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Quantum digital signatures (QDSs), generating correlated bit strings among three remote parties for
signatures through quantum law, can guarantee nonrepudiation, authenticity, and integrity of messages.
Recently, a one-time universal-hashing QDS framework, exploiting the quantum asymmetric encryption
and universal hash functions, has been proposed to significantly improve the signature rate and ensure
unconditional security by directly signing the hash value of long messages. However, similar to quantum
key distribution, this framework utilizes keys with perfect secrecy by performing privacy amplification
that introduces cumbersome matrix operations, thereby consuming large computational resources, caus-
ing delays, and increasing failure probability. Here, we prove that, different from private communication,
imperfect quantum keys with partial information leakage can be used for digital signatures and authentica-
tion without compromising the security while having eight orders of magnitude improvement on signature
rate for signing a megabit message compared with conventional single-bit schemes. This study signif-
icantly reduces the delay for data postprocessing and is compatible with any quantum key generation
protocols. In our simulation, taking two-photon twin-field key generation protocol as an example, QDS
can be practically implemented over a fiber distance of 650 km between the signer and receiver. For the
first time, this study offers a cryptographic application of quantum keys with imperfect secrecy and paves
a way for the practical and agile implementation of digital signatures in a future quantum network.
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I. INTRODUCTION

Digital signatures are cryptographic primitives that offer
data authenticity and integrity [1], especially for the non-
repudiation of sensitive information. It has become an
indispensable and essential technique in the global Inter-
net owing to its wide application especially in digital
financial transactions, email, and digital currency. How-
ever, the security of classical digital signatures, guaran-
teed by public-key infrastructure [2–4], is threatened by
rapidly developing algorithms [5,6] and quantum comput-
ing [7]. Different from classical digital signatures, quantum
digital signatures (QDSs) can provide a higher level of
security, information-theoretic security, by employing the
fundamental principles of quantum mechanics. That is,
QDSs can protect data integrity, authenticity, and nonre-
pudiation even if the attacker utilizes unlimited computa-
tional power. The rudiment of the single-bit QDS scheme
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was introduced in 2001 [8], but it could not be imple-
mented due to some impractical requirements such as
high-dimensional single-photon states and quantum mem-
ories. Subsequently, there have been many developments
to remove these impractical requirements [9–11], making
QDS closer to real implementation. Furthermore, based
on nonorthogonal encoding [12] and orthogonal encoding
[13], respectively, two independent single-bit QDS proto-
cols without secure quantum channels were proposed and
proved to be secure for the first time. These two protocols
have triggered numerous achievements of single-bit QDS
theoretically [14–25] and experimentally [26–36].

Nonetheless, all these schemes still have several lim-
itations. Protocols utilizing orthogonal encoding require
additional symmetrization steps, which results in extra
secure channels [13]. Therefore, to guarantee information-
theoretic security, quantum key distribution (QKD) and
one-time pad encryption are required between two
receivers in orthogonal-type protocols [28,29]. Single-bit
QDS schemes based on nonorthogonal encoding [12,20,
23] are independent of additional QKD channels, but the
signature rate is sensitive to the misalignment error of the
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quantum channel. In addition, all these schemes can sign
only a one-bit message in each round. If one wants to sign a
multibit message using single-bit QDS schemes, one needs
to encode it into a new message string and sign the new
string bit-by-bit [22,37–41]. However, these solutions have
not been completely proved as information-theoretically
secure with the quantified failure probability, and the sig-
nature rate is very low and far from implementation for
long messages with a lot of bits.

Recently, an efficient QDS scheme has been proposed
based on secret sharing, one-time pad, and one-time uni-
versal hashing (OTUH) [42]. Different from single-bit
QDS protocols that require a long key string to sign
a one-bit message, this OTUH-QDS protocol offers a
method to directly sign the hash value of multibit mes-
sages through one key string with information-theoretic
security, and thus drastically improves the QDS efficiency.
However, this framework requires perfect keys with com-
plete secrecy, which is an expensive resource guaranteed
by the complete procedure of QKD or quantum secret shar-
ing (QSS). Accordingly, privacy amplification steps are
required, thereby adding to the complexity of the algorithm
and causing unendurable delays.

Here, we point out that quantum keys with imperfect
secrecy are adequate for protecting the authenticity and
integrity of messages in such a digital signature scheme.
Accordingly, we propose a new OTUH-QDS protocol
with imperfectly secret keys, utilizing only asymmetric
quantum keys without perfect secrecy to sign multibit mes-
sages. We demonstrate that our proposed scheme provides
information-theoretic security for digital signature tasks
and simulate the performance of our protocol. The result
reveals that our protocol outperforms other QDS schemes
in terms of signature rate and transmission distance. In a
practical case of signing a megabit message, the proposed
scheme has a higher signature rate by nearly eight orders
of magnitude, compared with single-bit QDS schemes due
to its robustness against message size. Moreover, we show
that our scheme can significantly reduce the computational
costs and delays of postprocessing owing to the removal of
privacy amplification. Furthermore, the proposed scheme
is a general framework that can be applied to all exist-
ing QKD protocols. When utilizing the idea of two-photon
twin-field QKD [43], one of the most efficient QKD pro-
tocols, to execute our work, a transmission distance of 650
km can be achieved with a signature rate of 0.01 times per
second.

To date, almost all quantum communication protocols
such as QKD [44–54], QSS [55–57], and quantum con-
ference key agreement [55,58] aim at generating quantum
states among the parties and extract keys with perfect
secrecy through complex postprocessing steps. Thereafter,
these keys are then used to finish the corresponding cryp-
tographic tasks such as private communication, secret
sharing, and group encryption. In contrast, the proposed

protocol offers a new approach to digital signature tasks
that only require keys with imperfect secrecy through
quantum optical communication. The troublesome post-
processing steps are thus moved out without relaxing the
security assumption. This is the first instance of applying
this kind of key to cryptographic tasks with information-
theoretic security. We believe that our proposed solution
can provide a feasible approach to the practical application
of QDS and enlighten other applications of quantum keys
with imperfect secrecy in a future quantum communication
network.

The remainder of this paper is organized as follows. In
Sec. II we review the OTUH-QDS scheme and introduce
the motivation of this work. In Sec. III we propose our pro-
tocol with two approaches of universal hashing. In Sec.
IV we give the security proof of authentication based on
quantum keys with imperfect secrecy and then the secu-
rity analysis of the proposed QDS protocol. In Sec. V we
discuss the performance of the proposed scheme and com-
pare it with both single-bit QDS and OTUH-QDS schemes.
Finally, we conclude the paper in Sec. VI.

II. PRELIMINARIES

A. OTUH-QDS protocol

The schematic of OTUH-QDS [42] is reviewed herein.
The protocol can be segmented into the distribution stage
and messaging stage, consistent with single-bit QDS intro-
duced in Appendix A 1. The length of the message is
denoted as m. The schematic of OTUH-QDS is shown in
Fig. 1(a).

1. Distribution stage

Alice, Bob, and Charlie each have two key bit strings,
{Xa, Xb, Xc} with n bits and {Ya, Yb, Yc} with 2n bits, satis-
fying the perfect correlation Xa = Xb ⊕ Xc and Ya = Yb ⊕
Yc, respectively. The distribution stage can be realized
using quantum communication protocols, such as QKD
and QSS. It needs to be mentioned that single-bit QDS
requires only the quantum part of QKD protocols, also
referred to as key generation protocol (KGP). In OTUH-
QDS, the users need to perform additional error correction
and privacy amplification steps after KGP.

2. Messaging stage

(i) Signing of Alice. First, Alice uses a local quantum
random number, characterized by an n-bit string pa, to ran-
domly generate an irreducible polynomial p(x) of degree
n [59]. Second, she uses the initial vector (key bit string
Xa) and irreducible polynomial (quantum random number
pa) to generate a random linear feedback shift register-
based (LFSR-based) Toeplitz matrix [60] Hnm, with n rows
and m columns. Third, she uses a hash operation with
Hash = Hnm · Doc to acquire an n-bit hash value of the
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(a)

(b)

FIG. 1. (a) OTUH-QDS [42]. In the distribution stage, Alice, Bob, and Charlie share key bit strings with a perfect secret sharing
relationship through the key generation protocol (KGP), error correction, and privacy amplification. In the messaging stage, Alice
generates the signature through almost XOR universal2 (AXU) hashing, and sends the message and signature to Bob. Bob then sends
his keys and received information to Charlie, who will later send his keys to Bob. Ultimately, Bob and Charlie use their own and
received keys to infer Alice’s keys and then perform AXU hashing to verify the signature. (b) Schematic of the proposed protocol. In
the distribution stage, the users only perform KGP and error correction to share keys with full correctness but some secrecy leakage.
Their keys still hold secret sharing relationship. In the messaging stage, the manipulation of classic information is analogous to that in
OTUH-QDS.

m-bit document. Fourth, she exploits the hash value and
the irreducible polynomial to constitute the 2n-bit digest
Dig = (Hash||pa). Fifth, she encrypts the digest with her
key bit string Ya to obtain the 2n-bit signature Sig = Dig ⊕
Ya using one-time pad. Finally, she uses the public chan-
nel to send the signature and document {Sig, Doc} to Bob.
Note that Sig includes the information of the irreducible
polynomial chosen for the hashing.

(ii) Verification of Bob. Bob uses the authentication
classical channel to transmit the received {Sig, Doc}, as
well as his key bit strings {Xb, Yb}, to Charlie. Thereafter,
Charlie uses the same authentication channel to forward his
key bit strings {Xc, Yc} to Bob. Bob obtains two new key bit
strings {KXb = Xb ⊕ Xc, KYb = Yb ⊕ Yc} by the XOR oper-
ation. Bob exploits KYb to obtain an expected digest and
bit string pb via XOR decryption. Bob utilizes the initial
vector KXb and irreducible polynomial pb to establish an
LFSR-based Toeplitz matrix. He uses a hash operation to
acquire an n-bit hash value and then constitutes a 2n-bit
actual digest. Bob will accept the signature if the actual
digest is equal to the expected digest. Then, he informs
Charlie of the result. Otherwise, Bob rejects the signature
and announces to abort the protocol.

(iii) Verification of Charlie. If Bob announces that he
accepts the signature, Charlie then uses his original key

along with the key sent to Bob to create two new key bit
strings {KXc = Xb ⊕ Xc, KYc = Yb ⊕ Yc}. Charlie employs
KYc to acquire an expected digest and bit string pc via XOR
decryption. Charlie uses a hash operation to obtain an n-
bit hash value and then constitutes a 2n-bit actual digest,
where the hash function is an LFSR-based Toeplitz matrix
generated by initial vector KXc and irreducible polynomial
pc. Charlie accepts the signature only if the two digests are
identical; otherwise, Charlie rejects the signature.

The core point of this protocol is to realize the perfect
correlation of the bits of the three parties, construct a
completely asymmetric key relationship for them, and per-
form one-time almost XOR universal2 hashing, specifically,
LFSR-based Toeplitz hashing, to generate the signature.
AXU hash functions are a special class of hash func-
tions that can map an input value of arbitrary length into
an almost random hash value with a preset length [61].
The signature generated in OTUH-QDS is simply the
AXU hash value of the long message to be signed, where
the AXU hash function is determined by using only one
string of Alice’s keys. After the distribution stage, Alice’s,
Bob’s, and Charlie’s keys are completely secret and cor-
rect with the relationship of secret sharing. Bob (Charlie)
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can only obtain Alice’s keys after he receives keys of Char-
lie (Bob). Thus Bob can obtain no information of Alice’s
keys which decides the AXU hash function before trans-
ferring the message and signature to Charlie. Accordingly,
Bob’s forging attack under this protocol is equivalent to
that against an authentication scenario where Alice sends
an authenticated message to Charlie. It has been proved
that such a message authentication scheme based on AXU
hashing is information-theoretically secure [60]. Conse-
quently, a forging attack is protected by one-time AXU
hash functions and the key relationship among three par-
ties. From the perspective of Alice, Bob and Charlie’s keys
are totally symmetric when they verify the signature. Thus,
Alice’s repudiation attack is prevented as well.

B. Motivation of this work

Different from all single-bit QDS protocols that require
a long key string to sign a one-bit message, OTUH-QDS
offers a method to sign multibit messages through one
key string with information-theoretic security, and thereby
drastically improves the QDS efficiency. Essentially, this
advantage is introduced by AXU hash functions, which
has been proved to be information-theoretically secure
only under perfectly secret keys in previous studies. Thus,
compared with single-bit QDS, OTUH-QDS requires extra
error correction and privacy amplification steps to realize
perfect bit correlation in the distribution stage. These post-
processing steps, especially privacy amplification, involve
multiplication calculations on matrices with comparable
length of data size, which introduces heavy computational
costs and unpleasant delays in practical scenarios. For
large-size data, the delays will become unendurable and
constrain practicality.

The process of AXU hashing is equivalent to the sce-
nario where the input value decides the function, mapping
the initial input keys into almost random output hash val-
ues. We notice that partial secrecy leakage of input value
(keys) will be concealed in AXU hash value because of
its randomness. Thus, these imperfect keys with partial
secrecy leakage will not undermine the authenticity of
messages in a QDS scheme like OTUH-QDS. Moreover,
the integrity of messages is also not compromised. Based
on this concept, in this paper we propose a solution for
OTUH-QDS protocols with imperfectly secret keys. In
other words, we implement QDS with quantum keys with-
out privacy amplification. As the additional computational
cost and delays of OTUH-QDS are primarily introduced by
privacy amplification, this concept can effectively reduce
the weaknesses of OTUH-QDS and lay the ground for the
future implementation of QDS in a quantum network.

The schematic of the proposed protocol is illustrated in
Fig. 1(b). In the distribution stage, users only perform the
error correction step after KGP, ensuring that their keys
have no mismatches, and build a secret sharing relationship

through Alice’s XOR operation. The final keys will be ran-
domly divided into several n-bit groups for AXU hashing.
Each of these groups of keys contains full correctness and
some secrecy leakage, with an upper bound, which can be
estimated through finite-size analysis using experimental
data in KGP. In the messaging stage, the rules of informa-
tion exchange are consistent with that in OTUH-QDS. We
will prove that the bit strings generated in our distribution
stage are sufficient for AXU hashing and quantify the secu-
rity bound in Sec. IV. In addition, we give two solutions
based on different types of AXU hash functions.

III. QDS PROTOCOL

A schematic of setups of the proposed QDS protocol is
discussed herein and illustrated in Fig. 2.

A. Distribution stage

Our proposal is a general framework in which KGP can
be derived from any type of QKD protocol. As an example,
the proposed scheme is demonstrated based on two-photon
twin-field (TP-TF) QKD (TP-TFQKD for simplicity) [43].
In the distribution stage, Alice-Bob and Alice-Charlie
independently implement TP-TF KGP (TP-TFKGP for
simplicity) to share key bit strings. We remark that in this
three-party protocol the processes of Alice-Bob and Alice-
Charlie are independent, and can be performed separately.
The difficulty of the experiment is the same as two-party
QKD protocols. Specifically, TP-TFKGP utilizes the idea
of two-photon interference to distribute quantum states.
Consequently, the performance is independent of proba-
bility and intensity for each user, meanwhile having high
misalignment error tolerance. The protocol is thus unaf-
fected by the addition or deletion of users (as long as the
number of users is no less than three), highly versatile, and
suitable for future quantum metropolitan networks.

1. Preparation

At each time bin i ∈ {1, 2, . . . , N }, Alice and Bob (Alice
and Charlie) each independently prepare a weak coher-
ent pulse |ei(θ i

x+ri
xπ)
√

ki
x〉 with probability pkx , where the

subscript x ∈ {a, b, c} represents the user (Alice, Bob, or
Charlie), and the phase θ i

x ∈ [0, 2π), the classical bit ri
x ∈

{0, 1}, and the intensity ki
x ∈ {μx, νx, ox, ôx} (representing

signal, decoy, preserve-vacuum and declare-vacuum inten-
sity, μx > νx > ox = ôx = 0) are chosen randomly. Then
Alice and Bob (Alice and Charlie) transmit the correspond-
ing pulses to the untrusted relay Eve through insecure
quantum channels, respectively. In addition, they send a
bright reference light to Eve to measure the phase noise
difference φi

ab (φi
ac).
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FIG. 2. Schematic of the setup of the proposed QDS protocol. The orange-red lines represent the quantum optical channel in the
distribution stage, and the black arrowed lines represent the information exchange through the classic authenticated channel in the
messaging stage. (i) In the distribution stage, Alice, Bob, and Charlie utilize a narrow-linewidth continuous-wave laser, intensity
modulator (IM), phase modulator (PM), arbitrary wave generator (AWG), and variable optical attenuator (VOA) to prepare a phase-
randomized weak coherent source with different intensities and phases. The signals from Bob and Charlie will both go through an
optical switch. An untrusted relay Eve performs interference measurement on the signals from Alice and an optical switch with a beam
splitter (BS) and a single-photon detector (SPD). After sifting, parameter estimation, and error correction, Alice can share bit strings
with Bob and Charlie, respectively. (ii) In the messaging stage, Alice transmits the desired message to Bob. Bob sends the message
along with his keys to Charlie. Charlie will then send his keys to Bob. Then Bob verifies the signature by his own and received keys.
If he accepts the signature, he will inform Charlie, who will also verify the signature by his own and received keys. The signature is
successfully validated if both Bob and Charlie accept it.

2. Measurement

Eve performs interference measurements on every
received pulse pair with a beam splitter and two detec-
tors. If one and only one detector clicks, Eve announces
that she obtained a successful detection event and which
detector clicked. In the following, we use braces with the
information of users’ intensity selection in it to distinguish
these events. For example, {μa, ob} represents the events
that Alice selects signal intensity and Bob selects vacuum
intensity.

3. Sifting

Here we only list the sifting process between Alice
and Bob for simplicity, since Alice-Bob and Alice-Charlie
are symmetric. Alice and Charlie will sift their successful
detection events following the same approach.

All successful events are segmented into two parts. The
first part is those when neither Alice nor Bob selects the
decoy or declare-vacuum intensity, i.e., {μa, ob}, {μa, μb},
{oa, μb}, and {oa, ob}, which will be used for generating
data in the Z basis to form the key. The other success-
ful events, i.e., the second part, are used for estimating
parameters. For the first part of the events, Alice randomly
matches a time bin i of intensity μa with another time bin
j of intensity oa. Thereafter she sets her bit value as 0 (1)

if i < j (i > j ), and informs the serial numbers i and j to
Bob. In the corresponding time bins, if Bob chooses inten-
sities kmin{i,j }

b = μb (ob) and kmax{i,j }
b = ob (μb), he sets his

bit value as 0 (1). Bob announces to abort the event where
ki

b = kj
b = ob or μb. To conclude, the preserved events

in the Z basis are sifted as {μaoa, obμb}, {μaoa, μbob},
{oaμa, obμb}, and {oaμa, μbob}.

For the second part of the events, Alice and Bob com-
municate their intensities and phase information with each
other via an authenticated channel. Define the global phase
difference at time bin i as θ i := θ i

a − θ i
b + φi

ab. Alice and
Bob keep detection events {ν i

a, ν i
b} only if θ i ∈ [−δ, δ] ∪

[π − δ, π + δ]. They randomly select two retained detec-
tion events that satisfy |θ i − θ j | = 0 or π , and then match
these two events, denoted as {ν i

aν
j
a, ν i

bν
j
b}. By calculating

classical bits ri
a ⊕ rj

a and ri
b ⊕ rj

b, Alice and Bob extract a
bit value in the X basis, respectively. Subsequently, Bob
always flips his bit in the Z basis. In the X basis, Bob
flips part of his bits to correctly correlate them with those
of Alice. To be specific, when the global phase difference
between two matching time bins is 0 (π ) and the two click-
ing detectors announced by Eve are different (same), Bob
will flip his bits. Otherwise, Bob will directly save his bits
for later use. The other events in the second part are used
for decoy analysis.
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4. Parameter estimation

Alice and Bob (Alice and Charlie) form the nZ-length
raw key bit from the random bits under the Z basis. The
remaining bits in the Z basis are used to estimate the bit
error rate Ez. Further, they communicate all bit values in
the X basis to obtain the total number of errors. The decoy-
state method [62,63] is used to estimate the number of
vacuum events in the Z basis, sz

0μb
, the count of single-

photon pairs, sz
11, and the phase error rate of single-photon

pairs, φz
11, in the Z basis.

5. Error correction and examination

Alice and Bob (Alice and Charlie) distill final keys
by utilizing an error correction algorithm with εcor-
correctness. [64,65] The size of the distilled key remains
nZ , and the unknown information of a possible attacker
can be expressed as H. Alice then randomly disturbs the
orders of the distilled key and publicizes the new order to
Bob (Charlie) through the authenticated channel. Subse-
quently, Alice and Bob (Alice and Charlie) divide the final
keys into several n-bit strings, each of which is used to per-
form a task in the messaging stage. The grouping process
can be considered as a random sampling. More details are
shown in Sec. IV A and Appendix C 1.

B. Messaging stage

Various AXU hash functions can be employed in the
messaging stage of the proposed protocol by follow-
ing the framework presented in Fig. 1(b). To demon-
strate the detailed procedure, we here present two specific
approaches to the messaging stage utilizing LFSR-based
Toeplitz hashing and generalized division hashing, respec-
tively. LFSR-based Toeplitz hashing is highly compatible
with hardware systems whereas generalized division hash-
ing is more suitable for realizing software systems. In a
practical case we select either method of hashing depend-
ing on the different application environments of users. The
message to be signed is denoted as M . For each M , if
using LFSR-based Toeplitz hashing, Alice generates six bit
strings XB, XC, YB, YC, ZB, ZC, each of length n. If choos-
ing generalized division hashing in the messaging stage,
Alice will only generate four bit strings XB, XC, YB, YC.
The subscripts represent the participants performing KGP
with Alice, where B represents Bob and C represents
Charlie. Thereafter, Alice will generate Xa = Xb ⊕ Xc,
Ya = Yb ⊕ Yc, and Za = Zb ⊕ Zc as her own key strings.
For the scheme with LFSR-based Toeplitz hashing the
signature rate is

RLFSR = nZ/3n, (1)

whereas for generalized division hashing it is

RGDH = nZ/2n. (2)

1. Utilizing LFSR-based Toeplitz hashing

Definition 1.—LFSR-based Toeplitz hash functions:
LFSR-based Toeplitz hash functions can be expressed as
hp ,s(M ) = HnmM , where p , s determines the function and
M = (M0, M1, . . . , Mm−1)

T is the message in the form of
an m-bit vector. The process of generating an LFSR-based
Toeplitz hash function is detailed as follows.

A randomly selected irreducible polynomial of order n
in the Galois field GF(2), p(x), determines the construction
of LFSR. The polynomial p(x) = xn + pn−1xn−1 + · · · +
p1x + p0 can be characterized by its coefficients of order
from 0 to n − 1, i.e., p = (pn−1, pn−2, . . . , p1, p0). For the
initial state s which is also represented as an n-bit vec-
tor s = (an, an−1, . . . , a2, a1)

T, the LFSR will be performed
n times to generate n vectors. Specifically, it will shift
down every element in the previous column, and add a
new element to the top of the column. For instance, the
LFSR transforms s into s1 = (an+1, an, . . . , a3, a2)

T, where
an+1 = p · s, and likewise, transforms s1 to s2. Then the m
vectors s, s1, . . . , sm−1 will together construct the Toeplitz
matrix Hnm = (s, s1, . . . , sm−1), and the hash value of the
message is HnmM .

(i) Alice obtains a string of random numbers through
a quantum random-number generator and uses it to ran-
domly generate a monic irreducible polynomial in GF(2)
of order n, denoted as p(x). The polynomial p(x) can be
characterized by its coefficients of order from 0 to n − 1,
i.e., an n-bit string, denoted by pa. Details of generating
p(x) can be found in Appendix B 1.

(ii) Alice uses her key bit string Ya and p(x) to perform
LFSR-based Toeplitz hashing and generates an n-bit hash
value Dig = HY,pa(M ), and encrypts it by Za to obtain the
final signature Sig = Dig ⊕ Za. In addition, Alice encrypts
pa by the key set Xa to obtain the encrypted string p =
pa ⊕ Xa. Here we adopt a different expression from that
in OTUH-QDS, in that we independently list the hash
value as Dig and the coefficients of the irreducible poly-
nomial as pa, i.e., Sig does not include the information of
the irreducible polynomial to avoid misunderstanding. She
then transmits {Sig, p , M } to Bob through an authenticated
classical channel.

(iii) Bob transmits {Sig, p , M } as well as his key bit
strings {Xb, Yb, Zb} to Charlie so as to inform Charlie that
he has received the signature. Thereafter, Charlie forwards
his key bit strings {Xc, Yc, Zc} to Bob. These data are all
transmitted through an authenticated channel. Bob obtains
three new key bit strings KXb = Xb ⊕ Xc, KYb = Yb ⊕ Yc,
and KZb = Zb ⊕ Zc using the XOR operation. He exploits
KXb and KZb to obtain the expected digest and string pb
via XOR decryption. He utilizes KYb and pb to establish an
LFSR-based Toeplitz matrix and derive an actual digest via
a hash operation. Bob will accept the signature if the actual
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digest is equal to the expected digest. Then he informs
Charlie of the result.

(iv) If Bob announces that he accepts the signature,
Charlie creates three new key bit strings KXc = Xb ⊕ Xc,
KYc = Yb ⊕ Yc, and KZc = Zb ⊕ Zc using his original key
and that received from Bob. He employs KXc and KZc to
acquire the expected digest and variable pc via XOR decryp-
tion. Charlie obtains an actual digest via hash operation,
where the hash function is an LFSR-based Toeplitz matrix
generated by KYc and pc. Charlie accepts the signature if
the two digests are identical.

2. Utilizing generalized division hashing

Definition 2.—Generalized division hash functions: The
generalized division hash functions can be expressed as
hP(M ) = M (x) · xn/k mod P(x), where P(x) is a monic
irreducible polynomial of order n/k in the field GF(2k), M
is the message, and M (x) is the polynomial of order m/k
in GF(2k) with every coefficient corresponding to k bits of
M . The calculation is also performed in GF(2k). The final
result is a polynomial of order n/k in field GF(2k), and can
be transformed into an n-bit string [66].

Commonly, k is set as k = 2x for simplicity, where x
is a positive integer. In the current scheme, we select
k = 23 = 8.

(i) In this case, Alice selects Xa = Xb ⊕ Xc and Ya =
Yb ⊕ Yc as her own key sets. Alice first obtains a string of
random numbers through a quantum random-number gen-
erator and uses it to randomly generate a monic irreducible
polynomial in GF(28) of order n/8, denoted by P(x). The
generation process of p(x) is detailed in Appendix B 1.
Polynomial P(x) can be characterized by its coefficients
of order from 0 to n/8 − 1. By encoding each coefficient
into an 8-bit string, we can use an n-bit string to express
P(x), denoted as Pa. Subsequently, Alice encrypts Pa by
the key set Xa to obtain the encrypted string P = Pa ⊕ Xa

(ii) Alice uses P(x) to perform the generalized divi-
sion hashing [66] to obtain an n-bit hash value Dig =
hPa(M ). She encrypts Dig by Ya to derive the signature
Sig = Dig ⊕ Ya and transmits the message along with the
obtained signature {Sig, p , M } to Bob.

Steps (iii) and (iv) are similar to those utiliz-
ing LFSR-based Toeplitz hashing. Bob and Charlie will
exchange their key strings in turn through an authenticated
channel and examine their expected and received digests.

This summarizes the entire procedure of the proposed
protocol. Note that the TP-TFKGP can be replaced by
any other KGP such as BB84-KGP or sending-or-not-
sending (SNS)-KGP. Actually, in the distribution stage,
Alice shares bit strings with Bob and Charlie in the rela-
tionship of secret sharing. Thus, the distribution stage can
also be performed based on QSS without employing the
privacy amplification step.

IV. SECURITY ANALYSIS

Similar to OTUH-QDS, the core point of the proposed
protocol is the security of the authentication based on
AXU hashing, which directly protects the security of QDS
against forgery [42]. However, the security of our protocol
differs because of the information leakage during the dis-
tribution stage. In this section, we first analyze the success
probability of an attacker guessing a key string generated
in the distribution stage, and thereafter provide a more
detailed security analysis of AXU hashing under imperfect
keys with partial secrecy leakage, and finally demonstrate
the security of our protocol.

A. Guessing probability of the attacker

Unlike QKD, that generates keys with perfect secrecy,
in our protocol the keys are imperfectly secret. Any pos-
sible attackers may obtain partial information on the keys.
After the distribution stage, users share keys in the form
of several n-bit strings. We need to quantify the informa-
tion leakage and bound the maximum probability of the
attacker guessing such a string of keys. Suppose an n-
bit key string as X and the attacker’s system is B. We
consider a general attack scenario where attackers can exe-
cute any entangling operations on the system of any or
all states, obtain a system ρx

B, and perform any positive
operator-valued measure {Ex

B}x on it. The probability that
the attacker correctly guesses X using an optimal strategy
is denoted as Pguess(X | B). According to the definition of
min-entropy in Ref. [67],

Pguess(X | B) = max
{Ex

B}x

∑

x

Px tr(Ex
Bρx

B) = 2−Hmin(X | B)ρ , (3)

where Hmin(X | B)ρ is the min-entropy of X and B. If
X is generated in the distribution stage of our protocol,
Hmin(X | B)ρ can be estimated by

Hmin(X | B)ρ = Hn. (4)

Thus, we have the relationship

Pguess(X | B) = 2−Hn , (5)

which means that the attacker can correctly guess X with
a probability no more than 2−Hn . The Hn here is the total
unknown information of the n-bit string and can be upper-
bounded by parameters estimated in the distribution stage,

Hn ≤ szn
0μb

+ szn
11[1 − H(φzn

11
)] − nfH(Ez), (6)

where f is the error correction efficiency, szn
0μb

and szn
11 are

the lower bounds of vacuum events and single-photon pair
events in the n-bit string, respectively, and φzn

11
is the upper

bound of the phase error rate of single-photon pairs in the
n-bit string. More details of the calculation are given in
Appendix C 1.
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B. Security of authentication based on hashing

In our QDS schemes, hashing is used to perform the
authentication task. Thus we first consider the authenti-
cation scenario where the sender generates a signature
Sig = h(M ) ⊕ r as message authentication code, and sends
{M , Sig} to the recipient. The attacker can intercept and
capture {M , Sig}, tamper a new message and signature
{M ′, Sig′}, and send it to the recipient, who will examine
whether Sig′ = h(M ′) ⊕ r before accepting it. The attacker
succeeds if and only if a combination {m, t} is selected
with the relationship h(m) = t, and {M ′ = M ⊕ m, Sig′ =
Sig ⊕ t} is sent to the recipient. In this case, the recipient
will accept the message because of the relationship h(M ⊕
m) = h(M ) ⊕ h(m) = Sig ⊕ t. It should be mentioned that
m �= 0 due to the requirement for a valid forgery.

Suppose keys generated in the distribution stage of our
protocol, i.e., keys with partial information leakage, are
used to perform this authentication task, and define ε as
the success probability of the attacker under this scenario.
We should consider three types of possible attacks. The
first one is to randomly generate m, t. It is a trivial strategy
whose success probability is only

ε1 = 2−n. (7)

The other two types of attacks are guessing keys that
decide the hash function and recovering the function from
signatures.

1. Attack of guessing keys

The LFSR-based Toeplitz hash function is represented
as hp ,s(M )= Hnm · M , where Hnm is determined by the two
bit strings p and s [60]. Herein we follow the terminology
in the messaging stage of the proposed protocol where p
is actually pa encrypted by Xa, s is Ya, and the hash value
Dig is encrypted by Za. We show that guessing only Xa or,
in other words, guessing only pa is enough to execute an
optimal attack by a proposition.

Proposition 1.—For the LFSR-based Toeplitz hash
function hp ,s(M )= Hnm · M , if p(x) | M (x) = Mm−1xm−1 +
· · · + M1x + M0, then hp ,s(M ) = 0.

The proof of this proposition is shown in Appendix B 2.
It means that the attacker can easily generate a message
m satisfying the relationship h(m) = 0 if he knows p . In
the scenario described above, suppose the attacker obtains
a string Xg as his estimation of Xa. He can decrypt it to
obtain pg as his guessing of pa and transform pg into a poly-
nomial pg(x). Thereafter the attacker can easily generate a
bit string m satisfying pg(x) | m(x), and there is the rela-
tionship h(m) = 0 if pg = pa (or equivalently Xg = Xa)
according to Proposition 1. Then he can tamper the mes-
sage into M ⊕ m without changing the signature. Thus
{M + m, Sig} will pass the authentication test if Xg = Xa.

As m(x) is of order m and the polynomial is of order
n, the attacker can select no more than m/n polynomials

and multiply them to comprise his choice of m(x). In other
words, he can guess the string Xa for no more than m/n
times. It must be considered that the attacker knows pa
is irreducible, so he will only choose those guesses that
satisfy pa is irreducible. The success probability of this
optimized strategy can be expressed as

P1 = m
n

· P(Xa = Xg | pg ∈ I), (8)

where P(A | B) represents the probability of event A under
the condition that event B occurs, and I denotes the set
of all irreducible polynomials of order n in GF(2). The
cardinal number of I , i.e., the number of all nth-order
irreducible polynomials in GF(2), is more than 2n−1/n.
Thus P(pg ∈ I) ≤ (2n−1/n)/2n = 1/2n. It is obvious that
P(Xa = Xg , pg ∈ I) = P(Xa = Xg) because if Xa = Xg
then pg = pa ∈ I . Then we can obtain the upper bound of
the success probability of this type of attack, denoted as
εLFSR, as

P1 = m
n

· P(Xa = Xg)

P(pg ∈ I)

≤ m
n

· 2−Hn

1/(2n)

= m · 21−Hn = εLFSR.

The attacker can also guess the strings Xa and Ya to obtain
p and s, so that he can guess the hash function and make
a successful attack for certainty. Under this circumstance,
his success probability is no more than εLFSR,

P2 = P(Xa = Xg , Ya = Yg | pg ∈ I)

≤ P(Xa = Xg | pg ∈ I)

≤ εLFSR.

The generalized division hash function hP(M ) = m(x) ·
xn/8 mod P(x) is determined only by P. As earlier, we
also follow the terminology in the proposed protocol that P
is Pa encrypted by Xa and the hash value Dig is encrypted
by Ya. The attacker’s strategy is to guess a string Xg such
that he can obtain Pg and then forge a message. Analo-
gous to the analysis discussed above, the upper bound of
the success probability is defined as

εGDH = m
n

· 2−Hn

4/n
= m · 2−2−Hn . (9)

The only difference in the calculation is that there are at
least 2n−1/(n/8) irreducible polynomials of order n/8 in
GF(28), so P(Pg ∈ I) ≥ (2n−1/(n/8))/2n = 4/n.
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2. Attack of recovering keys from signature

The attacker can attempt to recover the desired keys
from the captured signature. In both kinds of hashing, the
hash value is encrypted to generate the signature. Thus the
attacker must first guess the corresponding key strings (Za
in LFSR-based Toeplitz hashing or Ya in generalized divi-
sion hashing) and then perform the recovering algorithm.
The success probability of this strategy is no more than that
only guessing the bit string (P(Za = Zg) or P(Ya = Yg))
and is obviously no more than εLFSR or εGDH.

In conclusion, the optimal strategy on LFSR-based
Toeplitz hashing and generalized division hashing is to
guess the key string that encrypts the polynomial. We
can quantify the upper bound of the failure probability
of authentication based on both types of hashing with
imperfect keys of secrecy leakage:

εLFSR = m · 21−Hn , (10)

εGDH = m · 2−2−Hn . (11)

C. Security of the QDS scheme

Finally, we analyze the security in the QDS scheme,
which contains three parts, robustness, repudiation, and
forgery.

1. Robustness

The honest run abortion means the protocol is aborted
when all parties are honest. It occurs only when Alice
and Bob (or Charlie) share different key bits after the dis-
tribution stage. In the proposed protocol, Alice and Bob
(Charlie) perform error correction in the distribution stage.
Thus, they share the identical final key, and the honest run
occurs only in the case where errors occur. The robust-
ness bound is εrob = 2εcor + 2ε′, where εcor is the failure
probability of the error correction protocol in the distri-
bution stage, and ε′ is the probability that error occurs in
classical message transmission. We remark that we assume
ε′ = 10−11 for simplicity since it is a parameter of classical
communication.

2. Repudiation

Alice successfully repudiates when Bob accepts the
message while Charlie rejects it. For Alice’s repudiation
attacks, Bob and Charlie are both honest and symmetric
and possess the same new key strings. They will converge
on the same decision for the same message and signature.
In other words, when Bob rejects (accepts) the message,
Charlie also rejects (accepts) it. Repudiation attacks suc-
ceed only when errors occur in one of the key exchange
steps. Thus, the repudiation bound is εrep = 2ε′.

3. Forgery

Bob forges successfully when Charlie accepts the tam-
pered message forwarded by Bob. According to the pro-
posed protocol, Charlie accepts the message if and only
if Charlie obtains the same result through one-time pad
decryption and one-time AXU hash functions. In principle,
this is the same as an authentication scenario in Sec. IV B
where Bob is the attacker attempting to forge the informa-
tion sent from Alice to Charlie. Therefore, the probability
of a successful forgery εfor can be determined by the fail-
ure probability of hashing, i.e., one chooses two distinct
messages with identical hash values. For the scheme uti-
lizing LFSR-based Toeplitz hash, εfor = m · 21−Hn , and for
generalized division hashing, εfor = m · 2−2−Hn .

The total security bound of QDS, i.e., the maximum fail-
ure probability of the protocol, is ε = max{εrob, εrep, εfor}.

V. DISCUSSION

From Eqs. (1), (2), (10), and (11), there are just differ-
ences of a constant 2/3 between the two signature rates
and a constant 8 between the two security parameters.
The difference between the two approaches is trivial. For
simplicity, we only discuss the protocol with generalized
division hashing in this section.

To demonstrate the advantage of the current proposal,
we first build our protocol based on BB84-KGP, SNS-
KGP, and TP-TFKGP, and compare them with decoy-state
BB84-QDS [13] and SNS-QDS [21] which are single-
bit QDS protocols based on BB84-KGP and SNS-KGP.
We also compare SNS-QDS with random pairing [24],
which improves the signature rate of SNS-QDS and can
be applied to other QDSs. More details of the calculation
are shown in Appendix C. In the simulations, we con-
sider two common cases where each message to be signed
is 103 bits (1 kb) and 106 bits (1 Mb), respectively. The
repetition rate of the laser is 1 GHz, and the distances
between Alice-Bob and Alice-Charlie are assumed to be
the same. The unit of signature rate is set as times per
second (tps). Detailed analysis is shown in Appendix A 2.
Other simulation parameters are listed in Table I.

It should be mentioned that all conventional single-bit
QDS protocols sign only a one-bit message every round.
In the case of signing the multibit message, an m-bit mes-
sage must be encoded into a new sequence with length h by

TABLE I. Simulation parameters: ηd and pd denote the detec-
tor efficiency and dark count rate, respectively; ed represents the
misalignment error rate; N is the data size; α is the attenuation
coefficient of the fiber; f is the error correction efficiency; and ε

is the failure probability of QDS schemes.

ηd pd ed N α f ε

70% 10−8 0.02 1013 0.165 1.1 10−10
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FIG. 3. Signature rates of the proposed protocol with TP-
TFKGP, BB84-KGP, SNS-KGP, decoy-state BB84-QDS [13],
SNS-QDS [21], and SNS-QDS with random pairing [24] with
the message size of 1 kb. In the proposed protocol, we use gen-
eralized division hashing in the messaging stage. The repetition
rate of the laser is 1 GHz. The distances between Alice-Bob and
Alice-Charlie are assumed to be the same. The data size N is 1013

and the security bound is 10−10.

inserting “0” and adding “1” to the original sequence. The
signing efficiency, i.e., η̂ = m/h, is obviously less than 1.
For simplicity, we use the upper bound η̂ = 1, i.e., h = m,
in our simulation. It is obvious that key consumption of
single-bit QDS increases linearly with message size m. In
other words, the signature rate is proportional to 1/m. In
our proposed scheme, the signature is generated by hash
functions operating on the message, so that the signature
rate is robust against the length of the message. From
Eqs. (10) and (11), ε increases linearly as m increases, but
decreases exponentially as Hn increases. Thus, to guaran-
tee the same epsilon, Hn, which is proportional to group
size n, increases logarithmically with m. Consequently, the
signature rate of the proposed scheme is proportional to
− log2 m.

The simulation results of all the protocols mentioned
are presented in Figs. 3 and 4. For the message size of
1 kb, our protocols show an advantage on signature rate
of over five orders of magnitude compared with conven-
tional QDS schemes, which is a quite large improvement
than SNS-QDS with random pairing. If the message size
becomes 1 Mb, the signature rate of conventional BB84-
QDS, SNS-QDS, and SNS-QDS with random pairing will
decrease by three orders of magnitude, whereas that of our
protocols decreases only slightly. Thus the proposed QDS
scheme delivers a signature rate eight orders of magni-
tude higher than previous schemes. As demonstrated, the
proposed protocol shows great robustness to message size.

Furthermore, based on TP-TFKGP, the proposed
scheme can reach a transmission distance of 650 km as
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FIG. 4. Signature rates of the proposed protocol with TP-
TFKGP, BB84-KGP, SNS-KGP, decoy-state BB84-QDS [13],
SNS-QDS [21], and SNS-QDS with random pairing [24] with
the message size of 1 Mb. In the protocol, we use generalized
division hashing in the messaging stage. The repetition rate of
the laser is 1 GHz. The distances between Alice-Bob and Alice-
Charlie are assumed to be the same. The data size N is 1013 and
the security bound is 10−10.

well as a signature rate of approximately 0.01 tps. This is
an immense breakthrough in terms of both distance and
signature rate, indicating the considerable potential of the
proposed protocol in the practical implementation of QDS.
The performance of the proposed protocol under different
data sizes 109, 1011, and 1013 is depicted in Fig. 5. The
curve of N = 109 stops at 1 tps, i.e., one time for all data,
because signing less than 1 time (1 message) for all data is
nonsense. The result shows that, even with a data size as
small as 109, the proposed protocol can reach a transmis-
sion distance of 350 km, and the performance of data size
N = 1011 is close to that of N = 1013. The influence of
finite-size effects caused by small data size on our protocol
is at an acceptable level.

Compared with OTUH-QDS, the proposed protocol
does not require perfectly secret keys, and thus involves no
privacy amplification step. Therefore, the proposed proto-
col only consumes keys with partial information leakage,
which is an affordable and practical resource compared
with perfect quantum keys generated by quantum secure
communication. Error correction of quantum keys can be
easily performed by classical Cascade protocol [64,65]
where the bit string is first blocked and then manipu-
lated by blocks. Thus the complexity of error correction
increases linearly with the data size N and can be per-
formed via stream computing. Privacy amplification, how-
ever, requires a hash matrix multiplication step where the
numbers of columns and rows are proportional to N . Thus
the computational complexity of privacy amplification is
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FIG. 5. Signature rates of the proposed protocols with TP-
TFKGP under different data sizes N = 109, 1011, and 1013. The
message size is assumed to be 1 Mb, and the repetition rate of the
laser is 1 GHz. The security bound is 10−10.

O(N 2). The fast Fourier transform algorithm can reduce
the complexity to O(N log N ) [68], and one can also block
the keys before performing privacy amplification. How-
ever, as the minimum blocks should be adequately large
to minimize the finite-size effect, the actual computational
cost and delay of privacy amplification are still very large.

The times taken in conducting consumption of error cor-
rection, privacy amplification, and data transmission are
listed in Table II, including the total postprocessing time of
both protocols, at a distance of 400 km with data sizes 1013

and 1011. Details of the simulation are given in Appendix
D. If N = 1011, time consumption of postprocessing in
OTUH-QDS is 6.6 s, while that of the proposed protocol is
3.62 s. Moreover, when N = 1013, time for privacy ampli-
fication is 5.71 h, which will introduce a quite long delay in
experiment. Accordingly, time for error correction is only
8.07 min. The proposed scheme, free of privacy amplifi-
cation, can significantly save computational resources and
minimize postprocessing delays.

We further compare the signature rates of the proposed
protocol and that of OTUH-QDS [42]. Theoretically, the
two signature rates should be equal under ideal condi-
tions. In practical cases, there are two effects that influence
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FIG. 6. Ratio of the signature rate of the proposed protocol
with TP-TFKGP and that of OTUH-QDS [42] combined with
TP-TFQKD, if not considering the postprocessing time, with data
sizes 1013 and 1011. The message size is 1 kb and the repeti-
tion rate of the laser is 1 GHz. The ratio is more than 0.8 with a
transmission distance lower than 500 km.

the performance of the proposed protocol compared with
OTUH-QDS. The first effect is that in our protocol the
parameter n is optimized, which will improve the signature
rate compared with OTUH-QDS. This effect will decrease
as distance increases. The second effect is that in our proto-
col we consider the statistical fluctuation of the error rate in
the grouping process. This effect will damage the signature
rate compared with OTUH-QDS. At both long and short
distances, this effect is slight because the size of groups is
small and the error rate is small, respectively.

In Fig. 6, we depict the ratio of the signature rate of
the proposed protocol based on TP-TFKGP and that of
OTUH-QDS [42] combined with TP-TFQKD, if not con-
sidering the postprocessing time, with data sizes of 1013

and 1011, and message size of 1 kb. The result shows that
the ratio is more than 80% for transmission distances less
than 500 km. Overall, the signature rates of the two proto-
cols are comparable. In addition, in the case of assuming
the repetition rate of the laser as 1 GHz, the time con-
sumption for postprocessing (2.057 × 104 s) is even longer
than the time for data transmission (104 s) for N = 1013.
The signature rate of OTUH-QDS will be constrained by

TABLE II. Time consumption of error correction TEC and privacy amplification TPA under different data sizes, N = 1013 and N =
1011, when the distance is 400 km: T1 = TEC and T2 = TEC + TPA represent the postprocessing time of the proposed scheme and
OTUH-QDS, respectively; nZ is the number of raw bits generated in TP-TFKGP; and l is the length of keys after privacy amplification.
In the case N = 1013, the postprocessing time of OTUH-QDS is 5.85 h, and that of the proposed protocol is only 8.07 min.

N nZ Errors l TEC TPA T1 T2

1013 1.695 × 108 300 4.87 × 107 8.07 min 5.71 h 8.07 min 5.85 h
1011 1.267 × 106 39 830 2.51 × 105 3.62 s 2.98 s 3.62 s 6.6 s
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the efficiency of privacy amplification. That is, in practice,
the signature rate of OTUH-QDS is lower than the sim-
ulation result, while the proposed scheme can overcome
this shortcoming. Considering the fact that the proposed
protocol can save postprocessing time by even 100 times,
our proposal shows significant improvement in the practi-
cal scenario especially when the digital signature tasks are
performed at high frequency and the data size is large.

VI. CONCLUSION

In summary, in this paper we prove that keys with partial
secrecy leakage can protect the authenticity and integrity
of messages if combined with AXU hash functions. Fur-
thermore, we theoretically propose an efficient QDS pro-
tocol utilizing imperfect quantum keys without privacy
amplification based on the framework of OTUH-QDS,
reducing computational resources and delays of postpro-
cessing without compromising security. The simulation
results demonstrate that the proposed protocol outperforms
previous single-bit QDS protocols in terms of both signing
efficiency and distance. For instance, for a message of 1
MB size to be signed, the signature rate of the proposed
protocol is higher than that of single-bit QDS protocols by
over eight orders of magnitude.

Specifically, for the protocol based on TP-TFKGP, the
transmission distance can reach up to 650 km and still
holds a signature rate of 0.01 tps. Moreover, compared
with OTUH-QDS, the proposed protocol notably saves the
postprocessing time into an endurable range and, there-
fore, significantly improves the practicality. Our scheme
is a general framework that can be applied to any exist-
ing QKD or QSS protocol, and is highly compatible
with future quantum networks and feasible in numerous
applications.

Additionally, this work, only requiring keys with imper-
fect secrecy, is a new approach of quantum communication
that is different from other quantum secret communica-
tion protocols. We suggest that raw quantum keys can
be directly used to finish cryptographic tasks, including
message authentication and digital signatures, indicating
the enormous potential of this resource and the possibility
of removing the classical postprocessing step in a future
quantum world. We believe that the proposed scheme and
the idea of utilizing imperfect quantum keys provide a
solution for the real implementation of practical and com-
mercial QDS as well as other quantum cryptography tasks
in future quantum networks.
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APPENDIX A: SINGLE-BIT QDS

1. Schematic of single-bit QDS

Here, we first introduce orthogonal encoding QDS [13]
as an example of single-bit QDS schemes. Commonly,
all single-bit QDS protocols can be segmented into two
stages: the distribution stage and the messaging stage. The
schematic of orthogonal encoding QDS is shown in Fig. 7.

a. Distribution stage

(i) For each possible future message m = 0 or 1, Alice
uses the KGP to generate four keys of different length
L, i.e., A0

B, A1
B, A0

C, A1
C, where the subscript denotes the

participant with whom she performed the KGP and the
superscript denotes the future message, to be decided later
by Alice. Bob holds the length-L strings K0

B and K1
B and

Charlie holds the length-L strings K0
C and K1

C.
(ii) For each future message, Bob and Charlie sym-

metrize their keys by choosing half of the bit values in their
Km

B and Km
C and sending them (as well as the corresponding

positions) to the other participant using the Bob-Charlie
secret classical channel. They will only use the bits they
did not forward and those received from the other partici-
pant. Their final symmetrized keys are denoted as Sm

B and
Sm

C . Bob (and Charlie) will keep a record of whether an ele-
ment in Sm

B (Sm
C ) came directly from Alice or whether it was

forwarded to him by Charlie (or Bob).

b. Messaging stage

(i) To send a signed one-bit message m, Alice sends
(m, Sigm) to the desired recipient (say Bob), where sigm =
(Am

B , Am
C).

(ii) Bob checks whether (m, Sigm) matches his Sm
B and

records the number of mismatches he finds. He separately
checks the part of his key received directly from Alice and
the part of the key received from Charlie. If there are fewer
than sa(L/2) mismatches in both halves of the key, where
sa < 1/2 is a small threshold determined by the parame-
ters and the desired security level of the protocol, then Bob
accepts the message.

(iii) To forward the message to Charlie, Bob forwards
the pair (m, Sigm) that he received from Alice.

(iv) Charlie tests for mismatches in the same way, but,
in order to protect against repudiation by Alice, he uses
a different threshold. Charlie accepts the forwarded mes-
sage if the number of mismatches in both halves of his
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FIG. 7. Orthogonal encoding QDS. In the distribution stage, Alice-Bob and Alice-Charlie independently perform KGP to generate
correlated bit strings with limited mismatches. Then Bob and Charlie symmetrize their keys by exchanging half of their keys. In the
messaging stage, Alice generates the signature depending on the message bit, and sends the message and signature to Bob, who will
transfer it to Charlie. Bob and Charlie examine their mismatch and compare it with the threshold to verify the signed message.

key is below sv(L/2), where sv is another threshold, with
0 < sa < sv < 1/2.

KGP is actually part of the QKD protocol except for the
error correction and privacy amplification steps. In the dis-
tribution stage, Am

X and Km
X generated through KGP are

correlated with limited mismatch, and Am
X contains fewer

mismatches with Km
X than does any string produced by

an eavesdropper, where X ∈ {B, C} represents Bob and
Charlie, and m is the message. After Bob and Charlie’s
symmetrization step, Bob holds Sm

B and Charlie holds Sm
C ,

each containing half of Km
B and Km

C . From the perspective
of Alice, Sm

B and Sm
C are symmetric. Alice has no informa-

tion on whether it is Bob’s Sm
B or Charlie’s Sm

C that contains
a particular element of the string (Km

B , Km
C ). This protects

against repudiation. From the perspective of Bob, Sm
B and

Sm
C are asymmetric. Bob has access to all of Km

B and only
half of Km

C , but, even if he is dishonest, he does not know
the half of Km

C that Charlie chose to keep. This protects
against forging.

The framework of nonorthogonal encoding QDS is anal-
ogous to that of orthogonal encoding. The difference is
that it does not require the symmetrization step. However,
the signer needs to send the same quantum states to two
receivers and only detection events where the two receivers
both have clicks are valid.

2. Signing a multibit message using single-bit QDS

The framework above only offers a way for signing a
one-bit message. To sign multibit messages with these pro-
tocols, it is not sufficient to directly iterate the protocol on
each bit of the message, which will give a chance for an
outside or inside attacker to perform forgery attacks [37].
In order to offer information-theoretic security, one must
reconstruct the multibit message and then sign it bit-by-
bit. This step will make the new message become longer
and thus damage the efficiency. To date, the most efficient
coding rule is given in Ref. [39], which can be summarized
as follows.

Suppose the signer Alice needs to sign an n-bit mes-
sage M = m1||m2|| · · · ||mn, mi ∈ {0, 1}, i = 1, 2, . . . , n.
She will encode M into

M̂ =11||12|| · · · ||1x+1||0||m1||m2|| · · · ||mx||0||
||mx+1||mx+2|| · · · ||m2x||0||

· · ·
||m[n/x]x+1||m[n/x]x+2|| · · · ||mn||0||11||12|| · · · ||1x+1,

(A1)

where x refers to the coding interval, and [x] is the round-
down function. To conclude, the coding rule is that the
encoder replenishes a “0” in the head of M , and another
in the tail. Then, the encoder inserts a “0” every x bits and
adds “1” with a number of x + 1 to both the start and the
end.

Denote the length of M̂ as h. An iteration of con-
ventional QDS protocols with h rounds on M̂ is an
information-theoretically secure protocol to sign the multi-
bit message M . According to the encoding rule, h = n +
[n/x] + 2x + 4. For a given n we can optimize x to obtain
the minimal h and the maximum efficiency η = n/h. It is
clear that, if n is large, the maximum efficiency will be
close to 1, but will definitely be less than 1. Thus in our
simulation in Sec. V, we use the upper bound of deficiency,
i.e., assume h = n.

APPENDIX B: MATHEMATICAL DETAILS

1. Generating an irreducible polynomial

In this section we introduce ways to generate an irre-
ducible polynomial over Galois fields GF(2) randomly,
which is the first step in the messaging stage of our
protocol.

Suppose p(x) is an irreducible polynomial of order n in
GF(2). That p(x) is irreducible means that no polynomi-
als can divide it except the identity element “1” and p(x)
itself. The necessary and sufficient condition for p(x) to be
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irreducible can be expressed as

x2n ≡ x mod p(x),

gcf(x2n/d − x, p(x)) = 1,
(B1)

where d is any prime factor of n, and gcf(f (x), g(x)) rep-
resents the greatest common factor (GCF) of f (x) and
g(x).

In order to randomly generate an irreducible polyno-
mial, one way is to generate polynomials at random and
test for irreducibility through the condition above. How-
ever, this is quite time-consuming and requires a lot of
random bits.

A better solution is proposed in Ref. [66]. We can first
have an irreducible polynomial of order n, defining the
extension field GF(2n). Given this, we generate a random
element in GF(2n) and then compute the minimal poly-
nomial of this element, which will be irreducible. This
procedure only needs n random bits and consumes less
time. The concrete procedure is as follows.

Denote the initial irreducible polynomial as f (x) and
the polynomial generated by random element as g(x). We
will calculate the sequence a0 = g0(0), a1 = g1(0), . . . ,
a2n−1 = g2n−1(0), where gi(x) = gi(x) mod f (x). This
sequence of 2n elements can fully determine the mini-
mal polynomial of g(x), which can be efficiently computed
by the Berlekamp-Massey algorithm [69]. The result, i.e.,
the minimal polynomial of g(x), will be the irreducible
polynomial we generate.

If we are choosing generalized division hashing, we
need to generate an irreducible polynomial over GF(2k).
The procedure is the same as that described above. The
only difference is that all the calculations need to be done
under GF(2k).

2. Proof of proposition 1

An LFSR-based Toeplitz hash function can be expressed
as hp ,s(M ) = HnmM . The construction of Hnm is introduced
in definition 1. Here we follow the expression in definition
1 and define an n × n matrix W which is decided only by
p:

W =

⎛

⎜⎜⎜⎜
⎝

pn−1 pn−2 · · · p1 p0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞

⎟⎟⎟⎟
⎠

. (B2)

Then we can express si through s and W

si = Wis. (B3)

Thereafter we rewrite hp ,s(M ) as

hp ,s(M ) = HnmM

= (
s s1 · · · sm−1

)

⎛

⎜⎜
⎝

M0
M1
...

Mm−1

⎞

⎟⎟
⎠

=
m−1∑

i=0

MiWis

= M (W)s, (B4)

where M (W) = Mm−1Wm−1 + · · · + m1W + m0I is an n ×
n matrix.

We define f (x) as the characteristic polynomial of the
matrix W, and we can calculate it as follows:

f (x) = |xI − W|

=

∣∣∣∣∣∣∣∣∣∣

x + pn−1 pn−2 · · · p1 p0
1 x · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 x

∣∣∣∣∣∣∣∣∣∣

= xn + pn−1xn−1 + · · · + p1x + p0. (B5)

It is obvious that f (x) = p(x); in other words, p(x) is the
characteristic polynomial of the matrix W. Then according
to the Hamilton-Cayley theorem, p(W) = 0. Thereafter,
it is trivial that if p(x) | M (x), then M (W) = 0, and thus
hp ,s(M ) = M (W)s = 0.

APPENDIX C: CALCULATION DETAILS

1. TP-TFQKD and TP-TFKGP in this work

The calculation of TP-TFKGP in this work is analogous
to that of TP-TFQKD in Ref. [43].

When Alice and Bob send intensities ka and kb with
phase difference θ , the gain corresponding to only one
detector (L or R) clicking is

QLθ
kakb

= ykakb(e
ωkakb cos θ − ykakb),

QRθ
kakb

= ykakb(e
−ωkakb cos θ − ykakb),

(C1)

where ykakb = e−(ηaka+ηbkb)/2(1 − pd) and ωkakb =√
ηakaηbkb. The overall gain can be expressed as Qkakb =

[1/(2π)]
∫ 2π

0 (QLθ
kakb

+ QRθ
kakb

) dθ = 2ykakb[I0(ωkakb)− ykakb],
where I0(x) refers to the zeroth-order modified Bessel
function of the first kind.
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The total number for {ka, kb} is

xkakb = NpkapkbQkakb . (C2)

The valid postmatching events on the Z basis can
be divided into two types: correct events {μaoa, obμb}
and {oaμa, μbob}, and incorrect events {μaoa, μbob} and
{oaμa, obμb}. The corresponding numbers are denoted as
nz

C and nz
E , respectively, which can be written as

nz
C = xmin

xoaμb

x0

xμaob

x1
= xoaμbxμaob

xmax
,

and

nz
E = xmin

xoaob

x0

xμaμb

x1
= xoaobxμaμb

xmax
,

where x0 = xoaμb + xoaob , x1 = xμaob + xμaμb , xmin = min
{x0, x1}, and xmax = max{x0, x1}. Also, sz

11 corresponds to
the number of successful detection events, where Alice and
Bob emit a single photon in different time bins in the Z
basis. The overall number of events in the Z basis is

nz = nz
C + nz

E . (C3)

Considering the misalignment error ez
d, the number of bit

errors in the Z basis is mz = (1 − ez
d)n

z
E + ez

dnz
C. Thus, the

bit error rate in the Z basis is

Ez = mz

nz . (C4)

The overall number of “effective” events in the X basis is

nx = 1
π

∫ δ

0
xθ
νaνb

dθ = Npνapνb

π

∫ σ+δ

σ

yνaνb

× (eωνaνb cos θ + e−ωνaνb cos θ − 2yνaνb) dθ . (C5)

For simplicity, we only consider the case in which all
matched events satisfy θ i − θ j = 0. In this case, when

ri
a ⊕ rj

a ⊕ ri
b ⊕ rj

b = 0 (1), the {ν i
aν

j
a, ν i

bν
j
b} event is consid-

ered to be an error event when different detectors (the same
detector) click(s) at time bins i and j .

The overall error count in the X basis can be given as

mx = 1
π

∫ σ+δ

σ

xθ
νaνb

pE dθ

= 2Npνapνb

π

∫ σ+δ

σ

yνaνb

×
[

(1 − yνaνb)
2

eωνaνb cos θ + e−ωνaνb cos θ − 2yνaνb

− 1

]

dθ ,

(C6)

where pE = 2qLθ
νaνb

qRθ
νaνb

/qθ
νaνb

qθ
νaνb

.
We can then calculate the parameters in Eq. (6) to

estimate the key rate and the information leaked after
the distribution stage. In the following description, let x∗
denote the expected value of x. We denote the number of
{ka, kb} as xkakb . We denote the number and error number
of events {ki

akj
a, ki

bkj
b} after postmatching as nki

akj
a,ki

bkj
b

and

mki
akj

a,ki
bkj

b
, respectively. For simplicity, we abbreviate ki

akj
a

and ki
akj

a as 2ka and 2kb when ki
a = kj

a and ki
b = kj

b.

(1) sz
11: sz

11 corresponds to the number of successful
detection events, where Alice and Bob emit a single pho-
ton in different time bins in the Z basis. Define z10 (z01)
as the number of events in which Alice (Bob) emits a
single photon and Bob (Alice) emits a vacuum state in
an {μa, ob} ({oa, μb}) event. The lower bounds of their
expected values are z∗

10 = Npμapobμae−μay∗
10

and z∗
01 =

Npoapμbμbe−μby∗
01

, respectively, where y∗
10

and y∗
01

are the
corresponding yields. These can be estimated using the
decoy-state method

y∗
01

≥ μb

N (μbνb − ν2
b)

(
eνbx∗

oaνb

poapνb

− ν2
b

μ2
b

eμbx∗
ôaμb

pôapμb

− μ2
b − ν2

b

μ2
b

xd∗
oo

pd
oaob

)

, (C7)

y∗
10

≥ μa

N (μaνa − ν2
a)

(
eνax∗

νaob

pνapob

− ν2
a

μ2
a

eμax∗
μaôb

pμapôb

− μ2
a − ν2

a

μ2
a

xd∗
oo

pd
oaob

)

, (C8)

where xd
oo = xôaôb + xôaob + xoaôb represents the number of

events where at least one user chooses the declare-vacuum
state and pd

oo = pôapôb + pôapob + poapôb refers to the cor-
responding probability. Thus, the lower bound of sz∗

11 is

given by

sz∗
11 = z∗

10z∗
01

xmax
. (C9)
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(2) sz
0μb

: sz
0μb

represents the number of events in the
Z basis when Alice emits a zero-photon state in the two
matched time bins, and the total intensity of Bob’s pulses is
μb. We define z00 (z0μb) as the number of detection events
where the state sent by Alice collapses to the vacuum state
in the {μa, ob} ({μa, μb}) event. The lower bound of the
expected values is z∗

00 = pμapobe−μaxd∗
oo/pd

oaob
and z∗

0μb
=

pμapμbe−μax∗
oaμb

/poapμb , respectively. Here, we employ
the relationship between the expected value x∗

oaμb
=

poax∗
ôaμb

/pôa and x∗
oaob

= poapobxd∗
oo/pd

oo. The lower bound
of sz∗

0μb
can be written as

sz∗
0μb

= x∗
oaμb

z∗
00

xmax
+ x∗

oaob
z∗

0μb

xmax
. (C10)

(3) sx
11: We define the phase difference between Alice

and Bob as θ = θa − θb + φab. All valid events in the X
basis can be grouped according to the phase difference θ (∈
{−δ, δ} ∪ {π − δ, π + δ}), and the corresponding number
in the {ka, kb} event is denoted as xθ

kakb
. In the postmatch-

ing step, two time bins are matched if they have the same
phase difference θ . Suppose the global phase difference θ

is a randomly and uniformly distributed value, and con-
sidering the angle of misalignment in the X basis σ , the
expected number of single-photon pairs can be given by

sx∗
11 = 1

π

∫ σ+δ

σ

xθ
νaνb

× 2
νbe−(νa+νb)y∗

01

qθ
νaνb

νae−(νa+νb)y∗
10

qθ
νaνb

dθ

= Npνapνb

π

∫ σ+δ

σ

2νaνbe−2(νa+νb)y∗
01

y∗
10

qθ
νaνb

dθ , (C11)

where qθ
νaνb

is the gain when Alice chooses intensity νa,
and Bob chooses the intensity νb with phase difference θ

and xθ
νaνb

= Npνapνbqθ
νaνb

.
(4) ex

11: For single-photon pairs, the expected value of
the phase error rate in the Z basis is equal to the expected
value of the bit error rate in the X basis. Therefore, we first
calculate the number of errors of the single-photon pairs in
the X basis tx11. The upper bound of tx11 can be expressed as

tx11 ≤ mx − (mνa0,νb0 + m0νa,0νb) + m00,00, (C12)

where mνa0,νb0 (m0νa,0νb) is the error count when the states
sent by Alice and Bob in time bin i (j ) both collapse to
the vacuum state in events {2νa, 2νb}, and m00,00 corre-
sponds to the event where the states sent by Alice and
Bob both collapse to vacuum states in events {2νa, 2νb}.
The expected counts (nνa0,νb0 + n0νa,0νb)

∗ and n∗
00,00 can be

expressed as

(nνa0,νb0 + n0νa,0νb)
∗ = 2

π

∫ σ+δ

σ

xθ
νaνb

e−(νa+νb)q∗
00

qθ
νaνb

dθ

=
δNpνapνbe−(νa+νb)q∗

00

π
(C13)

and

n∗
00,00 = 1

π

∫ σ+δ

σ

xθ
νaνb

(
e−(νa+νb)q∗

00

qθ
νaνb

)2

dθ

= Npνapνb

π

∫ σ+δ

σ

e−2(νa+νb)(q∗
00)

2

qθ
νaνb

dθ , (C14)

respectively. Here q∗
00 = xd∗

oaob
/(Npd

oo). Using the fact that
the error rate of the vacuum state is always 1/2, we
have (mνa0,νb0 + m0νa,0νb)

∗ = 1
2 (nνa0,νb0 + n0νa,0νb)

∗ and
m∗

00,00 = 1
2 n∗

00,00. Hence the upper bound of the bit error
rate in the X basis can be given by

ex
11 = tx11/sx

11. (C15)

(5) φ
z
11: For a failure probability ε, the upper bound of

the phase error rate φz
11 can be obtained by using random

sampling without replacement [70],

φ
z
11 ≤ ex

11 + γ U(sz
11, sx

11, ex
11, ε), (C16)

where

γ U(n, k, λ, ε)=

(1 − 2λ)AG
n + k

+
√

A2G2

(n + k)2 + 4λ(1 − λ)G

2 + 2
A2G

(n + k)2

,

(C17)

with A = max{n, k} and

G = n + k
nk

ln
n + k

2πnkλ(1 − λ)ε2 .

(6) szn
11, szn

0μb
, and φ

zn
11: Finally we can estimate the

parameters in Eq. (6), i.e., the lower bound of vacuum
events and single-photon pairs in a selected key group
sz

11L and sz
0μbL, and the upper bound of the phase error

rate of the n-bit group φ
z
11U. They can be obtained from

the parameters above by using random sampling without
replacement:

szn
11 ≥ n[sz

11/nz − γ U(n, nz − n, sz
11/nz, ε)],

szn
0μb

≥ n[sz
0μb

/nz − γ U(n, nz − n, sz
0μb

/nz, ε)],

φ
zn
11 ≤ φ

z
11 + γ U(szn

11, sz
11 − szn

11, φ
z
11, ε).

(C18)
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(7) lkey: We can also obtain the length of final keys of
TP-TFQKD, which can be used to simulate the perfor-
mance of OTUH-QDS in Fig. 4:

lkey = sz
0μb

+ sz
11[1 − H(φ

z
11)] − nzfH(Ez) − log2

2
εcor

− 2 log2
1

2εPA
, (C19)

where εPA is the failure probability of privacy amplifica-
tion.

2. BB84-KGP in BB84-QDS and this work

Both BB84-QDS and this work utilize decoy-state
BB84-KGP to generate correlated bit strings. According
to Ref. [71] we can estimate the number of vacuum events
and single-photon events under the X basis,

sX ,0 ≥ τ0
μ2n−

X ,μ3
−μ3n+

X ,μ2

μ2 − μ3
, (C20)

sX ,1 ≥ τ1μ1[n−
X ,μ2

−n+
X ,μ3

−((μ2
2 − μ2

3)/μ
2
1)(n

+
X ,μ1

−sX ,0/τ0)]

μ1(μ2 − μ3) − μ2
2 + μ2

3
, (C21)

where τn := ∑
k∈K e−kknpk/n! is the probability that Alice

sends an n-photon state, and

n±
X ,k := ek

pk

(

nX ,k ±
√

nX

2
log

21
εsec

)

, ∀ k ∈ K.

We can also calculate the number of vacuum events, sZ,0,
and the number of single-photon events, sZ,1, for Z =⋃

k∈K Zk, i.e., by using Eqs. (C20) and (C21) with statis-
tics from the basis Z. Then we can obtain the phase error
rate of the single-photon events in the X basis by

φX ,1 := cX ,1

sX ,1
≤ vZ,1

sZ,1
+ γ U

(
sZ,1, sX ,1,

vZ,1

sZ,1
, εsec

)
, (C22)

where

vZ,1 ≤ τ1
m+

Z,μ2
−m−

Z,μ3

μ2 − μ3
,

m±
Z,k := ek

pk

(

mZ,k ±
√

mZ

2
log

21
εsec

)

, ∀ k ∈ K,

γ U(n, k, λ, ε) =

(1 − 2λ)AG
n + k

+
√

A2G2

(n + k)2 + 4λ(1 − λ)G

2 + 2
A2G

(n + k)2

The total number of events under the X basis is nX =∑
k∈K nX ,k and the number of error events is mX =∑
k∈K mX ,k.

In BB84-QDS, the unknown information to the attacker
is given by

H = sX ,0 + sX ,1(1 − h(φX ,1)). (C23)

In our protocol based on BB84-KGP, we need to estimate
parameters in a selected n-bit group, i.e., the lower bound
of the number of vacuum events and single-photon events
under the X basis, sn

X ,0 and sn
X ,1, and the upper bound of the

phase error rate of the single-photon events in the X basis,
φ

n
X ,1:

sn
X ,0 ≥ n[sX ,0/nX − γ U(n, nX − n, sX ,0/nX , ε)], (C24)

sn
X ,1 ≥ n[sX ,1/nX − γ U(n, nX − n, sX ,1/nX , ε)], (C25)

φn
X ,1 ≤ φX ,1 + γ U(sn

X ,1, sX ,1 − sn
X ,1, φX ,1, ε). (C26)

Finally we can obtain

H = sn
X ,0 + sn

X ,1[1 − h(φ
n
X ,1)] − λEC, (C27)

where λEC = nh(mX /nX ).

3. SNS-KGP and SNS-QDS with random pairing

We first follow the calculation in Ref. [72]. Alice and
Bob obtain Njk (jk = {00, 01, 02, 10, 20}) instances when
Alice sends intensity j and Bob sends state k. Here “1” and
“2” represent the two intensities used in the KGP. After the
sifted step, Alice and Bob obtain njk one-detector heralded
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events. We denote the counting rate of source jk as Sjk =
njk/Njk. With all these definitions, we have

N00 = [(1 − pz)
2p2

0 + 2(1 − pz)pzp0pz0]N ,

N01 = N10 = [(1 − pz)
2p0p1 + (1 − pz)pzpz0p1]N ,

N02 = N20 = [(1 − pz)
2(1 − p0 − p1)p0

+ (1 − pz)pzpz0(1 − p0 − p1)]N .
(C28)

In addition, we need to define two new subsets of X1 win-
dows, C�+ and C�− , to estimate the upper bound of eph

1 .
The number of instances in C�± is

N�± = �

2π
(1 − pz)

2p2
1 N . (C29)

We denote the number of effective events of right detec-
tors responding from C�+ as nR

�+ , and the number of
effective events of left detectors responding from C�− as
nL

�− . Then we obtain the counting error rate of C�± , i.e.,
T� = (nR

�+ + nL
�−)/(2N�±).

If we denote the expected value of the counting rate of
untagged photons as sZ∗

1 , the lower bound of sZ∗
1 is

sZ∗
1 ≥ sZ∗

1 = 1
2μ1μ2(μ2 − μ1)

[μ2
2eμ1(S∗

01 + S∗
10)

− μ2
1eμ2(S

∗
02 + S

∗
20) − 2(μ2

2 − μ2
1)S

∗
00], (C30)

where S∗
jk is the expected value of Sjk, and S

∗
jk and S∗

jk are
the upper bound and lower bound of S∗

jk when we estimate
the expected value from its observed value.

The expected value of the phase-flip error rate of the
untagged photons satisfies

eph∗
1 ≤ eph∗

1 = T
∗
� − 1

2 e−2μ1S∗
00

2μ1e−2μ1sZ∗
1

. (C31)

Here we use the fact that the error rate of vacuum state is
always 1/2.

If the total transmittance of the experimental setups is η,
then we have

n00 = 2pd(1 − pd)N00,

n01 = n10 = 2[(1 − pd)eημ1/2 − (1 − pd)
2e−ημ1]N01,

n02 = n20 = 2[(1 − pd)eημ2/2 − (1 − pd)
2e−ημ2]N02,

nt = nsignal + nerror,

Ez = nerror

nt
,

nR
�+ = nL

�− = [TX (1 − 2ed) + edSX ] N�± ,

where N00, N01, N10, N02, N20, and N�± are defined in
Eqs. (C28) and (C29), and

nsignal = 4Np2
z pz0(1 − pz0)[(1 − pd)e−ημz/2 − (1 − pd)

2e−2ημz ],

nerror = 2Np2
z (1 − pz0)

2[(1 − pd)e−ημz I0(ημz) − (1 − pd)
2e−2ημz ] + 2Np2

z p2
z0pd(1 − pd),

TX = 1
�

∫ �/2

−�/2
(1 − pd)e−2ημ1 cos2(δ/2)dδ − (1 − pd)

2e−2ημ1 ,

SX = 1
�

∫ �/2

−�/2
(1 − pd)e−2ημ1 sin2(δ/2)dδ − (1 − pd)

2e−2ημ1 + TX ,

where I0(x) is the zeroth-order hyperbolic Bessel function
of the first kind.

In SNS-QDS, the unknown information to the attacker
is given by

H = sZ∗
1 (1 − h(eph∗

1 )). (C32)

In our protocol based on SNS-KGP, one has

sZ∗
1n = n[sZ∗

1 − γ U(n, nZ − n, sZ∗
1 /nZ , ε)],

eph∗
1n = n[eph∗

1 + γ U(sZ∗
1n , sZ∗

1 − sZ∗
1n eph∗

1 , ε)],
(C33)

and

H = sZ∗
1n [1 − h(eph∗

1n )] − λEC, (C34)

where λEC = nh(Ez).
In SNS-QDS with random pairing, we follow the cal-

culation in Ref. [24]. After random pairing there are two
different phase error rates

ẽ′ph
1 = (eph

1 )2

(eph
1 )2 + (1 − eph

1 )2
, (C35)
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ẽ′ph
2 = 1

2
, (C36)

and a new bit-flip error rate

E′ = 2Ez(1 − Ez). (C37)

The proportion of untagged bits after random pairing is

�′
un = �2

un + 2�un(1 − �un), (C38)

where �un = Np2
z pz0(1 − pz0)sZ

1/nt is the proportion of
untagged bits before random pairing. The unknown infor-
mation to the attacker is given by

H = �′
un − �2

un[p1H(ẽ′ph
1 ) + (1 − p1)H(ẽ′ph

2 )]

− 2�un(1 − �un)H(eph
1 ), (C39)

where p1 = (eph
1 )2 + (1 − eph

1 )2.

APPENDIX D: ERROR CORRECTION AND
PRIVACY AMPLIFICATION

In this section we introduce our simulation of error cor-
rection and privacy amplification in Table II. We use the
simulated data of TP-TFKGP at the distance of 400 km,
which can be calculated by Eqs. (C3), (C4), and (C19) in
Appendix C. We implement our simulation on a desktop
computer with an Intel i5-10400 CPU (with 8 GB RAM).

We use the improved Cascade protocol to perform error
correction to correct 300 (or 39 830) errors among 1.267 ×
106 (or 1.695 × 108) bits. The detailed procedure of the
improved Cascade protocol can be seen in Ref. [65], where
users first block their keys, and then perform a binary
process on each block to correct the errors and start the
trace-back section to check the error, until there are no
errors in each block. The results show that time consump-
tion is 3.62 and 930.98 s with data sizes 1011 and 1013,
respectively.

In the privacy amplification step, Alice chooses a ran-
dom universal2 hash function and performs it on the nZ-bit
keys after error correction to obtain l-bit final keys. The
choice of function is communicated to Bob, who also uses
it to obtain his l-bit final keys. In the simulation, we utilize
a random Toeplitz matrix as the universal2 hash func-
tion. When the data size is 1013, the matrix is too large
that it exceeds the storage of our computer. Thus in the
algorithm we block the matrix into 10 × 10 (100) subma-
trices with the same size to accomplish the calculation.
For hash manipulations of every submatrix, we follow the
procedure in Ref. [73], where a fast Fourier transform is
used to speed up calculation time. In the simulation, it
takes 2.98 and 2.057 × 104 s with data sizes 1011 and 1013,
respectively.
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