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We investigate the performance of the variational quantum eigensolver (VQE) for the problem of opti-
mal flight-gate assignment. This is a combinatorial-optimization problem that aims at finding an optimal
assignment of flights to the gates of an airport, in order to minimize the passenger travel time. To study
the problem, we adopt a qubit-efficient binary encoding with a cyclic mapping, which is suitable for a dig-
ital quantum computer. Using this encoding in conjunction with the conditional value at risk (CVaR) as an
aggregation function, we systematically explore the performance of the approach by classically simulating
the CVaR VQE. Our results indicate that the method allows for finding a good solution with high proba-
bility and that it significantly outperforms the naive VQE approach. We examine the role of entanglement
for the performance and find that ansätze with entangling gates allow for better results than pure product
states. Studying the problem for various sizes, our numerical data show that the scaling of the number of
cost-function calls for obtaining a good solution is not exponential for the regimes that we investigate in
this work.
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I. INTRODUCTION

In recent years, variational quantum algorithms (VQAs)
[1–3] have become increasingly relevant due to substantial
progress in quantum hardware development. Such algo-
rithms typically do not require deep quantum circuits that
could only be faithfully executed on fully error-corrected
quantum computers. Instead, they are amenable to noisy
intermediate-scale quantum (NISQ) devices (for various
proof-of-principle demonstrations, see, e.g., Refs. [1,4–
10]). While such algorithms are typically heuristics with-
out proven performance guarantees, there are indica-
tions that VQAs can outperform classical algorithms for
certain computationally hard problems. Besides various
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applications for quantum simulations, the solutions of
combinatorial-optimization problems are further candi-
dates for widespread applications that can be tackled with
VQAs [11].

In order to assess the potential of VQA approaches
for real-world applications, it can be useful to investi-
gate applications beyond purely academic problems and
to focus on certain industrial use cases, as they typically
exhibit additional complexity. One such example is the
flight-gate assignment (FGA) problem [12,13]. The FGA
problem is a quadratic assignment problem [14] with addi-
tional constraints, as typical for real-world applications.
Previous works have mainly investigated the solution of
the FGA problem [13] and related problems [15–17] with
quantum annealers. Here, the constraints are incorporated
into an unconstrained cost function by penalty terms.
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These approaches have a number of disadvantages, one
of which is the typically exponentially small subspace of
valid solutions in the entire Hilbert space [17]. One method
for mitigating this issue is to constrain the algorithm to
only search the feasible subspace. This idea was origi-
nally proposed for quantum annealing [18] and was later
adapted to variational algorithms [10,19]. The applicabil-
ity of the latter approach for FGA has been investigated
by deriving suitable algorithmic primitives for constraint
invariance [20]. In Ref. [10], a proof-of-principle VQE has
been implemented for the FGA problem using an encoding
incorporating some of the constraints on IBM’s quantum
hardware, thus demonstrating the suitability of the problem
for digital quantum devices.

In this paper, we systematically assess the performance
of VQE for the FGA problem, by numerically studying
its performance using the conditional value at risk (CVaR)
[8] as an aggregation function. We adopt an encoding that
avoids a dominant subspace of invalid solutions, which is
similar to the one of Ref. [10], with the addition of a cyclic
mapping. Our study demonstrates that utilizing this encod-
ing, the CVaR VQE performs significantly better than the
naive encoding used in previous works. From classically
simulating the CVaR VQE for various problem sizes up
to 18 qubits, our results indicate that the number of cost-
function calls to obtain a reasonably large contribution of
the optimal solution in the final state does not scale expo-
nentially with the problem size. Furthermore, we examine
the role of entangling gates in the ansatz. Our results
demonstrate that ansätze creating entanglement between
qubits show a significantly better performance than circuits
preparing only product states.

The paper is organized as follows. In Sec. II, we first
introduce the FGA problem, before discussing the one-
hot encoding and the binary encoding of the problem.
Subsequently, we discuss the CVaR-VQE method and
the types of ansätze that we use in our simulations in
Sec. III. Section IV shows our numerical results for classi-
cally simulating the CVaR VQE for various problem sizes
and a comparison between entangling ansätze and ansätze
that only produce product states. Finally, we conclude in
Sec. IV.

II. THE FLIGHT-GATE ASSIGNMENT PROBLEM
AND ITS ENCODING INTO QUANTUM STATES

In this section, we first introduce the FGA problem and
then proceed with discussing two ways of encoding the
problem into quantum states: the one-hot encoding, which
does not incorporate any of the constraints, and a binary
encoding that integrates some of the constraints.

A. The flight-gate assignment problem

The FGA problem aims at minimizing the total tran-
sit time of passengers in an airport by finding an optimal

gate assignment of the flights. Although there are multi-
ple scenarios for optimizing the gate assignment of flights
at an airport, we choose the one where we seek to min-
imize the total transfer time of passengers at the airport
[12]. In this scenario, we have three kinds of passengers in
an airport: arriving passengers, departing passengers, and
transfer passengers. The arriving passengers land at the
airport with an inbound flight and need to walk from the
arrival gate to the baggage claim before leaving the airport.
Departing passengers enter the airport through the secu-
rity checkpoint and leave with an outbound flight. Transfer
passengers arrive at the airport with an inbound flight, have
to walk to the gate of their connecting flight, and leave with
an outbound flight. To model the problem mathematically
given a set of flights F and a set of gates G, we consider a
set of binary decision variables xiα that represent whether
or not a flight i is assigned to a gate α:

xiα =
{

1, if flight i ∈ F is assigned to gate α ∈ G,
0, otherwise.

(1)

Throughout the paper, we refer to gates with Greek indices,
to flights with Latin indices, and x = (xiα) ∈ {0, 1}|F|×|G|
is a binary vector collecting all of the |F| × |G| deci-
sion variables. The total passenger travel time can then be
expressed as a function of x and is given by

T(x) = Tarr(x)+ Tdep(x)+ Ttrans(x), (2)

where the three parts arise from the contributions of the
different types of passengers. The time Tarr-dep represents
the total transit time of arriving or departing passengers
and is given by the partial sums

Tarr-dep(x) =
∑

iα

narr-dep
i tarr-dep

α xiα , (3)

where narr-dep
i is the number of passengers arriving or

departing with flight i and tarr-dep
α is the time that it takes to

walk from or to gate α. The total time Ttrans of the transfer
passengers is given by the sum of the times tαβ that it takes
to go from gate α to gate β for each of the ntrans

ij passengers
who transfer from flight i to flight j (or vice versa), given
that flight i is assigned to gate α and flight j is assigned to
gate β:

Ttrans(x) =
∑

i,j ,α,β

ntrans
ij tαβxiαxj β . (4)

Note that Ttrans(x) contains a term that is quadratic in
the decision variables. Thus, minimizing the total time in
Eq. (2) is an instance of a quadratic assignment problem, a
category that is, in general, NP hard [21].

In addition, there are two constraints in the FGA prob-
lem. First, each flight can only be assigned to one gate, so
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there can only be a single nonzero decision variable among
those belonging to the same flight. This constraint can be
enforced by imposing

∀i ∈ F
∑
α

xiα = 1. (5)

Second, there can be at most a single flight at a gate at the
same time, because flights departing at the same time from
the airport cannot be assigned to the same gate. This can
be expressed as

∀α ∈ G and ∀(i, j ) ∈ P xiα × xj α = 0, (6)

where P is the set of forbidden flight pairs,

P = {(i, j ) ∈ F × F : tini < tinj < tout
i + tbuf}. (7)

In the above expression, tin-out
i is the time of arrival or

departure of flight i and tbuf is a buffer time between two
flights at the same gate. In the following, we refer to
an assignment of the decision variables fulfilling the two
above constraints as a feasible assignment.

The encoding presented above requires |G| decision
variables xi1 · · · xi|G| for each flight i ∈ F , which can be
interpreted as a bit string. The constraint in Eq. (5) then
implies that only a single entry in such a bit string can
be nonzero. Hence, we call the encoding presented above
the one-hot encoding. Since, for each flight, only |G|
assignments of the corresponding decision variables are
compliant with the constraint in Eq. (5), the total number
of feasible assignments is upper bounded by |G||F|.

B. Hamiltonian formulation using the one-hot
encoding

In order to treat the problem on a quantum computer, we
have to formulate the problem as a (quantum) Hamiltonian.
In order to minimize the objective function T(x) subject to
the constraints in Eqs. (5) and (6), we want to incorporate
the constraints in the objective function. To this end, we
translate them to positive semidefinite penalty terms the
kernels of which corresponds to valid solutions fulfilling
the constraints. These penalty terms can then simply be
added to the objective function with a large positive con-
stant in front, thus ensuring that the global minimum is the
optimal solution fulfilling the constraints.

Equation (5) can be represented as a penalty term,

Cone(x) =
∑

i

(∑
α

xiα − 1

)2

, (8)

while the second constraint in Eq. (6) can be formulated as

Cnot(x) =
∑
(i,j )∈P

∑
α

xiαxj α . (9)

Considering both the objective function and the penalty
terms, the total cost function can be formulated as
a quadratic unconstrained binary optimization (QUBO)
problem:

Q(x) = T(x)+ λoneCone(x)+ λnotCnot(x)

= c +
∑

iα

hiα × xiα +
∑
iαj β

Jiαj β × xiαxj β . (10)

In the above equation, c, hiα , and Jiαj β are the coefficients
of the corresponding terms, which depend on tarr-dep

α , tαβ ,
narr-dep

i , and ntrans
ij . The explicit formulas of these coeffi-

cients are shown in Eq. (A1) of Appendix A. The param-
eters λone and λnot are constants that have to be chosen
large enough to ensure that the solution of the above
QUBO problem satisfies the constraints. For practical pur-
poses, the values of these parameters might have to be set
carefully to make the optimization procedure efficient [13].

In order to solve this problem using a quantum device,
the QUBO problem has to be mapped to a Hamiltonian
acting on qubits. This can be easily realized by replacing
the binary decision variables xiα in Q(x) with the operators
(I − Ẑk)/2, where I is the identity and Ẑk is the Pauli Z
matrix acting on the qubit that encodes the decision vari-
able xiα . Substituting this transformation into the QUBO
problem in Eq. (10), we obtain the (quantum) Hamiltonian

Ĥ = c′Î +
N∑
p

h′
p Ẑp +

N∑
p<q

J ′
pqẐp Ẑq, (11)

where N = |F| × |G| and c′, h′
p , and J ′

pq are coefficients
related to those of the original QUBO problem [for details,
see Eq. (A3) in Appendix A]. The bit strings x are now
encoded by a computational basis state |x〉 and we call
|x〉 a feasible state if x represents a feasible assignment.
The optimal solution of the FGA problem subject to the
constraints corresponds to the ground state of the above
Hamiltonian. By construction, the ground state will be a
computational basis state, since Ĥ is diagonal in the Z
basis.

Note that in the encoding presented above, each decision
variable is mapped to a single qubit. Hence, a total number
of |F| × |G| qubits are required to address the problem on
a quantum computer. However, only |G||F| of the 2|G|×|F|
basis states correspond to an assignment for which Eq. (8)
is zero. Hence, the fraction of states in the Hilbert space
fulfilling the first constraint, and correspondingly the num-
ber of feasible states, will decay exponentially with the
problem size:

Rone
fea =

( |G|
2|G|

)|F|
. (12)
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As a result, searching for the optimal solution will become
increasingly challenging for increasing numbers of flights
and gates.

C. Hamiltonian formulation using a binary encoding

In order to avoid this exponential decay of the feasible
subspace, we use a binary encoding for the FGA problem
and derive the corresponding Hamiltonian, which is simi-
lar to the efficient embedding in Ref. [10]. In addition, we
use a more efficient cyclic mapping as shown below.

As we have discussed in Sec. II A, there are |G| assign-
ments compliant with the first constraint in Eq. (5) for
the decision variables corresponding to each flight. These
assignments can be represented with M = �log(|G|)�
(qu)bits using a binary encoding. Since |G| is in general
not a power of 2, we choose to map the elements in G to
the 2M basis states |α′〉 cyclically as

|α′〉 ↔ gate α = α′ mod |G| ∈ G, (13)

where α′ = 0, . . . , 2M − 1. In contrast, the previous work
in Ref. [10] added a penalty term for the additional states
{|α′〉 : |G| ≤ α′ < 2M }, in case G was not a power of 2.
However, this will lead to an exponential decay with |F|
for the fraction of feasible states, as these are given by(
G/2M

)|F|. The cyclic mapping used in this work can avoid
this exponential decay of feasible states and will usually
lead to many degenerate ground states (similar to the previ-
ously introduced concept of degeneracy engineering [22]),
rendering it easier to find an optimal solution. All in all, for
a total of |F| flights, this encoding allows us to represent all
possible assignments with |F| × M qubits, a lot less than
that required for the one-hot encoding. Moreover, by con-
struction, all solutions in this encoding automatically fulfill
the constraint in Eq. (5).

In order to be able to solve the problem on a quantum
computer using a VQA, we have to translate the Hamilto-
nian in Eq. (11) to this encoding. To this end, we define a
set of projection operators Pi(α

′), i = 0, . . . , F − 1 given
by

P̂i(α
′) = |α′〉 〈α′|i = |z0 · · · zM−1〉 〈z0 · · · zM−1|i

= (|z0〉 〈z0| ⊗ · · · ⊗ |zM−1〉 〈zM−1|)i . (14)

In the above expression, z0 · · · zM−1 is the bit string for
the binary representation of α′ and the index i indicates
the set of qubits related to flight i, on which the projec-
tion operators are acting. Applying P̂i(α

′) to one of the
basis states encoding the solutions compliant with the first
constraint for flight i results in a 1, if and only if flight
i is assigned to gate α, P̂i(α

′) |β ′〉i = δα′β ′ . Using these

projection operators, the Hamiltonian can be expressed as

Ĥ(Ẑ) = Ĥ arr + Ĥ dep + Ĥ trans + λnotĤ not, (15)

where the individual terms are given by

Ĥ arr-dep =
∑

i

2M −1∑
α′=0

narr-dep
i tarr-dep

α P̂i(α
′),

Ĥ trans =
∑

ij

2M −1∑
α′β ′=0

ntrans
ij ttrans

αβ P̂i(α
′)P̂j (β

′),

Ĥ not =
∑
(i,j )∈P

2M −1∑
α′β ′=0

δαβ P̂i(α
′)P̂j (β

′).

(16)

In the above expression, α and β refer to the gate indices
after applying the mapping from Eq. (13). Note that we
no longer have to impose the first constraint from Eq. (5)
with a penalty term, as it is fulfilled by construction. More-
over, the Hamiltonian can be easily decomposed into Pauli
operators using the relation

|zk〉 〈zk|i =
(

Î + (−1)zk Zi×M+k

)
/2, (17)

where we have chosen a linear ordering of the qubits.
The binary encoding with cyclic mapping still allows

for unfeasible states, as the second constraint from Eq. (6)
is not automatically fulfilled. Compared to the exponential
decay observed for the one-hot encoding, the ratio of fea-
sible solutions for the binary encoding is a lot larger and it
decays only very slowly with the problem size, as shown in
Fig. 1. In conjunction with its reduced qubit requirements,
the binary encoding with cyclic mapping is significantly
more amenable for NISQ devices, which provide only
limited resources. The Hamiltonian corresponding to the
binary encoding consists of O(|F|2 × |G|2) Pauli Z terms
with order 2 × �log(G)� or less, meaning that each Pauli Z
term only acts nontrivially on at most 2 × �log(G)� qubits.
Thus, the expectation value of the Hamiltonian can be
evaluated efficiently on a quantum computer.

III. VARIATIONAL QUANTUM EIGENSOLVER
USING THE CONDITIONAL VALUE AT RISK

The VQE is a hybrid quantum classical algorithm for
finding an approximation to the ground state of a given
Hamiltonian Ĥ by minimizing 〈ψ(θ)|Ĥ |ψ(θ)〉. Here,
|ψ(θ)〉 is a normalized ansatz state, which is parametrized
by real numbers θ . To find an optimal set of parameters, the
VQE utilizes a feedback loop between a quantum device
and a classical computer. The former is used to realize a
variational ansatz |ψ(θ)〉 in the form of a parametric quan-
tum circuit and to measure the expectation value of the
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FIG. 1. The ratio of the feasible states in the Hilbert space,
which are the states that fulfill both the first and the second
constraint, as a function of the problem size |F| × |G| for the
one-hot encoding (blue dots) and the binary encoding (orange
diamonds). As a guide for the eye, the markers are connected
with lines. The ratio of the feasible states for the one-hot encod-
ing decays approximately exponentially with the problem size
(see Eq. (12)), which is mainly caused by states violating the
first constraint. For details on instance generation, see Sec. IV.

Hamiltonian. The classical computer is running a mini-
mization algorithm suggesting a new set of parameters θ ′

based on the measurement outcome of the quantum device.
Running the feedback loop until convergence, the paramet-
ric circuit encodes an approximation of the ground state of
the given Hamiltonian. Due to its modest quantum hard-
ware requirements and its partial resilience to noise, the
VQE is one of the most promising candidates for appli-
cations on NISQ devices. While the VQE was originally
proposed for finding the ground state of a molecule [1],
it can be readily applied to many other fields (see, e.g.,
Refs. [5,23–26]).

In particular, the VQE has been proposed to solve
combinatorial-optimization problems [27–29]. Contrary
to strongly correlated quantum many-body systems, for
combinatorial-optimization problems, the problem Hamil-
tonian is diagonal and the possible solutions correspond
to basis states. Since we are only interested in obtaining
a good candidate for the solution of the combinatorial-
optimization problem, the resulting state at the end of
the VQE does not necessarily have to be dominated by
the state encoding this solution. As long as it produces
a state that has a reasonably large component of such
a solution, the projective measurements at the end will
reveal it, provided that enough measurements are taken.
Due to this property, in Ref. [8] it has been argued
that the CVaR is better suited as a cost function for
combinatorial-optimization problems than the expectation
value of the Hamiltonian. The CVaR for a random vari-
able X with the cumulative density function FX is defined
as the conditional expectation over the left ξ tail of the

distribution,

CVaRξ (X ) = E
[
X |X ≤ F−1

X (ξ)
]

, (18)

where ξ ∈ (0, 1]. This can be applied to VQE by consid-
ering only a subset of the samples obtained during the
measurement process. Suppose that we perform K mea-
surements resulting in the bit strings {z1, z2, . . . , zK} and
the corresponding energy values {E1, E2, . . . , EK}. Assum-
ing that the energy values are sorted in ascending order, the
CVaR can be calculated as

CVaRξ = 1
�ξK�

�ξK�∑
i=1

Ei. (19)

Note that for ξ = 1, the CVaRξ is simply the usual estimate
for the expectation value with K samples. In the opposite
limit, ξ → 0, the CVaRξ corresponds to selecting the mea-
surement that produces the lowest energy. Moreover, the
definition in Eq. (19) shows that the CVaRξ does essen-
tially not reward increasing the fidelity of the VQE solution
with the ground state beyond ξ , as we only consider the
subset of the �ξK� measurements with the lowest energy.

In the following, we use VQE with the CVaRξ as a
cost function to address the FGA problem. In particular,
we explore the performance for various choices of ξ as a
function of the problem size.

IV. SIMULATION RESULTS

In order to explore the performance of the VQE using
the CVaR for the FGA problem, we perform classical sim-
ulations using the QISKIT [30] framework, assuming a per-
fect quantum device without shot noise, which means that
we evaluate the cost function exactly. For our experiments,
we use the EfficentSU2 ansatz from QISKIT consisting of
parametric RY(θ) = exp(−iθY/2) rotation gates and lin-
ear entangling layers of controlled-NOT (CNOT) gates (for
an illustration, see Fig. 2). The classical minimization is
performed with constrained optimization by linear approx-
imation (COBYLA) [31], the maximum number of func-
tion evaluations for which is set to 50 times the number
of qubits, in order to avoid excessively long optimization
times.

In the following, we examine three aspects. First, we
investigate the performance of the VQE using the CVaR
for various values of ξ as a function of the problem size.
Second, we explore the effect of entanglement on the opti-
mization by using an ansatz that generates product states
only and we compare the results to those obtained with the
EfficentSU2 ansatz. Finally, we explore the scaling of the
method with the problem size.

A. Performance of the VQE using the CVaR

To investigate the performance of the VQE using the
CVaR for the FGA problem, we use the CVaR VQE
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|0〉 RY (θ1) • RY (θ4) • RY (θ7)

|0〉 RY (θ2) • RY (θ5) • RY (θ8)

|0〉 RY (θ3) RY (θ6) RY (θ9)

Layer 1 Layer 2 Layer 3

FIG. 2. The EfficientSU2 ansatz with linear CNOT entangling
layers, shown for l = 3 layers and three qubits.

to explore various instances of the FGA problem for
both the one-hot encoding and the binary encoding with
up to 18 qubits. For the one-hot encoding, the num-
ber of qubits is equal to the problem size |F| × |G| ∈
{6, 8, 10, 12, 14, 16, 18}. For the binary encoding, we can
solve the FGA problem up to |F| × |G| = 34, due its better
resource efficiency. For each problem size, we randomly
generate a set of nontrivial instances with multiple flights
and gates and pick the ones that are difficult for the clas-
sical solver, meaning the ones that take the longest time
to solve. We investigate 50 random instances of the FGA
problem for each problem size and for each instance we
run the VQE 5 times, using random choices for the ini-
tial parameters in the ansatz. Hence, in total, we explore
250 random instances for each problem size. Moreover,
we study the dependence of the results on the choice of the
parameter ξ and the number of layers l in the ansatz. To

this end, we run simulations with ξ ∈ {0.01, 0.1, 0.25, 1}
and l = 1, 2, 3.

First, we monitor the fraction of instances that reach a
certain fidelity threshold with the ground state as a func-
tion of the iteration number. The fidelity is defined as the
probability of sampling a ground state from the quantum
state |ψ〉 prepared by the VQE,

∑
z∗ |〈z∗|ψ〉|2, where {|z∗〉}

is the set of the ground states that might be degenerate
because of the cyclic mapping in Eq. (13). We choose low
fidelity thresholds, 1% and 10%, to evaluate the perfor-
mance, because even with a fidelity of 1%, the probability
of obtaining the optimal solution at least once using 1000
shots is 1 − (1 − 0.01)1000, which is more than 99.99%.
To be able to combine data for different problem sizes,
we follow Ref. [8] and consider the normalized number
of iterations corresponding to the number of cost-function
evaluations divided by the number of qubits. Figure 3
shows the results for the binary encoding and fidelity
thresholds 1% and 10% as a function of the normalized
iterations. Comparing the different columns of Fig. 3, cor-
responding to different numbers of layers in the ansatz, we
observe that in general, adding more layers yields better
results. In particular, going beyond a single rotation layer,
in which case the ansatz is able to produce entangled states,
the fraction of instances that reach the threshold at the
end of the simulation increases noticeably. Moreover, we
observe that the CVaR VQE is able to generate a significant
fraction of instances above the fidelity threshold within
just a few normalized iterations. The latter indicates that

(a) (b) (c)

(d) (e) (f)

FIG. 3. The fraction of instances attaining a fidelity with the exact solution state of at least (a)–(c) 10% and (d)–(f) 1% as a function
of the number of normalized iterations using the binary encoding. The different markers correspond to different choices of ξ = 0.01
(red dots), 0.1 (dark red triangles), 0.25 (gray diamonds), and 1 (cyan squares). The columns correspond to different numbers of layers:
(a),(d) l = 1, (b),(e) l = 2, and (c),(f) l = 3.
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even on NISQ hardware, where one might be restricted to
a small number of iterations, we have a reasonable chance
of finding a good solution.

Focusing on the results for a fidelity threshold of 1%
in Figs. 3(d)–3(f), we see that decreasing ξ improves
the results. In particular, the conventional VQE using the
expectation value of the Hamiltonian as a cost function
shows the worst performance and reaches the 1% fidelity
threshold for no more than 60% of all instances, even for
three layers [see Fig. 3(f)]. Considering a larger fidelity
threshold of 10%, shown in Figs. 3(a)–3(c), the observa-
tion is qualitatively similar, except for ξ = 0.01. The poor
performance of ξ = 0.01 in that case can be explained
by the nature of the CVaR cost function. As outlined in
Sec. III, the CVaR cost function does not reward increas-
ing the fidelity with the ground state beyond ξ . Thus, a
choice of ξ = 0.01 does in general not allow for reliably
reaching a fidelity with the ground state of 10%. Interest-
ingly, the conventional VQE (corresponding to ξ = 1) only
shows a slightly better performance than the CVaR VQE
with ξ = 0.01. Increasing ξ to the fidelity threshold, we
again observe good performance and for three layers more
than 95% of all instances reach a fidelity of at least 10%
with the exact solution. Note that the CVaR VQE also has
a better performance in optimizing the QUBO Hamiltonian
using one-hot encoding and achieves a quite high success
rate up to 18 variables (qubits) if we use ξ = 0.1 and three
layers (for details, see Fig. 8 in Appendix B).

In our theoretical study, in which we evaluate the cost
function exactly, we observe a higher success rate and
faster convergence for a lower fidelity threshold and lower
values of ξ . On quantum hardware, we have to consider
that the measurement process involves taking a finite num-
ber of samples. Smaller values for ξ imply discarding a
larger fraction of samples and, thus, fewer statistics when
estimating the cost function using sampling results. Hence,
for simulations on quantum hardware, ξ has to be cho-
sen carefully. Reference [8] suggests a choice of ξ in the
range of [0.1, 0.25] based on empirical results on quantum
hardware. In addition, current NISQ devices suffer from
a noticeable level of noise that might affect the results
further. In this work, we focus on benchmarking the perfor-
mance of the VQE on the FGA problem in an ideal setting
and investigating the best choice of ξ for NISQ hardware
is beyond the scope of this paper. Hence, for simplicity, we
focus on two scenarios, ξ ∈ {0.1, 1} with a fidelity thresh-
old of 0.1, as well as ξ ∈ {0.01, 1} with a fidelity threshold
of 0.01.

Using these scenarios, we compare the performance of
both encodings utilizing the CVaR VQE in Fig. 4. For each
problem size, we monitor the fraction of instances the max-
imal fidelity of which throughout the whole optimization
process reaches the fidelity threshold. For a fidelity thresh-
old of 10%, the binary encoding has a significantly better
performance, especially in the case of ξ = 1, which corre-
sponds to conventional VQE using the expectation value

(a) (b) (c)

(d) (e) (f)

FIG. 4. The fraction of instances attaining a fidelity with the exact solution state of at least (a)–(c) 10% and (d)–(f) 1% at the end
of the VQE for problems with up 18 variables, corresponding to up to 18 qubits for the one-hot encoding and up to nine qubits for
the binary encoding. The different markers represent the different choices of ξ = 0.01 (red dots), 0.1 (brown triangles), and 1 (cyan
squares). The columns correspond to different numbers of layers: (a),(d) l = 1, (b),(e) l = 2, and (c),(f) l = 3. The results for the binary
encoding are connected with solid lines, while those for the one-hot encoding are connected with dashed lines.
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as the cost function [see Figs. 4(a)–4(c)]. For our largest
problem size, |F| × |G| = 18, three layers of the ansatz,
and ξ = 1, the one-hot encoding only reaches the fidelity
threshold for a few percent of the instances, while for the
binary encoding, around 50% of all instances still produce
a fidelity of at least 10% [see Fig. 4(c)]. Decreasing the
value of ξ to 0.1, the drop in the fraction of instances reach-
ing the fidelity threshold with increasing |F| × |G| is still
more pronounced for the one-hot encoding. This reflects
the hardness of the VQE using a hardware-efficient ansatz
and a normal expectation value as the cost function: it is
almost impossible to find the optimal solution of the FGA
problem using conventional VQE if the number of qubits is
larger than 18. Fortunately, we can use the CVaR as a cost
function to overcome this problem, which shows a quite
high success rate even for the largest problem size stud-
ied in this work. Moreover, while the one-hot encoding can
reach the fidelity threshold of 1% with a similarly high suc-
cess rate as the binary encoding if one chooses ξ = 0.01
[see Figs. 4(d)–4(f)], the average number of function eval-
uations to achieve the fidelity threshold of 1% is a lot less
for the binary encoding compared to the one-hot encoding
for the same problem size. As we will examine in detail
in Sec. IV C, we observe that the average number of func-
tion evaluations for our largest problem size to reach the
fidelity threshold of 1% with ξ = 0.01 is about O(10) for

|0〉 RY (θ1) T RY (θ4) T RY (θ7)

|0〉 RY (θ2) T RY (θ5) T RY (θ8)

|0〉 RY (θ3) T RY (θ6) T RY (θ9)

Layer 1 Layer 2 Layer 3

FIG. 5. The quantum circuit without entangling gates, which
prepares a product state, illustrated for three qubits.

the binary encoding and O(102) for the one-hot encoding
[see also Figs. 7(b) and 10(b)].

B. Effect of entanglement on the performance

The simulation results for both the binary encoding and
the one-hot encoding improve when using a larger num-
ber of layers in the ansatz, as Figs. 3 and 4 (and also
Fig. 8 in Appendix B) reveal. However, it is not clear if
the improvement of the performance is due to an increased
number of entangling layers or merely because of the pres-
ence of more parameters in the ansatz. In order to inves-
tigate the role of entanglement in the VQE, we perform
simulations using a quantum circuit without entangling
gates by replacing the CNOT layers with single-qubit T

(a) (b)

(c) (d)

����

����

����

����

FIG. 6. A comparison of the performance of quantum circuits with and without entanglement, for solving the FGA problem using
binary encoding. The circuit with entanglement is the EfficientSU2 circuit with CNOT layers (solid lines); in the circuit without entan-
glement, the CNOT layers are replaced with single-qubit T gates (dotted lines). Similar to Fig. 4, the fraction of instances are shown
that attain a fidelity with the exact solution state of at least (a),(b) 10% and (c),(d) 1% at the end of the VQE. The columns correspond
to different numbers of layers: (a),(c) l = 2 and (b),(d) l = 3. The different markers represent different choices of ξ = 0.01 (red dots),
0.1 (brown triangles), and 1 (cyan squares).
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(a) (b)

FIG. 7. The scaling of the average number of function evaluations N with the number of qubits for binary encoding. The simulation
results are obtained using l = 1 (red dots), 2 (brown triangles), and 3 (cyan triangles) for the EfficientSU2 circuit. (a) Results corre-
sponding to a fidelity threshold of 10% with ξ = 0.1. (b) Results corresponding to a fidelity threshold of 1% with ξ = 0.01. The y axes
are in logarithmic scale.

gates following Ref. [28]. The corresponding circuit is
shown in Fig. 5.

Figure 6 shows the results for the performance of the
CVaR VQE as a function of the problem size with and
without entanglement, using the binary encoding for the
FGA problem. For two and three layers in the ansatz, the
VQE with entanglement shows a clear advantage for both
ξ = 0.1 and ξ = 0.01, especially for larger problem sizes.
In contrast, the advantage of the entangling circuit is not
obvious for the VQE using the conventional expectation
value, corresponding to ξ = 1. For the one-hot encoding,
we observe a similar behavior; however, the difference
between the two circuits is a lot smaller than that for the
binary encoding (see Fig. 9 in Appendix B). Ideally, this
comparison should be extended beyond using only prod-
uct states, thus also including correlations between qubits
that can be efficiently generated by a classical computer, as
we aim to address in future work.

C. Scaling of the number of cost-function evaluations

The results shown in the previous sections indicate
that CVaR VQE in conjunction with the binary encoding
is suitable to effectively solve the FGA problem. In the
following, we examine the scaling of the number of cost-
function calls with the problem size during the classical
minimization, in order to benchmark the efficiency. To this
end, we study the average number of cost-function evalu-
ations of the successful instances that achieve the chosen
fidelity threshold for the final state, which we refer to as N
in the following. We adopt a best-case scenario and count
the number of cost-function evaluations until the quantum
state generated by the VQE achieves the desired fidelity
threshold for the first time [32].

In Fig. 7, we show the scaling of N for the fidelity
thresholds of 1% and 10%. For both cases, we observe
a rather similar behavior. After an initially approximately
exponential increase of the number of cost-function eval-
uations, the number eventually begins to saturate around a

problem size of 14 qubits. While for a threshold of 10%
with ξ = 0.1, the value of the final plateau in the num-
ber of cost-function calls shows a slight dependence on the
number of layers, this dependence seems to be weaker for
a threshold of 1% with ξ = 0.01. Moreover, a compari-
son between Figs. 7(a) and 7(b) shows that lowering the
fidelity threshold and the value of ξ by one order of mag-
nitude only slightly reduces the number of cost-function
calls required until convergence. Regarding the random
instances that we have used here, some instances have
degenerate ground states because of the cyclic mapping in
Eq. (13). In case of a degeneracy, it can be easier to find a
ground state; however, this might influence the scaling of
the number of cost-function calls to reach a certain fidelity.
In particular, we observe a slight “staircase shape” of the
data in Fig. 7. In order to examine the effect of degenera-
cies carefully, we also explore the same scaling using a set
of random instances with |G| equal to a power of 2, such
that there are no degenerate ground states due to the cyclic
mapping in Eq. (13). For this case, we also do not observe
an exponential increase of the number of cost-function
calls up to the problem size of 18 qubits that we study (for
details, see Appendix C). While a larger number of qubits
is needed to obtain a solid conclusion for the scaling of
N , which is beyond the scope of this work, our results are
promising, as they indicate that the FGA problem can be
efficiently solved on digital quantum computers.

V. CONCLUSIONS AND OUTLOOK

In this work, we have systematically explored the per-
formance of the CVaR VQE for the FGA problem using
a resource-efficient binary encoding in conjunction with
a cyclic mapping, which is suitable for digital quantum
computers. Compared to the one-hot encoding used in
Refs. [13,20], the binary encoding with cyclic mapping
requires a noticeably smaller number of qubits and allows
for addressing the problem in a resource-efficient manner
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on NISQ devices. In particular, the fraction of solutions in
the Hilbert space that are compatible with the constraints
is substantially larger than for the case of the one-hot
encoding.

We have numerically benchmarked the performance of
the CVaR VQE for the binary encoding and compared it
to the previously used one-hot encoding and conventional
VQE. We find that using the CVaR [8] as an aggregation
function greatly improves the performance for both encod-
ings compared to conventional VQE. In particular, using
a fidelity threshold of at least 10% with the exact solution,
the CVaR VQE is able to reach this threshold for more than
80% of all instances, provided that a large enough number
of layers is chosen in the ansatz, compared to less than
40% of all instances using conventional VQE. Moreover,
the binary encoding performs significantly better than the
one-hot encoding. In particular, the CVaR-VQE approach
to the binary encoding does not show a noticeable per-
formance decrease with the problem size for the range of
parameters we study, in contrast to the one-hot encoding.

Comparing the performance of the CVaR VQE for the
binary encoding using the entangling EffiecientSU2 ansatz
to a simple ansatz without entangling gates (and, thus, pro-
ducing only product states), we find that the presence of
entanglement significantly improves the results if using
CVaR as a cost function. In particular, for larger problem
sizes, our results indicate that entanglement is beneficial
for efficiently exploring the energy landscape. Using a
fidelity threshold of 10% and three layers, with CVaR0.1
as a cost function, we observe that the entangling ansatz is
able to reach this threshold for roughly 90% of all instances
for the largest problem size that we study, compared to
roughly 40% of all instances for the product-state ansatz.

Focusing on the number of cost-function calls to obtain
a certain fidelity threshold with the exact ground states,
our data suggest that this number does not scale exponen-
tially with the problem size for the range of parameters
that we study. Consequently, the FGA problem seems to
be efficiently addressable with digital quantum computers.

The encoding that we have used in this work can be
readily implemented on gate-based quantum devices and
the number of layers and cost-function calls in our study
seem within reach on existing quantum hardware. In the
future, we plan to investigate the performance of the binary
encoding and the CVaR VQE in a realistic scenario with
noise and eventually on a quantum device.
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APPENDIX A: DETAILS OF THE HAMILTONIAN
FORMULATION USING ONE-HOT ENCODING

In Sec. II B, the FGA problem is formulated using the
one-hot encoding with the cost function in form of a
QUBO problem, as shown in Eq. (10). The correspond-
ing Ising-type Hamiltonian is given in Eq. (11). In this
appendix, we provide the explicit formulas of the coeffi-
cients for both formulations of the problem.

Considering the QUBO problem in Eq. (10), the coeffi-
cients c, hiα , and Jiαj β depend on the number of passengers,
narr-dep

i and ntrans
ij , and the different times, tarr-dep

α and tαβ , and
read

c = |F| × λone,

hiα = narr
i tarr

α + ndep
i tdep

α − 2λone,

Jiαj β = ntrans
ij tαβ + δij λ

one + δαβδ
P
ij λ

one,

(A1)

where δP
ij is nonzero if and only if the flights i and j are a

forbidden pair of flights,

δP
ij =

{
1, if (i, j ) ∈ P,
0, otherwise.

(A2)

Given a QUBO problem as in Eq. (10), we can easily
obtain the corresponding Ising Hamiltonian by replacing

the binary variables xiα in the QUBO with the operators
(I − Ẑiα)/2,

H = c +
∑

iα

hiα
(I − Ẑiα)

2
+
∑
iαj β

Jiαj β
(I − Ẑiα)(I − Ẑj β)

4

= c + 1
2

∑
iα

hiα + 1
4

∑
iαj β

Jiαj β + 1
4

∑
iα

Jiαiα

+
∑

iα

⎡
⎣−1

2
hiα − 1

4

∑
j β

(Jiαj β + Jj βiα)

⎤
⎦ Ẑiα

+ 1
4

∑
iα �=j β

Jiαj β ẐiαẐj β . (A3)

The index iα can be mapped to the qubit index p by a linear
mapping, p = i × |G| + α, which allows for expressing
the Hamiltonian as

Ĥ = c′Î +
N∑
p

h′
p Ẑp +

N∑
p<q

J ′
pqẐp Ẑq, (A4)

(a) (b) (c)

(d) (e) (f)

FIG. 8. The fraction of instances with the number of normalized iterations using one-hot encoding. There are four different CVaR
coefficients, ξ ∈ {0.01, 0.1, 0.25, 1}. The columns correspond to different numbers of layers: (a),(d) l = 1, (b),(e) l = 2, and (c),(f)
l = 3. As mentioned in Sec. IV A, the problem size of the FGA problem in one-hot encoding is from six variables to 18 variables and
there are 250 random instances for each problem size, so there are 1750 instances in total in the one-hot encoding for each ξ and each
l. The plots show the fraction of instances that achieve a certain fidelity in the 1750 total instances.
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with the coefficients

c′ = c + 1
2

∑
iα

hiα + 1
4

∑
iαj β

Jiαj β + 1
4

∑
iα

Jiαiα ,

h′
p = −1

2
hiα − 1

4

∑
j β

(Jiαj β + Jj βiα),

J ′
pq = 1

4
(
Jiαj β + Jj βiα

)
.

(A5)

In the above expression, the indices p and q correspond to
p = i × |G| + α and q = j × |G| + β.

APPENDIX B: SIMULATION RESULTS OF
ONE-HOT ENCODING

In this appendix, we provide extended simulation results
for the FGA problem using the one-hot encoding, which
results in the Ising Hamiltonian in Eq. (11). As shown
in Fig. 8, the CVaR VQE helps to improve the perfor-
mance and to have a larger number of instances that reach
the desired fidelity threshold. In particular, similar to the
binary encoding, we observe that a smaller ξ leads to better
results.

Figure 9 shows the performance of the one-hot encod-
ing using ansatz circuits with and without entanglement.
As the figure reveals, entanglement also plays a positive
role in this case; however, the advantage of the entangling

circuit is not as great as in the case of the binary encoding,
as a comparison with Fig. 6 reveals.

Finally, we also explore the scaling of the number of
function evaluations of the CVaR VQE to achieve a certain
fidelity threshold in the one-hot encoding. The results for
this case can be found in Fig. 10. For the one-hot encoding,
our scaling results are unfortunately inconclusive, as the
figure shows. After an initial exponential increase, similar
to the binary encoding, it seems that the curve starts to flat-
ten and goes toward a plateau. However, the system sizes
that we can reach in our classical simulations are too small
to solidify this conjecture.

APPENDIX C: FURTHER EXPLORATION OF THE
SCALING OF THE NUMBER OF

COST-FUNCTION EVALUATIONS

In this appendix, we examine the scaling of the num-
ber of cost-function calls with instances that have four
gates, |G| = 4, which can be exactly represented by M = 2
qubits and will not have degenerate ground states caused
by the cyclic mapping in Eq. (13). Therefore, we generate
a set of random instances with the number of qubits |F| ×
2 ∈ {4, 6, 8, 10, 12, 14, 16, 18}, with 50 random instances
for each problem size, and study the CVaR VQE for five
randomly chosen initial parameter sets for each instance.
As shown in Figs. 11(a) and 11(b), the fraction of instances
that achieve a certain fidelity threshold using the relevant

(a) (b)

(c) (d)

����

����

����

����

FIG. 9. A performance comparison of the quantum circuit with and without entanglement for one-hot encoding. The fraction of
instances that attain a fidelity with the exact solution state of at least (a),(b) 10% and (c),(d) 1%. The columns correspond to different
numbers of layers: (a),(c) l = 2 and (b),(d) l = 3. The dotted lines are related to the results obtained by the quantum circuit that only
has the one-qubit Ry and T gates (Fig. 5) and the solid lines are related to the circuit with entanglement generated by the CNOT gates
(Fig. 2). The circuit with entanglement performs better in most cases, especially for the CVaR VQE with the coefficient ξ = 0.1.
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(a) (b)

FIG. 10. The scaling of the number of the function evaluations (N ) to get the fidelity (a) 0.1 with ξ = 0.1 or (b) 0.01 with ξ = 0.01
for the FGA problem in the one-hot encoding. The results are obtained using the entangling quantum circuit with the number of layers
l ∈ {1, 2, 3}. Just as with the binary encoding (see Sec. IV C), we count the average optimal number of function evaluations of the
successful instances that have a fidelity larger than 0.1 or 0.01, respectively.

CVaR coefficient (ξ = 0.1 for fidelity 0.10, ξ = 0.01 for
fidelity 0.01) is still very high and almost all of instances
up to 18 qubits can achieve the fidelity threshold of 0.01
with CVaR0.01.

Next, we examine the average number of function calls
of the instances that achieve the fidelity threshold, which is
what we have done in Sec. IV C but for different instances.
In Figs. 11(c) and 11(d), similar to the scaling of the num-
ber of function calls shown above, the curve seems to bend
and start to flatten, so we do not observe an exponential

scaling up to 18 qubits. However, more qubits are required
to draw any solid conclusions about the scaling of the
number of function calls.

APPENDIX D: FURTHER DISCUSSION ABOUT
THE EFFECTS OF ENTANGLEMENT ON

PERFORMANCE

In Sec. IV B, we show that the entangling quantum
circuit has a better performance than the nonentangling

(a) (b)

(c) (d)

FIG. 11. The results of the FGA instances without the degenerate instances in the binary encoding using the CVaR VQE. (a),(b) The
fraction of instances that achieve the fidelity threshold using the CVaR VQE with l = 1 (red dots), 2 (brown triangles), and 3 (cyan
triangles). The results are obtained using a CVaR coefficient of (a) ξ = 0.1 for the fidelity threshold of 10% and (b) ξ = 0.01 for the
fidelity threshold of 1%. (c),(d) The average number of cost-function calls (N ) to achieve the fidelity threshold with different quantum
layers: (c) ξ = 0.1 for the fidelity threshold of 10% and (d) ξ = 0.01 for the fidelity threshold of 1%. The y axes in (c) and (d) are in
logarithmic scale.
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circuit if using CVaR as a cost function. However, the
nonentangling circuit can be efficiently simulated by a
classical computer. Thus a question arises: can the poor
performance of the nonentangling circuit be mitigated by
the cheaper sampling? In other words, can we still get the
optimal solution in a state that has lower fidelity by more
sampling of the nonentangling circuit?

To clarify the situation where the advantage of entan-
gling is more possible, we calculate the necessary shots
of the failed instances with a nonentangling circuit in
binary encoding, if we want to get the optimal solution
with a probability p = 99.9%. Focusing on the setup with
CVaR coefficient ξ = 0.01, i.e., three layers in Fig. 6(d),
almost all of the instances with the entangling ansatz
can get a fidelity larger than 0.01. For the nonentangling
ansatz, if we want to compensate its poor performance
with more sampling, the necessary shots for the failed
instances will be S = log(1 − 0.999)/log(1 − p̄ov) with
p̄ov = max(pov, 1/2N ), where pov is the maximal fidelity
over the entire iteration and N is the qubit number. There
are cases in which VQE converges to a local minimum
and the probability of the optimal solution pov is almost
zero, resulting in an extremely large shot number S. Thus
we set pov = max(pov, 1/2N ) to avoid the extremely large
shots in this case. From the estimation in Fig. 12, the nec-
essary sampling for the failed case increases rapidly with
the qubits, to values even larger than the 2N that is needed
for brute-force search. In this case, the scaling of the shots
S with the qubit number seems exponential but due to the
finite data set and the specific setup we used here, it is hard
to get a solid and general conclusion about the function
of the scaling. However, it is promising that the number of
samples needed to compensate for the poor performance of
the nonentangling ansatz increases rapidly with the qubit

FIG. 12. The shots necessary to sample the optimal solution at
least once with a probability of 99.9% for the failed instances
with a nonentangling circuit in Fig. 6(d) (number of layers
l = 3). The gray dashed line shows the shots needed for random
sampling S = log(1 − 0.999)/log[1 − (1/2N )] and the light blue
dashed line shows 2N related to the brute-force approach, where
N represents the qubit number.

number, so the advantage of better trainability of the entan-
gling ansatz will become more possible when the problem
size is large.
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