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Gradient-based optimization of permanent-magnet assemblies for any objective
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We introduce a semianalytical optimization method that can be applied to find the optimal magnetization
for any permanent-magnet system regarding the desired field or objective. Our approach is based on the
Landau-Lifshitz equation, which is normally employed to simulate micromagnetic systems. Instead, we
recognize that the same mathematical formalism is also applicable to the optimization of macroscopic
magnetic assemblies. This point of view has the advantage of being easy to intuitively visualize and thus
is also easy to implement. Our approach can also be seen as a special case of the adjoint method, which
is a gradient-based constrained optimization method. However, most studies applying the adjoint method
to magnet design adopt the point of topology optimization, where the magnetic permeability tensor field
depends on the design variables, making the problem highly nonlinear. Instead, we restrict to the less
general problem of optimizing the direction of the magnetization in any point of a given design region.
Our strategy leads to a more robust and computationally efficient algorithm since the underlying problem
is intrinsically simpler. Additionally, since the integration of the underlying magnetostatic equations is
performed numerically, the method is still very flexible and versatile. Previously, an equivalent method has
been considered only for solving the magnetic inverse problem. In the present work, we fully demonstrate
its effectiveness by presenting several prototypical optimization problems and we discuss the strengths
and limitations of the approach in relation to the existing optimization methods.
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I. INTRODUCTION

Permanent magnets are used in a number of applica-
tions, both in scientific and technological areas. Among
these, some of the most significant are [1] electric motors,
electric generators, accelerator magnets, nuclear magnetic
resonance (NMR) devices, magnetic resonance imaging
(MRI) scanners, and magnets for other biomedical pur-
poses [2]. In all the applications it is critical to optimize the
magnetic system so that it will generate a magnetic field
that will result in the best performance for the considered
application.

An aspect to consider is how the design optimiza-
tion problem is formulated. A problem can be thought of
being composed of two sides: the optimization objective
and the optimization variables. The objective is generally
expressed in terms of the magnetic field over a given field
region. The difficulty of the problem depends on how the
objective depends on the field, linear dependence being the
simplest case.

A similar reasoning applies to the dependence of the
magnetic field on the optimization variables. Let us con-
sider topology optimization, one of the most widely
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employed optimization approaches [3–6]. Here, the opti-
mization variables determine the arrangement of materials
in the design area. This is achieved by making the perme-
ability tensor μ in any point x be dependent on the values
of the design variable fields. This optimization approach
is very versatile: it can be applied with any class of opti-
mization objective, and also in the presence of nonlinear
constitutive B-H relations [7]. However, the optimization
problem considered by topology optimization approaches
is intrinsically difficult to solve, because of the highly
nonlinear dependence of the field with respect to μ(x).

Besides the optimization problem, the other aspect to
consider is the mathematical technique used to perform the
optimization. One way to classify the methods is based on
whether or not they use the gradient for smoothly evolving
the variables towards the optimal configuration. Gradient-
free approaches, being purely numerical, are generally not
very computationally efficient and it can be prohibitive to
apply them to three-dimensional magnet design problems.

Gradient-based methods are a family of optimization
approaches that use the analytical expression of the deriva-
tive of the optimization objective to construct a more
efficient and robust optimization scheme. However, calcu-
lating the derivative of the objective with respect to the
design variables may, in general, prove to be a challenging
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task. The adjoint method addresses this issue by consid-
ering the dual of the original problem. The idea can be
thought of as an application of the method of Lagrange
multipliers, where the governing equation of the sys-
tem, i.e., the state equation, is interpreted as a constraint.
Thus, instead of calculating the derivative explicitly, it is
obtained as the solution of the dual of the original problem.
For example, for the case of magnetostatics in the absence
of free currents, the state equation is Poisson’s equation
applied to the magnetic scalar potential. Since this problem
is self-adjoint, the adjoint method assumes a particularly
simple form.

This approach has been successfully applied to the opti-
mization of permanent-magnet systems, such as in the
works of Suess and co-workers [8–10], or by Lee and
co-workers [11,12], or others [13]. In these studies, the
derivative of the optimization objective with respect to
the magnetic field is calculated analytically. The deriva-
tive of the field with respect to the design variables is then
obtained by solving a partial differential equation that is
formally equivalent to the state equation. In several stud-
ies based on this method, the considered problem is that
of topology optimization, meaning that the value of the
design variables at a point determines whether the point is
occupied by a given material or not, e.g., 1 for magnet and
0 for air [8,10]. The same idea can be applied to the opti-
mization of multimaterial designs, including iron, magnets,
coils, and air [11], or also permanent magnets magnetized
in different directions, i.e., segmented permanent-magnet
assemblies [4].

The method discussed in the present paper belongs to
this family of gradient-based optimization schemes. How-
ever, instead of optimizing the topology, we focus on the
problem of optimizing the direction of the magnetization
vector M(x) in any point x of the region occupied by
permanent-magnet material. In other words, the magneti-
zation field itself is chosen as a design variable. The same
choice of design variable is adopted in Ref. [9] for solving
the magnetic inverse problem, i.e., finding the magneti-
zation that would generate a certain prescribed field in a
given region. In the present work, we apply the same idea
to any kind of design-optimization objective.

By assuming this perspective, the resulting optimiza-
tion scheme becomes much more transparent and easy to
understand. In fact, in this work we introduce an intuitive
physical interpretation of the gradient terms involved in
the optimization procedure. For example, the gradient of
the optimization objective with respect to the unknown
magnetization, i.e., the design variable, is analogous to the
concept of effective field in the context of micromagnetics.

We consider the permeability tensor μ to be known, and
we assume the constitutive B-H relation to be linear at any
point. With these assumptions, we take advantage of the
linearity of the field with respect to the design variable.
This property, together with analytical calculation of the

gradient of the objective with respect to the field, makes
the underlying optimization problem much easier to solve
than the topology optimization problems mentioned above.

We also assume that the norm of the magnetization vec-
tor is known, since this is determined by the choice of
permanent-magnet material. This is a suitable approach
for optimization permanent-magnet assemblies, where typ-
ically the grade of the permanent magnets are known from
the application, and the optimal magnetization direction is
to be determined. After this has been determined, the mag-
net assembly can then be segmented into individual pieces.
Rather than imposing the normalization condition as a con-
straint, we incorporate it directly into the gradient-descent
scheme, which thus becomes analogous to the Landau-
Lifshitz equation, the governing equation of micromag-
netic systems. Thanks to this parallelism between magnet
design and micromagnetics, and to the fact that we assume
a restricted problem for which the permeability tensor is
known, the implementation of the optimization procedure
is greatly simplified.

The approach described below can also be thought of as
an extension to nonlinear objectives of the “virtual mag-
net” framework discussed in Refs. [14] and [15]. In the
present study, we consider the case of continuous magneti-
zation distributions that vary smoothly in space, as well
as segmented systems composed by a finite number of
uniformly magnetized parts. We provide a significant num-
ber of relevant examples from different applications. The
results demonstrate the efficacy and wide applicability of
this optimization framework to any kind of magnet design
problems.

A. Notation

In this work we will denote vectors with bold font, as
in v. Space-dependent vector fields will be indicated with
their input arguments between round brackets, as in H(x),
where x shall denote a generic point of space. Rank-2
tensors will be denoted by double underlying, as in μ.
The input argument of tensor fields will also be denoted
between round brackets, as in μ(x).

We will consider scalar nonlinear functionals denoted
with calligraphic font, as in S . The input argument of these
functionals will be a vector field, such as H(x). The input
argument of a functional will be indicated between square
brackets, as in S[H].

We will use the first-order derivative of a functional S
with respect to its argument. Since the input argument of S
is a function (specifically a vector field), the most rigorous
notation is that used for functional derivatives. However,
for simplicity in this work we will simply use the same
notation commonly used for the ordinary gradient of mul-
tivariate functions, i.e., ∇HS . If the gradient is evaluated at
the starting point K, we will use (∇HS)K to indicate this.
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Finally, we consider operators having vector fields both
as input and output argument. Nonlinear operators will
be denoted with bold font and with their input argument
between square brackets, as in Q[M]. Instead, linear oper-
ators will simply be denoted as the rank-2 tensors, as in
N . The input argument of such operators will simply be
juxtaposed on its right side. For example, if the operator
N is applied to the vector field M(x), we will use N M to
indicate this.

B. Governing equations

In this work we consider magnetostatic systems [16],
which are governed by Ampere’s law,

∇ ×H = J (1)

and Gauss’ law for magnetism

∇ · B = 0, (2)

where H, B, and J denote the magnetic field, magnetic
flux density, and electric current density, respectively. The
fields B and H are related to the magnetization M by the
following equation:

B = μ0(H+M), (3)

where μ0 is the magnetic permeability of vacuum. The
constitutive relation between B and H is assumed to be
linear, as expressed by

B = μH, (4)

where μ is the permeability tensor. The linearity assump-
tion is justified in a wide variety of relevant situations. An
extensive discussion of the validity of this assumption is
given in Sec. IV-A of Ref. [15].

II. CONTINUOUS MAGNETIZATION CASE

A. Optimization objective and effective field

We consider a problem where permanent magnets are
placed in a region Rm, and have to generate a field in a
region denoted by Rg . This latter region is typically an air
gap. The two regions are assumed to be nonoverlapping.
The optimization objective is to maximize or minimize a
nonlinear functional S , which depends on the magnetic
field over Rg , which is denoted by H. The magnetization
field, M, over Rm is the design-optimization variable of
our problem, i.e., determining the optimal magnetization
direction within the permanent magnets. Because of this,
in the region Rm we are assuming μ = μ0. In all the other
regions, we assume the constitutive relation expressed by
Eq. (4), where the permeability tensor is possibly space

dependent, i.e., μ = μ(x), but it is assumed to be known,
i.e., not an optimization variable. We also assume that the
current density is zero everywhere J = 0.

With these assumptions, the field H depends linearly on
the magnetization field over Rm:

H = NM, (5)

where the linear operator N corresponds to applying the
demagnetization tensor. In explicit notation this means

H(x) =
∫

Rm

dV′ N (x, x′) M(x′). (6)

Here, the demagnetization tensor is defined in a slightly
unconventional way, in the sense that it takes into account
the magnetic reaction of all the regions of the geometry
outside Rm, where the constitutive relation is B = μH.
Therefore, the expression of the demagnetization tensor
depends on the permeability tensor field μ(x) in all points
of the geometry, other than Rm. In our implementation of
the optimization approach, the operator N is never cal-
culated explicitly. Rather, Eqs. (1) and (2) are coupled
and solved for either the magnetic scalar potential or the
magnetic vector potential. However, considering this oper-
ator is helpful in understanding the optimization method
discussed here.

As also noted in other works employing the adjoint
method [8,9], the key point is that the operator N is a
symmetric operator: this means that for each pair of vector
fields V1(x) and V2(x) we have

N = N T, i.e.,
∫

dV V1(x) ·
(

NV2(x)
)

=
∫

dV
(

NV1(x)
)
· V2(x). (7)

This result is also referred to as the reciprocity theorem [14,
17], and, as we will see below, it plays a central role in our
optimization approach. By considering the kernel N (x, x′),
the theorem can also be expressed as Nij (x, x′) = Nji(x′, x).
In the context of the adjoint method, it is expressed by say-
ing that Poisson’s equation, of which Eq. (5) is the formal
solution, is self-adjoint [9].

We consider an objective functional S = S[H], which
depends on the vector field H. Denoting by Vg the set
of all square-integrable vector fields H : (Rg ⊂ R3)→ R3,
then S is a functional S : Vg → R. Analogously, we will
denote by Vm the set of all square-integrable vector fields
over Rm ⊂ R3.

We now introduce the effective magnetization, which is
a vector field over Rg defined as the gradient of S[H] with
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respect to H:

Meff[H∗] = (∇HS)H∗ . (8)

This means that the R3 vector Meff(x), where x is an arbi-
trary point in Rg , is the derivative of S with respect to the
magnetic field at that point, i.e., with respect to H(x). With
a loose notation, we can indicate this with the following
equation:

Meff(x) = ∂S
∂H(x)

. (9)

The left-hand side of Eq. (8) highlights the fact that, when
considering the dependence on the starting point H∗ ∈ Vg ,
the effective magnetization can be seen as a nonlinear oper-
ator Meff : Vg → Vg , having H∗ as input. The variation of
S with respect to a variation δH is thus given by

(δS)H∗ =
∫

Rg

dV Meff[H∗] · δH. (10)

We also introduce the effective field, which is a vector
field over Rm defined as the gradient of S[H = NM] with
respect to M. Applying the chain rule we get

Heff[M∗] = (∇MS)M∗ = N T (∇HS)NM∗ = N TMeff[NM∗].
(11)

The effective field Heff in the point x ∈ Rm is thus the
derivative of S with respect to the magnetization vector
M(x) evaluated at that point:

Heff(x) = ∂S
∂M(x)

. (12)

The effective field can also be seen as an operator Heff :
Vm → Vm having M∗ as input. The variation of S with
respect to a variation δM is thus given by

(δS)M∗ =
∫

Rm

dV Heff[M∗] · δM. (13)

As we anticipated, the reciprocity theorem implies that
the linear operator N appearing in Eqs. (5) and (11) is a
symmetric operator. Therefore, we can rewrite Eq. (11) as

Heff[M∗] = NMeff[NM∗]. (14)

The significance of the previous equation in relation to
magnet design problems is that the derivative of S with
respect to M, i.e., the effective magnetic field, is the field
generated by the effective magnetization. The key obser-
vation is that, even in circumstances where the closed

Virtual system

Real system

Optimization
scheme

1

2

3

4

FIG. 1. Schematic illustration of the optimization approach. At
each step of the optimization scheme discussed in Sec. II B, (1)
the field is calculated from the current magnetization distribu-
tion: H = NM. Then (2) the effective magnetization is calculated
from the current H vector field using the analytical expression
of the gradient of S with respect to H. Then (3) the effective
field, which is the gradient of S with respect to the optimization
variable M, is computed as the field generated by the effec-
tive magnetization, i.e., Heff = NMeff. During the optimization
scheme, Heff is used to evolve the magnetization M towards the
optimal solution (4).

form expression of N is not known, the effective mag-
netization can still be calculated analytically for many
relevant classes of objective functionals. The gradient-
based approach that can be derived from this observa-
tion considerably reduces the computational complexity
of the optimization problem. The optimization approach is
schematically illustrated in Fig. 1. Appendix A 4 includes
an introduction of the adjoint method, and highlights how
the approach described here can be seen in that perspective.

Some of the assumptions stated at the beginning of this
section were introduced only to make the explanation of
the procedure more transparent, but are not necessary for
the algorithm to work. For example, it should be noted
that the whole optimization procedure would work in a
very similar way if we assumed the remanent flux density
Brem as optimization variable, and B = μH+ Brem as con-
stitutive relation in Rm; the permeability tensor μ would
still be predetermined, i.e., not optimized. Moreover, we
may have other sources of field within our geometry out-
side Rm, such as other magnets or electric currents, that
are not optimization variables. When this is the case, we
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replace Eq. (5) with H = Hext + NM. The definition of
the effective magnetization remains the same, in the sense
that Meff is the gradient of S with respect to the total
field: Meff =Meff[Hext + NM]. Instead, when computing
the effective field from the effective magnetization, these
sources are not considered: Heff = NMeff.

B. Optimization scheme

We now introduce the optimization approach, which is
based on the Landau-Lifshitz equation [18–20]. We pre-
scribe that the magnetization M(x) over the region Rm will
evolve according to the following equation of motion:

d
dt

M = α M×M×Heff. (15)

This can be seen as a gradient-descent scheme for maxi-
mizing or minimizing S while preserving the norm of M
at each point [21,22]. The sign of the scalar parameter
α determines whether the objective will be minimized or
maximized. The time variable denoted by t in Eq. (15) has
no physical meaning, it is the continuous analogous to the
number of steps in an iterative optimization procedure.

This equation is suitable for our problem, since gener-
ally the norm of the magnetization vector is determined by
the choice of permanent-magnet material, while the direc-
tion is the unknown optimization variable. The equilibrium
solution is obtained when M is parallel to Heff at any
point. In this configuration, it is impossible to improve the
objective with a smooth transformation of M(x) without
violating the normalization constraint.

When applied to linear objective functionals, the
algorithm proposed here reduces to the virtual magnet
method discussed in Ref. [14] and Ref. [15]. It is in fact
apparent that the effective field considered here is equiva-
lent to the virtual field discussed in the aforementioned ref-
erences. Analogously, the effective magnetization takes the
role of the virtual magnetization. Here we used the terms
effective field and effective magnetization to highlight
the connection to the formalism of the Landau-Lifshitz
equation.

For the case of linear objectives however, the effective
field is constant. This means that for linear objectives no
iteration or optimization scheme is necessary: the opti-
mal direction of the magnetization in each point is simply
aligned to the virtual field. This is not the case for the
general optimization objectives considered here.

Our optimization framework is based on the Landau-
Lifshitz equation, and we are also employing the same
terminology encountered in micromagnetism. However,
here we are describing a different physical situation. The
magnetization in Rm is the optimization variable of our
problem, determined entirely by the optimization objec-
tive S . Outside Rm, the magnetization is determined by the

linear constitutive relation expressed by Eq. (4). In con-
trast, the problem solved by micromagnetism is to find the
magnetization field that minimizes the free-energy func-
tional G[M]. This functional is defined from M based on
the laws of physics, while the functional S considered
here simply expresses a design-optimization problem. At
the macroscopic scale considered here, the micromagnetic
phenomena are only taken into account through the consti-
tutive relations. This is the most-widely used assumption
for optimizing macroscopic magnetic systems. For exam-
ple, the norm of the magnetization is assumed to be equal
to the remanent magnetization and not, as it is in micro-
magnetism, to the saturation magnetization. It would be
interesting to also consider the problem of optimizing mag-
netic systems at the scale at which micromagnetic effects,
such as domain-wall motion, are crucial. However, this
would require a more advanced approach and the problem
would be much more computationally intensive.

C. Implementation example

The optimization framework described above can eas-
ily be implemented in, e.g., a single COMSOL Multi-
physics finite-element model [23]. Three physics nodes are
required. Two of them are magnetic field interfaces, corre-
sponding to the real and effective systems. In these nodes,
the set of equations introduced in Sec. I B are solved.
The space-dependent permeability field μ(x) should be the
same in both systems, so for example the soft-iron parts are
included in both systems.

Besides this, the real system has magnetization M
defined over Rm, and the effective system has magneti-
zation Meff defined over Rg . The analytical expression of
Meff as a function of the magnetic field H is included in
the model. The magnetic field computed in this interface is
Heff.

The third physics node included in the COMSOL model is
a coefficient form partial differential equation (PDE) that
governs the time evolution of M, according to Eq. (15). In
fact, the COMSOL model includes a time-dependent study
step, to compute the solution of this equation. However,
since the effective magnetization depends on H, it is nec-
essary to initialize its value with an initial stationary study
step. The magnetization M given for this initialization step
is the starting configuration of the optimization procedure.

Additional details on the COMSOL implementation are
discussed in Appendix A 1.

III. CONTINUOUS CASE: EXAMPLES

In the following sections, we will consider different
examples of typical magnet design and optimization prob-
lems. The purpose is to illustrate the versatility and efficacy
of our optimization approach with realistic prototypical
optimization problem. However, for the examples, the
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exact geometrical measures of the different fixed parts are
not relevant, and will thus not be reported.

Unless otherwise specified when soft-iron parts are
present within the geometry, these are modeled with
isotropic relative permeability equal to 1000. The relative
permeability is assumed to be equal to 1 elsewhere. The
norm of the magnetization is set to μ0‖M‖ = 1 T. These
values are merely set for convenience, and the optimization
scheme will work for all variables.

In all the figures, the magnetization direction will be
indicated by the black arrows, while the magnetic flux
density B is indicated by the color and by field lines.

A. Field-component squared

As a first example, we consider the problem of maximiz-
ing the air-gap volume integral of H 2

y . The corresponding
objective functional S is quadratic with respect to H:

S[H] =
∫

Rg

dV H 2
y (x). (16)

The corresponding effective magnetization is easily calcu-
lated from Eq. (8):

Meff(x) = 2Hy(x)êy . (17)

Outside the air gap Rg the effective magnetization is zero.
We apply this objective to the case of a rectangular mag-
net presenting a rectangular cavity, i.e., the air gap. The
inner and outer corners of the hollow rectangle have been
rounded. The result, shown in Fig. 2(b), confirms that the
approach generates a solution with high air-gap volume
average of Hy . The simulation has been initialized from
the starting configuration shown in Fig. 2(a), given by
M(x, y) = êysign(|y| − �y), where �y is half the height of
the region Rg in y direction. Compared to the starting con-
figuration, the optimal solution improves the value of S by
192%.

Note that the air-gap region Rg has been slightly dis-
tanced from the central cavity by a thin border, which is
shown in the figure. This expedient prevents numerical
instabilities that may arise when the region Rg (where the
optimization objective is defined) is directly adjacent to the
magnet region Rm. We will use the same precaution in most
of the examples discussed in the next sections.

B. Magnetic energy

A typical magnet design problem is to maximize or min-
imize the magnetic energy stored in the empty region of
space Rg . This is expressed by the following objective

Starting configuration

Optimal solution

(a)

(b)

FIG. 2. The optimization objective is to maximize the inte-
gral over Rg of H 2

y . Figure 2(a) shows the starting configuration,
and Fig. 2(b) the optimal solution. The value of the objec-
tive improves by 192%. As stated previously the magnetic flux
density B is indicated by the color and by field lines.

functional:

S[H] =
∫

Rg

dV ‖H(x)‖2. (18)

The effective magnetization for this functional is again
given by using Eq. (8), resulting in

Meff(x) = 2H(x). (19)

Minimizing the functional of Eq. (18) has the effect of insu-
lating the region Rg from the field. The objective can also
be applied to a subset of Rg to insulate only part of the air
gap. The resulting objective functional would thus be simi-
lar to the one defined in Eq. (31). This strategy will be used
in some of the examples presented in the next sections.
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C. Field quality

Now we consider the problem of improving the field
quality, with respect to any required distribution [24]. In
particular, we assume a uniform vertical field as the target.
It is insightful to think in terms of multipole expansions.
The air-gap field H(x) shall be expanded into a series
{uk(x)}k=1,...,∞ of multipole fields, e.g., cylindrical har-
monics, and we will denote with {ck} the coefficients of
expansion:

H(x) =
∞∑

k=1

ckuk(x). (20)

We also assume that the first multipole component is the
required air-gap field distribution. Our goal is to obtain a
magnetic field distribution as close as possible to u1(x)

inside Rg . In other words, we wish to minimize the field
distortion with respect to the required distribution. This
goal can be expressed as the problem of minimizing the
following objective functional:

S =
∞∑

k=2

|ck|2, (21)

i.e., minimize all coefficients beside c1. We assume that
the various components of the expansion are orthonormal
to each other:

∫
Rg

dV uj (x) · uk(x) = δjk. (22)

The coefficients of the expansion are thus given by

ck =
∫

Rg

dV H(x) · uk(x). (23)

Applying Parseval’s identity [25] we obtain the following
relation:

∫
Rg

dV ‖H(x)‖2 =
∞∑

k=1

|ck|2 = |c1|2 +
∞∑

k=2

|ck|2. (24)

This allows us to write the objective S in a different form:

S =
∫

Rg

dV ‖H(x)‖2 −
(∫

Rg

dV H(x) · u1(x)

)2

. (25)

If u1 corresponds to a uniform field in the y direction that
is normalized as required above, we have

u1(x) =
(

1
Vg

)1/2

êy . (26)

The objective is thus written as

S = Vg
(〈H 2〉Rg − (〈Hy〉Rg )

2) , (27)

where Vg denotes the volume of Rg , and 〈 〉Rg denotes the
operation of taking the space average within Rg of the input
argument.

Therefore, the effective magnetization becomes

Meff(x) = 2H(x)− 2êy〈Hy〉Rg . (28)

We apply this objective to the same geometry considered in
Fig. 2(b). However, due to the symmetry of the geometry,
it is sufficient to simulate only one quarter of the geome-
try. At the boundary for which the field lines are parallel,
i.e., the line x = 0, we apply a magnetic insulation bound-
ary condition, i.e., n̂× A = 0 where n̂ is the unit vector
normal to the surface and A is the magnetic vector poten-
tial; at the boundary for which the field lines are normal,
i.e., the line y = 0 we apply a perfect magnetic conductor
boundary condition, i.e., n̂×H = 0.

The results are shown in Fig. 3. The starting configura-
tion used to initialize the algorithm is shown in Fig. 3(a).
For the example shown in Fig. 3(b) the objective functional
in the air gap is the one defined in Eq. (27). Additionally,
for the example shown in Fig. 3(c), we require that in the
region external to Rm the magnetic energy shall be mini-
mized. As explained in Sec. III B this additional objective
leads to a self-insulated magnet, as shown in Fig. 3(c).
Both panels of Fig. 3 show that the intensity of the field
in the air gap is on average lower than that of Fig. 2(b).
However, for the examples of Fig. 3 the resulting field
is perfectly homogeneous (up to the precision allowed by
the numerical integration). By comparing Fig. 3(a) with
Figs. 3(b) and 3(c), it is apparent that the optimization
method successfully solved the problem.

We now consider the same optimization objective of the
example shown in Fig. 3, but for a quadrupole field u1(x)

defined as

u1(x) = y êx + xêy(∫
Rg

dV y2 + x2
)1/2 . (29)

The effective magnetization is given by

Meff(x) = 2H(x)− 2u1(x)

(∫
Rg

dV′H(x′) · u1(x′)

)
.

(30)

As geometry we consider a cylindrical magnet with a
star-shaped cavity Rg located in its center. The result of
the optimization is shown in Fig. 4. As can be seen, the
approach was effective in calculating a magnetization dis-
tribution that generates a quadrupole field in the central
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Starting configuration

Homogeneous field

Self-insulated

(a)

(b)

(c)

FIG. 3. In this example the goal is to minimize the field distor-
tion with respect to the required distribution, i.e., a uniform field
oriented along the y direction. Figure 3(a) shows the starting con-
figuration, and Fig. 3(b) shows the final result. For the example
of Fig. 3(c) we additionally require that the magnetic flux leakage
to the surrounding space is null.

cavity. Moreover, the magnet is perfectly self-insulated, as
the flux leakage to the surrounding space is null.

The numerical results of the examples in Figs. 2(b), 3(b),
and 3 are summarized in Table I. As we can see, the first
case, which has been optimized for the objective of Eq.
(16), gives a higher value for the three functionals listed
in the rows of the table. However, the second and third
case are also perfectly homogeneous, which is why the

values of the three functionals are the same. The lowest
field strength corresponds to the case where we also require
self-insulation.

D. Magnetic refrigeration

In this section we consider an example from magnetic
refrigeration [26]. Here the air gap is composed of two
adjacent empty regions Rhigh and Rlow, such that Rg =
Rhigh ∪ Rlow. The objective is to maximize and minimize
the intensity of the field in Rhigh and Rlow, respectively. This
objective is expressed by the following functional:

S[H] =
(

1
Vhigh

)∫
Rhigh

dV ‖H(x)‖2

−
(

1
Vlow

)∫
Rlow

dV ‖H(x)‖2. (31)

Therefore, the effective magnetization is given by

Meff(x) = +
(

2
Vhigh

)
H(x),for x ∈ Rhigh

Meff(x) = −
(

2
Vlow

)
H(x),for x ∈ Rlow

. (32)

We apply this objective to a cylindrical geometry, as shown
in Fig. 5. Here the air gap is the free region located between
the central soft-iron core, and the external permanent-
magnet region Rm. Only the first quadrant of the geometry
is shown in Fig. 5, the remaining quadrants can be obtained
by symmetry. As mentioned above, the air gap is subdi-
vided into a high-field region and a low-field region. Each
of these is composed of two 90◦ sectors located on oppo-
site sides. North and south for the high-field region and
east and west for the low-field region. One of the borders
between the low- and high-field regions is shown in Fig. 5
as a dashed line. As seen from the figure, our approach
led to a solution, which successfully focused the field into
the high-field region, while diverting it from the low-field
region.

E. Force between magnet and iron plane

We now consider the problem of maximizing the attrac-
tive force between a permanent magnet and a large soft-
iron object. As illustrated in Fig. 6, we assume that the iron
entirely occupies the region y < 0.

For this example we consider the limit μIron →+∞. In
other words, y = 0 is the boundary of an infinite perfect
magnetic conductor. This limit is obtained by applying the
proper boundary condition at y = 0, while the region y <

0 is not actually part of the simulation. The magnet domain
Rm is a rectangular prism located within the otherwise free
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FIG. 4. In this example the goal is again to min-
imize the field distortion with respect to a required
field distribution. However, here we require a
quadrupole field in the central star-shaped cavity
Rg . Additionally, we require self-insulation as for
the example of Fig. 3(c).

region y > 0. The force acting on the magnet is computed
from the Maxwell stress tensor T [16]:

F =
∫

∂�

dS T n̂ (33)

with

T =
(

1
μ0

) (
BBT)− 1

(
1

2μ0

)
‖B‖2. (34)

The integration domain in Eq. (33) is the boundary ∂� of
any region � that either encloses the magnet or encloses
the iron object or separates them completely. It is thus con-
venient to chose an infinite plane parallel to the surface of
the perfect conductor, and just outside of it, i.e., y → 0+.
Being the surface located in air, we have B = μ0H, which
leads to

T = μ0
(
HHT)− 1

(μ0

2

)
‖H‖2. (35)

Since for our geometry n̂ ≡ êy , and H(x) = Hy(x)êy , the
only nonvanishing component of the force is the y compo-
nent:

F = μ0

2

∫
∂�

dS (Hy(x))2êy . (36)

We thus assume the y component of the force as the
optimization objective. For implementation reasons, our
air-gap region shall be a very thin rectangle located at the
boundary of the geometry, i.e., y = 0+, and very long in
the x direction, such that the magnetic field is nearly zero
outside the left and right boundaries. The objective is then
expressed as

S = F · êy = μ0

2

∫
Rg

dS (Hy(x))2 (37)

and the effective magnetization is given by

Meff(x) = μ0Hy(x)êy . (38)

TABLE I. Different objectives associated to the goal of creating an air-gap field directed along the y direction. The corresponding
solutions are shown in Figs. 2(b), 3(b), and 3(c), respectively. The starting cases 1 and 2 correspond to Figs. 2(a) and 3(a), respectively.

Start 1 Start 2 Case 1 Case 2 Case 3

V−1
g

∫
dV μ0Hy 0.243 T 0.379 T 0.416 T 0.411 T 0.372 T(

V−1
g

∫
dV (μ0Hy)

2
)1/2

0.248 T 0.409 T 0.425 T 0.411 T 0.372 T(
V−1

g

∫
dV (μ0H)2

)1/2
0.257 T 0.424 T 0.428 T 0.411 T 0.372 T
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FIG. 5. This example is a rotary magnetic sys-
tem applied to a magnetic refrigeration device.
Here the goal is to maximize the square norm
of the field within Rhigh and minimize it within
Rlow. Due to the symmetry, only one quarter of the
geometry is shown.

We can notice the analogy between the expression of the
objective S considered here with that considered in Sec.
III A. The result shown in Fig. 6 has been optimized start-
ing from a magnet uniformly magnetized in the positive
y direction. Compared to the starting configuration, the
objective improved by 135%.

F. Torque between magnetized cylinders

We consider two infinitely long co-axial cylinders, and
assume cylindrical coordinates r, φ, and z, where the z axis
lies on the common axis of the two cylinders. Our goal is
to maximize the torque between the two cylinders. The z

component of the torque τ is given by [27]

τz = 1
μ0

∫ 2π

0
dφ r2Br(φ)Bφ(φ). (39)

Let us assume that the magnetization distribution in one of
the two cylinders, e.g., the inner cylinder, is known. For
the illustrative example shown in Fig. 7, the inner cylinder
is uniformly magnetized transversally to its axis. The rela-
tive rotation angle between the two cylinders is denoted by
θ . We assume that the cylinder with known magnetization
distribution is the one that is rotated by θ , while the cylin-
der with unknown magnetization distribution is stationary.
The field generated by the rotating cylinder with known

FIG. 6. For this case the objective
is to maximize the attractive force
between the permanent magnet Rm and
the infinite iron part, which occupies
the whole volume y < 0, where y =
0 corresponds to the thick blue line
shown at the bottom of the figure. The
iron part is modeled as a perfect mag-
netic conductor.
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FIG. 7. The objective is to cal-
culate the magnetization distribution
within the external cylindrical perma-
nent magnet such that it exerts the
maximum torque over the central uni-
formly magnetized cylinder. Rather
than optimizing the torque for a spe-
cific angular position θ , we maximize
the mean square average of the torque
over the full rotation θ ∈ [0, 2π ]. This
objective is expressed by Eq. (43).

magnetization distribution will be denoted by

H(θ)(φ) = H (θ)
r (φ)êr + H (θ)

φ (φ)êφ . (40)

The total field is the sum of H(θ) with the field generated by
the unknown magnetization of the external cylinder. The
unknown field, (i.e., not the total field) is denoted by H.
Since in air B = μ0H, the torque is given by

τz(θ) = μ0

∫ 2π

0
dφ r2(Hr(φ)+ H (θ)

r (φ))(Hφ(φ)

+ H (θ)
φ (φ)). (41)

Should the objective have been τz(θ) for fixed θ , the effec-
tive magnetization would have been obtained in the exact
same way as described in the previous examples:

M̃
(θ)

eff (φ) = r2
(
(Hφ(φ)+ H (θ)

φ (φ))êr

+ (Hr(φ)+ H (θ)
r (φ))êφ

)
. (42)

This objective would correspond to maximizing the instan-
taneous torque for a fixed rotation angle θ between the
inner and the outer cylinders. However, a more relevant

objective is the mean square amplitude of the torque for
θ ∈ [0, 2π ].

τ z = 1
2π

∫ 2π

0
dθ (τz(θ))2. (43)

Since the torque is quadratic, τ z clearly is not. The effective
magnetization is given by

Meff(φ) = 1
π

∫ 2π

0
dθ τz(θ)M̃

(θ)

eff (φ). (44)

We denote by M(θ) the (known) magnetization distribution
that generates the field H(θ). This magnetization distribu-
tion must be included in the real system, but not in the
virtual system.

The result, shown in Fig. 7, demonstrates that our
approach can solve optimization problems even when the
optimization objective has a relatively complicated depen-
dence on the magnetic field. In fact, in this example the
objective is obtained by averaging the torque over different
relative positions between the inner and outer magnets.

064030-11



ANDREA ROBERTO INSINGA and RASMUS BJØRK PHYS. REV. APPLIED 20, 064030 (2023)

G. Switch

In this section we consider a switchable field source,
where the goal is to alternate between a high- and low-field
states in the air gap [6]. For this purpose, we consider an
objective functional, which depends on the field evaluated
at two different configurations, corresponding to magnetic
field distribution HA and HB. The objective can be written
as

S = S[HA, HB]. (45)

For example, there could be a moving iron part, which
assumes two different positions in the states “A” and “B.”
In this situation, we have two different states for the
effective magnetization:

M(A)

eff [HA, HB] = (∇HAS
)

HA,HB
, (46)

M(B)

eff [HA, HB] = (∇HBS
)

HA,HB
. (47)

Since the position of the iron parts affects the permeability
space dependence μ(x), the two configurations are char-
acterized by different demagnetization tensors N

A
and N

B
.

The dependence of the objective on the magnetization M
is thus written as

S[M] = S[N
A
M, N

B
M]. (48)

The effective field is thus given by

Heff = N
A
M(A)

eff + N
B
M(B)

eff . (49)

For example, we could have an objective similar to the one
for magnetic refrigeration:

mcS[H] =
∫

Rg

dV ‖HA(x)‖2 −
∫

Rg

dV ‖HB(x)‖2. (50)

This objective corresponds to the goal of maximizing
the difference of the mean square amplitude of the field
between the high-field state and the low-field state. The
effective magnetization is thus given by

M(A)

eff (x) = +2HA(x), (51)

M(B)

eff (x) = −2HB(x). (52)

In the example shown in Fig. 8, the air-gap region Rg is the
circular cavity in the center. The magnet design region Rm
is the external permanently magnetized cylinder. Between
Rg and Rm is a soft-iron structure occupying two oppo-
site 90◦ angular sectors, i.e., the left and right sectors in
Fig. 8(a), and the top and bottom sectors in Fig. 8(b). These
positions correspond to the high-field and low-field states,
respectively. Besides the optimization objective described
above, for the example of Fig. 8 we also required that
the structure is self-insulated in both states, such that the
flux leakage to the surrounding space is minimized. This is
done exactly in the same way discussed in Sec. III C. As
seen in the figure, although the resulting self-insulation is
not perfect in the low-field state of Fig. 8(b), the method
did produce a satisfactory result.

(a) (b)

FIG. 8. In this example the goal is to optimize a switchable magnetic field source. The switching is performed by rotating the iron
parts shown in the figure by 90◦. The objective is thus to maximize the difference of the field-squared norm between the two states.
Moreover, we require that the flux leakage to the surrounding space is minimized.
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FIG. 9. The goal of this three-dimensional example is the same as for the case discussed in Sec. III C, namely to minimize the field
distortion with respect to a uniform field directed along the x direction. Figure 9(a) shows the optimal solution, while Fig. 9(b) shows
the evolution of the value of S during the optimization procedure; here the variable denoted as “time” indicates how long has the
optimization been carried for. As can be seen, the field distortion is reduced by 3 orders of magnitude.

H. Three-dimensional rectangular cavity

Our optimization approach can be employed for three-
dimensional optimization problems as well. To demon-
strate its effectiveness, we study the same optimization
objective discussed in Sec. III C, i.e., minimizing the field
distortion with respect to a required field distribution. In
particular, we consider the following objective functional,
which is analogous to that expressed by Eq. (27):

S = (〈H 2〉Rg − (〈Hx〉Rg )
2) . (53)

The goal is thus to generate in Rg a perfectly uniform
field oriented in the x direction. The geometry, shown
in Fig. 9(a), consists of a permanent-magnet cube with
a central cubic cavity Rg . As can be seen from the field
lines shown in Rg , the resulting magnetic field is indeed
homogeneous within the air gap.

The starting configuration used for this problem has M
aligned to the field generated by a point magnetic dipole
located in the center of the air gap, and oriented along the
x direction. Figure 9(b) shows the evolution of the value of
S as the optimization progresses according to Eq. (15). The
simulation has been carried out until the field distortion is
reduced by 3 orders of magnitude with respect to the start-
ing configuration. As can be seen, the objective could have
improved even more if the optimization had been contin-
ued for a longer time span. As for the examples discussed
in Sec. III C, the limit is the precision allowed by the
approximations that are always present when performing
any numerical computation.

IV. SEGMENTED MAGNETIZATION CASE

A. Introduction

In this section we will focus on permanent-magnet
systems that are segmented into a given number N of
uniformly magnetized pieces. The optimization objective
will be formulated exactly as for the continuous case.
The problem is then to determine the optimal set of N
regions occupied by the pieces and the directions of the
corresponding N magnetization vectors. The norm of the
magnetization is again assumed to have fixed value in Rm.

As we will see, for segmented systems we have two
sufficient conditions for the solution to be optimal with
respect to the considered objective. One condition will
apply to the set of regions and the other one to the magne-
tization vectors. These optimality conditions are analogous
to those discussed in Ref. [15] for the case of linear objec-
tives. However, for the nonlinear case these conditions
have a purely local value as they are based on the effective
field Heff = (∇MS)M, which is the gradient of a nonlinear
objective and as such depends on the point M at which
it is evaluated. Therefore, while it is possible to calculate
the infinitesimal transformation to the regions or the mag-
netization vectors that will result in the largest variation
of S , there is no way to perform a finite transformation
guaranteed to improve the value of S . Nevertheless, the
two sufficient conditions for an optimal solution form the
basis upon which an efficient optimization algorithm can
be built.

Let us now consider how the two conditions can be
derived for the case of a general nonlinear objective. The
starting observation is that as long as we transform the
current magnetization distribution M0 by an infinitesimal
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variation δM, the variation of the objective S can be
computed with the linear approximation:

δS =
∫

Rm

dV (Heff[M0]) · δM. (54)

In other words, the variation δS is computed from the vari-
ation δM multiplied by the gradient of S evaluated at the
starting point M0: the gradient Heff is thus assumed fixed.

Such an assumption is valid as long as the functional S
is continuous [25] with respect to the adopted Hilbert space
norm ‖ · ‖H

|S[M0 + δM]− S[M0]| → 0, if ‖δM‖H → 0. (55)

As norm, we will consider the square integral over Rm:

‖δM‖H =
(∫

Rm

dV ‖δM(x)‖2
)1/2

. (56)

Let us consider the following variation:

δM1 = lim
m(R)→0

{
�, for x ∈ R
0, for x /∈ R

, (57)

with ‖�‖ > 0. Here R ⊂ Rm denotes a region of space,
m(R) denotes the volume of R, and � denotes a vector
∈ R3. The variation corresponds to transforming M(x) by
a finite amount �, but over an infinitesimally small region
of space R.

One can think of the opposite situation where the mag-
netization of a finite region is transformed by an infinitesi-
mal amount, which corresponds to the following variation:

δM2 = lim
‖�‖→0

{
�, for x ∈ R
0, for x /∈ R

, (58)

with m(R) > 0.
Both the variations δM1 and δM2 satisfy ‖δM‖H → 0,

with the Hilbert-space norm defined in Eq. (56). In fact for
δM1 we have

‖δM1‖H = ‖�‖ lim
m(R)→0

m(R)1/2 = 0 (59)

and for δM2 we have

‖δM2‖H = m(R)1/2 lim
‖�‖→0

‖�‖ = 0. (60)

A continuous functional would give an infinitesimal vari-
ation δS for each of the two variations δM1 and δM2.
All the objective functionals considered in this work sat-
isfy the continuity condition. Two counterexamples of
noncontinuous functionals are given in Appendix A 2.

In the following sections we will use the variations δM1
and δM2 to construct the two optimality conditions for
nonlinear continuous objectives. It should be stressed that
the relevance of these conditions goes beyond the iterative
optimization approach that we employed in this work. In
fact, regardless of the method used to design a segmented
magnetic system, if it is optimal for a given optimization
objective it must necessarily obey those conditions. These
can thus be used as a test to evaluate the optimality of any
magnetic system with respect to any optimization objective
that can be expressed as S[H].

B. Optimal regions

We assume that the set of magnetization vectors of the
segments is fixed, and the set of regions is locally optimal.
Then on each point of the boundary between two adjacent
segments, the effective field is equally aligned (i.e., it gives
the same scalar product) with the magnetization vectors of
the two segments.

This can be seen by assuming that the condition above is
not verified and considering a suitable infinitesimal varia-
tion δM1. If at any point on the boundary the magnetization
vectors are not equally aligned to Heff, it would be con-
venient to reassign that point to the region giving the
best alignment. Such an infinitesimal transformation corre-
sponds to a variation δM1 of the kind defined by Eq. (57).
As seen from Eq. (54), such a variation would increase the
value of S , and therefore the starting configuration could
not have been optimal.

C. Optimal directions

We assume that the set of regions is fixed, and the set of
magnetization vectors of the segments is locally optimal.
Then the cross product between the magnetization vector
of each segment and the average effective field over the
corresponding region is zero, i.e., they are parallel to each
other.

Again, we can assume that the condition is not veri-
fied and consider a suitable variation δM2. In this case we
rotate by an infinitesimal amount the magnetization vector
over the whole region occupied by one of the segments.
This corresponds to a variation δM2 such as those defined
in Eq. (58). As seen from Eq. (54), if the magnetization
vector of the region is not initially aligned to the aver-
age effective field, the value of S could be increased by an
infinitesimal rotation towards the average of Heff over the
region. This argument shows that the initial configuration
could not have been optimal.

D. Iterative optimization procedure

We consider an iterative optimization procedure based
on the optimality conditions discussed in the previous sec-
tions. The procedure starts with an initial guess of the N
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uniformly magnetized regions {Rn}n=1,...,N and the corre-
sponding N magnetization vectors {Mn}n=1,...,N . From the
resulting magnetization field M we compute the field H
generated by it. Then we compute the effective magneti-
zation and the effective field generated by it. These vector
fields are all used to initialize the iteration. Each step of the
iteration consists of the following sequence of substeps:

(1) Updating the regions: the N uniformly magnetized
regions are updated. We consider the set R(0) ⊂ Rm of all
the points x where a better alignment between Heff and Mn
could be achieved by reassigning x to a different uniformly
magnetized region other than the current one. A portion of
the total volume of this set is reassigned, each point to the
region giving the best alignment. The control parameter
αreg. corresponds to the volume of the reassigned region
normalized by the volume of R(0).

(2) Computing the effective field: the effective field is
recomputed according to the updated regions.

(3) Updating the directions: the magnetization vectors
of the N regions are updated. For each of the N uniformly
magnetized regions, we consider the angle θ∗n between the
corresponding magnetization vector Mn and the average
of the effective field over that region. The magnetization
vectors are rotated towards the average effective field by a
fraction of the angle θ∗n . The control parameter αdir. corre-
sponds the angle of this rotation region normalized by the
maximum angle θ∗n .

(4) Computing the effective field: the effective field is
recomputed according to the updated directions.

As long as the variations performed in steps 1 and 3
are sufficiently small, then the associated variation of the
objective S is accurately described by Eq. (54). When this
is true, the procedure is guaranteed to lead to a monotonic
increase of S . The iteration is interrupted when the varia-
tion of S between two consecutive steps is below a certain
threshold.

Note that when αreg. and αdir. are both set to 0, the
regions and directions do not evolve at all; the infinites-
imal variation case ‖δM‖H → 0 is found close to this
limit. Vice versa, when αreg. and αdir. are both set to 1, the
variation is maximal. In this situation, the algorithm corre-
sponds to the Lloyd iteration described in Ref. [15], except
that the effective field is recomputed every time either the
regions or the directions are updated.

E. Implementation

Our implementation uses COMSOL Multiphysics with
MATLAB. Steps 2 and 4 where the effective field is recom-
puted are performed within the two COMSOL magnetic field
interfaces mentioned in Sec. II C. Steps 1 and 3, i.e., updat-
ing the uniformly magnetized regions and the correspond-
ing magnetization vectors, are performed within MATLAB

and the results are passed back to COMSOL. Appendix A 3
includes additional details on the implementation of steps
1 and 3.

V. SEGMENTED CASE: EXAMPLES

All the assumptions and notations described at the
beginning of Sec. III also apply to the segmented exam-
ples discussed in the next sections. Additionally, we set the
values of both parameters αreg. and αdir. to 1, which corre-
sponds to the maximal variation. Despite this, the iterations
still resulted in monotonically increasing S and converged
to an optimal solution for all the considered examples. This
point is also discussed in Sec. VI.

A. Field intensity

In this example we consider the same geometry of the
example discussed in Sec. III A, i.e., a rectangular mag-
net presenting a rectangular cavity. The goal is to generate
inside the cavity a magnetic field directed vertically, i.e.,
along the y component. However, there is more than one
objective functional that could be suitable for this goal.
In particular, we consider three different possibilities. The
first is the linear case, where the objective is expressed by
the following functional:

S1 =
∫

Rg

dV μ0Hy . (61)

The second possibility is the root mean square of the y
component of the field, i.e.,

S2 =
(∫

Rg

dV (μ0Hy)
2

)1/2

. (62)

Except for the 1/2 exponent, which does not cause any
difference in the final result, this objective is identical to
that discussed in Sec. III A.

Finally, we consider the problem of maximizing the air-
gap magnetic energy, similar to the example of Sec. III B,
i.e.,

S3 =
(∫

Rg

dV (μ0H)2

)1/2

. (63)

However, since we would still like the field to be generally
oriented in the y direction, we choose the starting config-
uration shown in Fig. 10(a) that will promote the desired
solution.

The results for the three optimization objectives are
shown in Figs. 10(b), 10(c), and 10(d), respectively. The
numerical results for the starting configuration and the
three cases are presented in the three columns of Table
II. The different objectives are evaluated for all cases in

064030-15



ANDREA ROBERTO INSINGA and RASMUS BJØRK PHYS. REV. APPLIED 20, 064030 (2023)

(a) (b)

(c) (d)

FIG. 10. In the three examples of Figs. 10(b), 10(c), and 10(d) the objective is to maximize the field intensity along the y direction.
However, we can attain this goal by considering three different objective functionals, which are shown in Eqs. (61), (62), and (63),
respectively. The starting state for all three cases is shown in Fig. 10(a). The geometry consists of a rectangular magnet with a central
rectangular cavity, but only one quarter of the geometry is shown here. The numerical results are presented in Table II. Please note that
none of these three examples has been optimized for self-insulation: the flux leakage outside Rm is simply not shown in these pictures.

the three rows of the table. However, the objective actu-
ally used during the optimization procedure is highlighted
by bold font weight. As can be seen, each of the three
functionals gives the maximum value for the correspond-
ing case, which is a confirmation that the optimization
approach is working correctly. In all cases, the value of
the objective increased with respect to the starting config-
uration. These results can be compared with the analogous
results for the continuous case, summarized in Table I. As
can be seen, the continuous case optimized for the average
of H 2

y outperforms all the segmented cases, which is not
surprising.

TABLE II. Different objectives associated to the goal of creat-
ing an air-gap field directed along the y direction and maximize
its intensity. The corresponding solutions are shown in Fig. 10.

Start Case 1 Case 2 Case 3

V−1
g

∫
dV μ0Hy 0.357 T 0.403 T 0.400 T 0.388 T(

V−1
g

∫
dV (μ0Hy)

2
)1/2

0.361 T 0.405 T 0.407 T 0.404 T(
V−1

g

∫
dV (μ0H)2

)1/2
0.362 T 0.407 T 0.410 T 0.412 T

B. Force between magnet and iron plane

In this section we consider an optimization problem
analogous to that discussed in Sec. III E. The objective is to
realize a segmented permanent-magnet assembly that will
exert the maximum force over a large iron plane located at
some distance from the magnet. The only difference with
respect to the discussion presented in Sec. III E is that here
we apply the optimal segmentation procedure, with three
segments. The result, shown in Fig. 11, demonstrates that
the approach described in Sec. IV D is effective in comput-
ing optimally segmented magnetic assemblies for a wide
variety of optimization objectives. In the next section we
will elaborate the scope and limitations of the optimization
approach for segmented assemblies.

VI. DISCUSSION

It is worth highlighting another fundamental difference
between linear problems and nonlinear ones. This differ-
ence is related to the presence of a point-wise constraint
on the norm of M, expressed as ‖M(x)‖ = M0, ∀x ∈ Rm.

For a linear objective functional the derivative does not
depend on the magnetization distribution. This property
implies that, if the point-wise constraint on the norm of
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FIG. 11. This example is analogous to that shown in Fig. 6, except that we consider the segmented solution. The goal is thus to
maximize the attractive force between the rectangular permanent magnet and a large iron block, whose upper boundary is indicated by
the blue line shown at the bottom of the figure.

M is not considered, there are no true equilibrium con-
figurations. The optimal solutions would be “at infinity.”
For any magnetization configuration with finite norm, it
would always be possible to improve the value of S by
increasing the magnetization in the direction of the effec-
tive field. However, doing so would violate the constraint
on the norm of M. Instead, if the constraint is applied,
once the magnetization is aligned with the effective field
everywhere, the configuration is at least locally optimal.
This category of optimization problem is schematically
illustrated in Fig. 12(a). This situation can also occur in
some cases for nonlinear objectives, as for the example of
maximizing the magnetic energy discussed in Sec. III B.

However, for nonlinear objectives this is not the only pos-
sible scenario. There could be an optimal solution of the
constrained problem, which is simultaneously an optimal
solution for the unconstrained problem, as illustrated in
Fig. 12(b). In this scenario, for a locally optimal magneti-
zation distribution M satisfying the constraint, the effective
field is not just parallel to M everywhere, but it is zero at
every point. This happens because the effective magnetiza-
tion, i.e., the gradient of S with respect to H, is also zero
at an equilibrium state of the unconstrained problem. This
is, e.g., the case of the ideal Halbach cylinder with field
homogeneity as objective, since the field is indeed per-
fectly homogeneous. This example is discussed in detail

norm
constraint

optimal
solution

improving obj. 

norm
constraint

optimal
solution

improving obj. improving obj. (a) (b)

FIG. 12. Illustration of the two kinds of optimization problems. Figure 12(a) shows the category for which the optimal solution of
the unconstrained problem is at infinity. Figure 12(b) shows the category for which there is an optimal solution of the unconstrained
problem that is also compatible with the point-wise constraint. These plots show the magnetization vector in a single point of Rm for
illustrative purpose. The arrows on the top of the figures show the direction in which the objective S is improving.
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in Sec. III C. Clearly, if there is a magnetization distri-
bution with uniform norm, which generates a perfectly
homogeneous field, we can rescale the norm of the mag-
netization everywhere by the same factor and we would
still get a perfectly homogeneous field. The same magne-
tization distribution would thus be a locally optimal point
even without the constraint on the norm of M. Not only
M×Heff is zero everywhere, but the effective field itself
is identically zero. When approaching such an equilibrium
point, the magnitude of the effective field becomes smaller
and smaller.

Neither of the two situations guarantees that the locally
optimal configuration is also globally optimal. Although in
some cases additional considerations might prove global
optimality. For the example of the Halbach cylinder the
field is perfectly homogeneous and S = 0. Since S is
always ≥ 0 this configuration is the globally optimal solu-
tion (although there might be different configurations also
leading to S = 0).

Among the examples that we considered, the second cat-
egory of optimization objectives has been computationally
harder to solve. This means that the optimal solution can in
some circumstances be more significantly affected by the
initial configuration. Moreover, the solver that integrates
the equation of motion, Eq. (15), uses a greater number of
time steps to achieve the desired tolerance. In fact, prob-
lems belonging to this category have proved to be difficult
to solve for the segmented case. Therefore, we did not
include any segmented examples of this case. However,
our experiments indicate that it would be possible to solve
similar problems with our approach, by tuning the values
of the parameters αreg. and αdir.. Instead, for the first cat-
egory of optimization objectives, we obtained the desired
results simply by setting these parameters to 1. This is an
indication that even when performing relatively large vari-
ation of the magnetization distribution, the variation of the
gradient of S is not so large as to render the gradient-based
method ineffective.

VII. CONCLUSION

We discussed a gradient-based optimization approach
based on the Landau-Lifshitz equation that can be applied
to any nonlinear objective functional as long as the analyti-
cal expression of its derivative with respect to the magnetic
field can be calculated.

The method assumes that a linear constitutive B-H
relation is satisfied at any point, an assumption that is jus-
tified in a wide range of relevant magnet-design problems.
The output is the magnetization distribution within the
permanent-magnet material satisfying a point-wise con-
straint on the norm. We applied this constraint because
the magnitude of the magnetization is determined by the
choice of permanent-magnet material, while the direction
of the magnetization is the actual unknown design variable.

Our key observation is that, when applying this con-
straint, the gradient-based optimization scheme reduces
to the Landau-Lifshitz equation governing the evolu-
tion of the magnetization distribution over the magnet
region. The linear constitutive relation, and the fact that
the derivative of the objective is calculated analytically,
ensure that the optimization algorithm is computationally
efficient.

In fact, the underlying optimization problem is signif-
icantly easier to solve than the more general problem
assumed by topology optimization approaches, because
in our method we assume μ to be fixed and the B-
H relation to be linear. By considering this less-general
optimization problem we can apply a gradient-based
approach which is more robust and computationally effi-
cient than topology optimization. Despite being less gen-
eral, the optimization problem solved by our approach
is still very relevant for magnet-design applications, as
we demonstrated by the many examples presented in our
study.

We also discussed how a similar procedure can be
applied to magnetic assemblies that are segmented into
uniformly magnetized pieces. We observed that for some
choices of optimization objective it can be problematic to
solve the segmented optimization problem. Nonetheless,
the different examples of segmented systems presented in
our study indicate that the approach is an effective way of
computing the optimal segmentation of magnetic systems
for various relevant optimization objectives.
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APPENDIX

1. Building a COMSOL model

As mentioned in Sec. II C, for the continuous case our
approach can be implemented in a single COMSOL model.
Figure 13 shows screen captures from the COMSOL inter-
face showing an example of how such a model can be built.
The model builder is shown in the middle of the figure.
As explained in Sec. II C, three coupled physical inter-
face are needed: two of them are Magnetic field interfaces,
and the third one is a Coefficient form PDE. The magnetic
fields interfaces mf2 and mf1 correspond to the real and
effective systems, respectively. The Coefficient form PDE
interface corresponds to the Landau-Lifshitz equation.

The correspondence between the symbols used in this
paper and the symbols used in the example COMSOL model
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Applied to
Landau–Lifshitz equation

Applied to
Real magnetization

Applied to

FIG. 13. Diagram of the structure of the COMSOL model, which corresponds to the implementation of the 2D example discussed in
Sec. III A.

is given by

(mf2.Hx,mf2.Hy,mf2.Hz)T ←→ H

(mf2.Mx,mf2.My,mf2.Mz)T ←→ M

(mf1.Hx,mf1.Hy,mf1.Hz)T ←→ Heff

(mf1.Mx,mf1.My,mf1.Mz)T ←→ Meff

. (A1)

Ampere’s law node in mf1 corresponds to the effective
magnetization. This is applied to the domains correspond-
ing to the air-gap region Rg . Here, we input the analytical
expression of the gradient of the objective S as a function
of the real field. For the 2D example shown in Fig. 13, the
problem is the same as the one presented in Sec. III A, i.e.,

Meff(x) = 2Hy(x)êy . (A2)

This is shown in the top-left panel of Fig. 13. The objec-
tive functional S is only passed to COMSOL through the
expression of the effective magnetization inserted here.

Ampere’s law node in mf2 corresponds to the real mag-
netization, shown in the bottom-left panel of Fig. 13. This
law is applied to the domains corresponding to the magnet
region Rm. Since the evolution of the real magnetization is
governed by the Landau-Lifshitz equation, the correspond-
ing x and y components are, respectively, set to u and v,
i.e., the dependent variables of the Coefficient form PDE
interface. For a three-dimensional example, the PDE inter-
face would instead have three variables, corresponding to
all the three vector components of M.

The Coefficient form PDE interface is applied to the
magnet region Rm. The differential equation governing u
and v is shown in the right panel of Fig. 13. The only
nonzero coefficients of the Coefficient form PDE are the

source term f and the damping coefficient da. Therefore,
written in the COMSOL notation, the equation reduces to

da
∂u

∂t
= fx

da
∂v

∂t
= fy

, (A3)

where the damping coefficient da is equal to−1/α, and the
source terms fx and fy are given by

fx = +v ∗ (v ∗ mf1.Hx− u ∗ mf1.Hy)

fy = −u ∗ (v ∗ mf1.Hx− u ∗ mf1.Hy)
. (A4)

Inspecting these expressions we can see that they corre-
spond to the first two vector components of Eq. (15) for a
two-dimensional case.

Finally, the COMSOL model includes a time-dependent
study node that integrates the set of coupled partial dif-
ferential equations. We use the direct MUMPS solver (mul-
tifrontal massively parallel sparse direct solver), with
implicit time stepping using the BDF method (backward
differentiation formula).

2. Examples of noncontinuous functionals

As a counterexample, let us consider the noncontinuous
functional Q:

Q[M] = max
x,x′∈Rm

‖M(x)−M(x′)‖. (A5)

In other words Q is the maximum norm of the difference
between magnetization vectors at two different points. Let
us apply the variation δM1 defined in Eq. (57) to a pre-
viously uniform magnetization distribution. Clearly, we
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would get a finite variation δQ = ‖�‖ when changing M
by a finite amount even if we do it in a single point. In fact,
Q is not continuous with respect to M since |δQ| does not
go to zero for ‖δM1‖H → 0.

Let us now consider the functional P defined as

P[M] = max
x,x′∈Rm:M(x) �=M(x′)

‖x− x′‖. (A6)

In other words P gives the maximum distance between
points where the magnetization is not exactly the same. Let
us apply the variation δM2 defined in Eq. (58) to a previ-
ously uniform magnetization distribution. Clearly, if M is
changed over a finite region by an infinitesimal amount,
the variation of P is finite. The variation δP is at maxi-
mum equal to the diameter of the set Rm. In conclusion, the
functional P is also noncontinuous since ‖δM2‖H → 0 for
this variation.

3. Additional implementation details

In this Appendix we discuss in more detail the imple-
mentation of steps 1 and 3 of the iteration described in
Sec. IV D. In order to do so, we introduce the scalar func-
tion n : (Rm ⊂ R3)→ N that gives the index of the region
assigned to each point, i.e., x ∈ Rn(x),∀x. Therefore, the
magnetization is defined as

M(x) =Mn, ∀ x ∈ Rn. (A7)

We define the N scalar functions Ln(x) as

Ln(x) = Heff(x) ·Mn. (A8)

We also consider the n vectors 〈Heff〉Rn that are the space
averages of the effective field over the N regions:

〈Heff〉Rn =
1

m(Rn)

∫
Rn

dVHeff(x), (A9)

where m(Rn) denotes the volume of the region Rn.
Here we will assume that the goal is to maximize S .

The same procedure applies to the case of minimization by
replacing S with −S . Below it is discussed how to update
the N uniformly magnetized regions, and how to update
the corresponding magnetization vectors.

Update regions: the regions are updated based on the
value of the scalar function �(x) defined as

�(x) = max
n′ �=n(x)

(
Ln′(x)− Ln(x)(x)

)
. (A10)

As can be seen from Eqs. (54) and (A8), the function �(x)

gives the potential improvement in reassigning a point x ∈
Rm to a different region. Our goal is to reassign a small
subset of Rm to a different region than the current one. This
set consists of those points that would give the maximum

improvement. We thus define the region R(δ) as the set of
all points for which the potential improvement is greater
than a certain value δ:

R(δ) = {x ∈ Rm : �(x) ≥ δ}. (A11)

It is convenient to consider the parameter αreg. correspond-
ing to the volume of the reassigned region normalized by
the volume of the maximum possible variation:

m(R(δ))

m(R(0))
= αreg. (A12)

Note that R(0) is the set of all the points that would ben-
efit in being reassigned to a different segment other than
the current one. In fact, when �(x) is negative there is no
possible improvement in reassigning the point x, since it is
already in the best possible region. When we set αreg. = 0
the regions are not evolving at all, vice versa when we set
αreg. = 1 the whole set R(0) is reassigned, each point to the
region giving the maximum improvement.

Update directions: the magnetization vectors of the N
regions are updated based on the values of 〈Heff〉Rn . For
each of the N regions, we introduce a rotation matrix
R

n
(θ). The rotation is performed around the axis Mn ×
〈Heff〉Rn by an angle θn. Each of the magnetization vectors
is thus rotated according to

Mn → R
n
(θn)Mn. (A13)

For each region, the maximum possible rotation that would
give an improvement corresponds to the angle that would
align Mn to 〈Heff〉Rn , i.e., the angle θ∗n defined as

θ∗n = asin
(‖Mn × 〈Heff〉Rn‖
‖Mn‖‖〈Heff〉Rn‖

)
. (A14)

It is convenient to introduce the parameter αdir. that deter-
mines the rotation of each of the N magnetization vectors
normalized by the maximum rotation that would give an
improvement:

θn

θ∗n
= αdir. (A15)

When we set αdir. = 0 the magnetization vectors Mn do not
evolve at all, vice versa when we set αdir. = 1 the rotation
aligns each of the vectors to the average of the effective
field over the corresponding region.

It is worth mentioning that in principle, the method for
updating the regions described above allows topological
changes to happen, for example, a region could become
multiply connected. This is an undesirable outcome, since
the solution does not correspond to the original problem.
However, this did not occur for the considered exam-
ples. Our approach could be modified taking inspiration
from the marching squares algorithm to avoid this problem
entirely.
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4. The adjoint method

a. Review of the method

We briefly review the idea behind the adjoint method.
We consider a real-valued objective functional Sv : U→
R defined over a Hilbert space U. The subscript v indi-
cates the explicit dependence of the functional on a design
variable v, which is an element of another Hilbert space V.
The argument of Sv will be denoted by u ∈ U. This argu-
ment must satisfy a given constraint, also referred to as
state equation, which is expressed as

Fv[u] = Lv[u]− wv = 0. (A16)

Here Fv and Lv are operators U→W, and we assume
that Lv is linear. The symbol wv denotes an element of the
Hilbert space W. Both Lv and wv depend explicitly on the
design variable v.

Therefore, u depends implicitly on v via Eq. (A16).
The purpose of the adjoint method is to calculate the total
derivative of the optimization objective S with respect to
the design variable v. In order to do that, we introduce
an additional variable λ ∈W, defined implicitly via the
following equation:

∇u (Sv[u]+ λ · Fv[u]) = 0, (A17)

where the · operator denotes the inner product defined
over the Hilbert space W. From this point on, it will be
convenient to imagine that all the elements of the Hilbert
spaces U, V, and W are expanded over a corresponding
basis. Therefore, we will express the equations in terms of
the expansion coefficients of the vectors. This is equiva-
lent to considering the weak formulation of the problem
defined above. Analogously, the linear operator L will be
expressed in matrix form. The dependence on v will be
omitted when the subscript indexes are used. Equation
(A17) is then expressed as

∂Sv

∂ui
+ ∂

∂ui

⎛
⎝∑

j

λj (
∑

i′
Lji′ui′ − wj )

⎞
⎠ = 0, ∀i, (A18)

∂Sv

∂ui
+
∑

j

λj Lji = ∂Sv

∂ui
+
∑

j

(LT)ij λj = 0, (A19)

∂Sv

∂ui
= −

∑
j

(LT)ij λj . (A20)

Expressed in vector notation

∇uSv[u] = −LT
v [λ]. (A21)

This equation is analogous to Eq. (A16), with the substi-
tutions u→ λ, w→−∇uSv[u], and Lv → LT

v . In other

words, λ satisfies the adjoint of the state equation, but with
a different source term.

We now apply the total derivative with respect to v to
Eq. (A16). This means that we are considering the implicit
dependence of u on v.

d
dvk

(∑
i

Ljiui − wj

)
= 0, ∀ k, j , (A22)

∑
i

(
∂Lji

∂vk
ui

)
−
(

∂wj

∂vk

)
= −

∑
i

Lji
dui

∂vk
. (A23)

We are finally ready to calculate the derivative that we are
interested in

d
dvk

Sv[u] = ∂Sv

∂vk
[u]+

∑
i

dui

dvk

∂Sv

∂ui
(A24)

Using Eq. (A20) we obtain

d
dvk

Sv[u] = ∂Sv

∂vk
[u]−

∑
i

dui

dvk

⎛
⎝∑

j

(LT)ij λj

⎞
⎠ , (A25)

d
dvk

Sv[u] = ∂Sv

∂vk
[u]−

∑
j

λj

(∑
i

Lji
dui

dvk

)
. (A26)

We now use Eq. (A23) to obtain the result

d
dvk

Sv[u] = ∂Sv

∂vk
[u]+

∑
j

λj

(∑
i

(
∂Lji

∂vk
ui

)
−
(

∂wj

∂vk

))
.

(A27)

This equation is coupled to Eq. (A20) in the sense that λ is
calculated by solving the adjoint equation before plugging
it into Eq. (A27) to compute the desired derivative. This is
the essence of the adjoint method.

b. Adjoint method and magnet design

When this method is applied to magnet design problems,
the most widely used choice is to consider the field u to be
the magnetic scalar potential V [8–10]. The state equation
will then be Poisson’s equation. Two main alternatives are
then possible. The first option is that the magnetization is
parametrized directly by the design variable v, and the rela-
tion B = μ0(H+M) is used. The second option is to use
the constitutive relation B = μH+ Brem, in which case μ

and the remanent flux density Brem may both depend on
v. These two alternatives lead to the corresponding state
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equations:

∇2V = ∇ ·M, (A28)

or

∇ ·
(
μ∇V

)
= ∇ · Brem. (A29)

The latter choice has the advantage that the permeability
tensor may also be dependent on the design variable v,
which is necessary when the shape of the iron parts need
to be optimized. However, it should be stressed that this
problem is intrinsically more difficult to solve due to the
highly nonlinear dependence of H on μ(x).

In both cases, the fact that the operator L is self-adjoint
is extremely convenient, which is equivalent to applying
the reciprocity theorem. For the parametrization given by
Eq. (A28), the L operator is the Laplace operator ∇2, and
wv is the divergence of the magnetization. The adjoint
equation is thus

∇2λ = ∇VSv[V] (A30)

and Eq. (A27) becomes

d
dvk

Sv[V] = ∂Sv

∂vk
[V]−

∑
j

λj

(
∇ · ∂Mj

∂vk

)
, (A31)

where the index j still refers to the coefficients of expan-
sion of M(x) and λ(x) over a basis. It is now convenient to
select the continuous basis of all three-dimensional Dirac
distributions δ3(x), and replace the discrete index j with
the continuous index x′ and the summation over j with a
volume integral.

In this work we assume that the design variable is the
magnetization itself, which is a vector field over R3. There-
fore, the index k is replaced by the continuous index x
combined with the discrete index n, which runs over the
three spatial dimensions. When expressed in terms of the
continuous basis, the term ∇ · ∂Mj /∂vk is thus replaced
by
∑

m ∂/∂x′nδnmδ3(x− x′). We also assume that the objec-
tive functional does not depend explicitly on M, but only
through V, implying that the first term on the right-hand
side of Eq. (A31) vanishes. Therefore, Eq. (A31) is written
as

∇MnS[V](x) = −
∫

dV′λ(x′)

(∑
m

∂

∂x′n
δnmδ3(x− x′)

)

= −
∫

dV′λ(x′)
(

∂

∂x′n
δ3(x− x′)

)
. (A32)

Applying a well-known property of the Dirac δ function,
we can move the differentiation ∂/∂x′n to the function λ(x′),

thus obtaining

∇MnS[V](x) = −
∫

dV′δ3(x− x′)
∂

∂x′n
λ(x′) = − ∂

∂xn
λ(x),

(A33)

where we used the definition of the Dirac δ function to
solve the integral. When expressed in vector notation, the
previous equation is written as

∇MS[V] = −∇λ. (A34)

If we interpret λ as an effective magnetic scalar potential,
Veff, and the negative of its gradient as an effective field,
then the last equation can be written as

∇MS[V] = Heff. (A35)

The adjoint equation becomes

∇2Veff = ∇ ·Meff, (A36)

where we denoted by Meff the derivative ∇HS . This
equation implies that the effective field is the field gen-
erated by the effective magnetization. In conclusion, the
method presented in this paper can be seen as a particular
case of the adjoint method, where the design variable is the
magnetization vector field M, itself.
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