ñ |vñ〉〈vñ| , (50)

where p ′
0 ≥ p ′

1 ≥ . . .. Define δñ := min{p ′
ñ − p ′

ñ−1 − εproj,

p ′
ñ+1 − p ′

ñ − εproj} where εproj :=
∥∥∥
∥
√
ρ	

g
	ρ	

√
ρ	

g∥∥∥∥
∞√

Tr
[
ρ	
]
. Then

(1)
∣
∣ p ′

ñ − pñ
∣∣ ≤ εproj, and

(2) F(|vñ〉〈vñ| , |ñ〉〈ñ|)2 ≥ 1 − ε2
proj

δ2
ñ

.

Using Fuchs-van de Graaf inequality [35] along with
Theorem 6, we get

‖|vñ〉〈vñ| − |ñ〉〈ñ|‖1 ≤ 2εproj/δñ. (51)

For notational convenience, we define this quantity to
be ε ñ

vec := 2εproj/δñ. We can use Theorem 6 for QKD to
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ze

zed

FIG. 4. Flowchart depicting the application of the generalized decoy-state method to QKD. The yellow parts denote the
modifications to be made if we need to approximately diagonalize the density operator.

approximately diagonalize ρμS as defined in Eq. (43). This
approximate diagonalization would lead to minor modifi-
cations to the the generalized decoy-state bounds, as well
as the key-rate SDP as depicted in Fig. 4.

A. Approximate generalized decoy-state analysis

We first describe the use of Eq. (51) in obtaining bounds
on the generalized decoy-state SDP given in Eq. (44),
where |ñ〉 appears in the objective function. By numer-
ically diagonalizing 	ρμS	, we can find σvñ = |vñ〉〈vñ|.
This can be used instead of |ñ〉 to construct the virtual
states for the objective function in Eq. (44). Let the optimal
values of the modified SDP be denoted by Yvñ(i, j ). The
optimal values of the original SDPs Yñ(i, j ) can be related
to the optimal values of the modified SDPs Yvñ(i, j ) by
using the result in Eq. (51) with Hölder’s inequality to get

∣∣ Yñ(i, j )− Yvñ(i, j )
∣∣ ≤ ε ñ

vec. (52)

Recall that the generalized decoy-state analysis makes use
of finite projections	M on the virtual state σvñ . This results
in an additional εiM cost as described in Theorem 4. By
choosing 	 ≥ 	M , we can ensure that σvñ = 	Mσvñ	M
resulting in a reduced cost εiM = 0. Thus, this suggests
prudent choices for the different finite projections used in
our analysis.

B. Approximate key-rate SDP

The eigenvectors |ñ〉 appear in the key-rate SDP in
Eq. (4) in the partial trace constraint TrB

[
ρ ñN

AB

] ≤ ρ ñ
A, and

in the bounds Yñ(i, j ). The eigenvalues pñ appear in Eq. (4)
as a prefactor to the objective function. We use the approx-
imate eigenvectors |vñ〉 and eigenvalues pñ to construct a
similar SDP that bounds the key rate.

Corollary 6.1.—

RN
ñ ≥ min

ρñN
AB

(p ′
ñ − εproj)f (ρ ñN

AB )

s.t. YL
vñ
(i, j )− ε ñ

vec

≤ Tr
[
�N

j �(ρ
ñ
i )
]

≤ YU
vñ
(i, j )+ ε ñ

vec

TrB

[
ρ ñN

AB

]
≤ ρ

vñ
A + ε ñ

vecS

‖S‖1 ≤ 1

1 − Wñ − ε ñ
vec ≤ Tr

[
ρ ñN

AB

]
≤ 1

S ≥ 0

ρ ñN
AB ≥ 0,

(53)

where RN
ñ is defined in Eq. (4).

Proof.—We first prove that any feasible ρ ñN
AB for the SDP

in Eq. (4) is also feasible for the SDP in Eq. (53). That

YL
vñ
(i, j )− ε ñ

vec ≤ Tr
[
�N

j �(ρ
ñ
i )
]

≤ YU
vñ
(i, j )+ ε ñ

vec

is implied by

YL
ñ(i, j ) ≤ Tr

[
�N

j �(ρ
ñ
i )
]

≤ YU
ñ (i, j )

is a direct consequence of Eq. (52).
Given that TrB

[
ρ ñN

AB

] ≤ ρ ñ
A, we aim to show that

TrB

[
ρ ñN

AB

]
≤ ρ

vñ
A + ε ñ

vecS,
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where S is a positive semidefinite operator with ‖S‖1 ≤ 1.
Recall from Eq. (1) that

|ψ ñ〉AA′ =
∑

i

√
p(i) |i〉A ⊗ Vi |ñ〉A′ , (54)

|ψvñ〉AA′ =
∑

i

√
p(i) |i〉A ⊗ Vi |vñ〉A′ , (55)

where Vi is the isometry that define the isometric prepara-
tion channels �i. As a direct consequence of Theorem 6
we get

F(ρ ñ
AA′ , ρ

vñ
AA′) = F(|vñ〉〈vñ| , |ñ〉〈ñ|) (56)

≥
√

1 − ε2
proj

δ2
ñ

, (57)

where ρ ñ
AA′ = ∣∣ψ ñ

〉 〈
ψ ñ
∣∣
AA′ and ρvñ

AA′ = |ψvñ〉〈ψvñ |AA′ .
Thus, Fuchs-van de Graaf inequality can be used to

obtain
∥∥∥ρ ñ

AA′ − ρ
vñ
AA′
∥∥∥

1
≤ ε ñ

vec. (58)

Since the partial trace channel can only decrease the
1-norm, this gives

∥∥∥ρ ñ
A − ρ

vñ
A

∥∥∥
1

≤ ε ñ
vec. (59)

Thus, the partial trace constraint TrB
[
ρ ñN

AB

] ≤ ρ ñ
A implies

TrB

[
ρ ñN

AB

]
≤ ρ

vñ
A + ε ñ

vecS, (60)

where S is a positive semidefinite operator with ‖S‖1 ≤ 1.
Thus, the feasible set for the SDP in Eq. (53) contains

the feasible set for the SDP in Eq. (4). Finally, Theorem 6
states that

pñ ≥ p ′
ñ − εproj

completing the proof. �

VI. THREE-STATE PROTOCOL

We shall now apply the methods developed so far to
analyze the effects of imperfect phase randomization on
the key rate of the time-bin encoded three-state proto-
col. This protocol can be implemented primarily by using
passive components, which are easy to manufacture. A
recent implementation [36] was able to share secret keys
over 421 km under the assumption that the laser is fully
phase randomized. However, the 2.5-GHz laser used in the
implementation did not perfectly randomize the phase [17]
highlighting the significance of the methods developed in
this paper.

A. Protocol description

1. State preparation

Alice produces a laser pulse with some phase distribu-
tion as described in Eq. (5). She then passes it through
an unbalanced Michelsons interferometer that transforms
the coherent state from |α〉 → |α/2〉 ⊗ |α/2〉. Alice ran-
domly chooses a bit to encode from {0, 1, +} with an
a priori probability distribution and transforms the state
accordingly:

0: Alice uses an intensity modulator to suppress the first
pulse.

1: Alice uses an intensity modulator to suppress the second
pulse.

+: Alice uses a variable attenuator to halve the intensity
of each pulse so that the total mean photon number of
both pulses in all 3 states are the same.

Additionally Alice uses the variable attenuator to send
some decoy states with different intensities with the same
encoding as the signal states.

2. Measurement

Bob’s basis choice is made passively via a beam split-
ter. The Z-basis detection is made by a threshold detector
that measures the time of arrival. This measurement is
used for key generation. The X -basis detection is made via
a Mach-Zehnder interferometer that measures the coher-
ences between pulses. Here, only the “-” detector is used
for experimental simplicity. The setup is shown in Fig. 5.

3. Simulation parameters

The laser visibility was measured [17] to be V = 0.0019.
In order to interpret this measurement result as the degree
of phase randomization q, we need to make model assump-
tions on the general laser state as discussed in Sec. III B.
For the two physical model assumptions discussed in
Sec. III B, we get q ≈ 0.9564 when we assume p�i(φi) =
(q/2π)+ (1 − q)δ(φi), and q ≈ 0.9128 when p�i(φi) is a
wrapped normal distribution.

The channel is modeled as a loss-only channel with a
low attenuation of 0.16 dB/km based on the implementa-
tion in Ref. [36]. We reduce the number of constraints to
speed up computation time. In particular, we consider no-
click events, single-click events, and group all multiclick
events together as a single event. Bob’s threshold detec-
tors are assumed to be ideal without any dark counts or
loss.

Ideally, we would want to optimize over all free param-
eters to maximize the key rate we can produce. However,
this is computationally very taxing and so we pick some
fixed arbitrary values for the free parameters. Thus, our
results deliver provable secure key rates, but we do not
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Laser IM VA

Alice Bob
50/50 50/50 10/90 50/50 50/50

FIG. 5. Schematics of the implementation of the three-state protocol as in Ref. [36]. The numbers below the beam splitters reflect
their transmissivity. IM and VA refer to intensity modulator and variable attenuator, respectively.

claim optimality. Alice’s states are all chosen with equal
a priori probabilities. The decoy amplitudes used are 0
and 0.5 while the signal intensity is optimized for differ-
ent distances. Bob’s passive beam splitter is a 0.9/0.1 beam
splitter with the 0.9 being towards the Z-basis choice.

B. Applying generalized decoy-state analysis

The laser is characterized as described in Sec. III B to
obtain values for the degree of phase randomization q.
Using this parameter with the source map described in
Sec. III A we reduce the general problem to finding the
key rate given Alice’s prepared states ρμi = �i

(
ρ
μ

model

)
.

Note that since the three states have the same mean photon
number, the preparation channels �i can be represented by
isometric channels by choosing the base state to also have
the same mean photon number. We can now follow the
process depicted in Fig. 4 to obtain the key rate for these
states.

This first step is to approximately diagonalize ρμS
model

where μS is the signal intensity. We take a finite projection
in photon-number space upto d photons 	d to numerically
diagonalize the operator. Let |vñ〉 and λñ be the resulting
eigenvectors and eigenvalues. Using Theorem IX.5.9 from
Ref. [37] along with the fact that

ρ
μS
model = q

∞∑

n=0

e−μS
μn

S

n!
|n〉〈n| + (1 − q)

∣∣√μS
〉 〈√

μS
∣∣

(61)

is positive semidefinite for all q ∈ [0, 1], we can conclude
that

∥∥∥
∥

√
	dρ

μS
model	d

g
	dρ

μS
model	d

√
	dρ

μS
model	d

g∥∥∥
∥

∞
≤ (1 − q).

wμd = Tr
[
ρμ	d

]
is given by wμd = 1 −∑d

n=0 e−μ(μn/n!).
The relevant bounds εμS

proj and εμSñ
vec can then be found for

the state ρμS
model to use the results shown in Sec. V. Note

that these calculations are more general than the three-state
protocol, and can be used for any protocol with imper-
fect phase randomisation. We can also block-tag the signal
state given in Eq. (61) as shown in Sec. II C to choose the
relevant virtual states for the decoy-state analysis.

We can then use the generalised decoy-state SDP as
described in Sec. IV D. In order to save computational
time, we use the reduction given in Eq. (49). We choose
to project onto the space with less than or equal to N
photons in both pulses 	N when considering the measure-
ment space. This commutes with all the POVM elements
�j since they are all threshold detectors. The projection
on the state space 	M is chosen to be the same as the
projection used for approximate diagonalisation 	d. Thus,
	M ≤ 	d and σñ = |vñ〉〈vñ| already lives entirely within
the space spanned by	M . So the correction term described
in Theorem 4 goes to 0. Additionally, wμM = wμd .

To apply Eq. (49) the quantities εμM and Wμ
iN still need to

be computed. εμM can be bound as described in Lemma 2
as εμM ≤ (1 − q)wμM . It is possible to bound Wμ

iN from our
observations as shown in Appendix C. This fully defines
the finite dimensional SDPs shown in Eq. (49) that can be
numerically solved. The solutions of these SDPs together
with the other parameters can be used to define the key rate
SDP shown in Eq. (53). This gives us a lower bound on the
key rate.

C. Results

We compared the key rate of the protocol with dif-
ferent degrees of partial phase-randomisation q = 0.9128
and q = 0.9564, and perfect phase-randomisation q = 1
as is shown in Fig. 6. We observe that the key rates for
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FIG. 6. Comparison of the key rate of the three-state protocol
with partial and complete phase randomization.

the incomplete phase-randomized lasers vary significantly
from the key rate for the fully phase-randomized laser.
This highlights the usefulness of experimentally character-
izing the degree of phase randomization q for high-speed
QKD experiments, and using q with our proof techniques
to calculate the secret key rate.

The use of numerics in our methods leave some room
for looseness in our results. Take for instance the bound
ε
μSñ
vec on the closeness of the approximate eigenvectors to

the true eigenvectors described in Sec. V. This bound is
limited by machine precision, as we choose the dimen-
sion d to project onto to be large enough that wμd can be
upper bounded by the machine precision. Thus, the key
rate for the imperfectly phase-randomized states can be
brought closer to the fully phase-randomized key rates by
increasing the machine precision. Additionally, since we
use the same projection while using the generalized decoy-
state methods, the machine precision would also loosen the
constraints in Eq. (49) through εμM .

VII. CONCLUSION

In this paper, we developed two QKD proof techniques
in order to accommodate imperfect phase randomization
into security proofs. The first was the source-map construc-
tion in Sec. III A to reduce the security for independent
pulses to the security of an IID source. This reduction cru-
cially requires the characterization of the degree of phase
randomization q. However, the experimental characteriza-
tion of this quantity is still a key open problem. Moreover
we numerically display the effect of improper characteriza-
tion on the key rate in Fig. 6. Thus, we believe that future
work should focus on estimating q experimentally.

The second proof technique is the generalized decoy-
state analysis introduced in Sec. IV. This allows us to
perform a decoy-state analysis with any IID character-
ized source. Thus, in conjunction with the source map this

allows us to perform a decoy-state security proof of imper-
fectly phase-randomized laser sources. Moreover, these
techniques are more general and can be applied outside
decoy-state QKD, for example, to bound the statistics of
cat states in Ref. [34].

Although we have computed the key rates of the three-
state protocol motivated by the partial characterization of
the experimental setup in Ref. [17], we emphasize that all
our proof methods can be directly applied to any decoy-
state QKD protocol. In specifics, they can be applied to
MDI QKD [38,39] or twin-field QKD [40,41]. Dealing
with source imperfections in these protocols is of partic-
ular relevance as the only side-channel attacks concern the
sources. Thus, a step toward performing decoy-state anal-
ysis in the presence of imperfections would be to combine
the results from this work and Ref. [15] on phase imper-
fections, with the work done in Ref. [12,13] on intensity
correlations. This can then be combined with the results
in Refs. [6–8] on qubit imperfections to obtain secure key
rates against arbitrary source imperfections.
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APPENDIX A: PROOFS RELATED TO SOURCE
MAPS

In this Appendix, we formally prove some results about
source maps stated in the main text.

1. Using source maps to lower bound the key rate

Throughout the paper, we have heavily relied on the idea
of source maps. As intuitively explained in Sec. II C, the
existence of a source map can be used to lower bound the
key rate of a protocol with virtual states.

We first set up some notation before formally stating and
proving the theorem. Alice’s prepared state can be written
as ρAA′ =∑i,μ |i,μ〉〈i,μ| ⊗ ρ

μ
i where A′ is the system sent

to Bob through the insecure quantum channel �. Let V� :
A′ −→ BE be the Stinespring representation of� so that the
state shared by Alice, Bob, and Eve can be written as

ρABE =
∑

i,μ

|i,μ〉〈i,μ| ⊗
(

V�ρ
μ
i V†

�

)
. (A1)

Let � : AB −→ YZC be the protocol map that maps the
joint state held by Alice and Bob to the raw key Z,
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Bob’s measurement outcomes Y along with the public
announcements C in that round. Thus,

ρYZCE = (�⊗ IE−→E) (ρABE). (A2)

The key rate can be given by the Devetak-Winter formula

R∞
ρ = min

�∈Creal
H(Z | CE)− δleak, (A3)

where Creal is the set of channels compatible with Alice
and Bob’s observed statistics, and ρYZCE is as defined in
Eq. (A2). Note that E is the auxiliary system correspond-
ing to the Stinespring representation of the channel �. So
defining � specifies E upto local unitaries. We formally
show that the key rate R∞

ρ of the real protocol with signal
states {ρi} can be lower bounded by using a source map as
stated in Sec. II C.

Theorem 7 (Source-map key rate).—Define a virtual pro-
tocol with the same statistics as the real protocol, where
Alice prepares the states {τi} with asymptotic key rate R∞

τ .
Let � be a source map connecting the virtual states to the
real states such that ρi = �(τi) for all i. Then R∞

τ ≤ R∞
ρ .

Proof.—The key rate of the virtual protocol is given by

R∞
τ = min

�vir∈Cvir
H(Z | CEvir)− δleak, (A4)

where

ρYZCEvir = (�⊗ IEvir−→Evir

)

×
⎛

⎝
∑

i,μ

|i,μ〉〈i,μ| ⊗
(

V�vir
τ
μ
i V�vir

)
⎞

⎠ (A5)

and Cvir is the set of channels compatible with Alice
and Bob’s observed statistics. Let C� := {�vir |�vir = � ◦
�, � ∈ Creal}.

Since the virtual protocol has the same statistics as
the real protocol, C� is compatible with Alice and Bob’s
observed statistics. As a result C� ⊂ Cvir. Additionally, it
is straightforward to see that for every � ∈ Creal, there
exists a �vir ∈ C� . Thus, minimizing over a smaller set of
channels, can only increase the optimal value,

R∞
τ ≤ min

�vir∈C�
H(Z | CEvir)− δleak

= min
�∈C

H(Z | CEvir)− δleak, (A6)

where Eq. (A6) follows from the identification between
Creal and C� made above.

Let V� : A′′ −→ A′Esou be the Stinespring representation
of the source map � such that

ρABEEsou =
∑

i,μ

|i,μ〉〈i,μ| ⊗
(

V�V�τ
μ
i V†

�V†
�

)
, (A7)

where Evir has been explicitly broken up into the individ-
ual auxiliary systems E and Esou of � and �, respectively.
Thus, it follows that ρABE = TrEsou

[
ρABEEsou

]
.

The protocol map � is identical for both the virtual and
real protocols. Additionally, the output ρYZC of the protocol
map is also identical since the statistics for both proto-
cols are identical. Thus, ρYZCE = TrEsou

[
ρYZCEEsou

]
for all

ρYZCEEsou corresponding to channels �vir ∈ C� . The strong
subadditivity of the conditional von Neumann entropies
[42] combined with Eq. (A6) gives us the required inequal-
ity

R∞
τ ≤ min

�vir∈C�
H(Z | CEEsou)− H(Z | Y)

≤ min
�vir∈C�

H(Z | CE)− H(Z | Y)

= min
�∈C

H(Z | CE)− H(Z | Y) = R∞
ρ . (A8)

�

2. Construction of physical map connecting model
laser state to actual laser state

Define the following for notational convenience:

ρφ := ∣∣√μ exp{iφ}〉 〈√μ exp{iφ}∣∣ , (A9)

Uθ :
∣∣√μ exp{iφ}〉 �→ ∣∣√μ exp{iφ + θ}〉 , (A10)

where Uθ represents the action of a phase modulator, which
is unitary. Let ρPR = ∫ 2π

0 dφ (1/2π)ρφ be the fully phase-
randomized state and ρmodel = qρPR + (1 − q)

∣∣√μ〉 〈√μ∣∣.
Also define

τφ := UφρmodelU
†
φ , and (A11)

p̃�1...�n(φ1 . . . φn) := p̃�1(φ1) . . . p̃�n(φn |φ1 . . . φn−1),
(A12)

where p̃�i(φi |φ1 . . . φi−1) := p�i (φi |φ1...φi−1)−q/2π
1−q .

Lemma 8.—Define

�(σ n) :=
∫ 2π

0
. . .

∫ 2π

0
dφ1 . . . dφn p̃�1...�n(φ1 . . . φn)

× (Uφ1 . . .Uφn

)
σ n
(

U†
φ1
. . .U†

φn

)
. (A13)

Then
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(1) If q ≤ 2π min
i

min
φi

p�i(φi |φ1 . . . φi−1), then � is a

mixed unitary channel.
(2) If the actual laser state is phase-independent across

pulses, i.e., p�i(φi |φ1 . . . φi−1) = p�i(φi) for all i, then

�
(
ρ⊗n

model

) = ρlaser

where ρlaser is as defined in Eq. (5).

Proof.—Condition (1).
Verifying that p̃ is a probability density function is

straightforward. This directly implies that � is a mixed
unitary channel.

Condition (2).
First note that UφiρPRU†

φi
= ρPR for all φi ∈ [0, 2π)

where ρPR is the fully phase-randomized state. Using this,
a straightforward computation gives

∫ 2π

0
dφi p̃�i(φi |φ1 . . . φi−1)τφi

=
∫ 2π

0
dφi p�i(φi |φ1 . . . φi−1)ρφi . (A14)

Now looking at the action of the map on the model state,

�
(
ρ⊗n

model

) =
∫ 2π

0
. . .

∫ 2π

0
dφ1 . . . dφn

× p̃�1...�n(φ1 . . . φn)

× (Uφ1 . . .Uφn

)
ρ⊗n

model

(
U†
φ1
. . .U†

φn

)

(A15)

=
∫ 2π

0
dφ1 p̃�1(φ1)τφ1 ⊗ . . .

⊗
∫ 2π

0
dφn p̃�n(φn)τφn (A16)

=
∫ 2π

0
dφ1 p�1(φ1)ρφ1 ⊗ . . .

⊗
∫ 2π

0
dφn p�n(φn)ρφn (A17)

=
∫ 2π

0
. . .

∫ 2π

0
dφ1 . . . dφn p�1...�n

× (φ1 . . . φn)ρφ1 ⊗ . . .⊗ ρφn (A18)

= ρlaser, (A19)

where Eq. (A16) follows from the assumption that the
probability distribution is independent, and Eq. (A17)
follows from Eq. (A14). �

Note that the independence condition was crucial for
this channel to reproduce the actual laser state. Specifi-
cally, Eq. (A17) would not hold for a correlated probability

distribution. Thus, this technique cannot directly be used
to reduce phase-correlated laser states to IID states. The
reduction from phase-correlated laser states to an indepen-
dent laser state has been done in Ref. [15], and we thank
the authors for pointing out this limitation in our methods.

APPENDIX B: BOUNDS ON PROJECTED
OPERATORS

In this Appendix we give the derivations for various
results on projected operators that we use in Sec. IV C.

1. Bounds on 1-norm

In this Appendix we derive some useful bounds that will
be used to prove the results in the rest of Appendix B. To
set up notation, let ρ be a density matrix, 	 be a projec-
tion with orthogonal complement 	 := I −	, and ρ	 =
	ρ	. Using Eqs. (59) and (60) in the proof of Lemma

5 from Ref. [43], we get
∥∥	ρ	

∥∥
1 ≤

√
1 − Tr

[
ρ	
]
. For

notational convenience, let W := 1 − Tr
[
ρ	
]

so that we
can write

∥∥	ρ	
∥∥

1 ≤
√

W. (B1)

Note that the bound in Eq. (B1) depends only on
Tr
[
ρ	
]
. Borrowing intuition from Lemma 4 of Ref. [33],

we would expect this bound to be tighter when the state
is closer to block diagonal. Thus, we tighten the bound as
follows.

Theorem 9.—Let ρ be a density matrix. With respect to
a projection 	, write ρ as a block-diagonal matrix

ρ =
(
	ρ	 	ρ	

	ρ	 	ρ	

)
=
(

A B
B† D

)
. (B2)

Then

‖B‖1 ≤
√

W
∥∥
∥
√

A
g
B
√

D
g
∥∥∥

∞
, (B3)

where (·)g denotes the generalized inverse, and W =
Tr
[
ρ	
]

as defined above.
Proof.—First, we briefly prove the standard result

	A	 ≥ 0 for any A ≥ 0 and projection 	. Equivalently,
we show that 〈v|	A	 |v〉 ≥ 0 ∀ v. Let |w〉 = 	 |v〉. Thus,
〈v|	A	 |v〉 = 〈w| A |w〉 ≥ 0 showing that

	A	 ≥ 0. (B4)

In particular, this implies that ρ	 ≥ 0. Since the 1-norm of
a positive semidefinite operator is its trace,

∥∥∥ρ	
∥∥∥

1
= Tr

[
ρ	
]

= W. (B5)
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Define

ρλ =
(

A 1
λ
B

1
λ
B† D

)
,

where λ =
∥∥∥
√

A
g
B
√

D
g
∥∥∥

∞
. We have defined ρλ such that

Tr
[
ρ	λ

]
= W. Using Theorem IX.5.9 from Ref. [37] gives

us that ρλ ≥ 0. Thus, we can apply the observation of
Eq. (B1) on ρλ to get

∥∥∥∥
1
λ

B
∥∥∥∥

1
≤

√
W (B6)

=⇒ ‖B‖1 ≤ λ
√

W, (B7)

which completes the proof. �
Corollary 9.1.—Define H =

(
0 B

B† 0

)
as the block off-

diagonal part of ρ. Then ‖H‖1 ≤ 2
√

W
∥∥∥
√

A
g
B
√

D
g
∥∥∥

∞
.

Proof.—

‖H‖1 = Tr
[√

H †H
]

(B8)

= Tr
[(√

BB† 0
0

√
B†B

)]
(B9)

= 2 ‖B‖1 (B10)

≤ 2λ
√

W, (B11)

where λ =
∥∥∥
√

A
g
B
√

D
g
∥∥∥

∞
as defined in Theorem 9. �

2. Bounds on expectation values

Let Tr
[
P	
]

≤ W. Given a POVM element �, the proofs
of Lemma 2 and Lemma 3 require upper and lower bounds
of the form Tr

[
A	�

]
. We derive these bounds in this

Appendix.
First note that ‖H‖1 ≤ 2λ

√
W as shown in Eq. (B11).

As H is Hermitian, H = H+ − H− for some H+, H− ≥ 0.
Since H is traceless, Tr [H+] = Tr [H−]. Thus,

‖H‖1 = Tr [H+] + Tr [H−] (B12)

= 2Tr [H+] (B13)

= 2Tr [H−] . (B14)

We can then calculate the upper bound

Tr
[
A	�

] = Tr [A�] −Tr
[
A	�

]
−Tr [H+�] +Tr [H−�]

(B15)

≤ Tr [A�] + Tr [H−] (B16)

= Tr [A�] + λ
√

W, (B17)

where the inequality follows from matrix Hölder’s inequal-
ity Tr [H−�] ≤ ‖�‖∞ ‖H−‖1, and noting that A	 ≥ 0 as
shown in Eq. (B4). Similarly, we can compute the lower
bound

Tr
[
A	�

] = Tr [A�] − Tr
[
A	�

]
− Tr [H+�] + Tr [H−�]

(B18)

≥ Tr [A�] − Tr
[
A	�

]
− Tr [H−] (B19)

= Tr [A�] − W − λ
√

W. (B20)

3. Proof of Lemma 2

Here we prove Lemma 2 from the main text.
Lemma 2.—Define

EM := {J M ∈ B(HM ⊗ K) | TrK
[
J M ] ≤ 	M ,

J M ≥ 0, Tr
[
(ρ
μ

k
T ⊗ �l)J M

]
≤ γl | k,μ + ε

μ

kM ,

Tr
[
(ρ
μ

k
T ⊗ �l)J M

]
≥ γl | k,μ − wμkM − εμkM ∀ k, l,μ

}
.

(26)

Then, (	M ⊗ IK)S∞ (	M ⊗ IK) ⊆ EM where S∞ is as
defined in Eq. (15).

Proof.—Consider any J ∈ S∞ where Tr
[
(ρ
μ

k
T ⊗�l)J

]
=

γl | k,μ. From Eq. (23) we get that (	M ⊗ IK) J (	M ⊗
IK) ≥ 0, and Lemma 1 implies that TrK [(	M ⊗
IK) J (	M ⊗ IK)] ≤ 	M .

We now show that (	M ⊗ IK) J (	M ⊗ IK) ∈ EM by
bounding its expectation values. First, note that

Tr
[
(ρ
μ

k
T ⊗ �l)(	M ⊗ IK) J (	M ⊗ IK)

]

= Tr
[
(ρ
μM
k

T ⊗ �l)J
]

(B21)

= Tr
[
�l�(ρ

μM
k

T
)
]

(B22)

= Tr
[
�†(�l)ρ

μM
k

T]
, (B23)

where we have used the cyclic property of trace to get
Eq. (B21), and the fact that J ∈ S∞ is the Choi isomor-
phism of a channel � to get Eq. (B22).

Note that for any POVM element �l ≤ IK, it is the case
that �†(�l) ≤ IH is also a POVM element on H. This
implies that

∥∥�†(�l)
∥∥

∞ ≤ 1. Thus, we can use the results
proved in Appendix B 2 as follows.
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Lower bound:

Tr
[
�†(�l)ρ

μM
k

T] ≥ Tr
[
�†(�l)ρ

μ

k
T
]

− wμkM −

∥∥∥HμM
k

∥∥∥
1

2
(B24)

= γl | k,μ − wμkM −

∥∥∥HμM
k

∥∥∥
1

2
(B25)

≥ γl | k,μ − wμkM − ε
μ

kM (B26)

Upper bound:

Tr
[
�†(�l)ρ

μM
k

T] ≤ Tr
[
�†(�l)ρ

μ

k
T
]

+

∥∥∥HμM
k

∥∥∥
1

2
(B27)

= γl | k,μ +

∥∥∥HμM
k

∥∥∥
1

2
(B28)

≤ γl | k,μ + ε
μ

kM , (B29)

where Eqs. (B25) and (B28) follow from the expec-
tation value constraint on J ∈ S∞, and Eqs. (B26)
and (B29) follow from the fact that

∥∥∥HμM
k

∥∥∥
1

≤ 2εμkM

proved in Appendix B 1. Thus, we have shown that
(	M ⊗ IK) J (	M ⊗ IK) ∈ EM for all J ∈ S∞ completing
the proof. �

4. Proof of Lemma 3

Lemma 3.—Let [	N ,�l] = 0 ∀l, and define

SMN := {
J MN ∈ B(HM ⊗ KN )

∣∣

TrK
[
J MN ] ≤ 	M , J MN ≥ 0,

Tr
[
(ρ
μ

k
T ⊗ �l)J MN

]
≥ γl | k,μ − Wμ

kN − wμkM − 2εμkM ,

Tr
[
(ρ
μ

k
T ⊗ �l)J MN

]
≤ γl | k,μ + ε

μ

kM ∀ k, l,μ
}

.

(28)

Then, (IH ⊗	N )EM (IH ⊗	N ) ⊆ SMN where EM is as
defined in Eq. (26).

Proof.—Consider some J M ∈ EM . We observe that
(IH ⊗	N ) J M (IH ⊗	N ) ≥ 0 from Eq. (23) and TrK[
(IH ⊗	N ) J M (IH ⊗	N )

] ≤ 	M from Lemma 1. Next
we prove that (IH ⊗	N ) J M (IH ⊗	N ) satisfies the
lower bound of the expectation value constraint described
in Eq. (28).

First, we state some preliminary results. Using Lemma
2 with Eq. (27), we show that

Tr
[
(ρ
μ

k
T ⊗	N )J M

]
≥ 1 − Wμ

kN − wμkM − ε
μ

kM . (B30)

Since [	N ,�l] = 0, we can write

�l = �N
l + �N

l , (B31)

where �N
l := 	N�l	N . We can also show that

Tr
[(
ρ
μM
k

T ⊗ IK
)

J M
]

= Tr
[
ρ
μM
k

T
TrK

[
J M ]

]
(B32)

≤ Tr
[
ρ
μM
k

T
	M

]
(B33)

= Tr
[
ρ
μM
k

T]
(B34)

= 1 − wμkM , (B35)

where the inequality follows from the definition of EM in
Lemma 2. Additionally, note that

Tr
[(
ρ
μ

k
T ⊗ �l

)
J M
]

= Tr
[(
ρ
μM
k

T ⊗ �l

)
J M
]

(B36)

since J M ∈ B(HM ⊗ K).
We can use this to estimate the lower bound as shown

below.

Tr
[(
ρ
μ

k
T ⊗ �l

)
(IH ⊗	N ) J M (IH ⊗	N )

]

= Tr
[(
ρ
μ

k
T ⊗ �l

)
J M
]

− Tr
[(
ρ
μM
k

T ⊗ �l

)
J M
]

+ Tr
[(
ρ
μM
k

T ⊗ �N
l

)
J M
]

(B37)

= Tr
[(
ρ
μ

k
T ⊗ �l

)
J M
]

− Tr
[(
ρ
μM
k

T ⊗ �N
l

)
J M
]

(B38)

≥ Tr
[(
ρ
μ

k
T ⊗ �l

)
J M
]

− Tr
[(
ρ
μM
k

T ⊗	N

)
J M
]

(B39)

= Tr
[(
ρ
μ

k
T ⊗ �l

)
J M
]

− Tr
[(
ρ
μM
k

T ⊗ IK
)

J M
]

+ Tr
[(
ρ
μM
k

T ⊗	N

)
J M
]

(B40)

≥ Tr
[(
ρ
μ

k
T ⊗ �l

)
J M
]

− (1 − wμkM )

+ (1 − Wμ

kN − wμkM − ε
μ

kM ) (B41)

≥ γl | k,μ − wμkM − 2εμkM − Wμ

kN , (B42)

where Eq. (B37) follows from Eqs. (B36) and (B38)
follows from Eqs. (B31), (B39) follows from the fact
that �l ≤ IK, Eq. (B41) follows from Eqs. (B30), (B35),
and (B42) follows from the fact that J M ∈ EM .

Finally, the fact that the projector commutes with the
measurements [	N ,�l] = 0 immediately gives the upper
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bound

Tr
[(
ρ
μ

k
T ⊗ �N

l

)
J M
]

≤ Tr
[(
ρ
μ

k
T ⊗ �l

)
J M
]

(B43)

≤ γl | k,μ + ε
μ

kM (B44)

since
(
ρ
μ

k
T ⊗ �l

)
−
(
ρ
μ

k
T ⊗ �N

l

)
≥ 0. Thus, we have

shown that for all J M ∈ EVM , (IH ⊗	N ) J M (IH ⊗
	N ) ∈ SMN completing the proof. �

5. Closeness of eigenvectors

As in this paper, one might run into a situation where
diagonalizing a density matrix ρ is of interest, while a
perturbed density matrix σ = ρ + H can be diagonalized
where ‖H‖1 ≤ 2ε. In this Appendix, we explain how and
when one can approximate the eigenvectors of ρ with the
eigenvectors of σ .

Let λi(S) be the ith largest eigenvalue of a compact, self-
adjoint operator S. From Theorem 4.10 of Ref. [44], we can
write the eigenvalues as

λn(S) = min
{|ψ1〉,...,|ψn−1〉}

max
|ψ〉∈P⊥(|ψ1〉,...,|ψn−1〉)

〈ψ | S |ψ〉 ,

where P⊥(|ψ1〉 , . . . , |ψn−1〉) := {|ψ〉 ∈ span{|ψ1〉 , . . . ,
|ψn−1〉}⊥ | ‖ψ‖ = 1} is the space perpendicular to the vec-
tors |ψ1〉 , . . . , |ψn−1〉. From this we can bound the change
in eigenvalues due to the perturbation.

Theorem 10.—Let H be a Hilbert space. Given ρ ∈
D(H), σ ∈ D(H) and H = σ − ρ with ‖H‖1 ≤ 2ε as
defined above,

|λi(ρ)− λi(σ )| ≤ ε

for all eigenvalues indexed by i.
Proof.—The proof follows similarly to the proof of

Weyl’s inequality, which is for finite dimensions.

λi(σ ) = min
{|ψ1〉,...,|ψi−1〉}

max
|ψ〉∈P⊥(|ψ1〉,...,|ψi−1〉)

× 〈ψ | S |ψ〉 〈ψ | σ |ψ〉
= min

{|ψ1〉,...,|ψi−1〉}
max

|ψ〉∈P⊥(|ψ1〉,...,|ψi−1〉)
× (〈ψ | ρ |ψ〉 + 〈ψ | H |ψ〉)

≤ min
{|ψ1〉,...,|ψi−1〉}

×
(

max
|ψ〉∈P⊥(|ψ1〉,...,|ψi−1〉)

〈ψ | ρ |ψ〉 + ‖H‖∞

)

= λi(ρ)+ ‖H‖∞

≤ λi(ρ)+ ‖H‖1

2
(B45)

= λi(ρ)+ ε, (B46)

where Eq. (B45) follows from noting that Tr [H ] = 0.
Starting with ρ instead of σ in the first line and fol-
lowing the same steps while replacing H with −H gives
us λi(ρ) ≤ λi(ρ)+ ε. Combining both together, we get
|λi(ρ)− λi(σ )| ≤ ε as stated. �

Before talking about the individual eigenvectors, we
shall introduce the Davis-Kahan theorem [45]. The intu-
ition of the theorem can be understood as follows. Any
density operator can be diagonalized as

τ = WτDτW†
τ ,

where Wτ is a unitary whose columns are the eigenvectors
of τ , and Dτ is a diagonal operator whose elements are
eigenvalues of τ . The unitary can be written as a block
matrix

Wτ = [W W⊥],

where W and W⊥ are isometries whose columns span
eigenspaces of τ . If τ is not degenerate, these eigenspaces
are orthogonal to each other. The density operator τ can be
written as

τ = Wτ0W† + W⊥τ1W†
⊥,

where τ0 and τ1 are diagonal matrices whose elements are
the eigenvalues of τ corresponding to the eigenvectors in
W and W⊥, respectively.

Let ρ and σ have decompositions with Uρ = [U U⊥]
and Vσ = [V V⊥]. The theorem then formalizes the intu-
ition that if ρ and σ are “close”, then the eigenspaces
spanned by U and V⊥ are “almost” orthogonal.

Theorem 11 (Davis-Kahan).—Let ρ = Uρ0U† +
U⊥ρ1U†

⊥ and σ = Vσ0V† + V⊥σ1V†
⊥ be density operators

where the block matrices [U U⊥] and [V V⊥] are uni-
taries. Let H = σ − ρ. If the eigenvalues of ρ0 are con-
tained in an interval (a, b), and the eigenvalues of σ1 are
excluded from the interval (a − δ, b + δ) for some δ > 0,
then

∥∥∥V†
⊥U
∥∥∥ ≤

∥
∥∥V†

⊥HU
∥
∥∥

δ
(B47)

for any unitarily invariant norm ‖·‖.
Although the proof in Ref. [45] is for finite dimen-

sions, the proof for infinite-dimensional density operators
is exactly the same. Intuitively, the δ represents how sepa-
rated the eigenspaces of σ are relative to the perturbation
ε. If this δ is too small, the corresponding eigenspaces
of ρ and σ could be quite different. Instructive examples
and further intuition about this theorem can be found in
Ref. [45].
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Corollary 11.1.—Let ρ, σ be density operators with
H = σ − ρ and ‖H‖1 ≤ 2ε. Define δi = min{λi(σ )−
λi−1(σ )− ε, λi+1(σ )− λi(σ )− ε}. Then

F(UiU
†
i , ViV

†
i ) ≥ 1 − ε2

δ2
i

, (B48)

where Ui and Vi are the ith eigenvectors of ρ and σ ,
respectively.

Proof.—For each i, let ρ and σ have decomposition

ρ = Uiλi(ρ)U
†
i + Ui⊥ρ1Ui

†
⊥ (B49)

σ = Viλi(σ )V
†
i + Vi⊥σ1Vi

†
⊥ (B50)

as described in Theorem 11. A direct consequence of
Theorem 10 is that λi(ρ) lies in the interval (ai, bi) with
ai = λi(σ )− ε and bi = λi(σ )+ ε. Additionally, it can be
easily verified that all the eigenvalues of σ1 lie outside the
interval (ai − δi, bi + δi). Thus, using Theorem 11

∥∥∥Vi
†
⊥Ui

∥∥∥
∞

≤

∥∥∥Vi
†
⊥HUi

∥∥∥
∞

δi
(B51)

≤

∥∥∥Vi
†
⊥
∥∥∥

∞
‖H‖∞ ‖Ui‖∞

δi
(B52)

= ‖H‖∞
δi

(B53)

≤ ‖H‖1

2δi
(B54)

≤ ε

δi
, (B55)

where the second inequality follows from the fact that the
∞ norm is submultiplicative ‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞, and
the succeeding equality is a consequence of the fact that
‖W‖∞ = 1 for any isometry W.

Now consider the diagonalizing unitaries Uρ = [Ui Ui⊥]
and Vσ = [Vi Vi⊥]. Thus,

W := U†
ρVσ =

(
U†

i Vi U†
i Vi⊥

Ui
†
⊥Vi Ui

†
⊥Vi⊥

)

must also be unitary. So WW† = I. Looking at the first
block of WW†, which is one dimensional,

U†
i ViV

†
i Ui + U†

i Vi⊥Vi
†
⊥Ui = 1. (B56)

Thus,
∣∣∣1 − U†

i ViV
†
i Ui

∣∣∣ =
∥∥∥1 − U†

i ViV
†
i Ui

∥∥∥
∞

(B57)

=
∥∥∥U†

i Vi⊥Vi
†
⊥Ui

∥∥∥
∞

(B58)

≤
∥∥∥U†

i Vi⊥
∥∥∥

∞

∥∥∥Vi
†
⊥Ui

∥∥∥
∞

(B59)

≤ ε2

δ2
i

, (B60)

where Eq. (B60) follows from Eq. (B55). Observe that
the fidelity between the eigenvectors Ui and Vi is

∣∣∣U†
i Vi

∣∣∣.
Equation (B60) then directly gives us a bound on the
fidelity,

F(UiU
†
i , ViV

†
i )

2 ≥ 1 − ε2

δ2
i

. (B61)

�
Theorem 6 from the main text is just a special case

of Theorem 10, and Corollary 11.1 as follows. Let σ =
ρ	 + ρ	 and H = σ − ρ. Corollary 9.1 gives ‖H‖1 ≤
2
∥∥∥∥
√
ρ	

g
	ρ	

√
ρ	

g∥∥∥∥
∞

√
Tr
[
ρ	
]
. Thus, defining εproj =

∥∥∥∥
√
ρ	

g
	ρ	

√
ρ	

g∥∥∥∥
∞

√
Tr
[
ρ	
]
, Theorem 6 is exactly

Theorem 10 and Corollary 11.1.
As a final remark, we note that all the results in

this Appendix hold if we replace ε with ε∞, where
‖H‖∞ ≤ ε∞.

APPENDIX C: BOUND ON WEIGHT OUTSIDE
PROJECTED SUBSPACE

The general method of using “cross-clicks” to bound the
weight outside the projected subspace is taken from Chap.
2 of Ref. [46].

Since we use threshold detectors, Bob’s measurements
are block diagonal in the total photon number of the two
pulses. Given the probability that Bob received a state with
n photons p(n), the probability p(event) of observing a
particular detection event can then be written as

p(event) =
∞∑

n=0

p(n)p(event | n), (C1)

=
N∑

n=0

p(n)p(event | n)

+
∞∑

n=N+1

p(n)p(event | n), (C2)

≥ p(≤N )pmin(event | ≤ N )

+ p(> N )pmin(event | > N ), (C3)

where pmin(event | ≤ N ) denotes the minimum probabil-
ity of observing the detection event given the state has
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≤ N photons. Using the fact that p(≤ N )+ p(> N ) = 1
and rearranging we get

p(>N ) ≤ p(event)− pmin(event | ≤ N )
pmin(event | > N )− pmin(event | ≤ N )

.

(C4)

So in order to bound the weight outside the ≤ N subspace,
we need to find p(event | n).

We have some choice when choosing the specific event,
which we call a “cross-click” event. Here, we define a
cross-click to be any click pattern that records a click in
both the detectors while ignoring all clicks in mode d2,
which corresponds to the missing detector. We make this
choice because it makes the calculations simpler as shall
become apparent. We do not claim that this is the opti-
mal choice. However, as shown above, the validity of
the bounds in Eq. (C4) are independent of the choice of
detection event.

We wish to bound the probability p(cc | n) of cross-
clicks over all input states with n total photons in both
pulses. Although this task is hard for a generic choice of
cross-click event, our specific choice allows us to simplify
the task with the following observation. The probability
of cross-clicks p(cc) does not depend on either the phase
or the relative phase of the two pulses. Thus, without loss
of generality, we can always consider individually phase-
randomized pulses without changing the statistics. In other
words, we can assume that our input state is a probabilis-
tic mixture of |m, n − m〉 〈m, n − m| where the total photon
number is n. Thus, it is sufficient to bound the probability
p(cc | n) of cross-clicks over all input states with m photons
in the first pulse, and n − m photons in the second.

We consider the generic case where Bob’s passive basis
choice beam splitter has ratio (1 − t)/t. This can be used to
obtain the results for Sec. VI by setting t = 0.1. As shown
in Fig. 7, the probability of a cross-click given an input
state containing m and n − m photons in the two pulses is

p(cc | m, n − m)

=
∑

a+b�=0
a+b�=n

(
m
b

)(
n − m

a

)
ta+b(1 − t)n−a−b

×
(

1
2

)a+b ∑

c+d �=0

(
a
c

)(
b
d

)(

1 −
(

1
2

)c+d
)

. (C5)

Here,
(m

b

)
tb(1 − t)m−b factor reflects the probability of m

input photons being split into m − b and b photons. The(b
d

)
(1/2)b factor reflects the probability of b photons being

split into d and b − d photons for the two arms of the inter-
ferometer. Similarly, the same reasoning applies for the
input pulse with n − d photons. The last

(
1 − (1/2)c+d)

m n-m ab

m-b n-m-a

c

a-cd

b-d

FIG. 7. Bob receives m and n − m photons in the two pulses.
Of that a + b photons go into the X -basis measurement line, and
n − a − b go to the Z-basis detector. c and d photons go into the
outside time bins of the interferometer with the rest going into
the middle time bin.

factor is to subtract the case when all c + d photons go
into the line with the detector we do not use.

We first calculate the second summation,

S(a, b) =
∑

c+d �=0

(
a
c

)(
b
d

)(

1 −
(

1
2

)c+d
)

(C6)

=
a∑

c=0

b∑

d=0

(
a
c

)(
b
d

)(

1 −
(

1
2

)c+d
)

− 0 (C7)

= 2a+b −
(

3
2

)a+b

. (C8)

Thus, the cross-click probability can be simplified as

p(cc | m, n − m)

=
∑

a+b�=0
a+b�=n

(
m
b

)(
n − m

a

)
ta+b(1 − t)n−a−b

(
1
2

)a+b

S(a, b)

(C9)

=
∑

a+b�=0
a+b�=n

(
m
b

)(
t
2

)b

(1 − t)m−b
(

n − m
a

)

×
(

t
2

)a

(1 − t)n−m−a S(a, b). (C10)

In order to simplify this, we compute

f (x, m) =
m∑

b=0

(
m
b

)(
t
2

)b

(1 − t)m−bxb (C11)

=
(

1 − t + xt
2

)m

. (C12)
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So using Eq. (C12) in Eq. (C10) we get

p(cc | m, n − m) = f (2, m)f (2, n − m)

− f
(

3
2

, m
)

f
(

3
2

, n − m
)

−
(

2t
2

)n

+
(

3t
4

)n

(C13)

=
(

1 − t + 2t
2

)n

−
(

1 − t + 3t
4

)n

− tn +
(

3t
4

)n

(C14)

= 1 − tn −
(

1 − t
4

)n

+
(

3t
4

)n

. (C15)

We observe that the cross-click probability does not
depend on m, which intuitively follows from the symmetry
of our definition of cross-clicks.

Viewing the cross-click probability as a function of n

f (n) = 1 − tn −
(

1 − t
4

)n

+
(

3t
4

)n

, (C16)

we look to show that the function is monotonically increas-
ing. This would make it easy to find pmin(cc | ≤ N ). We do
this by considering

f (n + 1)− f (n) = tn(1 − t)+
(

1 − t
4

)n ( t
4

)

−
(

3t
4

)n (
1 − 3t

4

)
(C17)

and showing that this is positive for all positive integers n.
We first note that 0 ≤ t ≤ 1, which gives us

t ≤ 1, (C18)

1 − t ≥ 0, (C19)

1 − t
4

− 3t
4

≥ 0, (C20)

1 − t
4

≥ 3t
4

. (C21)

Raising both sides to the nth power and multiplying both
sides of the inequality by t/4,

(
1 − t

4

)n t
4

≥
(

3t
4

)n t
4

(C22)

(
1 − t

4

)n t
4

−
(

3t
4

)n (
1 − 3t

4

)
≥
(

3t
4

)n

(t − 1).

(C23)

Finally, adding tn(1 − t) to both sides of the equation,

tn(1 − t)+
(

1 − t
4

)n t
4

−
(

3t
4

)n (
1 − 3t

4

)

≥ tn(1 − t)+
(

3t
4

)n

(t − 1), (C24)

f (n + 1)− f (n) ≥
(

tn −
(

3t
4

)n)
(1 − t) ≥ 0, (C25)

where the last inequality follows from the fact that
t ≥ 3t/4. Thus, pmin(cc | ≤ N ) = p(cc | 0) = 0, and pmin

(cc | > N ) = p(cc | N + 1). Using this in Eq. (C4),

p(>N ) ≤ p(cc)

1 − tN+1 − (1 − t
4

)N+1 + ( 3t
4

)N+1 , (C26)

where we can obtain the cross-click probability p(cc) from
the observations.
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