
PHYSICAL REVIEW APPLIED 20, 044002 (2023)
Editors’ Suggestion

Efficient and quantum-adaptive machine learning with fermion neural networks

Pei-Lin Zheng , Jia-Bao Wang , and Yi Zhang *

International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China

 (Received 16 November 2022; revised 23 August 2023; accepted 7 September 2023; published 2 October 2023)

Classical artificial neural networks have witnessed widespread successes in machine-learning applica-
tions. Here, we propose fermion neural networks (FNNs) whose physical properties, such as local density
of states or conditional conductance, serve as outputs, once the inputs are incorporated as an initial layer.
Comparable to back propagation, we establish an efficient optimization, which entitles FNNs to compet-
itive performance on challenging machine-learning benchmarks. FNNs also directly apply to quantum
systems, including hard ones with interactions, and offer in situ analysis without preprocessing or pre-
sumption. Following machine learning, FNNs precisely determine topological phases and emergent charge
orders. Their quantum nature also brings various advantages: quantum correlation entitles more general
network connectivity and insight into the vanishing gradient problem, quantum entanglement opens up
alternative avenues for interpretable machine learning, etc.
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I. INTRODUCTION

Artificial neural networks (ANNs) lay the foundation of
cutting-edge machine-learning research and artificial intel-
ligence applications [1–8]. Their successes rely on their
versatile expression and efficient optimization, as back
propagation determines descending gradients collectively
in deep architectures [1–3]. Their complexity, however,
comes at the price of increasing obscurity, obstructing
interpretable machine learning especially desired for scien-
tific utilities. Recently, various studies have applied clas-
sical ANNs to quantum data and systems [9–35], which
generally require suitable bridging or preprocessing for
compatibility [18–35].

Here, we consider a fermion neural network (FNN)
that possesses the benefits of both the classical and quan-
tum worlds. Being a fermion model over a network of
sites (neurons), its model parameters, such as intersite
hopping amplitudes and onsite potentials, grant extensive
degrees of freedom. The input, regardless of quantum or
classical, is incorporated as a part of the model system,
whose resulting physical properties, such as local den-
sity of states (LDOS) or conditional conductance (CC),
exhibit rich expressions and serve as the FNN outputs. Like
back propagation in classical ANNs, we establish efficient
optimization for FNNs following a layered architecture
(Fig. 1). We demonstrate machine-learning applications of
FNNs on classical MNIST benchmarks [36] with excellent
efficiency and accuracy.

*frankzhangyi@gmail.com

Of note, FNNs can apply directly to quantum data and
systems and offer in situ analysis without bridging or pre-
processing. Such compatibility is valuable for studying
quantum matters whose defining signature is unknown or
unavailable or whose physics is too difficult to analyze,
such as strongly correlated systems. Indeed, we show-
case successful characterizations of topological phases and
emergent charge orders with FNN machine learning. Here,
we analyze interacting FNN-joint models with Matsub-
ara Green’s functions and dynamical mean-field theory
(DMFT) [37–40], especially suitable with the FNN’s large
coordination number and compatible with our efficient
optimization.

The FNN’s quantum nature also entitles a unique per-
spective: quantum correlations generalize FNNs’ archi-
tecture and, like the residual networks [41], address the
vanishing gradient problem [42,43]; quantum entangle-
ment [44,45] delivers interesting practices of interpretable
machine learning [30,46–48], including analysis of train-
ing dynamics, logic flow, and generative criteria.

II. FNN FOR MACHINE LEARNING

Without loss of generality, our FNN model takes the
following form:

Ĥ =
∑

rr′
trr′c†

r cr′ +
∑

r

μrc†
r cr, (1)

where cr is an electron annihilation operator at site r. The
hopping amplitudes trr′ = t∗r′r [49] and the onsite potentials
μr are model parameters up for machine learning, analo-
gous to the weights and biases of a classical ANN. We label
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Ĥ

3
Ĥ

FIG. 1. FNN is a fermion model on a network of sites (black
dots), whose hopping amplitudes trr′ and onsite potentials μr
are parameters for supervised machine learning. It incorporates
inputs as the l = 0 layer. Resulting physical properties, such
as LDOS, serve as outputs, available via Green’s function Ĝ

(l)

recursively, adding one layer (T̂l−1 and Ĥl) at a time with finite
trr′ only intralayer (orange lines) or between neighboring layers
(green lines). For clarity, we show only hopping concerning a
single site (dashed circle).

each site (neuron) with r = (l, m), where l ∈ [0, L] and
m denote the layer and the intralayer coordinate, respec-
tively. We allow finite trr′ only for |l − l′| ≤ 1, including
intralayer hopping as in Hopfield networks [50]; see an
illustration of the FNN architecture in Fig. 1.

The input data or quantum system (l = 0) connects
to the FNN’s first layer (l′ = 1) via the hopping terms
t(0,m),(1,m′), after which the entire quantum model’s specific
physical properties represent the outputs. For example, we
may use the LDOS on the neurons in the last layer (l = L,
m = 1, . . . , ML):

ym = − 1
π

Im
[
Ĝ(L)

L,L

]

m,m
, (2)

as categorical outputs—the neuron with the largest LDOS
stands for the FNN’s decision in a classification problem.
Here, [Ĝ(L)

l,l′ ]m,m′ is the matrix element between the (l, m)

and (l′, m′) sites of Green’s functions Ĝ = (z − Ĥ)−1 for
an overall system Ĥ , including l = 0, 1, 2, . . . , L layers.
Likewise, we may use the FNN’s CC, i.e., the localization
property across its depth:

y =
∑

m

∣∣∣∣
[
Ĝ(L)

0,L

]

m,1

∣∣∣∣
2

, (3)

as a binary output for an FNN with ML = 1. In supervised
machine learning, we optimize the model parameters so
that the outputs y approach the desired ytar for a training
set. Thus, we define a loss function L(y, ytar) as the diver-
gence between y and ytar, and employ stochastic gradient

descent with its model-parameter derivatives:

�trr′ = −η
∂L
∂trr′

, �μr = −η
∂L
∂μr

, (4)

where η is the learning rate. Once the training converges,
we can use the FNNs to analyze test inputs.

Of note, we can evaluate the outputs [Eqs. (2) and (3)]
and the gradients [Eq. (4)] efficiently via layer-by-layer
updates of Ĝ [51]:

Ĝ(l)
l,l =

[
zÎ − Ĥl − T̂†

l−1Ĝ(l−1)

l−1,l−1T̂l−1

]−1
,

Ĝ(l)
i,l = Ĝ(l−1)

i,l−1 T̂l−1Ĝ(l)
l,l ,

(5)

where we arrange Ĥ = Ĥ0 +∑L
l=1 Ĥl + T̂l−1 + T̂†

l−1 in
Eq. (1) into components Ĥl within the lth layer and hopping
T̂l from the (l + 1)th to the lth layer. For noninteract-
ing systems, we consider retarded Green’s functions in
z = E + iγ at the Fermi energy E plus a small imaginary
part γ > 0; for interacting quantum systems, we resort to
Matsubara Green’s functions in imaginary frequencies z =
iωn. Since the functions mapping each iteration’s outputs
to the next are highly nonlinear, FNNs possess powerful
expressions and chain-rule gradient solutions—merits that
made ANN’s name in machine learning. Also, Eq. (5)’s
time complexity is polynomial in the number of neurons
Ml in each layer, similar to ANNs. For regularization, we
include a weight decay λ [52] on both trr′ and μr. Further
details are in Appendices A and B.

III. CLASSICAL EXAMPLES

First, we apply FNN machine learning on MNIST and
encode each image x �m ∈ [0, 1.0], �m = (mx, my) as onsite
potentials of a model:

Ĥ0 =
∑

�m
x �mc†

�mc �m, (6)

which is incorporated with the FNN as its l = 0 layer.
We compare different FNN architectures: the first FNN

consists of [100, 64, 10] neurons in three layers, with
trr′ fully connecting each neuron to every neuron in its
own and adjacent layers (Fig. 1); we also consider a
more locally connected FNN with [13 × 13, 6 × 6, 10]
neurons and local hopping among its l = 1, 2 layers’ two-
dimensional (2D) lattices; in both FNNs, the l = 3 layer
remains fully connected, whose LDOS represents the ten
MNIST categories. We set η = 0.005, γ = 0.005, and λ =
0.001. Further details and examples are in Appendix C.

With our efficient optimization, supervised machine
learning achieves high-quality convergence on MNIST.
With a fully connected FNN, we reach 98.13% accuracy
(Fig. 2) [53], comparable with fully connected classical
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FIG. 2. The training loss function, the test accuracy, and the
mutual information I0L between the input (l = 0) and the out-
put (l = L) layers consistently and dynamically depict the FNN’s
convergence on MNIST during supervised machine learning.
The shades represent standard deviation over ten trials.

ANNs with approximately the same size (approximately
98.47% [54]). Interestingly, we still reach a satisfactory
97.36% accuracy with a locally connected FNN. We
attribute such ease of architectural constraints in FNNs
to quantum correlation, which tends beyond the range of
hopping trr′ via perturbation series.

We emphasize the diverse possibilities over FNN
input and output formalisms. For instance, instead of
Eq. (6), we may encode an image as an external LDOS
field Im(Ĝ00) �m�m ∝ x(�m) coupled to the FNN. The FNN
achieves a higher 98.54% accuracy on MNIST, where
we set η = 0.001, γ = 0.001, and λ = 0.001; see further
details in Appendix D.

IV. EXAMPLES: TOPOLOGICAL INSULATORS

Next, we train FNNs to distinguish Chern insulators
(Chern number C = 1) and normal insulators (C = 0). For
example, we consider the noninteracting Hamiltonian [18]:

Ĥ0(κ) =
∑

�r
(−1)yc†

�r+x̂c�r + [1 + (−1)y(1 − κ)] c†
�r+ŷ c�r

+ (−1)y iκ
2

[
c†
�r+x̂+ŷ c�r − c†

�r+x̂−ŷ c�r
]

+ h.c., (7)

on a 12 × 12 square lattice �r = (x, y), representing a Chern
insulator if κ > κC = 0.5 and a normal insulator otherwise
at Fermi energy E = 0. We also add quenched disorder
for a more diverse training set and confirm the disordered
models’ topological categories via the real-space Kubo
formula [18,55]; see details in Appendix E. Such topolog-
ical phases require quantum portrayals hard for classical
ANNs, whose machine-learning successes usually relied
on presumption-based preprocessing of entanglement [22],

edge states [20,21], or quantum operators [18,24], unavail-
able for general topological phases.

The FNN directly incorporates each sample model as its
l = 0 layer to offer in situ analysis via designated physical
properties. We first employ an FNN with [100, [64] × 3, 2]
neurons in five layers. The LDOS on its two neurons in the
l = L layer represents whether Ĥ0(κ) is a Chern insulator.
For such a binary output, we may also use the CC, i.e.,
we want an FNN that localizes (with vanishing Green’s
functions) across its depth if Ĥ0(κ) is a normal insulator,
and vice versa. This FNN has [100, [64] × 5, 1] neurons
among seven layers. We set η = 0.001 ∼ 0.005, γ = 0.01,
and λ = 0.001.

After convergent supervised machine learning, we apply
the FNNs to infer the topological phase of various models.
The phase diagram of clean models achieves 100% accu-
racy and a consistent topological transition at κ = 0.5; see
Figs. 3(a) and 3(c). Even for models with moderate disor-
ders, the FNNs with LDOS (CC) output achieves 99.83%
(99.51%) accuracy and 100% (99.99%) test area under the
receiver operating characteristic curve (AUROC) [56,57].
Interestingly, accompanying the change of CC, we observe
a sharp contrast in the entire system’s energy spectra:
while a localization gap around E ≈ 0 commonly exists
[Fig. 3(b)] when the trained FNN combines a normal insu-
lator, a state responsible for Green’s functions’ extended
behaviors emerges at E ≈ 0 [Fig. 3(d)] when the incorpo-
rated input model is a Chern insulator. Here in Figs. 3(b)
and 3(d), we have chosen a different FNN with 98.1%

(a)

(c) (d)

(b)

FIG. 3. (a),(c) With FNN’s LDOS and CC as outputs, respec-
tively, the ratios of Chern-insulator responses for the clean model
in Eq. (7) over κ ∈ [0.1, 1.0] are consistent with the phase dia-
gram with κC = 0.5. (b),(d) With FNN’s CC as outputs, the
energy spectra of the entire system (combining the original insu-
lator and the FNN) differ by the absence or presence of an in-gap
state at E ≈ 0 if the input Ĥ0 is a normal or a Chern insulator. All
results are after successful supervised machine learning.
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accuracy for clearer signatures. Such physics is useful for
FNN interpretability, as we will demonstrate.

V. EXAMPLES: STRONGLY CORRELATED
SYSTEMS

Strongly correlated systems pose challenges to con-
ventional analysis and, in turn, bridging or preprocessing
for classical machine learning. However, we can analyze
target properties and phases by FNN machine learning
with direct quantum input. Here, we consider the Falicov-
Kimbal (FK) model on a 2D square lattice [58–62]:

Ĥ0 = t
∑

〈ij 〉
c†

i cj + t′
∑

〈〈ik〉〉
c†

i ck + h.c.

− μ
∑

i

c†
i ci + Ef

∑

i

nf
i + U

∑

i

c†
i cin

f
i , (8)

where nf
i = {0, 1} is the number of localized f electrons

at site i. We focus on scenarios where the f (c) electrons
are exactly (nearly) at half-filling via adjusting Ef (μ). We
set t = 1 as our unit of energy. At temperature T = 0, a
checkerboard (stripe) charge order emerges at small (large)
next-nearest neighbor hopping, separated by a phase tran-
sition at t′C/t ∼ 0.7 and half-filling; at larger T, the critical
point broadens into an intermediate region, and the insulat-
ing charge orders may give way to a disordered metal [62].
We further summarize and discuss the phase diagrams of
the Falicov-Kimbal model in Appendices F and G.

We apply FNN to infer a phase diagram versus t′/t at
low T = 0.005. First, we incorporate Ĥ0 in Eq. (8) as the
l = 0 layer of the FNN, which retains the same architecture
as the topological-insulator case—the last layer’s LDOS
signals the checkerboard and stripe charge orders, respec-
tively. In the training set, we include diverse models with
variable t′/t and μ close to half-filling and deep in the
respective charge orders. After supervised machine learn-
ing, we apply the FNN to probe the charge ordering of
models with varying t′/t traversing phase transitions; see
Fig. 4 inset for the parameter settings. In Appendix I, we
also study a metal-insulator phase diagram versus the inter-
acting strength U at relatively higher temperatures (e.g.,
T = 0.11) for the pristine FK model (t′ = 0).

With a finite interaction U present in the l = 0 layer, the
entire FNN system becomes an interacting quantum prob-
lem. Therefore, instead of Green’s functions at the Fermi
energy E, we analyze and optimize the FNN via Matsub-
ara Green’s functions Ĝ(iωn) and self-energies 
r(iωn) in
imaginary frequencies ωn = 2πT(n + 1/2), n ∈ Z. Such
formalism would also work if interactions were present in
the FNN itself (l = 1, 2, . . .). Such interactions also help
generalize explicitly beyond the constraints of local self-
energies introduced by DMFT routines. Since the recur-
sions in Eq. (5) remain valid, and the LDOS at site r takes

FIG. 4. Using LDOS as outputs, the FNN’s responses on the
FK models in Eq. (8) indicate a transition from a checkerboard
to a stripe charge order. T = 0.005 and U = 1.0. The yellow
and green shadows are the disordered transition regions upon the
same model space, as determined by DMFT in Appendix G and
QMC approaches [62]. The upper-left inset shows the training
set in the (t′/t, μ) parameter space (shaded blue region) and the
choice of μ when inferring the phase diagram (red line). μ0 is the
half-filling value of μ at U = Ef = 0.

the form [63]

ρ(r) = − 1
πT

G
(

r, τ = 1
2T

)
= i

π

∑

n

(−1)nĜ(iωn)rr,

(9)

we can efficiently trace the loss function to FNN param-
eters via the chain rule across multiple n ∈ [−n0, n0 − 1]
in parallel. We set n0 = 20 for demonstrations. Further
algorithmic details are in Appendix H.

Meanwhile, we resort to DMFT for self-energies

r(iωn), mapping each site r onto a local impurity prob-
lem with a dynamical environment [37–40]. DMFT may
have limited control over the original quantum systems,
especially in low dimensions. Indeed, comparisons with
controlled quantum Monte Carlo (QMC) calculations [62]
show that DMFT overestimates the small yet finite transi-
tion window between the two charge orders, a reflection
of its approximate nature; see Appendix G. However,
after coupling with an FNN, especially a fully connected
one, the entire system obtains a large coordination num-
ber that makes DMFT more suitable [64]. In practice, we
implement machine learning by alternating between the
gradient-descent optimizations (FNN parameters) in real
space and DMFT calculations (self-energies) in imaginary-
frequency space and establishing consistency between
them; see details in Appendix H. Such a quantum many-
body algorithm does not resemble any classical ANNs.

A well-trained FNN can deliver consistent and confident
results on FK models in either the checkerboard or stripe

044002-4



EFFICIENT AND QUANTUM-ADAPTIVE MACHINE. . . PHYS. REV. APPLIED 20, 044002 (2023)

charge-ordering phase, achieving both 100% test accuracy
and AUROC. We summarize the results in Fig. 4. We
emphasize that our analysis generally differs from direct
implementation of DMFT upon the target models (Fig. 4
and Appendix G), neither does the FNN make decisions
by the (residue) order parameters presented in its l = 0
layer, which essentially vanishes and leaves no trace of
the suggested phase diagram—once incorporated into an
FNN, the physics of the quantum model as a part of the
overall system differs drastically from its independent self.
Instead, we establish direct connections between the target
physics and FNN outputs via supervised machine learning,
an unprecedented perspective for strongly correlated sys-
tems, where QMC is commonly unavailable due to the sign
problem and ED and DMRG are limited to small systems.
In addition, due to competing orders and domains, real-
space implementations of DMFT are sometimes unstable
and hard to converge and evaluate; FNN machine learning
fully circumvents such difficulties.

VI. PHYSICAL INSIGHTS AND
INTERPRETABILITY FROM FNN MACHINE

LEARNING

FNN also offers physics insights into the vanishing-
gradient problem—decreasing gradients on layers farther
from outputs, which had plagued deep ANNs until con-
volutional neural networks [36,65] and residual blocks
[41]. Similar vanishing gradients known as barren plateaus
also afflict quantum circuit optimization [66–68]. From a
response-theory perspective, the correlation between out-
puts and model parameters naturally decays with their
distances on FNNs respecting locality over the layers.
However, as the CC’s contributions distribute across the
entire depth, such outputs depend more evenly on param-
eters from all layers. Indeed, as shown in Fig. 5(a), a
sharp contrast emerges between the gradient distributions
among FNNs (with CC output) and classical ANNs during
supervised machine learning. We discuss the mechanism
behind the physics and differences from residual blocks in
Appendix B.

In addition, FNNs allow alternative quantum perspec-
tives for interpretable machine learning. For example,
mutual information measures the entanglement between
subregions A and B [69,70]:

IAB = SA + SB − SAB, (10)

where SA = −tr(ρ̂A log ρ̂A) and ρ̂A = trĀ(ρ̂) are the entan-
glement entropy and (reduced) density operator on A.
Thus, the mutual information I0L between the l = 0 and l =
L layers evaluates an FNN’s capacity to orderly transform
inputs into outputs, an alternative measure of machine-
learning progress; see Fig. 2 for such midtraining dynam-
ics. Similarly, given a target input, we can use mutual

(a)

(b)

FIG. 5. (a) The (modulus) gradient distributions among ANN
and FNN (with CC output) show the former’s vanishing gradient
problem and the latter’s more even distribution, which achieves
similar effects as residual networks despite sequential architec-
tures. The results are averaged over the first three epochs and
normalized with the last layer’s values (not shown). We employ
identical architecture, initialization, and models for ANN and
FNN and preprocess the former’s dataset through quantum oper-
ators [18]. (b) While random perturbations topple a near-critical
Chern insulator κ = 0.52 � κC quickly, perturbations following
the Chern-insulator criteria generalize the topological phase until
much larger strength ω. We may track the transition with the
spectral gap or FNN output.

information to simplify and visualize the logic flow along
FNNs, as we demonstrate in Appendix J.

FNNs with CC outputs [Figs. 3(b) and 3(d)] also support
physics-guided interpretive and generative machine learn-
ing. For example, we can formulate Chern-insulator crite-
ria from trained FNNs. As we have discussed in Sec. IV,
the target CC behavior requires an emergent state at E � 0
[Fig. 3(d)], which suggests the Hamiltonian of the overall
system possesses a zero eigenvalue:

det
(

Ĥ0 T̂0

T̂†
0 Ĥl≥1

)
= 0, (11)

when the input model Ĥ0 is a Chern insulator. Here, T̂0
is the hopping from the FNN first layer (l = 1) to the
input model (l = 0), and vice versa for T̂†

0. Ĥl≥1 is the
Hamiltonian of the l = 1, 2, . . . , L layers of the FNN. Vital
information condensed from supervised machine learning
is encoded in Ĥl≥1, T̂0, and T̂†

0.
To see what kind of Ĥ0 satisfies Eq. (11), we note that

for a given Chern insulator ĤCh that satisfies Eq. (11), the
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models,

Ĥ0 = ĤCh +
∑

i

ωiĥδi + ω∗
i ĥ†

δi, (12)

also satisfies Eq. (11) for small ωi, and should also be
determined by the FNN as a Chern insulator. Here, ĥi (i =
1, 2, . . .) are normalized columns linearly dependent on
the overall Hamiltonian in Eq. (11). We also require the
single-column matrices ĥδi are physically local. Interpre-
tive criteria such as Eq. (12) empower us to employ an
FNN, trained for discriminative objectives, as a generative
model. We can add perturbations following such criteria to
generate alternative Chern-insulating models, like image
AI generates other pictures with the same contents but
modified styles [71].

To verify, we start with a Chern insulator ĤCh close to
the topological transition, e.g., Eq. (7) with κ = 0.52, and
evaluate the consequences of perturbations either random
or directed by the criteria in Eq. (12). While random per-
turbations generally harm the Chern insulator and topple it
relatively easily, the designed perturbations keep the model
steadily in the topological phase until the amplitude of the
perturbation becomes fairly large; see Fig. 5(b).

VII. DISCUSSION

We have shown that FNN inherits classical ANNs’ effi-
cient optimization and powerful expression while exhibit-
ing applicability in both classical and quantum worlds.
By direct quantum input and offering in situ machine
learning, FNNs not only retain a potentially advanta-
geous quantum perspective on quantum problems [72–83],
but also forego the costly and knowledge-reliant prepro-
cessing, such as projective and response measurements
on the original quantum systems. Also, we can choose
physical measurables with readily available response mea-
surements as FNN outputs [84–86]. By implementing
FNN machine learning in quantum experiments and sim-
ulations, we make identifying physical properties and
phases, sometimes complex with current instruments
and routines, much more straightforward. For example,
such modules will be convenient for analyzing quan-
tum neural networks and circuits [87–95], whose other-
wise projective measurements are challenging and require
postprocessing.

With nondynamical and local setups, FNNs are viable in
analog quantum simulations [96,97], which have recently
exercised precise controls [98,99] and reached hundreds of
sites [100–102], especially in quantum dot [98,103–107]
and Rydberg-atom arrays [99–102,108–112]. Finally, FNN
machine learning offers an efficient avenue for designing
functions, such as CC, in quantum systems.
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APPENDIX A: FNN REGULARIZATION

Regularization plays a vital role in reducing overfitting
and reaching optimal performance in supervised machine
learning. Common regularization approaches for classical
ANNs are weight decay [52] and dropout [114]. Noting
the similarity between FNN’s T̂l−1 and Ĥl with classical
ANN’s weights and biases, we have studied carrying over a
weight decay during FNNs’ supervised machine learning.
Indeed, we have observed improved results by including

(a)

(b)

FIG. 6. The FNN performance on the MNIST dataset receives
an additional boost by including a weight decay λ = 0.001 as
regularization. In comparison to Fig. 2 (image input as onsite
potentials) and Fig. 8 (image input as an external LDOS field),
the FNNs trained with λ = 0.001 are generally capable of achiev-
ing higher test accuracy at convergence.
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a small weight decay of λ = 0.001 in various scenarios;
see Fig. 6 for examples. In addition, most of the optimal
results in Tables I and II are obtained with the weight
decay. As a caveat, we also observe increased fluctuations
in midtraining performances with such regularization.

Another regularization is the small imaginary part γ

added to the energy E. Physically, such γ introduces a
finite level width, reduces singularities, and may originate
from the averaged effect of random quenched disorder.
Like dropout introduces effective averaging over multiple
descendants of a classical ANN, a proper value of γ may
represent an average over various random disorder config-
urations over the FNN, thus reducing sensitivity towards
details and enhancing generality. A closer comparison with
dropout for classical ANNs would suggest training with
variable disorder configurations, which are then replaced
with a corresponding γ for tests and applications. We leave
such endeavors and more thorough investigations on FNN
regularization to future studies.

APPENDIX B: GRADIENT CHAIN RULE FROM
RECURSIVE GREEN’S FUNCTIONS

To characterize the quantum model in Eq. (1), we can
evaluate the expectation values 〈�|Ô|�〉 for the many-
fermion ground state |�〉 = ∏

εn≤E c†
n|0〉, where c†

n corre-
sponds to the energy eigenstates Ĥ = ∑

n εnc†
ncn and we

set the Fermi energy E = 0. Alternatively, we may resort
to Green’s functions:

Ĝ(z) =
(

zÎ − Ĥ
)−1

, (B1)

where z = E + iγ possesses a small imaginary part γ > 0
that attributes a finite level width and avoids singularities
for retarded Green’s functions, or z = iωn for Matsubara
Green’s functions.

The recursive Green’s function method [51] derives
Eq. (B1) via recursion. Starting from the system’s first
layer, the recursive expressions (i, j < N ):

Ĝ(N )
N ,N =

[
zÎ − ĤN − T̂†

N−1Ĝ(N−1)

N−1,N−1T̂N−1

]−1
,

Ĝ(N )
i,N = Ĝ(N−1)

i,N−1 T̂N−1Ĝ(N )
N ,N ,

Ĝ(N )
N ,j = Ĝ(N )

N ,N T̂†
N−1Ĝ(N−1)

N−1,j ,

Ĝ(N )
i,j = Ĝ(N−1)

i,j + Ĝ(N−1)

i,N−1 T̂N−1Ĝ(N )
N ,N T̂†

N−1Ĝ(N−1)

N−1,j ,

(B2)

yield Green’s functions of a system with the first N layers:

Ĝ(N ) =

⎛

⎜⎜⎜⎜⎜⎝

Ĝ(N )

0,0 · · · Ĝ(N )

0,N−1 Ĝ(N )

0,N

...
. . .

...
...

Ĝ(N )

N−1,0 · · · Ĝ(N )

N−1,N−1 Ĝ(N )

N−1,N

Ĝ(N )

N ,0 · · · Ĝ(N )

N ,N−1 Ĝ(N )
N ,N

⎞

⎟⎟⎟⎟⎟⎠
, (B3)

given those of a system with the first N − 1 layers,

Ĝ(N−1) =

⎛

⎜⎜⎝

Ĝ(N−1)

0,0 · · · Ĝ(N−1)

0,N−1

...
. . .

...

Ĝ(N−1)

N−1,0 · · · Ĝ(N−1)

N−1,N−1

⎞

⎟⎟⎠ , (B4)

adding one layer at each iteration until we reach the entire
system (N = L), whose physical properties correspond to
the FNN outputs. In practice, one first solves for Ĝ(N )

N ,N in
the first line in Eq. (B2), which is then plugged into the
second to last lines.

Such iterative dependencies also allow us to utilize the
chain rule and collectively obtain the differentials of the
loss function L with respect to the FNN parameters implic-
itly in T̂ and Ĥ , whose definitions are below Eq. (5). For
convenience, we define the following real matrices [115]:

T(N−1) =
⎛

⎝
Re
(

T̂N−1

)
Im
(

T̂N−1

)

−Im
(

T̂N−1

)
Re
(

T̂N−1

)

⎞

⎠ ,

H(N ) =
⎛

⎝
Re
(

ĤN

)
Im
(

ĤN

)

−Im
(

ĤN

)
Re
(

ĤN

)

⎞

⎠ ,

O(N ) =
⎛

⎝
Re
(

Ĝ(N )
N ,N

)
Im
(

Ĝ(N )
N ,N

)

−Im
(

Ĝ(N )
N ,N

)
Re
(

Ĝ(N )
N ,N

)

⎞

⎠ = (
X(N )

)−1
,

X(N ) = zÎ − H(N ) − (
T(N−1)

)T
O(N−1)T(N−1) ,

Y(N ) =
⎛

⎝
Re
(

Ĝ(N )

0,N

)
Im
(

Ĝ(N )

0,N

)

−Im
(

Ĝ(N )

0,N

)
Re
(

Ĝ(N )

0,N

)

⎞

⎠

= Y(N−1)T(N−1)O(N ) ,
(B5)

where X(N ), Y(N ), and O(N ) are the input and output of the
N th iteration [first two lines in Eq. (B2)], with parametric
dependence on the N th layer.

First, we consider the case where the FNN outputs y are
the LDOS over the ML neurons in the last layer N = L; see
Eq. (2). L depends explicitly on y, e.g., a mean-square or
cross-entropy error loss function. With the chain rule, we
have

∂L
∂T(N−1)

ij

= ∂L
∂O(N )

mn

∂O(N )
mn

∂T(N−1)
ij

= ε(N )
mn α

(N )
mn,ij ,

∂L
∂H (N )

ij

= ∂L
∂O(N )

mn

∂O(N )
mn

∂H (N )
ij

= ε(N )
mn β

(N )
mn,ij ,

(B6)
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where

ε(L)
mn =

ML∑

k=1

∂L
∂yk

∂yk

∂O(L)
mn

=
ML∑

k=1

∂L
∂yk

δk+ML,mδkn − δkmδk+ML,n

π

= ∂L
∂yn

δn+ML,m − δm+ML,n

π
, (B7)

and the rest (N < L) are obtainable via a second (back-
ward) recursion:

ε(N )
mn = ∂L

∂O(N )
mn

=
∑

kl

ε
(N+1)

kl
∂O(N+1)

kl

∂O(N )
mn

=
∑

kl

ε
(N+1)

kl γ
(N+1)

kl,mn . (B8)

We note that the values of α, β, and γ necessary for
Eqs. (B6) and (B8) are fully determined in the previous
recursion towards the FNN outputs:

α
(N )
mn,ij = ∂O(N )

mn

∂T(N−1)
ij

= −
∑

p

O(N )
mp O(N )

jn

[(
T(N−1)

)T
O(N−1)

]

pi

+ O(N )
mj O(N )

pn

[
O(N−1)T(N−1)

]
ip ,

β
(N )
mn,ij = ∂O(N )

mn

∂H (N )
ij

= O(N )
mi O(N )

jn ,

γ
(N+1)

kl,mn = ∂O(N+1)

kl

∂O(N )
mn

=
∑

pq

O(N+1)

kp O(N+1)

ql

(
T(N )

)T
pm T(N )

nq ,

(B9)

where we have employed the following formulas [116]:

∂O(N )
mn

∂X (N )
pq

= −O(N )
mp O(N )

qn ,

∂X (N )
pq

∂T(N−1)
ij

= δqj

[(
T(N−1)

)T
O(N−1)

]

pi

+ δpj
[
O(N−1)T(N−1)

]
iq ,

∂X (N )
pq

∂H (N )
ij

= −δpiδqj ,

∂X (N )
pq

∂O(N−1)
mn

= − (T(N−1)
)T

pm T(N−1)
nq . (B10)

Next, we consider the case where the FNN output takes the
form of the CC, Eq. (3). Once again, we apply the chain

rule to get

∂L
∂T(N−1)

ij

= ∂L
∂y

∑

kl

∂y

∂Y(L)

kl

[
∂Y(L)

kl

∂Y(N )
uv

∂Y(N )
uv

∂T(N−1)
ij

+
L∑

N ′=N

∂Y(L)

kl

∂Y(N ′)
uv

∂Y(N ′)
uv

∂O(N )
mn

∂O(N )
mn

∂T(N−1)
ij

]

= ∂L
∂y

∑

kl

Y(L)

kl

[
θ

(N )

kl,uvY(N−1)
ui O(N )

j v

+
L∑

N ′=N

θ
(N ′)
kl,uvφ

(N ′,N )
uv,mn α

(N )
mn,ij

]
,

∂L
∂H (N )

ij

= ∂L
∂y

∑

kl

∂y

∂Y(L)

kl

[
L∑

N ′=N

∂Y(L)

kl

∂Y(N ′)
uv

∂Y(N ′)
uv

∂O(N )
mn

∂O(N )
mn

∂H (N )
ij

]

= ∂L
∂y

∑

kl

Y(L)

kl

[
L∑

N ′=N

θ
(N ′)
kl,uvφ

(N ′,N )
uv,mn β

(N )
mn,ij

]
,

(B11)

where

θ
(L)

kl,uv = ∂Y(L)

kl

∂Y(L)
uv

= δkuδlv ,

φ(N ′,N ′)
uv,mn = ∂Y(N ′)

uv

∂O(N ′)
mn

= δvn

∑

r

Y(N ′−1)
ur T(N ′−1)

rm ,

(B12)

and the rest (N < L for θ and N < N ′ for φ) are obtainable
via (backward) recursions:

θ
(N ′)
kl,uv = ∂Y(L)

kl

∂Y(N ′)
uv

=
∑

pq

θ
(N ′+1)

kl,pq

∂Y(N ′+1)
pq

∂Y(N ′)
uv

=
∑

qr

θ
(N ′+1)

kl,uq T(N ′)
vr O(N ′+1)

rq ,

φ(N ′,N )
uv,mn = ∂Y(N ′)

uv

∂O(N )
mn

=
∑

pq

φ(N ′,N+1)
uv,pq γ (N+1)

pq,mn . (B13)

Interestingly, due to the extra summation of N ′ from N to
L in Eq. (B11), an earlier layer receives a concentration
and boost in its corresponding differentials from multiple
channels contributed by all later layers (Fig. 7), thus cir-
cumventing the gradient decay like in classical ANNs; see
Fig. 5. Such multichannels of gradients towards the earlier
layers are also present in residual neural networks [41] via
additional connectivity in ANN architecture. In compari-
son, despite simple FNN architecture with local connectiv-
ity, we may still achieve additional gradient contributions,
emerging not as a consequence of long-range connectivity
but as the CC’s characteristic global dependence.
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(a)

(b)

LL–1
...

LL–1
...

FNN-CC

ANN

N

N

FIG. 7. Compared to (b) a conventional deep ANN, where the
gradients pass to earlier layers via a single channel and thus
inevitably decay over distances, (a) an FNN with CC output pos-
sesses multiple channels thanks to the summation over N ′ in
Eq. (B11).

APPENDIX C: FNN ARCHITECTURES

We study more FNN architectures to compare the effect
of connectivity and locality on machine-learning perfor-
mance. We consider FNNs with the neurons in each layer
forming a 2D square lattice and either no intralayer hop-
ping (unconnected), nearest-neighbor intralayer hopping,
or nearest and next-nearest-neighbor intralayer hopping.
We also consider two interlayer connection formalisms:
first, we consider FNNs with [14 × 14, 7 × 7, 10] neurons
per layer, and tree-type interlayer hopping—each neuron
in the first (second) layer connects with 2 × 2 neurons in
the zeroth (first) layer and without overlap; then, we also
consider FNNs with [13 × 13, 6 × 6, 10] neurons per layer,
where the neighboring neurons’ interlayer partners share
an overlap—interlayer trr′ connects neuron at (m1, m2) in
the first (second) layer and neurons at (m′

1, m′
2) in the

zeroth (first) layer, m′
j ∈ [2mj − 1, 2mj + 2] (m′

j ∈ [2mj −
1, 2mj + 1]). In all scenarios, the l = 3 layer consists of
fully connected neurons whose LDOS represents FNNs’
classification outputs.

Applying such FNNs to supervised machine learning on
the MNIST dataset, encoded as onsite potentials as Eq. (6)
an external LDOS field in Appendix D, we summarize
the optimal performances in Tables I and II. We note that
poor connectivity, e.g., the tree architecture (“tree column”

TABLE I. FNNs’ accuracy on the MNIST test dataset shows
relatively insensitive dependence on the architecture—the degree
of locality and connectivity. The image’s pixel grayscale is
encoded as the zeroth layer model’s onsite potentials; see Eq. (6).

Interlayer

Intralayer Tree Overlapping

Unconnected 93.43% 97.17%
Upto nearest neighbor 95.61% 97.26%
Upto next nearest neighbor 96.19% 97.36%

TABLE II. FNNs’ accuracy on the MNIST test dataset shows
relatively insensitive dependence on the architecture—the degree
of locality and connectivity. The image’s pixel grayscale is
encoded as an external, static LDOS field coupled to the FNN’s
first layer; see Appendix D.

Interlayer

Intralayer Tree Overlapping

Unconnected 93.40% 97.84%
Upto nearest neighbor 96.27% 97.68%
Upto next nearest neighbor 96.16% 97.72%

and “unconnected” row), may adversely impact the FNN
capacity—such locality is too strict to allow sufficient cor-
relations between neurons in the first layers. Fortunately,
unlike classical ANNs, FNNs allow intralayer connec-
tions in addition to interlayer hopping, which we observe
bears more significant contributions. Given sufficient con-
nectivity above the tree architecture, FNNs’ performances
increase quickly and saturate to the level of fully con-
nected FNNs. Further reduction of locality tends to receive
a diminishing margin.

APPENDIX D: FNN INPUTS: ENCODING
CLASSICAL DATA AS EXTERNAL LDOS

Given a classical training set, there are diverse encoding
methods for FNNs’ inputs. For example, in addition to the
onsite potential μ �m of a model, we may also regard each
sample as Im(Ĝ00) �m �m = −π · x(�m), an external and static
LDOS field coupled to the FNN’s first layer (l = 1) via T0

and T†
0, the hopping between the l = 0 and l = 1 layers.

As such inputs do not specify an explicit Ĥ0, the mutual
information I0L between the input and output layers is no
longer directly available.

Applying such encoding to the classical MNIST dataset,
we carry out supervised machine learning with FNNs and
settings similar to Sec. III. The LDOS over the ten neu-
rons in the last layer serves as outputs. We summarize
the performance on training and convergence in Fig. 8.
With adequate tuning and training, FNNs can achieve
98.54% accuracy on the MNIST dataset, fully comparable
to classical ANNs with similar scale and complexity.

We have also investigated adding nearest-neighbor hop-
ping to the onsite potential Hamiltonian in Eq. (6). The
performance remains on par with the scenario without such
hopping.

APPENDIX E: TOPOLOGICAL PHASES OF
DISORDERED MODELS

To increase the diversity of the insulator models in
Eq. (7), we also include in their Hamiltonians the following
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FIG. 8. The loss function on the training set and the accu-
racy over the test set consistently demonstrate the convergence
of a fully connected FNN in supervised machine learning on the
MNIST dataset encoded as external LDOS. The shades illustrate
typical standard deviation over ten trials.

terms on random quenched disorder:

Ĥdis =
∑

�r
w(1)

�r c†
�r+x̂c�r + w(−1)

�r c†
�r+ŷ c�r + w(2)

�r c†
�r+x̂+ŷ c�r

+ w(−2)

�r c†
�r+x̂−ŷ c�r + h.c. + w(0)

�r c†
�r c�r, (E1)

where w(0)

�r ∈ [−W0, W0], w(±1)

�r ∈ [−W1, W1], w(±2)

�r ∈
[−W2, W2] are perturbations to the onsite potential,
nearest-neighbor hopping, and next-nearest-neighbor hop-
ping, respectively. In practice, we set W0 ∈ [1.0, 3.0],
W1 ∈ [0, 1.0], W2 ∈ [0, 0.5].

Since such disorder may modify the topological char-
acter of a model, it may be rash to determine whether
samples with Ĥdis are Chern or normal insulators just with
their κ value in the clean limit. Instead, we employ the
real-space Kubo formula [18,55] to evaluate the transverse
conductance in accord with the Chern number:

C = 4π i
N

∑

jkl

PjkPklPlj Sjkl, (E2)

where Pjk = 〈c†
j ck〉 is the two-point correlator between

sites i and j , Sjkl is the signed area of triangle jkl, and N is
the total number of sites. Given the locality of the insulator
models, we limit the summation in Eq. (E2) to triangles
no larger than a cutoff length scale d = 3 for simplic-
ity. Finally, for model samples with an apparent spectral
gap and 0.7 ≤ C ≤ 1.0 or 0 ≤ C ≤ 0.3 after the cutoff, we
include them in our training set as Chern insulators and
normal insulators, respectively.

APPENDIX F: PHASE DIAGRAMS OF THE
FALICOV-KIMBAL MODEL

The Falicov-Kimbal (FK) model has a long and suc-
cessful history in the studies of correlated electron sys-
tems, with a broad range of applications in the context of
metal-semiconductor transition, binary alloys, crystalliza-
tion, etc. As a variant of the Hubbard model, the FK model
in Eq. (8):

Ĥ0 = t
∑

〈ij 〉
c†

i cj + t′
∑

〈〈ik〉〉
c†

i ck + h.c.

− μ
∑

i

c†
i ci + Ef

∑

i

nf
i + U

∑

i

c†
i cin

f
i , (F1)

characterizes a quantum many-body system with two
species of electrons—the itinerant c electrons and the
localized f electrons—interacting with each other. With-
out loss of generality, we focus on the FK model at exactly
half-filling on a 2D square lattice, where the number of f
electrons is equal to the number of c electrons, and their
sum is equal to the number of lattice sites.

First, we focus on the pristine FK model with the next-
nearest-neighbor hopping t′ = 0. At sufficiently low tem-
peratures, the half-filled FK model possesses a long-range
charge order, i.e., the electrons form a checkerboard pat-
tern [Fig. 9(b) inset], the same as in the ground state. The
system enters a disordered metal phase at higher temper-
atures through a metal-insulator transition. The transition
temperature TC depends on the interaction strength U. We
set t = 1 as our unit of energy, like in Sec. V. A gen-
eral solution to the FK model is not known. Fortunately,
a controlled analysis of the FK model on a 2D square
lattice is available within the quantum Monte Carlo frame-
work—after integrating out the c electrons, we can sample
the f -electron configurations without the sign problem
[62]. According to the presence and absence of the order
parameter, the established phase diagram is in Fig. 9(a)
and compared with the approximate DMFT results, as
discussed in Appendix G.

It is also interesting to take the next-nearest-neighbor
hopping t′ into account in addition to the nearest-neighbor
hopping t. In the limit of small t′/t, we expect that the
checkerboard charge order still dominates in the ground
state or at low temperatures. In the opposite limit, however,
the ground state will have the form of vertical or horizontal
stripes. We set U/t = 1 as in Sec. V, and the QMC phase
diagram [62] is in Fig. 9(b): the two distinctive charge
orders are separated by a phase transition near tC/t ∼ 0.7
at T → 0; at higher temperatures, the critical point expands
into a transition region, where the system evolves into a
disordered metal. In practice, we strictly enforce the half-
filling condition for the localized f electrons via adjusting
Ef , while relaxing the half-filling condition for the itin-
erant c electrons to a degree by varying μ a bit (inset of

044002-10



EFFICIENT AND QUANTUM-ADAPTIVE MACHINE. . . PHYS. REV. APPLIED 20, 044002 (2023)

(a)

(b)

FIG. 9. (a) The phase diagram of the pristine FK model (t′ =
0) in terms of the temperature T and interaction strength U con-
sists of a disordered metal phase at higher temperatures and an
insulating charge order at lower temperatures. The dashed line at
T = 0.11 corresponds to the phase space we study in Appendix I
using FNN machine learning. (b) The phase diagram of the
FK model in terms of the temperature T and the next-nearest-
neighbor hopping t′ consists of two charge orders—checkerboard
at small t′/t and stripe at large t′/t—separated by a critical point
at T = 0 that expands into a transition region at finite T. The
dashed line corresponds to the temperature T = 0.005, where
we analyze the FK model’s charge orders using FNN machine
learning. The figures’ data is partly obtained from Ref. [62].

Fig. 4), as long as the charge orders remain stable. Such
variations yield more diverse models for the training set.

APPENDIX G: DMFT RESULTS OF THE
FALICOV-KIMBAL MODEL

Dynamical mean-field theory (DMFT) maps a strongly
correlated lattice model, intractable in general, to a
(series of) local impurity problems, such as the Ander-
son impurity model, solvable through various schemes.
In doing so, we assume the lattice self-energy is a

Algorithm 1. DMFT for the half-filled FK model.

(momentum-independent) local quantity, which becomes
exact in the limit of large coordination numbers.

In practice, the self-consistent solution of DMFT com-
monly consists of the following iterations until conver-
gence: (1) given the self-energies 
, solve Matsubara
Green’s functions of the lattice model Gloc; (2) solve each
local impurity model’s Green’s functions Gimp; determine
the self-energies 
 for the next iteration. For instance, we
illustrate our DMFT routine for the half-filled FK model in
Eq. (F1) in Algorithm 1. Here, we determine the parameter
Ef by setting half-filling n̄f = 1/2 across all local impurity
models:

〈
nf 〉 =

{
1 + exp

[
E − μ

T
−
∑

n

ln

(
1 − U

G−1
0 (iωn)

)]}−1

,

(G1)

where the summation is over imaginary frequencies ωn =
2πT(n + 1/2), n ∈ Z, and n ∈ [−n0, n0 − 1].

In particular, we base the DMFT formalism in the
momentum space with a 2 × 2 unit cell, sufficient for
the emergence of the checkerboard and stripe orders. The
resulting order parameters, |nf (−1)x+y | for the checker-
board order and |nf (−1)x| (|nf (−1)y |) for the stripe order,
are summarized in Fig. 10, indicating a finite intermediate
region for a disordered metallic phase. Though qualita-
tively consistent, the DMFT outcomes are approximate for
such a strongly correlated system in 2D, especially around
its transitions, resulting in a broader range of intermediate
disordered phases than quantum Monte Carlo calculations
(Fig. 4 and Ref. [62]). Such a discrepancy is also appar-
ent in Fig. 9(a), as DMFT overestimate the transition
temperatures TC.

In addition, we carry out DMFT calculations fully in
real space, with qualitatively consistent yet more unstable
results. The difficulty is mainly in self-consistent conver-
gence and order-parameter detection due to intertwined
domains upon the extensive degrees of freedom.
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FIG. 10. We determine the phase diagram of the FK model in
Eq. (8) according to the order parameters of the checkerboard
order and the stripe order via momentum-space DMFT. Both
order parameters vanish for t′/t between 0.5 and 0.81 (shaded
green region), indicating an intermediate disordered metal phase
at this finite T = 0.005. The values of μ follow the red line in
Fig. 4.

In comparison, when we employ machine learning on
such a strongly correlated system by coupling it to an FNN,
we carry out the process entirely in real space without
resorting to any unit cells, which require presumed knowl-
edge, e.g., symmetry-breaking order parameters. Indeed,
the FNN does not cling to such order parameters, which are
vanishingly small and meaningless in the coupled system,
but instead to the original model’s intrinsic quantum prop-
erties. In addition, the strongly correlated system’s link
to the fully connected FNN vastly increased the overall
coordination number and effective dimensionality, which
makes DMFT a much better and controlled approxima-
tion. Therefore, despite the DMFT and real-space nature
of our FNN machine learning, we obtain results with qual-
ity and accuracy surpassing direct DMFT application on
target systems (Fig. 4).

APPENDIX H: SUPERVISED MACHINE
LEARNING ALGORITHM FOR INTERACTING

FNN

As discussed in Sec. II, we analyze and optimize inter-
acting FNNs with their Matsubara Green’s functions.
Generalizing the recursive Green’s functions in Eq. (5)
and the corresponding descending-gradient chain rule in
Appendix B to imaginary frequencies is straightforward.
On the other hand, it is essential to derive the self-energies,
dynamically dependent on the FNN model parameters, in a
self-consistent fashion. Therefore, for supervised machine
learning of an interacting FNN, we employ the follow-
ing steps in each iteration: first, we fix the FNN model
parameters and calculate the self-energies as a series of
local impurity problems within the DMFT formalism;

Algorithm 2. Supervised machine learning for interacting
FNN.

then, we incorporate the self-energies and evaluate Mat-
subara Green’s functions, FNN outputs, and cost functions,
etc., via the efficient recursive Green’s function approach;
next, we calculate the descending gradients through the
chain rule and optimize the FNN via gradient descent, i.e.,
Eq. (4). For applying such an FNN, we require only a sin-
gle iteration with the first two steps. In practice, we carry
out a given number of iterations and keep the FNN with
the best test accuracy in the process; see Algorithm 2 for
details.

We note that self-energies depict interactions within an
FNN. For the settings within our examples, where the
interactions are contributed by and limited to the input
models, it suffices to carry out the first step (self-energy
calculations) upon only the FNN’s l = 0 layer. Likewise,
we may regard supervised machine learning of nonin-
teracting FNNs as Algorithm 2 with the first step (self-
energy calculations) short-circuited (in addition to Green’s
functions in real frequency and energy).

APPENDIX I: MACHINE LEARNING
METAL-INSULATOR TRANSITION IN THE

FALICOV-KIMBAL MODEL

As another example, we study the metal-insulator tran-
sition of the FK model at higher temperature T and exactly
half-filling for both the f and c electrons. The Hamiltonian
is [117]
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FIG. 11. Using the last layer’s LDOS as outputs, the FNN’s
insulator responses on the FK model Ĥ0 at exactly half-filled in
Eq. (I1) indicate a metal-insulator transition at finite T = 0.11.
The yellow and green vertical lines are the critical point UC
via QMC [62] and DMFT (Appendix G) approaches upon the
same parameter space. The inset shows the checkerboard order
parameter of the insulating phase obtained in DMFT.

Ĥ0 = t
∑

〈ij 〉
c†

i cj + h.c. + U
∑

i

(
c†

i ci − 1
2

)(
nf

i − 1
2

)
,

(I1)

corresponding to Eq. (8) with t′ = 0, μ = U/2, and Ef =
−μ. Equation (I1)’s particle-hole symmetry guarantees the
half-filling condition. As we discuss in Appendix F, at
finite temperatures, the model prefers a disordered metal-
lic phase (insulating checkerboard charge order) at small
(large) U, see Fig. 11 inset and Ref. [62].

Similar to the Sec. V, we couple the strongly-correlated
model Ĥ0 in Eq. (I1) to an FNN and employ super-
vised machine learning. For the training set, we randomly
sample models within the parameter region T ∈ [0.1, 0.2]
and U ∈ [1.0, 4.0] away from the phase transitions. Once
the training converges, we apply the FNN towards mod-
els with U ∈ [1.0, 4.0] at T = 0.11, whose results are in
Fig. 11. We note that the accuracy reaches 99.7%, with
a transition point between the numerical values obtained
via quantum Monte Carlo (QMC) and DMFT. However,
the FNN confidence is not very high, which is typical for
machine learning of metal-insulator transitions, comparing
gapless versus gapped phases and finite versus zero order
parameters on finite-size systems. We also note the exis-
tence of a clear kink in the FNN output near the transition
point indicated in DMFT.

APPENDIX J: MUTUAL INFORMATION AND
LOCAL UNITARY TRANSFORMATIONS FOR

FNN LOGIC FLOW

For a postlearning FNN, we can employ mutual
information to track the input-to-out logic flow through its
full depth.

First, given a target input, we can establish mutual infor-
mation between every neuron and the output neurons,
whose LDOS holds the FNN’s decision. Given a fermion
tight-binding model, e.g., the FNN Hamiltonian in Eq. (1),
we can analyze its ground-state entanglement entropy
[44,45] and mutual information [69,70] starting from its
two-point correlators Cij = 〈c†

i cj 〉. With the correlation
matrix CA defined in a subsystem A, the corresponding
entanglement Hamiltonian hA is

hA = {ln [(1 − CA) /CA]}T , (J1)

which gives the reduced density matrix for the subsystem
A [118]:

ρA = 1
ZA

exp

⎡

⎣−
∑

i,j ∈A

(hA)ij c†
i cj

⎤

⎦. (J2)

Since the partition function takes the form:

ZA = tr
(
e−hA

) =
∏

k

(
1 + e−εA

k

)
,

εA
k = ln

[(
1 − ζ A

k

)
/ζ A

k

]
,

(J3)

where εA
k and ζ A

k are the respective eigenvalues of hA and
CA [119,120], we can straightforwardly derive the von
Neumann entanglement entropy:

SA = −tr (ρA ln ρA) =
∑

k

[
εA

k

eεA
k + 1

+ ln
(

1 + e−εA
k

)]
,

(J4)

which we can calculate from first Cij and then ζ A
k . As a side

note, we can also evaluate the Renyi entanglement entropy
as

(SA)α = 1
1 − α

ln
[
tr
(
ρα

A

)]

= 1
1 − α

∑

k

[
ln
(

1 + e−αεA
k

)
− α ln

(
1 + e−εA

k

)]
.

(J5)

For the FNN in Eq. (1), we first diagonalize the Hamilto-
nian:

Ĥ = (c†Q)�(Q†c) = α†�α, (J6)

where � = diag({εn}) are the energy eigenvalues and α
†
n =∑

m c†
mQmn are the corresponding eigenstates. Then, since

the ground state fills (leaves empty) all states with εn ≤ 0
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(εn > 0):

|�〉 =
∏

εn≤0

α†
n |0〉, (J7)

where |0〉 is the vacuum state, we can obtain the correlation
matrix:

C =
(

Q�̃Q†
)T

, (J8)

where �̃ is the occupation matrix with 1’s in the diagonal
for all εn ≤ 0.

In order to unambiguously locate the logic flow, we can
perform a unitary transformation Ul on each layer so that
the mutual information in Eq. (10) vanishes between the
last layer and as many neurons in that layer as possible,
simplifying the logic flows. We note that the mutual infor-
mation IAB = 0 between two subsystems A and B if and
only if the correlation matrix is block diagonal:

CAB =
(

CA 0
0 CB

)
, (J9)

and so does the entanglement Hamiltonian hAB, yielding
eigenvalues and entanglement entropy fully canceled by
those from the separate subsystems hA and hB. Physically,
the subsystems A and B behave decoupled.

To preserve the layered FNN architecture, we con-
sidered layerwise unitary transformations, which take a
block-diagonal form:

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U0 0 · · · · · · · · · 0

0
. . . . . . . . . . . .

...
...

. . . Ul 0 · · · 0
...

. . . 0
. . . . . .

...
...

. . .
...

. . . UL−1 0
0 · · · 0 · · · 0 UL

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (J10)

where Ul is a unitary matrix of Ml × Ml acting on the
lth layer. U transforms the overall correlation matrix (and
simultaneously the FNN model) as follows:

C′ = U†CU

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C′
0,0 · · · · · · · · · · · · C′

0,L

...
. . . . . . . . . . . .

...
...

. . . C′
l,l · · · · · · C′

l,L

...
. . .

...
. . . . . .

...
...

. . .
...

. . . C′
L−1,L−1 C′

L−1,L

C′
L,0 · · · C′

L,l · · · C′
L,L−1 C′

L,L

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(J11)

where C′
l,l′ = (Ul)

†Cl,l′Ul′ . Of note, we wish to zero as
many rows from the Ml × ML matrix C′

l,L as possible so
that these neurons in the lth layer do not correlate with
the last layer, diminishing their mutual information. Com-
monly, we have more hidden neurons than output neurons,
Ml > ML. For such purpose, we can transform C′

l,L into an
upper triangular matrix:

C′
l,L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1,ML
0 a22 · · · a2,ML
...

. . . . . .
...

0 · · · 0 aML,ML
0 · · · · · · 0
...

. . . . . .
...

0 · · · · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ml×ML

, (J12)

by making UL = I an identity so that the output neurons
retain their meanings and obtaining U†

l via the Gram-
Schmidt orthogonalization. In the alternative FNN after the
overall unitary transformation U, only the first ML neurons
in a layer may possess finite mutual information with the
last layer.

For example, for the FNN in Fig. 12(a), a logic flow
example given a Chern insulator input and the mutual
information distributions before and after the unitary trans-
formation are in Figs. 12(a) and 12(b). We note that
such unitary transformations are controlled, invertible, and
samplewise applicable—no transformation of this kind is
available to classical ANNs. While L1 regularization may
eliminate some weights in classical ANNs, its effect is

L L L L L

(a)

(b)

FIG. 12. After proper unitary transformations (UTs), the
mutual information of every single neutron and the output neu-
rons exhibit a highly concentrated pattern, allowing us to trace
the logic flows from any input sample—a Chern insulator model
in this case—through the full depth of the FNN to its outputs
accurately without information loss, as schematically shown in
(a). (b) The mutual information distributions before and after the
layerwise unitary transformations.
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stochastic, uncontrolled, and at the cost of ANNs’ com-
plexity and power; it also applies only to the ANN level
instead of specific samples.

The analogous idea of network simplification and logic-
flow analysis also exists in classical ANNs [121,122].
One can keep the ANN performance while pruning most
model parameters, resulting in simpler architecture and
better interpretability. Compared to a general compression
technique such as pruning, however, our logic-flow anal-
ysis works for individual FNN inputs. Naturally, different
inputs incur different logic flows, for which we may simply
employ different local unitary transformations.
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