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We present a method that integrates any quantum algorithm capable of finding solutions to integer
linear programs into the branch-and-price algorithm, which is regularly used to solve large-scale integer
linear programs with a specific structure. The role of the quantum algorithm is to find integer solutions
to subproblems appearing in branch-and-price. Obtaining optimal or near-optimal integer solutions to
these subproblems can increase the quality of solutions and reduce the depth and branching factor of
the branch-and-price algorithm and hence reduce the overall running time. We investigate the viability
of the approach by considering the tail assignment problem and the quantum approximate optimization
algorithm (QAOA). Here, the master problem is the optimization problem set partitioning or its decision
version exact cover and can be expressed as finding the ground state of an Ising spin glass Hamiltonian.
For exact cover, our numerical results indicate that the required algorithm depth decreases with the num-
ber of feasible solutions for a given success probability of finding a feasible solution. For set partitioning,
on the other hand, we find that for a given success probability of finding the optimal solution, the required
algorithm depth can increase with the number of feasible solutions if the Hamiltonian is balanced poorly,
which in the worst case is exponential in the problem size. We therefore address the significance of prop-
erly balancing the objective and constraint parts of the Hamiltonian. We empirically find that the approach
is viable with QAOA if polynomial algorithm depth can be realized on quantum devices.
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I. INTRODUCTION

Large-scale integer linear programs (ILPs) appear in the
real world frequently as they model problems, such as
planning, scheduling, and resource allocation. These prob-
lems are characterized by their large size, a linear cost
function, affine inequality and/or equality constraints, as
well as variables required to be integers.

Airline planning problems such as crew rostering, crew
pairing [1,2], and tail assignment [3,4] fall into this cat-
egory. These problems are made more difficult by very
complex rules and regulations imposed by aviation author-
ities, airlines, and unions [1]. These rules can even be hard
to express in mathematical optimization models and the
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models can furthermore have objective functions that are
nonlinear in some optimization formulations [5,6]. One
way to address these difficulties is to formulate the opti-
mization problem with a very large number of variables
and to separate the problem into a generation problem
and a selection problem. With this formulation, standard
approaches such as branch-and-bound or branch-and-cut
[7] cannot be used directly to solve these problems due
to their large size, where even enumerating the legal deci-
sion variables can require exponential time and space, see
Sec. A 2 for a more detailed explanation. Instead, by start-
ing with an empty set of variables, the generation problem
is responsible for generating alternative variables (aircraft
routes in the tail assignment problem) to the selection prob-
lem (an ILP for the tail assignment problem). The task of
the selection problem is to find the subset of the gener-
ated variables that in the most cost-effective way satisfy
all the constraints in the ILP (in the most basic tail assign-
ment problem, this corresponds to having each flight in the
schedule covered by exactly one aircraft). This process is
generalized in the branch-and-price algorithm [6], which
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combines branch-and-bound [8] and column generation
[9,10] and has generally been successful for large-scale
ILPs with this type of structure. The benefit of separating
the problem is that the complex rules affect only the gen-
eration problem, whereas the selection problem is often a
pure set cover or set partitioning problem.

In the column generation algorithm, the generation and
selection problems are solved iteratively until optimal con-
ditions hold. In this context, the selection problem is called
the restricted master problem (RMP) and the generation
problem is called the pricing problem (PP). The RMP,
which contains only a subset of the decision variables
of the original problem, is solved as a linear program
(LP). Column generation is generally insufficient to solve
the original ILP since the solution is most likely frac-
tional. To remedy this, column generation is combined
with branch-and-bound for finding the integer solution. For
readers unfamiliar with branch-and-price, details are given
in Appendix A.

With the results for factoring with Shor’s algorithm [11]
and unstructured database search with Grover’s algorithm
[12], providing subexponential and quadratic speedup,
respectively, it is natural to ask if quantum algorithms also
can provide speedup for ILPs even though superpolyno-
mial speedup for these problems is not expected. The adia-
batic quantum algorithm [13] and quantum annealing [14]
have subsequently been proposed. Other quantum algo-
rithms for combinatorial optimization problems [15,16]
such as Grover’s adaptive search algorithm [17] have also
been proposed. In recent years, much interest has been
given to the quantum approximate optimization algorithm
(QAOA) [18] for solving combinatorial optimization prob-
lems, as it may be a suitable algorithm to run on near-
term gate-based quantum computers and to demonstrate
quantum advantage or quantum supremacy [19].

Experiments performed in Ref. [20] have reported to
demonstrate quantum supremacy for a problem that is not
related to optimization. Such devices can be classified
as noisy intermediate-scale quantum (NISQ) computers,
where qubits are controlled imperfectly and quantum error
correction is generally not considered [21]. Moreover,
QAOA was demonstrated in Ref. [22] for the Sherrington-
Kirkpatrick model and maxcut, where experiments agree
well with simulations. Such results further motivate inves-
tigating QAOA for ILPs and distinctly large-scale ILPs.

Here, we address the open question of whether quan-
tum algorithms can provide any advantage for large-scale
ILPs, where we stress that these problems can require
exponential time and space even to generate the full ILP
or the continuous relaxation counterpart. The large num-
ber of decision variables therefore in practice rules out
a direct application of any quantum algorithm capable of
solving an ILP, as well as standard classical algorithms for
ILPs and the continuous relaxation. Building instead on the
above mentioned branch-and-price algorithm, we propose

to augment it by using a quantum co-processor to find opti-
mal or near-optimal solutions to RMP instances. For real-
world large-scale ILPs, optimality is often intractable and
finding good bounds can be hard. The exact definition of a
near-optimal or “good-enough” solution will thus be a bal-
ance between running time and the quality of the solution.
We can then ensure that the number of decision variables
does not exceed the capabilities of the quantum processor
when we generate the RMP. Here, we also would like to
note that the proposed hybrid algorithm is a heuristic and
the performance for real-world ILP problems cannot be
properly evaluated until the hardware reaches between 103

to 104 qubits, corresponding to the same amount of deci-
sion variables in the RMP problem. At that point, we argue
that this method has the potential to reduce the time to solu-
tion and improve solution quality. The detailed description
of where a NISQ co-processor could first be used to test
for possible speedup in finding near-optimal solutions to
ILPs, is one of the main results of this paper. Further-
more, we investigate the method numerically by consid-
ering QAOA and the real-world problem tail assignment
that generalizes set partitioning and its decision version
exact cover, which are NP-hard and NP-complete prob-
lems [23]. Here, we are naturally limited to instances with
up to 20 decision variables, but we explore these instances
to learn how to balance the cost and constraint parts of
the Hamiltonian to achieve a large probability of find-
ing the optimal solution, when there are multiple feasible
solutions.

The results have been obtained by simulating ideal
QAOA circuits applied to instances with one or more fea-
sible solutions, extracted from a heuristic branch-and-price
algorithm [3]. The numerical results expand on Ref. [24],
where QAOA was applied to instances with a single fea-
sible solution and mapped as an exact cover problem (the
decision version of the optimization problem set partition-
ing), also extracted from tail assignment. The exact cover
version of this problem has also been investigated exper-
imentally on a quantum processor [25] and on a quantum
annealer [26]. The current paper thus gives a broader ILP
context and background for these works as well as a first
extension to cases with multiple feasible solutions. The
paper is organized as follows. In Sec. II we introduce the
tail assignment problem. We present the method for inte-
grating a quantum algorithm with branch-and-price in Sec.
III. In Sec. IV we review QAOA and the chosen map-
ping of exact cover and set partitioning to an Ising spin
glass Hamiltonian. In Sec. V the extracted RMP instances
are presented. We present and motivate the chosen opti-
mization strategy for studying larger algorithm depths in
Sec. VI. Results are given in Sec. VII first for exact cover
and second for set partitioning. Last, in Sec. VIII we
summarize the findings and discuss interesting open
questions that are beyond the scope of this
work.
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II. TAIL ASSIGNMENT: AN EXAMPLE OF A
REAL-WORLD LARGE-SCALE INTEGER

LINEAR PROGRAM

Airlines regularly face several large NP-hard planning
problems such as fleet assignment, crew pairing, crew ros-
tering, and tail assignment in the planning process [3,27].
For tail assignment, the task is to determine, given a set
of flights and a set of aircraft, what flights are operated by
which individual aircraft and what order under the con-
straint that each flight is flown exactly once such that
some objective is optimized. Operational constraints, such
as minimum connection times, airport curfews, mainte-
nance, and preassigned activities must also be respected,
and can be considered part of the input to tail assignment.
A set of flights operated by an aircraft is referred to as a
route, where the operational constraints distinguish legal
routes from illegal routes. This means that a solution con-
sists of a set of legal routes that cover all flights exactly
once in the most cost-effective way. As an example, an
airline can encounter problems with one thousand flights
per day with hundreds of aircraft, where the aircraft are
of ten different types [3]. In the worst case, this means
that the number of possible routes to determine if they are
legal or illegal would be 2|F|, where F is the set of flights.
By considering restrictions such as the arrival time must
be less than the departure time of two flights following
each other in a route the combinatorial explosion can be
decreased. However, typically the number of legal routes
will be very large and too large to solve without separat-
ing the problem into a selection problem and a generation
problem.

Tail assignment can thus be classified as a large-scale
ILP, where we refer the readers to Refs. [7,28] for a com-
prehensive view of established algorithms for solving ILPs
and to Refs. [6,10,29,30] for large-scale ILPs. The clas-
sical algorithm we consider here used to find optimal or
near-optimal solutions to tail assignment in Ref. [3] is a
heuristic branch-and-price. The heuristic branch-and-price
can be understood as the branch-and-price algorithm where
the branching step is replaced with a fixing step that is bet-
ter suited for tail assignment by diving into a branch of the
full search tree.

For consistency, we give the details of the
algorithms branch-and-bound, column generation, branch-
and-price, and the heuristic branch-and-price in
Appendix A.

A. The set partitioning problem and the exact cover
problem

We define a simple path-based model of tail assignment
as a set partitioning problem

minimize
∑

r∈R

crxr, (1)

subject to
∑

r∈R

afrxr = 1 ∀f ∈ F , (2)

xr ∈ {0, 1} ∀r ∈ R, (3)

where F is the set of flights and R is the set of legal aircraft
routes. In the linear objective function, Eq. (1), cr ∈ Z cor-
responds to the cost of using route r. The entries afr ∈ {0, 1}
are elements of a constraint matrix A indicating if flight f
is part of route r. A column in the constraint matrix is there-
fore a route. Furthermore, Eq. (2) enforces the requirement
that the set of routes in a solution should contain flight f
exactly once. Finally, the decision variables xr ∀r ∈ R indi-
cate which routes are used. The tail assignment problem
can, in practice, also be described by the decision problem
exact cover, for cases where the objective is to find any
feasible solution and not the optimal solution necessarily.
The exact cover problem can be modeled as an ILP where
the objective function in Eq. (1) is ignored and set to 0 for
any assignment of the decision variables.

We now define the set Sfeasible to be the set of feasi-
ble solutions to the set partitioning problem and the exact
cover problem as

Sfeasible =
{

�x ∈ {0, 1}|R| :
∑

r∈R

afrxr = 1 ∀f ∈ F

}
. (4)

If we consider a linear system of equations modulus 2

A�x = �b mod 2, (5)

where the matrix A is of dimension |F| × |R|, �x is a column
vector with |R| unknown variables and �b is a column vector
with |F| entries. The elements of A, �b, and �x are either 0 or
1, respectively. The system of equations has

2|R|−rank(A) (6)

number of solutions as long as the linear system of equa-
tions in Eq. (5) has at least one solution [31]. For set
partitioning 2|R|−rank(A) constitutes an upper bound on the
number of feasible solutions |Sfeasible| [32], since any feasi-
ble solution to set partitioning is also a solution modulus 2
to the system of equations in Eq. (5) where all entries in �b is
set to one. It is therefore possible that the number of feasi-
ble solutions is significantly smaller than the upper bound.
Furthermore, as the counting version of exact cover and
set partitioning is #P-complete [33], obtaining the actual
number of feasible solutions for typical instances for tail
assignment becomes intractable.

We have investigated the number of feasible solu-
tions for generated RMP instances of tail assignment
with CPLEX [34]. We find that the number of feasible
solutions for two sets of generated instances can be
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larger than 5 × 106 for problems with 700–800 deci-
sion variables. We can therefore not rule out that the
number of feasible solutions can be very large in prac-
tice, and the consequence is to investigate if a large
feasible set is a limiting factor in the performance for
QAOA.

III. INTEGRATING A QUANTUM ALGORITHM
WITH BRANCH-AND-PRICE

In this section we present the method where the branch-
and-price algorithm is augmented by integrating any
quantum algorithm capable of finding optimal or near-
optimal integer solutions to RMP instances. The integrated
branch-and-price algorithm is depicted in Fig. 1 where
branch-and-price is distinguished with green and blue col-
ored boxes, and dotted and dashed borders. The green
boxes with dotted borders highlight the column genera-
tion algorithm, and the blue boxes with dashed borders are
distinctive for the branch-and-bound algorithm. The red
boxes with solid borders give the integration of a quantum
algorithm. This hybrid algorithm is one of the main results
of this paper.

The integrated method utilizes a quantum algorithm for
each column generation iteration if the RMP is deemed
promising. We remind the reader that since routes are gen-
erated dynamically by the column generation algorithm
each iteration corresponds to another ILP instance, which
means that each iteration provides a possibility to find
an alternative integer solution to the problem via a quan-
tum (or classical) algorithm. For example, we might want
to avoid using a quantum algorithm in the beginning of
the column generation process as it will, in general, be
more likely to find good integer solutions in later itera-
tions. However, determining how often to use a quantum
algorithm will be a trade-off that depends on if the RMP
instance is expected to contain integer solutions with rea-
sonable quality, the runtime of the algorithm for practical
instances, the quality of solutions the quantum algorithm
can find, and its potential to be used in parallel with the
branch-and-price algorithm. Additionally, prior to utilizing
a quantum algorithm, classical preprocessing techniques
are applied to the RMP instance and the output of the
quantum algorithm is used as input to classical postpro-
cessing techniques. We note that the method is similar to
those explored in Ref. [35] and shares similarities to the
use of a quantum device for scheduling problems in Ref.
[36]. However, our proposed method considers the hybrid
classical and quantum approach for large-scale ILPs and is
inspired by the integration of classical IP solvers for 0-1
integer programs into a generation and selection approach
for large-scale ILPs in Ref. [5].

The addition of a quantum algorithm can improve the
classical algorithm in several ways. Firstly, the quantum
algorithm can provide a set of optimal or near-optimal
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FIG. 1. High-level depiction of the branch-and-price
algorithm integrated with a quantum algorithm capable of
finding solutions to ILPs. The variable c̄r is the reduced cost
of route r, �cRMP is the cost vector of an RMP instance, and
its entries correspond to for tail assignment to the entries cr
for r = 1, . . . , |R| in Eqs. (1)–(3). The solution provided by
a quantum algorithm with postprocessing is the vector �x∗

RMP,
and the constant C is a threshold for the accepted quality of a
solution. This hybrid algorithm is one of the main results of this
paper.

integer solutions to RMP instances, which means that the
quantum algorithm can be used as a primal heuristic in
the column generation algorithm. This technique is some-
times referred to as the restricted master heuristic [37]. In
the restricted master heuristic, a subset, which is a fixed
number of columns and variables, is chosen from the RMP
and the resulting problem is solved as a static integer pro-
gram (IP). However, we do not wish to restrict the number
of variables and columns to solve as a static IP. Instead,
we propose to use the whole RMP instance unless we are
required to leave out variables due to limitations in the size
of a quantum device. Such heuristics can improve the solu-
tion quality as observed in Ref. [38] by simply obtaining
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optimal or near-optimal solutions to RMP instances. Fur-
thermore, as primal heuristics have been shown to be key
for solving mixed integer programs, heuristics that lever-
age a quantum algorithm seems to be a natural step for
branch-and-price.

Moreover, by finding a set of integer solutions, some
flexibility is introduced as it is possible to compare the
quality of several solutions with respect to more param-
eters than each solution’s cost. This is mainly an advan-
tage for a real-world problem, where buffers occurring in
solutions can improve the sensitivity to disruptions.

Secondly, the quantum algorithm can provide tighter
upper bounds in the branching step, which can be utilized
in pruning decisions directly without sacrificing optimal-
ity. When we have access to tighter upper bounds, these
bounds are compared to the lower bounds found in the col-
umn generation algorithm. If the lower bound is greater
or equal to the upper bound, we can discard the subprob-
lem as we can prune by bound. If we do not have access
to these tighter upper bounds, more subproblems are cre-
ated and explored. This means that the upper bounds can
reduce the search tree’s size, which leads to a reduced run-
ning time of the algorithm. The upper bounds can also
reduce the number of iterations required in the column
generation algorithm as noted in Ref. [35] by computing
the Lagrangian lower bound, where the stopping criteria is
given when the Lagrangian lower bound is greater than the
best known upper bound. We can also consider introduc-
ing heuristic pruning rules that can reduce the running time
of branch-and-price. We remark that finding a good solu-
tion fast can be preferable to finding the optimal solution
for real-world problems. Heuristic pruning rules guided by
optimal or near-optimal solutions to RMP instances can
therefore be beneficial. However, as even optimal integer
solutions to RMP instances do not guarantee an optimal
solution to the subproblem in branch-and-price, the prun-
ing decisions will be heuristic and do not guarantee an
optimal solution.

By introducing heuristic pruning rules, the goal is thus
to obtain high-quality solutions faster. The pruning deci-
sion can be determined by comparing the solution quality
for different RMP instances by monitoring the iterative
change in the objective and the LP lower bound gap. If
the branch-and-price is based on variable fixing decisions,
the solutions from a quantum algorithm can indicate if cer-
tain variables can be chosen to be fixed. The procedure of
fixing a variable is such that if a variable xi is set to 1 for
a majority of the obtained solutions, the variable can be
fixed to 1 and the branch-and-bound algorithm dives into
this particular branch of the search tree. Further techniques
as in RQAOA in Ref. [39] can also be utilized where it
is possible to find relations between two decision vari-
ables zi = σij zj where σij = sign(〈 �γ ∗, �β∗|σ̂ z

i σ̂ z
j | �γ ∗, �β∗〉)

and (i, j ) is an edge in the graph G = (V, E) such that

(i, j ) = argmax(i′,j ′)∈E{|〈 �γ ∗, �β∗|σ̂ z
i′ σ̂

z
j ′ | �γ ∗, �β∗〉|} of an Ising

model that encodes an ILP. Such heuristic pruning rules
would be similar to the ones of diving heuristics (which
can be greedy, random, or based on rounding strategies) or
local branching heuristics [40].

Finally, the quantum algorithm can reduce the run-
ning time if it finds some integer solution below a given
threshold or sufficiently close to the lower bound of the
original problem as the algorithm, in that case, stops even
though the search tree of branch-and-price is not explored
fully.

Since the method is heuristic, the running time can best
be evaluated by executing it on real problems and quantum
devices, which is currently intractable due to the current
size of quantum computers. We expect that as quantum
hardware matures, such experiments will be of interest.

We can, on the other hand, note that the general
branch-and-bound algorithm has worst-case running time
O(Mbd), where b is branching factor, d is the search depth,
and M is the upper bound on the running time to explore a
subproblem fully. If we can obtain optimal or near-optimal
integer solutions to subproblems, the number of nodes
we can prune is larger and thus reduces the algorithm’s
running time.

Furthermore, as the augmented algorithm is valid for
any branch-and-price algorithm applied to problems with
master problems (MPs) possible to solve by some quan-
tum algorithm, the method can be suitable for a large class
of ILPs. In particular, this framework can be employed
for airline planning problems such as tail assignment,
crew pairing, and crew rostering but also other large-
scale ILPs, such as vehicle routing problems [41]. Whilst
this approach prohibits applying a quantum algorithm to
the tail assignment problem and other large-scale ILPs
directly, it reduces the number of required decision vari-
ables and qubits. In particular, the MP for tail assignment,
which is a set partitioning problem, is mapped such that
the number of decision variables corresponds exactly to
the required number of qubits (this is true also for other
MPs that are 0-1 variable LPs with equality constraints).
We could map the tail assignment problem directly to an
Ising model using an arc-based formulation [see in Ref.
[3] Eqs. (4.1)–(4.7)], but this would require 107 qubits for
a problem with 103 flights and ten aircraft prior prepro-
cessing. For typical RMP instances, we instead expect to
require around 103 − 104 decision variables for the path-
based formulation in Eqs. (1)–(3). The proposed method
is thus much more suitable for NISQ computers. The arc-
based formulation has an additional disadvantage beyond
the resource requirement of qubits for problems as tail
assignment, which are the recursive maintenance require-
ments. These are nontrivial to map to an Ising model, and
removing the constraints would likely result in infeasible
solutions.
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Moreover, we expect that if RMP instances can
be solved approximately with sufficiently shallow cir-
cuit depth, the circuits can be realized on NISQ [42]
computers.

As mentioned earlier in this section, we propose a
preprocessing step using classical integer programming
techniques [43,44] in order to reduce the number of vari-
ables and constraints of the problem prior to utilizing
a quantum computer. Reducing the number of variables
(required qubits) and constraints (problem graph connec-
tivity) is useful for the limited NISQ computers to be able
to address real-world problems. The level of sophistication
can range from very basic to very advanced techniques
and the level of sophistication used will be a trade-off
between the computational time of the preprocessor and
the size and performance of the quantum computer. We
also consider classical postprocessing of the output from a
quantum algorithm, where additional local searches can be
done and we can combine good RMP solutions to obtain
improved solutions with standard or specialized classical
solvers. Infeasible solutions can additionally be attempted
to be corrected to feasible solutions by heuristic classical
algorithms.

We stress that the benefit in separating the original
problem with the branch-and-price algorithm is that the
master problem often is a pure set partitioning or set
cover problem without any additional side constraints. The
PP, on the other hand, is often a resource-constrained
shortest-path problem that considers the complex rules.
Thus, the method is not based on being more suitable for
NISQ devices but is based on known successful meth-
ods for solving complex large-scale ILPs. Furthermore,
by simplifying a real-world problem to a pure set cover
or set partitioning problem we also avoid tackling an
ILP with potentially many complicated side constraints
with quantum algorithms. This also means that the intri-
cate task of balancing multiple constraint penalties is
simplified.

If the method is favorable for large-scale ILPs depends
on how complicated the constraints are and the resource
requirements of various formulations. The method pro-
posed here can be expected to provide constant speedup
and improve the quality of the solutions. However, it is
unclear if the method can provide polynomial speedup as
the addition of a quantum algorithm provides no guar-
antee for a speedup and is tied to the column genera-
tion algorithm, which limits the possible speedup we can
expect. If it is possible to use an alternate formulation that
is not required to be separated into a generation problem
and a selection problem, it might be beneficial to map
the problem directly to an Ising spin glass Hamiltonian.
However, as we have pointed out, this often requires signif-
icantly more decision variables and qubits to be applicable
to real problems and will be more challenging for NISQ
devices.

IV. THE QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

Farhi, Goldstone, and Gutmann presented in Ref. [18]
QAOA, which is a hybrid classical and quantum varia-
tional algorithm capable of finding approximate solutions
to combinatorial optimization problems. The algorithm
is inspired by the adiabatic quantum algorithm but is
designed for gate-based quantum computers. Furthermore,
evidence that a classical computer cannot simulate a
QAOA circuit without exponential overhead was pre-
sented later in Ref. [19]. The algorithm consists of alternat-
ing the operators e−iγkĤf and e−iβkĤM for k = 1, 2, . . . , p ,
where p is the depth of the algorithm. An ideal QAOA
circuit applied to the initial state |+〉 = 1/

√
2n
∑2n−1

i=0 |i〉
gives the QAOA state for depth p

| �γ , �β〉 = e−iβp ĤM e−iγp Ĥf . . . e−iβ1ĤM e−iγ1Ĥf |+〉 ,

where ĤM = ∑n
i=1 σ̂ x

i is the mixing Hamiltonian and
Ĥf = ∑

�x∈{0,1}n f (�x) |�x〉 〈�x| is a diagonal cost Hamiltonian
with respect to the computational basis. The cost Hamil-
tonian encodes an objective function f (�x), which repre-
sents a combinatorial optimization problem. With optimal
angles �γ ∗ and �β∗ and sufficiently large algorithm depth,
the QAOA state should have a large proportion in states
that are close to the ground state and equal to the ground
state. By repeating the process of constructing the state
and performing measurements in the computational basis,
a solution that is equal or close to the ground state of the
cost Hamiltonian can be found.

The total running time to execute the quantum circuit,
as well as the implementation of the gates associated to the
cost Hamiltonian is both graph and hardware architecture
dependent. If we let the algorithm depth go to infinity and
restrict the angles to be small, the algorithm becomes exact
[18].

For an ILP problem Ĥf will consist of one partial
Hamiltonian that corresponds to the objective function and
another that corresponds to constraints, not unlike common
penalty methods [45]. If f (�x) represents a minimization
problem the optimal angles �γ ∗ and �β∗ can be found by
solving the classical optimization problem

argmin 〈 �γ , �β|Ĥf | �γ , �β〉, (7)

subject to γi ∈ [0, 2π ] ∀i = 1, .., p , (8)

βi ∈ [0, π ] ∀i = 1, .., p (9)

as 〈 �γ , �β|Ĥf | �γ , �β〉 = f (�x∗) if | �γ , �β〉 = |�x∗〉 where �x∗ is the
optimal solution to the problem f (�x) represents. The func-
tion in Eq. (7) is the expectation value function and can be
referred to as the energy landscape. The domain in Eqs. (8)
and (9) holds for Hamiltonian Ĥf with integer eigenvalues
[24].
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As far as we know, instances extracted from the real-
world problem tail assignment has previously only been
studied for QAOA in the context of exact cover in Ref. [24]
where success probabilities close to unity for instances up
to 25 qubits with one feasible solution could be obtained
for p ≤ 20 for ideal QAOA circuits. Recently, the vehi-
cle routing problem was also studied up to 20 qubits [46]
where a clear dependency was established between the
problem size and the performance of QAOA. On the other
hand, real-world problems have been studied for quantum
annealing, such as for flight gate assignment in Ref. [47],
where the authors address the issue of bin packing the
cost vector of the objective function. However, the com-
plication of degenerate problem instances have not been
discussed to a large extent in the context of QAOA, nor
has much focus been given to how suitable weights are
found to balance the constraints and the objective part of
the Hamiltonian Ĥf . In Sec. VII, we focus on the effect of
choosing suitable weights on the required algorithm depth
given a success probability and if having a large feasible
space is a limiting factor for the performance.

A. Mapping set partitioning and exact cover

It is possible to map the set partitioning and exact cover
problem to the Ising spin glass Hamiltonian with an under-
lying graph G = (V, E) with nodes given by the set V
and the edges given by the set E, where the Hamiltonian
is Ĥ = ∑|V|

i=1 hiσ̂
z
i +∑

(i,j )∈E Jij σ̂
z
i σ̂ z

j as presented in Ref.
[48]. In this case, the Hamiltonian has at most two spin
interaction terms σ̂ z

i ⊗ σ̂ z
j and is 2-local [49], albeit this

does not correspond to a geometric locality with respect to
hardware architecture.

By introducing a quadratic penalty on the constraints
in Eq. (2) a nonlinear integer optimization problem is
obtained. The quadratic penalty results in a Hamiltonian
which has two parts (when ignoring a constant energy
shift), a Hamiltonian, which is related to the objective
function and a Hamiltonian related to the constraints.
These parts are weighted with constants μ1 and μ2 accord-
ingly

Ĥ set partitioning =
∑

r∈R

[μ1 × hobjective
r

+ μ2 × hexact cover
r ]σ̂ z

r

+ μ2 ×
∑

r′>r

J exact cover
rr′ σ̂ z

r σ̂ z
r′ ,

where

hobjective
r = cr

2
,

hexact cover
r =

∑

f ∈F

afr

(
∑

r′∈R

afr′

2
− 1

)

and

J exact cover
rr′ =

∑

f ∈F

afrafr′

2
.

We observe that the terms hobjective
r are given by the objec-

tive function in Eq. (1) and therefore indicate the cost
of an assignment of the decision variables �x ∈ {0, 1}|R|.
The terms hexact cover

r and J exact cover
rr′ are due to the con-

straints in Eq. (2), where J exact cover
rr′ gives a penalty for

each overlapping flight in route r and r′ and with the terms
hexact cover

r gives a penalty if the combination of routes in an
assignment does not cover all flights.

The problem graph G = (V, E) is given by the coeffi-
cients hexact cover

r , hobjective
r and J exact cover

rr′ in the Hamiltonian
where the graph itself can be thought also as a conflict
graph of the variables. Finally, the detailed mapping of
exact cover to an Ising spin glass model was presented in
Ref. [24] and further expanded for the mapping of the set
partitioning problem in Appendix B. Mappings for other
minimization problems common for large-scale ILPs such
as set cover can also be found in Ref. [48].

V. PROBLEM INSTANCES

The instances [50] have been extracted from the real-
world problem tail assignment by finding a set of different
integer solutions when executing the heuristic branch-
and-price algorithm. The different solutions are found by
permuting the cost of routes randomly during the execu-
tion of the algorithm. From this set, 35 instances have been
constructed with a varying number of routes and number of
feasible solutions by combining complete and partial solu-
tions. Typically, the instances have very large costs and can
be as large as 106, making the energy landscape numeri-
cally hard to search. The objective function has therefore
been further simplified to study qualitative differences in
the performance of RMP instances for QAOA. The costs
have been simplified such that the smallest cost cmin

r is
set to 1, larger costs have been modified such that each
cost cr has a unique value and that the optimal solution is
unique. For real instances this is not a proposed methodol-
ogy, as it can disturb the order of the solutions with respect
to quality significantly. An option for real instances is to
either increase the weight for the penalty of the constraints,
which results in a numerically challenging energy land-
scape to optimize or we can disturb the costs such that they
are easier to handle but preserves the objective function
with some accuracy.

We can modify the costs by subtracting all costs with
a constant and dividing all costs with another constant,
finally the costs are rounded to integers. There is a limit to
how much we can disturb the costs such that the order of
solutions with respect to cost is not changed significantly.
One should choose to divide by a constant that separates
the costs cr by at least a constant integer, which results in
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FIG. 2. Average node degree of the problem graphs are shown
in Fig. 2(a). Problem graphs {Gs

r}s=1,2,3
r=6 are depicted in Fig. 2(b).

a better preservation of the objective function compared
to choosing a larger constant to divide the costs by. Here
we have assumed a simple objective function to study the
performance of QAOA.

The instances are identified by the number of decision
variables |R| and the number of feasible solutions |Sfeasible|.
The number of decision variables are 6, 8, 10, 12, 14,
and 20. The number of feasible solutions vary from 1 to
|R|/2. We denote a problem graph associated to an instance
Gs=|Sfeasible|

r=|R| , which gives the set of graphs as

{Gs
r}s=[r/2]

r=6−20.

Additionally, in Ref. [24] it was observed that the average
node degree of the problem graphs affects the performance
of QAOA, in that obtaining near unity success probabil-
ity requires greater algorithm depth as the average node
degree, 〈dG(v)〉, of the problem graphs increases. The
effect of the average node degree was found to domi-
nate over the problem size such that for a given success
probability, the required algorithm depth was greater for
instances with 15 qubits compared to instances with 25

qubits. We have extracted the average node degree of each
problem graph, depicted in Fig. 2. It can be noted that the
average node degree increases with the problem size and
decreases as the number of feasible solutions increases. We
further noted that the problem graphs are close to being
complete graphs, i.e., each node’s degree is |R| − 1 or
|R| − 2. It is thus expected that such instances are hard for
QAOA to solve with respect to problem size.

VI. OPTIMIZATION STRATEGY

Finding the solution to the optimization problem in Eqs.
(7)–(9) is NP-hard [51,52] in itself. Furthermore, each
query of the function in Eq. (7) requires either executing
the QAOA circuit on a quantum device or a simulation on
a classical computer. As we are currently prohibited from
executing QAOA for the problem instances with suffi-
cient algorithm depths on a quantum device the remaining
option is to simulate the algorithm with a classical com-
puter. Moreover, since simulating the quantum circuits is
exponential in the number of qubits, the consequence is
that a function evaluation is computationally expensive.
Furthermore, in order to study the performance of QAOA
more accurately, we wish to study intermediate to large
algorithm depths, which makes the simulations even more
expensive as the dimension of the expectation value func-
tion in Eq. (7) is 2 times the algorithm depth. Compared
to problems as maxcut with uniform weights set to 1 or
versions thereof [18,53,54] the set partitioning problem
and exact cover problem have coefficients in the Hamil-
tonian hi and Jij that are governed by the constraint matrix
and objective function that grow with the chosen weights.
These coefficients are thus not constrained to 0,1 or −1
and can be large. The difference in coefficients results in
complicated energy landscapes, that oscillate rapidly, to
optimize with multiple local minima. Moreover, we can
see this from the closed form expression of the energy
landscape for p = 1 for an Ising spin glass Hamiltonian,
associated to a graph G = (V, E) with edge weights Jij and
node weights hi, which is given by

〈γβ| Ĥ |γβ〉 =
n∑

i=1

hisin(2β)sin(2γ hi)
∏

j :(i,j )∈E

cos(2γ Jij ) +
∑

(i,j )∈E

Jij

2

⎛

⎜⎜⎝sin2(2β)
∏

(i,k)∈E
(j ,k)/∈E

cos(2γ Jik)
∏

(j ,k)∈E
(i,k)/∈E

cos(2γ Jjk)

×

⎡

⎢⎢⎣cos(2γ (hi − hj ))
∏

(i,k)∈E
(j ,k)∈E

cos(2γ (Jik − Jjk)) − cos(2γ (hi + hj ))
∏

(j ,k)∈E
(i,k)∈E

cos(2γ (Jik + Jjk))

⎤

⎥⎥⎦

+ sin(4β)sin(2γ Jij )

⎡

⎣cos(2γ hi)
∏

k �=j :(i,k)∈E

cos(2γ Jik) + cos(2γ hj )
∏

l�=i:(j ,l)∈E

cos(2γ Jjl)

⎤

⎦

⎞

⎠ , (10)
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as presented in Ref. [55]. We derive the expression for
consistency in Appendix C.

The complicated energy landscape underlies our moti-
vation to focus on obtaining good locally optimal angles
via the interpolation strategy presented by Zhou, in Ref.
[56], in order to study the success probability for QAOA
with intermediate to large algorithm depth p . The first
step in the interpolation algorithm is to perform global
optimization for algorithm depth k = 1 and for algorithm
depth k > 1 locally optimal angles ( �γ L∗

, �βL∗
) angles are

found by providing a good starting point ( �γ L, �βL) to a
local search algorithm. The starting point for local search is
determined by interpolating previously found locally opti-
mal angles. The algorithm iterates for k = 2, . . . , p . The
following definition gives the interpolation in each step:

ηL
k+1,i =

⎧
⎪⎪⎨

⎪⎪⎩

ηL∗
k,1 if i = 1

i−1
k ηL∗

k,i−1 + k−i+1
k ηL∗

k,i if i = 2, . . . , k

ηL∗
k,k if i = k + 1

,

where η is γ or β. The index i denotes the i:th element
of locally optimal angles found for algorithm depth k and
index k denotes the best found angles of algorithm depth
k. The distinction between L and L∗ is the separation of
the starting point and angles found after a local search.
In our case, the global optimization was performed with
PYTHON’s differential evolution routine. The local opti-
mization was performed with L-BFGS-B, which is also a
standard solver in PYTHON.

VII. NUMERICAL RESULTS FOR RESTRICTED
MASTER PROBLEM INSTANCES

We present the numerical results obtained for ideal
QAOA circuits where the variational parameters have been
obtained via the interpolation strategy first for exact cover
in Sec. VII A and second for set partitioning in Sec. VII B.

A. Solving the exact cover problem

For exact cover, we require only to obtain a feasible
solution �xi ∈ Sfeasible. For such a purpose, the most natu-
ral choice of mapping is by ignoring the objective part of
the Hamiltonian, i.e., the cost Hamiltonian is expressed as

Ĥf = Ĥ exact cover.

Furthermore, it is straightforward to define the success
probability as the probability of obtaining any of the
feasible solutions

Pexact cover
success =

∑

�xi∈Sfeasible

|〈�xi| �γ L∗
, �βL∗〉|2.

The success probabilities for QAOA applied to the exact
cover instances are plotted in Fig. 3. We remark that the

0 25
p

0

50

100

P
ex

ac
t

co
ve

r
su

cc
es

s
(%

)

|R| = 6

0 25
p

|R| = 8

0 25
p

|R| = 10

0 25
p

0

50

100

P
ex

ac
t

co
ve

r
su

cc
es

s
(%

)

|R| = 12

0 25
p

|R| = 14

0 20
p

|R| = 20

1
2

3
4

5
6

7
8

9
10

FIG. 3. Success probabilities for exact cover. The colors and
markers indicate |Sfeasible|.

required algorithm depth decreases for a given success
probability as the number of feasible solutions increases in
general, albeit increases when the problem size increases.
These results correspond to results found in Ref. [24],
wherein Fig. 2 we presented the average node degree of the
instances, that decreases with the number of feasible solu-
tions whilst increasing more significantly as the problem
size increases.

As the most challenging cases are those where the num-
ber of feasible solutions is small, we observe that obtaining
a success probability above 50% can require an algorithm
depth that is more than |R| by at least a constant, where
|R| is the number of decision variables and qubits of the
instance. Therefore, it is unknown how well QAOA can
perform for instances with 103 − 104 decision variables
when executed on a NISQ device as decoherence is a
limiting factor currently.

B. Solving the set partitioning problem

When we consider applying QAOA to the set parti-
tioning problem, two additional aspects are of interest.
The first aspect is how one should choose good weights
that balance the objective part of the Hamiltonian and the
exact cover (constraints given by a quadratic penalty) part
of the Hamiltonian. The second aspect is a consequence
of the first, namely how the chosen weights affect the
required algorithm depth for a given success probability.
The total cost Hamiltonian is a combination of the two
partial Hamiltonians accordingly

Ĥf = Ĥ set partitioning = μ1Ĥ objective + μ2Ĥ exact cover.
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FIG. 4. Success probability for solving the set partitioning
problem depending on the choice of weights μ1 and μ2, the
dashed lines correspond to f = ∞ and solid lines correspond
to the best found factors f = f ∗. The colors and markers of the
lines indicate the value of |Sfeasible|.

We have chosen the weight μ1 ∈ {Z+ ∪ {0}} depending on
a factor f

μ1 =
{

0 if f = ∞
1 otherwise

,

and μ2 ∈ Z+ depending on the largest eigenvalues of
the partial objective and exact cover Hamiltonians, and
factor f

μ2 =
⎧
⎨

⎩

1 if f = ∞⌊
f × λmax

objective
λmax

exact cover

⌉
otherwise

.

By choosing the weights to be integers, the domain is
preserved in the optimization problem defined in Eqs.
(7)–(9). Thus, f = ∞ corresponds to the mapping where
Ĥ set partitioning = Ĥ exact cover. We then define the success
probability as the probability of finding the optimal solu-
tion

Pset partitioning
success = |〈�x∗| �γ L∗

, �βL∗〉|2,

where �x∗ is the solution to the set partitioning problem,
i.e., the binary vector that corresponds the minimal value
of Eq. (1) such that �x∗ ∈ Sfeasible. The success proba-
bilities of set partitioning are plotted in Fig. 4 for ideal

TABLE I. Success probabilities for QAOA applied to set par-
titioning for problem sizes 6–20, given algorithm depth p for
multiple choices of factor f .

|R| p |Sfeasible| Pf =∞ Pf =100 Pf =10 Pf =1

6 40 1 99.55 99.52 99.96 99.98
2 50. 51.36 59.93 72.67
3 32.39 36. 67.43 99.71

|R| p |Sfeasible| Pf =∞ Pf =100 Pf =10 Pf =1

8 40 1 99.68 99.54 99.83 99.83
2 52.47 57.29 95.46 99.33
3 27.62 38.48 99.22 99.99
4 26.69 96.68 99.75 99.4

|R| p |Sfeasible| Pf =∞ Pf =100 Pf =10 Pf =33.33

10 40 1 96.75 5.19
2 51.15 0.28 47.18
3 33.37 38.33 99.03
4 25.38 39.52 99.95
5 18.89 89.3 99.91

|R| p |Sfeasible| Pf =∞ Pf =100 Pf =10 Pf =20 Pf =25

12 40 1 82.72 45.85
2 60.41 64.52 87.83
3 23.78 27.19 40.21
4 31.35 37.62 70.46
5 13.06 20.15 99.5
6 16.54 24.31 99.53

|R| p |Sfeasible| Pf =∞ Pf =100 Pf =10

14 40 1 67.07 38.76
2 47.59 63.63 21.06
3 34.73 43.78 52.09
4 19.94 42.91 99.92
5 20.99 31.98 97.46
6 20.06 36.09 99.63
7 12.25 25.68 99.22

|R| p |Sfeasible| Pf =∞ Pf =10

20 20 1 12.71 12.79
2 14.42 12.8
3 10.27 12.64
4 15.84 12.68
5 16.34 17.26
6 13.23 17.53
7 12.44 19.09
8 11.32 86.52
9 8.19 77.11

10 7.75 86.39

QAOA circuits. Dashed lines distinguish the lines for fac-
tor f = ∞ and the best found factors f ∗ are distinguished
by the solid lines. Furthermore, success probabilities are
tabulated for additional factors for a given algorithm depth
in Appendix D, where the factors have been chosen to con-
struct cost Hamiltonians with the constraint that the ground
state corresponds to the optimal solution �x∗.
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It is clear from the results of the numerical simulations
in Fig. 4 and Table I that the success probability of solv-
ing set partitioning can be increased (and thus reducing
the required algorithm depth) with a suitable choice of
weights μ1 and μ2 for 22 instances of the 29 instances with
more than one feasible solution. We also observe that a
good choice of weights for instances with a single feasible
solution corresponds to f = ∞ for all problem sizes. We
observe that the success probability can decrease with the
number of feasible solutions to Pset partitioning

success ≈ 1/|Sfeasible|
if the weights are chosen poorly, which in the worst case
is exponential in the problem size. To avoid requiring a
considerable algorithm depth, finding good weights is thus
required to solve the optimization problem with NISQ
devices.

Moreover, the regret (the difference between the min-
imum expectation value found during the optimization
procedure and the optimal solution) of the expectation
value function is depicted in Fig. 5 for instances with six
routes with varying weights.

We observe for f = ∞ that the regret is reduced to
near zero, whilst failing to increase the success proba-
bility significantly above 1/|Sfeasible|. For factors 10 and
100, the regret is greater compared to the best found fac-
tor for a given algorithm depth. The difference in regret
corresponds to decreased required algorithm depth for
the best found factor compared to factors 10 and 100 to
achieve near-unity success probability for set partitioning,
see Table I.
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FIG. 5. Regret of the expectation value function for instances
corresponding to problem graphs G1,2,3

6 for factors 1, 10, 100,
and ∞. The regret is defined as the difference between E =
〈�γ L∗

, �βL∗ |Ĥf | �γ L∗
, �βL∗ 〉 where ( �γ L∗

, �βL∗
) are the locally opti-

mal angles found by the interpolation strategy and Emin =
〈�x∗| Ĥf |�x∗〉.
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FIG. 6. Minimum nonzero energy gap �E for cost Hamilto-
nian Ĥ set partitioning depending on the factor f , as a ratio of the
maximum eigenvalue.

Since we observed that choosing a factor other than ∞
fails to increase the success probability for seven instances
with more than one feasible solution, we have extracted
the smallest nonzero energy gap ratio with respect to the
maximum eigenvalue. Figure 6 shows the ratio for
instances with 6 and 20 routes. The graphs show for
instances with six routes that the ratio can be increased
for G1

6 but not for G2,3
6 by choosing a factor that considers

the cost function. The lack of increased ratio corresponds
to the increased required algorithm depth to obtain near-
unity success probability for G2,3

6 compared to G1
6. Fur-

thermore, the choice f = 10 compared to f = ∞ results
for instances G1−3

20 in decreased ratios. Whereas the ratio
is increased for G4−7

20 and more distinctly for G8,9,10
20 . We

note that as the ratio increases for the choice of factor
f , the required algorithm depth is decreased for a given
success probability here as well. We conclude from these
results that a suitable choice for weights is such that the
nonzero energy gap is as large as possible as a ratio of the
maximum eigenvalue of the cost Hamiltonian. Moreover,
when we attempt to balance the objective and constraint
parts of the cost Hamiltonian the smallest eigenvalues are
not guaranteed to correspond to feasible solutions. This
means that in the pursuit of finding the optimal solution,
we can decrease the probability of finding a feasible solu-
tion. However, if we find weights such that the smallest
eigenvalues correspond to feasible solutions, we do not
sacrifice the probability of finding good feasible solutions
for finding the optimal solution.

These results indicate that if NISQ devices are limited in
algorithm depth, finding suitable weights will be crucial,
requiring more computational effort. The task of find-
ing suitable weights for set partitioning via the quadratic
penalty method typically requires that several subproblems
are solved, where each subproblem corresponds to a choice
of weights. Typically, with the quadratic penalty method,
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the weight for the objective part is set to 1 and the weight
for the quadratic penalty is set to be small initially. The
weight of the quadratic penalty is then increased for a
number of iterations or until convergence is reached. The
quadratic penalty method could be executed with QAOA.
We could also consider solving the problem with a clas-
sical computer, where the integer requirement could be
relaxed to provide a good guess for the weights. An ini-
tial starting point for the weights can also be chosen as
μ1 = 1 and μ2 > max(i,j )∈E{|ci − cj |} if we assume that
the smallest penalty is 1 for exchanging variables xi and xj

or μ2 >
∑|R|

r=1 |cr| [57] where μ2 is bounded from above.
An alternative method to obtain suitable weights can be to
initially attempt to solve exact cover where the weight is
zero for the objective part and one for the constraint part.
For the second iteration, QAOA with equal penalties set to
one for the objective and constraint part of the Hamiltonian
is then executed. If the solution degrades to be infeasible
compared to the first solution we can assume that the objec-
tive part of the Hamiltonian dominates the constraint part.
In that case, we need to increase the penalty for the con-
straint part for a number of iterations or until we reach a
convergence. If we, on the other hand, find that we obtain
a solution of similar cost as when we attempted to solve
exact cover, we can increase the penalty for the objective
part of the Hamiltonian for a number of iterations until we
observe convergence for the solutions or until the solution
degrades again such that it is infeasible. Since each choice
of weights corresponds to a subproblem to be solved with
QAOA it implies a computational overhead. However, if
QAOA itself is executed in polynomial time the overhead
should not change the overall complexity of the algorithm.

Finally, we conclude that the required algorithm depth
of QAOA can be expected to grow with the problem size
and increase as the number of feasible solutions decreases
(assuming that we have identified suitable weights). Figure
4 shows that we can expect to require at least |R| in
algorithm depth to achieve success probability above 50%.

VIII. CONCLUSIONS

We have proposed a method that can leverage quan-
tum algorithms for large-scale ILPs and investigated the
method by considering the quantum algorithm QAOA and
the problem tail assignment. The method is useful for
problems that are typically solved via column generation
techniques, where a direct application to the problem (typ-
ically in a path-based formulation) requires in the worst
case exponentially many qubits.

The method can also be useful for NISQ devices as
our method require less quantum resources compared to
the arc-based formulations for problems as vehicle routing
and tail assignment [defined in Ref. [3] as model TAS in
Eqs. (4.1)–(4.7)]. For crew pairing and crew rostering, in
particular, some constraints are not suited to be expressed

in mathematical terms as noted in Ref. [5], utilizing a
quantum algorithm in the branch-and-price framework for
solving RMP instances can thus be the only viable option.
Furthermore, for tail assignment, some constraints are
recursive and nontrivial to express as an Ising model, lim-
iting the potential to apply a quantum algorithm to the
arc-based formulation directly.

The numerical results expand on the results in Ref. [24]
by considering more diverse and realistic, albeit small
instances. The results indicate that the required algorithm
depth decreases for a given success probability as the
number of feasible solutions increases for exact cover,
where we find the opposite results for set partitioning if
the cost Hamiltonian is weighted poorly. Moreover, the
reduction in success probability for set partitioning can
be significant as the number of feasible solutions can be
very large. However, we also found that it is possible
for most instances to find a suitable choice of weights
such that the algorithm depth is significantly reduced to
obtain a success probability above 50%, in particular, for
instances where the number of solutions is larger. Even
with suitable weights, we expect that instances can require
an algorithm depth that grows with the problem size and
node degree, where harder instances are those with few
feasible solutions for QAOA with respect to both set par-
titioning and exact cover. Especially hard set partitioning
instances for QAOA are expected to be those where the
minimum nonzero energy gap is small with respect to the
largest eigenvalue for any weights we choose and where
the minimum eigenvalues no longer correspond to the fea-
sible solutions (whilst the ground state is still the optimal
solution). These instances are more difficult because the
probability of finding a feasible solution degrades in these
cases whilst favoring the optimal solution.

Moreover, we have chosen to follow the mapping for
both problems as presented in Ref. [48]. Since there exists
no evidence that suggests that this particular mapping,
although obvious, is optimal there can exist some other
more suitable mapping. Since it was observed that the
node degree of the graphs affects the required algorithm
depth, there might exist some more suitable mapping to
be explored where the average node degree of the prob-
lem graphs can be reduced. However, exploring alternative
mappings for exact cover and set partitioning has been
omitted in this work and left as a potential future challenge
to consider.

It can further be observed that common sizes of RMP
instances of tail assignment require approximately 103–104

for practical problems. As NISQ computers were sug-
gested to typically have 50–100 qubits initially, we would
like to address this discrepancy. We remark that the quan-
tum hardware is improving and promises of NISQ devises
with 1000 qubits by companies, such as IBM in 2023
[58], implies that the method will become applicable on
NISQ devices in the near future. For future work, it would
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therefore be interesting to run QAOA on such devices
for larger instances. Instances of interest to consider are
generated RMP instances in branch-and-price frameworks
for real-world problems and other hard ILP instances
publicly available in operational research and mathemati-
cal optimization libraries. A remaining challenge for NISQ
devices will be to realize QAOA circuits with the desired
number of qubits for polynomial algorithm depths.

For future work, it could also be interesting to study
if it is possible to reduce the RMP instance to be better
suited for NISQ devices. For example, one could attempt
to choose a subset of decision variables in RMP instances
to construct smaller RMPs. However, such a reduction
corresponds to options with a combinatorial behavior.
Reducing the size of RMP instances can therefore require
more advanced preprocessing techniques. Further tech-
niques as those explored in Ref. [59] can also be valuable
to consider.

We note that whilst our method provides a possibility
to leverage quantum algorithms to an advantage for large-
scale ILPs, any quantum algorithm under consideration
must be capable of either providing significant speedup
in finding solutions of similar quality as the best classical
solvers or capable of finding solutions of improved quality
compared to classical solvers during the same execution
time.

The numerical experiments we have considered in this
paper for QAOA cannot answer these open questions
fully. However, it should be observed that as the aver-
age node degree of the generated instances are large, we
can therefore consider that the results in Secs. VII A and
VII B to correspond to hard instances for QAOA with
respect to problem size. Larger instances that are sparse
can therefore have a reduced requirement on the algorithm
depth, which further motivates studying instances with
lower node degrees by both numerical simulations and
executions on quantum devices.

Finally, we conclude that it is possible to integrate
QAOA with a branch-and-price algorithm, where we
achieve reasonably high success probabilities for RMP
instances with a polynomial algorithm depth. In obtain-
ing high-quality integer solutions to RMP instances, the
runtime of the general and heuristic branch-and-price algo-
rithms can therefore be reduced and improve solution
quality.
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APPENDIX A: THE HEURISTIC
BRANCH-AND-PRICE ALGORITHM FOR

SOLVING TAIL ASSIGNMENT

The branch-and-price algorithm is designed to solve
large-scale ILPs and combines the algorithms column
generation and branch-and-bound. In this section, we
review first branch-and-bound and second the column gen-
eration algorithm. Last, we review the branch-and-price
algorithm and the fixing heuristic presented in Ref. [3]
subject to being integrated with a quantum algorithm.

1. Branch-and-bound

The branch-and-bound algorithm, given in Ref. [8] and
surveyed in Ref. [60] more recently, provides a framework
for finding the optimal solution to ILPs. As the feasible
region is restricted to integer points and not convex, algo-
rithms applicable for LPs can not solve ILPs generally.
The distinction here is that LPs can be solved efficiently,
whereas ILPs are NP-hard problems.

The algorithm, given in pseudocode in Algorithm 1,
decomposes the original ILP into subproblems recursively
that can be visualized with a tree structure. Exhaustive
search is avoided by pruning nodes of the tree giving more

1: x∗ ← ∅
2: z∗ ← ∞
3: z∗

U ← ∞
4: L ← {S}
5: while |L| > 0 do
6: Si ← chooseSubProblem(L)
7: L ← L\{Si}
8: if Si has feasible solution to LP relaxation then
9: (zL L) ← solveLPrelaxation(Si)

10: if zL < z∗
U then

11: if L feasible to ILP then
12: Prune by integrality
13: if zL < z∗ then
14: ∗ ← L

15: z∗ ← zL

16: z∗
U ← z∗

17: end if
18: else
19: (zU U ) ← getFeasibleSolution(Si)
20: z∗

U ←min(z∗
U , zU )

21: {Si1 , . . . , Sik} ← partition(Si)
22: L ← L ∪ {Si1 , . . . , Sik}
23: end if
24: else
25: Prune by bound
26: end if
27: else
28: Prune by infeasibility
29: end if
30: end while
31: return (z∗ ∗)

Algorithm 1. Branch-and-bound (S).
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acceptable running times in practice. Each node in the tree
represents a subproblem, which is the original ILP with a
reduced feasible space. Each subproblem can be relaxed,
i.e., the decision variables are not discrete but continuous,
yielding either a lower bound (if a minimization problem),
an integer solution, or that the subproblem is infeasible.

Consider here that we are applying branch-and-bound to
an integer linear program

I = min

{
n∑

i=1

cixi : �x ∈ S

}
,

where S = {�x ∈ Zn
+ :

∑n
i=1 ajixi ≥ bj ∀j = 1, . . . , m

}
. The

LP relaxation of the ILP is

L = min

{
n∑

i=1

cixi : �x ∈ P

}
,

where P = {�x ∈ Rn
+ :

∑n
i=1 ajixi ≥ bj ∀j = 1, . . . , m}. We

know from linear programming theory that the LP relax-
ation of an ILP gives the relation L ≤ I . A partition of the
ILPs feasible space S yields two subproblems

I1 = min

{
n∑

i=1

cixi : �x ∈ S1

}
,

I2 = min

{
n∑

i=1

cixi : �x ∈ S2

}
,

where S1 and S2 are disjoint sets that partition S by a con-
straint on variable xj such that S1 = {�x ∈ S : xj ≤ �x0

j �}
and S2 = {�x ∈ S : xj ≥ �x0

j �}. The variable x0
j ∈ �x0 has

some fractional value and �x0 is an optimal solution to
LP. We further know from linear programming theory that
either ILP1 or ILP2 has the optimal solution to ILP. Sim-
ilarly, the two subproblems can be related to alternative
problems that correspond to the LP relaxation of ILP1 and
ILP2, which provides lower bounds, can show that there
exists no feasible integer point or can find an optimal inte-
ger solution. The three problems, ILP, ILP1, and ILP2, can
be visualized as a tree with a parent node and two child
nodes, see Fig. 7. Clearly, ILP1 and ILP2 can be partitioned
further into subproblems giving the tree structure rooted in
a node representing the original ILP. If an LP relaxed sub-
problem is found to be infeasible, the node is pruned, i.e.,
the branch is not explored further and we say that the node
is pruned by infeasibility.

When the algorithm recursively explores subproblems,
an incumbent, z∗, is maintained which is the current best
feasible solution found to the ILP. Whenever a subprob-
lem yields a solution greater or equal to the incumbent,
this region cannot contain any integer solutions that would

ILP

ILP1

ILP11
. . . ILP1k

ILP2

ILP21
. . . ILP2k

FIG. 7. Conceptual search tree of branch-and-bound.

improve upon the one we already have and this particular
node is pruned. We say that the node is pruned by bound.

If we find that a solution to a subproblem is integral, we
also prune this node as we have found an optimal partial
solution or candidate incumbent zi for this specific region.
We say that the node is pruned by integrality. If zi < z∗ the
incumbent is updated.

Finally, if a subproblem cannot be pruned by infeasi-
bility, bound or integrality the subproblem is partitioned
into k ≥ 2 nodes representing k subproblems, which are
children to the current subproblem we are exploring in the
tree. The k subproblems are then added to a list of unex-
plored subproblems and another subproblem is chosen to
be explored. When there are no unexplored subproblems
left the algorithm terminates and returns the incumbent
solution and the corresponding assignment.

2. Column generation

In the previous section we mentioned that the LP relax-
ation of an ILP could be efficiently solved. However,
consider the case where the number of variables is expo-
nentially large so that even generating the LP would take
exponential time and space. This is exactly the case for
large-scale ILPs as the tail assignment formulation in Ref.
[3], which has an exponential number of possible routes in
the worst case.

The column generation algorithm [10], depicted with
green colored boxes with dotted borders in Fig. 1 and
presented in pseudocode in Algorithm 2, is based on well-
known duality concepts from linear programming theory.
It has been proved successful for both linear programs and
ILPs, particularly when the number of decision variables is
very large. Instead of attempting to construct and solve the
complete problem it is decomposed into a master problem
(MP)

z∗
MP = minimize

∑

j ∈J

cj xj ,

subject to
∑

j ∈J

aij xj ≥ bi ∀i ∈ I

xj ≥ 0 ∀j ∈ J

and a pricing problem (PP)
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1: RMP ← FindInitialSolution(F, T )
2: ← SolveRestrictedMasterProblem(RMP )
3: negativeReducedCosts ← solvePricingProblem( )
4: exitingV ariables ← findExitingV ariables(RMP )
5: while negativeReducedCosts = ∅ do
6: RMP ← RMP ∪ {negativeReducedCosts}
7: RMP ← RMP\{exitingV ariables}
8: ← SolveRestrictedMasterProblem(RMP )
9: negativeReducedCosts ← solvePricingProblem( )

10: exitingV ariables ← findExitingV ariables(RMP )
11: end while
12: return z = T

Algorithm 2. Column generation (F , T).

argmin

{
c̄j = cj −

∑

i∈I

aij πi : j ∈ J

}
,

where πi are the dual variables that correspond to the pri-
mal variables, xj , found by solving the MP. The PP often
encapsulates most of the problem-specific details and dif-
ficult constraints and generates alternative columns, also
referred to as entering variables.

Since the number of decision variables is very large, the
MP is further reduced to a restricted version, denoted the
restricted master problem (RMP), meaning that the num-
ber of decision variables is smaller, often much smaller,
than the original problem. The reduced size of the RMP
is tractable to solve with some LP solver such as the dual
simplex [61] or primal simplex [62] algorithm, compared
to the MP.

The decomposition results in an iterative algorithm
where the RMP and the PP are solved for a number of iter-
ations or until optimal conditions hold. For each iteration,
we attempt to find entering and exiting variables where the
exiting variables are removed from the RMP and the enter-
ing variables are added to the RMP, resulting in other RMP
and PP instances.

The PP is thus some problem that when solved can
generate improving columns and decision variables to the
RMP, based on given input of the dual variables from the
RMP, such that the cost of the solution, which at this point
is not guaranteed to be integral, is improved. Improving
columns are identified by having a negative reduced cost c̄j
and optimal conditions hold when no variables with nega-
tive reduced cost can be found, which is the same condition
as in the simplex algorithm.

If the original problem is an ILP, the MP is the LP relax-
ation of the ILP. In the case of tail assignment the RMP
corresponds to a restricted and LP relaxed set partitioning
or exact cover problem, see Sec. II A, where the decision
variables are continuous real variables. The PP can thus be

f1, c1, π1

f10, c10, π10

f2, c2, π2

f9, c9, π9

f6, c6, π6

f7, c7, π7

f3, c3, π3

f4, c4, π4

f8, c8, π8

f5, c5, π5

sink

FIG. 8. Pricing problem.

defined as

argmin

⎧
⎨

⎩c̄r = cr −
∑

f ∈F

afrπf : r ∈ R

⎫
⎬

⎭ (A1)

for tail assignment, where πf is the dual variable of flight
f obtained when solving the RMP.

To be noted, the first step of column generation is to con-
struct an initial RMP, which for tail assignment can be A =
1|F|×|F| where the costs cr are set to some large number and
thus unlikely to be part of a solution. Variables can be cho-
sen as exiting variables when the value of the reduced cost
is above a given threshold, however, removing variables
from the RMP does not necessarily improve convergence
as removing variables also removes dual information. Fur-
ther investigations in deleting columns can be found in
Ref. [3], in Sec. 6.4.

Furthermore, solving the PP at first glance appears
intractable as the number of reduced costs can be expo-
nentially large. By formulating the problem as a resource-
constrained shortest-path problem (RCSPP) we avoid
explicitly constructing all routes. The RCSPP is described
by a connection network, depicted in Fig. 8 with a unique
sink vertex and other vertices representing flights with
edges that represent legal connections where the nodes are
associated with a flight cost cf and a dual variable πf
found by solving the RMP. The problem depicted in Fig. 8
is a shortest-path problem, where the objective is given
by Eq. (A1) and additional costs for each edge, i.e., flight
connection. The problem becomes an RCSPP problem
when we introduce cumulative constraints as resources,
where a resource is a value accumulated throughout the
route and is required to not go above some limit, hence
giving a resource constraint. Resources and subsequently
resource constraints are introduced for each maintenance
type where a requirement can be given by the maximum
flying hours that are allowed prior to a check or the max-
imum number of landings an aircraft is allowed to make
prior to a check.

The task is then to find the shortest path with respect
to the reduced costs in the network and the resource
constraints. The PP is NP-hard where, for example, a label-
setting algorithm [63] can be applied to solve instances.
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3. Branch-and-price and fixing heuristics

Since only integral solutions are accepted for ILPs
(and the original formulation of tail assignment), the
column generation algorithm is typically augmented to
branch-and-price [6], by combining column generation and
branch-and-bound. In branch-and-price, we add an addi-
tional branching step, which occurs when no columns with
a negative reduced cost can be found via solving the PP and
the optimal solution is not integral. The fractional solution
from the column generation provides a lower bound, if we
are considering a minimization problem, as the algorithm
solves the LP relaxed subproblem in branch-and-bound. In
the branching step, the search space is partitioned, where
the column generation algorithm is executed for each
subproblem created. Therefore, we point out that branch-
and-price can be thought of as branch-and-bound where
column generation is utilized as a subroutine to compute
bounds, show infeasibility or find an integer solution.

Moreover, Grönkvist [3] noticed that branch-and-price
might be unnecessarily slow when applied to tail assign-
ment and introduced a fixing heuristic where the branching
step is replaced. The fixing heuristic finds the variable xi
closest to 1 and fixes it to 1, which forces the correspond-
ing route to be part of the solution. It can be noted that
the difference between the fixing heuristic and the typical
branching is that the search space is restricted and not par-
titioned, meaning that the fixing heuristic is a dive into a
specific branch of the search tree. Additional backtracking
methods are utilized but are beyond this section’s scope
where such further information can be found in Ref. [3].
We denote the modified branch-and-price algorithm as the
heuristic branch-and-price and depict the algorithm with
the blue and green colored boxes with dotted and dashed
borders in Fig. 1 subject to be integrated with a quantum
algorithm in Sec. III.

APPENDIX B: MAPPING PROBLEMS TO THE
ISING SPIN GLASS MODEL

If we consider the set partitioning problem in Eqs.
(1)–(3) and apply a quadratic penalty on the constraints
we obtain a nonlinear integer optimization problem. If
we further assume constants μ1 ∈ {Z+ ∪ {0}}, μ2 ∈ Z+
that balance the objective function and the constraints we
obtain an alternative optimization problem

min. μ1

∑

r∈R

crxr + μ2

∑

f ∈F

([
∑

r∈R

afrxr

]
− 1

)2

, (B1)

such that xr ∈ {0, 1} ∀r ∈ R.
(B2)

The alternative optimization problem in Eqs. (B1) and
(B2) can subsequently be modified to have variables sr ∈

{−1, 1} by replacing the variables xr = 1 + sr/2, as pre-
sented by Lucas for several combinatorial optimization
problems [48]. The variable change results in the following
classical Hamiltonian:

H(s1, . . . , s|R|) = μ1 ×
∑

r∈R

cr
1 + sr

2

+ μ2 ×
∑

f ∈F

([
∑

r∈R

afr
1 + sr

2

]
− 1

)2

= μ1H objective(s1, . . . , s|R|)

+ μ2H exact cover(s1, . . . , s|R|),

which we expand separately for the objective Hamilto-
nian and the exact cover Hamiltonian, where the exact
cover Hamiltonian can be referred to as the constraint
Hamiltonian. For the objective part we obtain

H objective(s1, . . . , s|R|)

=
∑

r∈R

hobjective
r sr +

∑

r′>r

J objective
rr′ srsr′

=
∑

r∈R

cr

2
sr +

∑

r∈R

cr

2
=
∑

r∈R

cr

2
sr,

by ignoring the constant energy shift. Thus

hobjective
r = cr

2
,

J objective
rr′ = 0.

For the constraints, i.e., the exact cover Hamiltonian, it was
showed in Ref. [24] that the classical Hamiltonian takes the
form

H exact cover(s1, . . . , s|R|) =
∑

r∈R

hexact cover
r sr

+
∑

r′>r

J exact cover
rr′ srsr′ ,

where

hexact cover
r =

∑

f ∈F

afr

(
∑

r′∈R

afr′

2
− 1

)
,

J exact cover
rr′ =

∑

f ∈F

afrafr′

2
.
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For the set partitioning problem we then obtain the follow-
ing Hamiltonian:

H set partitioning(s1, . . . , s|R|)

=
∑

r∈R

[
μ1 × hobjective

r + μ2 × hexact cover
r

]
sr

+ μ2 ×
∑

r′>r

J exact cover
rr′ srsr′ .

Finally, the quantum Hamiltonian is obtained by promot-
ing sr to σ̂ z

r

Ĥ set partitioning(σ̂ z
1 , . . . , σ̂ z

|R|)

=
∑

r∈R

[μ1 × hobjective
r + μ2 × hexact cover

r ]σ̂ z
r

+ μ2 ×
∑

r′>r

J exact cover
rr′ σ̂ z

r σ̂ z
r′ .

It can be noted that the mapping holds for any ILP of the
form

minimize
∑

r∈R

crxr,

subject to
∑

r∈R

afrxr = bf ∀f ∈ F ,

xr ∈ {0, 1} ∀r ∈ R,

if hexact cover
r is modified to

hexact cover
r =

∑

f ∈F

afr

(
∑

r′∈R

afr′

2
− bf

)
.

APPENDIX C: EXPECTATION VALUE FOR
ALGORITHM DEPTH ONE

In this section we derive the expression of the expecta-
tion value in Eq. (10) for algorithm depth p = 1 of QAOA.
The expectation value of a general Ising spin glass Hamil-
tonian Ĥ = ∑n

i=1 hiσ̂
z
i +∑

(i,j )∈E Jij σ̂
z
i σ̂ z

j associated to an
undirected graph G = (V, E) with n = |V| nodes and |E|
edges can be computed accordingly

〈E〉 = Tr[ρĤ ] =
n∑

i=1

hiTr[ρσ̂ z
i ] +

∑

(i,j )∈E

Jij Tr[ρσ̂ z
i σ̂ z

j ].

The undirected graph G has no self loops, which means
that no edge (i, i) is present in the graph. We furthermore
consider the edge (i, j ) as identical to edge (j , i) and the
sum over edges thus include the edge between node i and j
exactly once. In other words, the edges are unordered pairs
that connect the two nodes without a particular direction,

hence in graph G that we consider (j , i) is simply another
way of referring to edge (i, j ), which means that Jij = Jji.
The density matrix in the expression for the expectation
value is ρ = UM (β)Uc(γ ) |+〉 〈+| U†

c(γ )U†
M (β), where

QAOA operators are defined as

UM (β) =
n∏

i=1

e−iβσ̂ x
i ,

Uc(γ ) =
n∏

i=1

e−iγ hiσ̂
z
i
∏

(i,j )∈E

e−iγ Jij σ̂
z
i σ̂ z

j = U1
c(γ )U2

c(γ ).

We can rewrite the expectation value as

〈E〉 =
n∑

i=1

hiTr
[
|+〉 〈+| U†

c(γ )U†
M (β)σ̂ z

i UM (β)Uc(γ )
]

+
∑

(i,j )∈E

Jij Tr
[
|+〉 〈+| U†

c(γ )U†
M (β)

× σ̂ z
i σ̂ z

j UM (β)Uc(γ )
]

=
n∑

i=1

hi〈Ei〉 +
∑

(i,j )∈E

Jij 〈Eij 〉

by the cyclic property of the trace. We remark that partial
terms Tr

[|+〉 〈+| â
]

of the expectation value contribute if
â is a combination of σ̂ x and/or 1. The resulting value for
terms 〈Ei〉 and 〈Eij 〉 have been derived for triangle free
graphs in Ref. [53]. However, the resulting value for a
graph with triangles was shown via MATHEMATICA in Ref.
[55]. In this section we show the same general form of 〈Eij 〉
by analytical means.

We begin by considering some edge (i, j ), clearly all
terms in UM (β) commute with σ̂ z

i σ̂ z
j except for e−iβσ̂ x

i and

e−iβσ̂ x
j . We use the following relation:

F(â, ηb̂) = eiηb̂âe−iηb̂

= c2
ηâ + s2

ηb̂âb̂ + i
s2η

2
[b̂, â], (C1)

where cy
x = cosy(x) and sy

x = siny(x) for convenience. The
terms resulting from the mixing operator UM (γ ) are there-
fore

U†
M (β)σ̂ z

i σ̂ z
j UM (β) = F(σ̂ z

i , βσ̂ x
i )F(σ̂ z

j , βσ̂ x
j )

= c2
2βσ̂ z

i σ̂ z
j

+ c2βs2β[σ̂ z
i σ̂

y
j + σ̂

y
i σ̂ z

j ]

+ s2
2βσ̂

y
i σ̂

y
j

by evaluating Eq. (C1). For the ease of future deriva-
tions, we separate these parts as 〈Eij 〉 = 〈Ezz

ij 〉 + 〈Ezy
ij 〉 +
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〈Eyz
ij 〉 + 〈Eyy

ij 〉 where the sinus and cosinus terms are tem-
porarily ignored. To clarify, here we defined 〈Eab

ij 〉 =
Tr
[
|+〉 〈+| U†

c(γ )σ̂ a
i σ̂ b

j Uc(γ )
]
.

We note that [Uc(γ ), σ̂ z
i σ̂ z

j ] = 0 and hence 〈Ezz
ij 〉 does

not contribute to the overall expectation value 〈E〉.
However, for σ̂

y
i σ̂ z

j all terms in U2
c(γ ) with opera-

tors corresponding to edges with node i contribute,
i.e., [e−iγ Jkp σ̂ z

k σ̂ z
p , σ̂ y

i σ̂ z
j ] �= 0 ∀p : (k = i, p) ∈ E and only

[e−iγ hiσ̂
z
i , σ̂ y

i σ̂ z
j ] �= 0 of all operator terms corresponding to

nodes in U1
c(γ ). Similarly for σ̂ z

i σ̂
y
j , all operator terms in

U2
c(γ ) corresponding to edges that include node j and the

term e−iγ hj σ̂
z
j in U1

c(γ ) contribute. For σ̂
y
i σ̂

y
j we note that

all operator terms in U2
c(γ ) for edges that include node i

or j contributes as [e−iγ Jkp σ̂ z
k σ̂ z

p , σ̂ y
i σ̂

y
j ] �= 0 ∀p �= i : (k =

j , p) ∈ E and ∀p �= j : (k = i, p) ∈ E. Furthermore, both
terms in U1

c(γ ) that correspond to node i and j contribute
to the expectation value as well.

We now wish to evaluate the terms 〈Eyy
ij 〉, 〈Ezy

ij 〉, and
〈Eyz

ij 〉. We begin with the most complex case, 〈Eyy
ij 〉, which

is the only term that changes if triangles are present in the
graph compared to the expression given in Ref. [53]. Since
the only terms in U1

c(γ ) that do not commute with σ̂
y
i σ̂

y
j are

e−iγ hiσ̂
z
i and e−iγ hj σ̂

z
j , the terms that we obtain from U1

c(γ )

are thus

U1†
c (γ )σ̂

y
i σ̂

y
j U1

c(γ ) = F(σ̂
y
i , γ hiσ̂

z
i )F(σ̂

y
j , γ hj σ̂

z
j )

= c2hiγ c2hj γ σ̂
y
i σ̂

y
j + s2hiγ c2hj γ σ̂ x

i σ̂
y
j

+ c2hiγ s2hj γ σ̂
y
i σ̂ x

j + s2hiγ s2hj γ σ̂ x
i σ̂ x

j ,

which gives us four terms to consider. We will now use the
following relation:

G(ĉ, ηaâ, ηbb̂)

= eiηaâeiηbb̂ĉe−iηbb̂e−iηaâ

= eiηaâ(c2
ηb

ĉ + s2
ηb

b̂ĉb̂ + i
s2ηb

2
[b̂, ĉ])e−iηaâ

= c2
ηb

[c2
ηa

ĉ + s2
ηa

âĉâ + i
s2ηa

2
[â, ĉ]]

+ s2
ηb

[c2
ηa

b̂ĉb̂ + s2
ηa

â(b̂ĉb̂)â + i
s2ηa

2
[â, b̂ĉb̂]]

+ i
s2ηb

2
[c2

ηa
[b̂, ĉ] + s2

ηa
â[b̂, ĉ]â + i

s2ηa

2
[â, [b̂, ĉ]]]

(C2)

to evaluate the contributing terms when U2
c(γ ) is applied.

It then becomes clear that the operators σ̂ x
i σ̂

y
j and σ̂

y
i σ̂ x

j

do not contribute to 〈Eyy
ij 〉 as there are no terms that can

result in a pure σ̂ x and/or 1 combination when evaluating
Eq. (C2). We explicitly give the expressions for all terms

below for the case of σ̂ x
i σ̂

y
j (which by symmetry also allow

us to throw away σ̂
y
i σ̂ x

j ):

â = σ̂ z
i σ̂ z

k , b̂ = σ̂ z
j σ̂ z

p , ĉ = σ̂ x
i σ̂

y
j ,

âĉâ ∝ σ̂ x
i σ̂

y
j , [â, ĉ] ∝ σ̂

y
i σ̂

y
j σ̂ z

k , b̂ĉb̂ ∝ σ̂ x
i σ̂

y
j ,

â(b̂ĉb̂)â ∝ σ̂ x
i σ̂

y
j , [â, b̂ĉb̂] ∝ σ̂

y
i σ̂

y
j σ̂ z

k , [b̂, ĉ] ∝ σ̂ x
i σ̂ x

j σ̂ z
p ,

â[b̂, ĉ]â ∝
{

σ̂ x
i σ̂ x

j σ̂ z
k if k = p

σ̂ x
i σ̂ x

j σ̂ z
p else

,

[â, [b̂, ĉ]] ∝
{

σ̂
y
i σ̂ x

j if k = p
σ̂

y
i σ̂ x

j σ̂ z
k σ̂ z

p else
.

This means that we need only to consider σ̂
y
i σ̂

y
j and σ̂ x

i σ̂ x
j .

We can rewrite the contributing terms as

1
2

(
c2(hi−hj )γ [σ̂ y

i σ̂
y
j + σ̂ x

i σ̂ x
j ] − c2(hi+hj )γ [σ̂ x

i σ̂ x
j − σ̂

y
i σ̂

y
j ]
)

by using the relations

s2hiγ s2hj γ = 1
2
[
c2(hi−hj )γ − c2(hi+hj )γ

]
, (C3)

c2hiγ c2hj γ = 1
2
[
c2(hi−hj )γ + c2(hi+hj )γ

]
. (C4)

For the contributing terms we now consider how terms in
U2

c(γ ) corresponding to a triangle (i, j , p) act on σ̂
y
i σ̂

y
j and

σ̂ x
i σ̂ x

j . By evaluating the function in Eq. (C2) for σ̂ x
i σ̂ x

j we
get the following contributing terms:

G(σ̂ x
i σ̂ x

j , γ Jip σ̂
z
i σ̂ z

p , γ Jjp σ̂
z
j σ̂ z

p ) = c2γ Jjp c2γ Jip σ̂
x
i σ̂ x

j

+ s2γ Jjp s2γ Jip σ̂
y
i σ̂

y
j

since

â = σ̂ z
i σ̂ z

p , b̂ = σ̂ z
j σ̂ z

p , ĉ = σ̂ x
i σ̂ x

j ,

âĉâ = −σ̂ x
i σ̂ x

j , [â, ĉ] = 2iσ̂ y
i σ̂ x

j σ̂ z
p , b̂ĉb̂ = −σ̂ x

i σ̂ x
j ,

â(b̂ĉb̂)â = σ̂ x
i σ̂ x

j , [â, b̂ĉb̂] = −2iσ̂ y
i σ̂ x

j σ̂ z
p ,

[b̂, ĉ] = 2iσ̂ x
i σ̂

y
j σ̂ z

p ,

â[b̂, ĉ]â = −2iσ̂ x
i σ̂

y
j σ̂ z

p , [â, [b̂, ĉ]] = −4σ̂
y
i σ̂

y
j .

The final expression for σ̂ x
i σ̂ x

i is found by the relation c2a =
(c2

a − s2
a). For σ̂

y
i σ̂

y
j we get the following contributing
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terms:

G(σ̂
y
i σ̂

y
j , γ Jip σ̂

z
i σ̂ z

p , γ Jjp σ̂
z
j σ̂ z

p ) = c2γ Jjp c2γ Jip σ̂
y
i σ̂

y
j

+ s2γ Jjp s2γ Jip σ̂
x
i σ̂ x

j .

by inspecting the partial terms we obtain by considering
Eq. (C2):

â = σ̂ z
i σ̂ z

p , b̂ = σ̂ z
j σ̂ z

p , ĉ = σ̂
y
i σ̂

y
j ,

âĉâ = −σ̂
y
i σ̂

y
j , [â, ĉ] = −2iσ̂ x

i σ̂
y
j σ̂ z

p , b̂ĉb̂ = −σ̂
y
i σ̂

y
j ,

â(b̂ĉb̂)â = σ̂
y
i σ̂

y
j , [â, b̂ĉb̂] = 2iσ̂ x

i σ̂
y
j σ̂ z

p , [b̂, ĉ]

= −2iσ̂ y
i σ̂ x

j σ̂ z
p ,

â[b̂, ĉ]â = 2iσ̂ y
i σ̂ x

j σ̂ z
p , [â, [b̂, ĉ]] = −4σ̂ x

i σ̂ x
j .

By using trigonometric relations

ca+b = cacb − sasb, (C5)

ca−b = cacb + sasb, (C6)

it is clear that the operators corresponding to a triangle
(i, j , p) act on σ̂

y
i σ̂

y
j + σ̂ x

i σ̂ x
j and σ̂ x

i σ̂ x
j − σ̂

y
i σ̂

y
j as

G(σ̂
y
i σ̂

y
j + σ̂ x

i σ̂ x
j , γ Jip σ̂

z
i σ̂ z

p , γ Jjp σ̂
z
j σ̂ z

p )

= c2γ (Jjp−Jip )[σ̂
y
i σ̂

y
j + σ̂ x

i σ̂ x
j ],

G(σ̂ x
i σ̂ x

j − σ̂
y
i σ̂

y
j , γ Jip σ̂

z
i σ̂ z

p , γ Jjp σ̂
z
j σ̂ z

p )

= c2γ (Jjp+Jip )[σ̂ x
i σ̂ x

j − σ̂
y
i σ̂

y
j ].

Furthermore, other terms in U2
c(γ ) corresponding to edges

(i, k) and (j , l) that are not part of a triangle will give rise
to the following expressions for σ̂ x

i σ̂ x
j :

F(σ̂ x
i σ̂ x

j , γ Jikσ̂
z
i σ̂ z

k ) = c2γ Jik σ̂
x
i σ̂ x

j − s2γ Jik σ̂
y
i σ̂ x

j σ̂ z
k ,

F(σ̂ x
i σ̂ x

j , γ Jjlσ̂
z
j σ̂ z

l ) = c2γ Jjl σ̂
x
i σ̂ x

j − s2γ Jjl σ̂
x
i σ̂

y
j σ̂ z

l

and for σ̂
y
i σ̂

y
j we get

F(σ̂
y
i σ̂

y
j , γ Jikσ̂

z
i σ̂ z

k ) = c2γ Jik σ̂
y
i σ̂

y
j + s2γ Jik σ̂

x
i σ̂

y
j σ̂ z

k ,

F(σ̂
y
i σ̂

y
j , γ Jjlσ̂

z
j σ̂ z

l ) = c2γ Jjl σ̂
y
i σ̂

y
j + s2γ Jjl σ̂

y
i σ̂ x

j σ̂ z
l .

Thus, for 〈Eyy
ij 〉 we get the following contributing parts to

the expectation value:

〈Eyy
ij 〉 = 1

2
s2

2β

∏

(i,k)∈E
(j ,k)/∈E

c2γ Jik

∏

(j ,l)∈E
(i,l)/∈E

c2γ Jjl

×

⎡

⎢⎢⎣c2(hi−hj )γ

∏

(i,p)∈E
(j ,p)∈E

c2(Jip −Jjp )γ

− c2(hi+hj )γ

∏

(j ,p)∈E
(i,p)∈E

c2(Jip+Jjp )γ

⎤

⎥⎥⎦ (C7)

since only the σ̂ x
i σ̂ x

j terms are nonzero when the trace is
taken.

For 〈Eyz
ij 〉, on the other hand, the only noncommuting

term of U1
c(γ ) with σ̂

y
i σ̂ z

j is e−iγ hiσ̂
z
i , which results in

F(σ̂
y
i σ̂ z

j , γ hiσ̂
z
i ) = c2γ hi σ̂

y
i σ̂ z

j + s2γ hi σ̂
x
i σ̂ z

j .

For the operator, e−iJij γ σ̂ z
i σ̂ z

j , corresponding to edge (i, j ),
we have that

F(σ̂
y
i σ̂ z

j , γ Jij σ̂
z
i σ̂ z

j ) = c2γ Jij σ̂
y
i σ̂ z

j + s2γ Jij σ̂
x
i ,

F(σ̂ x
i σ̂ z

j , γ Jij σ̂
z
i σ̂ z

j ) = c2γ Jij σ̂
x
i σ̂ z

j − s2γ Jij σ̂
y
i .

Other operators of U2
c(γ ) corresponding to edges that

include node i further gives the expressions

F(σ̂
y
i σ̂ z

j , γ Jip σ̂
z
i σ̂ z

p ) = c2γ Jip σ̂
y
i σ̂ z

j + s2γ Jip σ̂
x
i σ̂ z

j σ̂ z
p ,

F(σ̂ x
i , γ Jip σ̂

z
i σ̂ z

p ) = c2γ Jip σ̂
x
i − s2γ Jip σ̂

y
i σ̂ z

p ,

F(σ̂ x
i σ̂ z

j , γ Jip σ̂
z
i σ̂ z

p ) = c2γ Jip σ̂
x
i σ̂ z

j − s2γ Jip σ̂
y
i σ̂ z

j σ̂ z
p ,

F(σ̂
y
i , γ Jip σ̂

z
i σ̂ z

p ) = c2γ Jip σ̂
y
i + s2γ Jip σ̂

x
i σ̂ z

p .

We can again conclude that since only the σ̂ x
i term con-

tributes here, the final contribution to the expectation value
is

〈Eyz
ij 〉 = s4β

2
c2γ his2γ Jij

∏

p �=j :(i,p)∈E

c2γ Jip (C8)

and

〈Ezy
ij 〉 = s4β

2
c2γ hj s2γ Jij

∏

p �=i:(j ,p)∈E

c2γ Jjp (C9)

by exchanging index i and j .
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Finally, for 〈Ei〉 the only noncommuting term of UM (β)

is e−iβσ̂ x
i , which results in

F(σ̂ z
i , e−iβσ̂ x

i ) = c2βσ̂ z
i + s2βσ̂

y
i .

We can exclude σ̂ z
i as it commutes with Uc(γ ). On the

other hand, σ̂ y
i does not commute with e−iγ hiσ̂

z
i . The opera-

tor U1
c(γ ) therefore gives rise to the following expression:

F(σ̂
y
i , γ hiσ̂

z
i ) = c2γ hi σ̂

y
i + s2γ hi σ̂

x
i .

When we act with e−iγ Jip σ̂ z
i σ̂ z

p for an edge p : (i, p) ∈ E we
get

F(σ̂
y
i , γ Jip σ̂

z
i σ̂ z

p ) = c2γ Jip σ̂
y
i + s2γ Jip σ̂

x
i σ̂ z

p ,

F(σ̂ x
i , γ Jip σ̂

z
i σ̂ z

p ) = c2γ Jip σ̂
x
i − s2γ Jip σ̂

y
i σ̂ z

p ,

which contributes only with c2γ Jip σ̂
x
i . The resulting contri-

bution of 〈Ei〉 to the overall expectation value is therefore

〈Ei〉 = s2βs2γ hi

∏

p:(i,p)∈E

c2γ Jip . (C10)

We conclude by noting that if we add all the terms in Eqs.
(C7)–(C10), with their coefficients hi and Jij we get the
expression in Eq. (10).

APPENDIX D: SUCCESS PROBABILITIES OF SET
PARTITIONING

In this section, a summary is given of the results of ideal
simulations of QAOA circuits for all instances applied to
the set partitioning problem. Table I shows success prob-
abilities for Hamiltonians constructed for factors f = ∞,
f ∗ and intermediate choices. As a shorthand, Pf denotes
Pset partitioning

success given a set partitioning Hamiltonian with
weights μ1 and μ2 for a factor f .
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