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Learning-Based Calibration of Flux Crosstalk in Transmon Qubit Arrays
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Superconducting quantum processors comprising flux-tunable data and coupler qubits are a promising
platform for quantum computation. However, magnetic flux crosstalk between the flux-control lines and
the constituent qubits impedes precision control of qubit frequencies, presenting a challenge to scaling this
platform. In order to implement high-fidelity digital and analog quantum operations, one must characterize
the flux crosstalk and compensate for it. In this work, we introduce a learning-based calibration protocol
and demonstrate its experimental performance by calibrating an array of 16 flux-tunable transmon qubits.
To demonstrate the extensibility of our protocol, we simulate the crosstalk matrix learning procedure for
larger arrays of transmon qubits. We observe an empirically linear scaling in calibration time with system
size while maintaining a median qubit frequency error below 300 kHz.
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I. INTRODUCTION

Superconducting quantum processors comprising flux-
tunable transmon qubit arrays are at the forefront of con-
temporary digital quantum computation [1,2] and analog
quantum simulation and emulation [3–5]. Flux-tunable
qubits enable controllable, strong qubit-qubit interactions
and high-fidelity two-qubit gates [6,7] in many-qubit sys-
tems by reducing parasitic couplings and qubit frequency
crowding. A central requirement for operating such quan-
tum devices is the accurate and precise frequency control
of each tunable element using local flux lines, which can
be used to tune each qubit individually. While a cur-
rent applied to a particular flux-line antenna is designed
to address only one qubit or coupler, there are at least
two mechanisms by which flux may couple to additional
elements. One is through the direct, unwanted inductive
coupling from the antenna to other qubits and couplers.
A second is via the send and return path of the applied
current, which may similarly induce unwanted magnetic
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flux in other qubits as it traverses the flux line and ground
plane. The net effect is commonly referred to as flux
crosstalk. Crosstalk can be characterized and compensated
by measuring the response of each qubit to the flux gen-
erated by every flux line independently and presuming
linear superposition, or by using an iterative approach
[8] and optimization [9] in systems with a nonlinear
response.

Machine learning techniques have been applied exten-
sively to calibrating quantum dots [10–18]. For supercon-
ducting quantum processors, machine learning approaches
have been used, for example, for automated recalibra-
tion of system parameters [19], optimization of qubit
frequency layouts [20], discrimination of qubit states [21–
25], and calibration of single- and two-qubit gates [26,27].
In this work, we demonstrate and analyze a learning-
based approach for characterizing flux crosstalk on flux-
tunable transmon devices. In comparison to previous
works, our approach does not involve direct measurement
of crosstalk matrix elements and requires relatively few
measurements.

Flux-tunable transmons comprise two Josephson junc-
tions forming a superconducting quantum interference
device (SQUID) in parallel with a shunting capacitor
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[28]. In this circuit, the Josephson energy EJ is tuned
by threading an external magnetic flux �ext through the
SQUID loop. The transition frequency between the ground
and the first-excited state of the transmon in response to
the applied magnetic flux is approximately given by [28]

f (�ext) ≈
(

f max + EC

h

)
4

√
d2 + (1 − d2) cos2

(
π

�ext

�0

)

− EC

h
, (1)

where f max = (
√

8EJ EC − EC)/h is the maximum qubit
frequency, assuming that EJ � EC, and EC is the trans-
mon charging energy. The asymmetry parameter d of the
SQUID junctions is given by d = |(EJ ,2 − EJ ,1)/(EJ ,2 +
EJ ,1)|, where EJ ,1 and EJ ,2 are the Josephson energies
of the two SQUID junctions. The transmon spectrum in
Eq. (1) provides a formula to estimate the applied magnetic
flux required for tuning the qubit to a particular frequency.

In a flux-tunable transmon processor, the magnetic flux
is applied by running an electric current through a flux
line terminated by an antenna that is near the target qubit
and inductively coupled to its SQUID loop. The current is
generated at room temperature by using either an active
current source or a voltage source outputting voltage V
across a series resistance R. In either case, it is important
to use a “stiff” current source with high output resistance to
ameliorate the impact of temperature-dependent line resis-
tance inside the refrigerator leading to the qubits. In this
work, we use a voltage source and resistor 1 k� to apply
a current to each of our flux bias lines. The magnetic flux
can be expressed as �ext = V/V�0 + �offset, where V�0 is
the voltage required to tune the qubit by one magnetic flux
quantum �0, and �offset is a flux offset due to magnetic
fields produced by vortices trapped in the superconduct-
ing ground plane or other noncontrollable sources of static
magnetic field.

Magnetic flux crosstalk can be treated as a linear pro-
cess; a vector of voltages �V applied to the flux lines is
related to the magnetic flux ��ext experienced by the qubits
by the relation

��ext = (V�0)−1S�V + ��offset, (2)

where V�0 is a diagonal matrix with V�0
i,i corresponding

to the V�0 of qubit i; S is the flux crosstalk sensitiv-
ity matrix, with Si,j = ∂Vi/∂Vj representing the voltage
response of qubit i to a voltage signal applied to qubit j .
In this representation, the diagonal elements of S are 1,
and characterizing S along with ��offset enables us to com-
pensate for the crosstalk and set the qubit frequencies more
precisely. Before this compensation, we observe a spread
in frequency error �f as shown in Fig. 1(c).
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FIG. 1. The flux crosstalk model. (a) Flux crosstalk concept
for superconducting transmon circuits. Current I1 passing near
the SQUID of qubit 1 supplies an intended amount of mag-
netic flux (green arrow). Because of crosstalk, other qubits on
the device may experience an unintended flux from this current
(dashed red arrow). (b) Optical image of the qubit tier of the 16-
qubit transmon array fabricated using a 3D-integrated, flip-chip
process (see Appendix A for details of the device). The capacitor
pads of the qubits are false-colored maroon. (c) Experimental dis-
tribution of the difference between the measured qubit frequency
and the target frequency �f = fq − ftarget without crosstalk cor-
rection for 200 target frequency vectors �ftarget. For each �ftarget, all
16 qubits are simultaneously biased to random frequencies in
the region spanned by 100 MHz–1 GHz below the maximum
qubit frequency, and then each qubit frequency is measured.
The shaded region indicates the 5th to 95th percentiles of the
distribution.

The flux crosstalk sensitivity matrix for an array of N
flux-tunable transmon qubits contains N 2 elements. We
note that, since the qubit array and routing layouts are
not generally symmetric, matrix S is not guaranteed to
be symmetric. In general, Si,j �= Sj ,i, and so all N 2 ele-
ments need to be characterized. Typically, each element
Si,j is individually characterized by sweeping voltage Vj
targeting qubit j and measuring the response of qubit i
[5,29,30]. This approach, however, is not extensible for
characterizing the flux crosstalk of large transmon qubit
arrays (see Appendix B). The sample is fabricated using a
three-dimensional- (3D) integrated, flip-chip process [31],
where the resonators and the flux lines are located on the
interposer tier, and the qubits are located on a separate
qubit tier. This learning-based calibration approach has
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been employed to calibrate the flux crosstalk on planar as
well as flip-chip devices [4,5,32].

II. CALIBRATION PROTOCOL

A. Learning the flux crosstalk matrix

We learn the flux crosstalk matrix S by attempting to set
our qubits to a target frequency layout, measuring the qubit
frequencies as a result of applied external flux, and then
using the frequency error to optimize S. More specifically,
we apply a set of voltages �V, where the ith element of �V
denotes the voltage applied to the flux line targeting qubit i,
and measure the frequency of qubit i to infer the flux �ext,i
via Eq. (1). Minimizing the difference between the mea-
sured flux, �ext,i, and the estimated flux, which depends
upon �V and S, optimizes S.

We generate �V by randomly selecting a frequency for
each qubit, �f , subject to a few constraints. First, we require
that each qubit frequency falls in the range spanned by
approximately 100 MHz–1 GHz below its maximum qubit
frequency (colloquially referred to as the “sweet spot”
due to its first-order insensitivity to flux noise), as illus-
trated in Fig. 2(a). Second, to reduce frequency shifts
due to resonant interaction between qubits, we require
that neighboring qubits in the array are far detuned (>
200 MHz), and the detuning between any two qubits is
at least 50 MHz. The target frequency range includes
regions of the transmon spectrum close to the sweet spot,
which are less sensitive to changes in flux. This qubit fre-
quency placement is necessary for sufficiently detuning
the qubits. The detuning mitigates frequency shifts due
to resonant interaction between qubits (see Appendix A),
enabling us to accurately measure the frequencies of all
qubits simultaneously.

To minimize bias in this quasirandom selection, we ran-
domly permute the order in which target qubit frequencies
within �f are chosen. This random permutation ensures
that, given the detuning constraints, the qubits with higher
sweet-spot frequencies in the latter half of �f are not reg-
ularly placed at the higher frequency end of the training
region. Using the transmon spectrum in Eq. (1), we can cal-
culate the magnetic flux values corresponding to the target
frequencies. An initial guess for �V can be obtained from the
relationship described in Eq. (2) by assuming that S = I or
using an estimate of the matrix. All elements of �V will be
nonzero since each qubit is biased off of its sweet spot.

We apply �V and measure the frequency of each qubit.
In our experiments, these frequency measurements are
performed simultaneously. We then convert the measured
frequencies into the flux experienced by each SQUID,
��meas. By repeating this procedure for M iterations, we
obtain a set {�Vi, ��meas,i}i=1:M of input voltages and the
resulting measured fluxes experienced by the qubits. Using
this data set, we train the elements of the kth row of S by
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FIG. 2. Learning protocol simulation of measurement uncer-
tainty dependence for a 16-qubit array. (a) Frequency spectrum
of the transmon as a function of the external flux applied. We
bias the qubits to the maroon region of the spectrum for the
flux crosstalk training. (b) We measure qubit frequencies exper-
imentally via spectroscopy, by measuring the magnitude of the
in-phase quadrature of the demodulated signal (Im), and extract
the qubit frequency from a Lorentzian fit. (c) Simulated fre-
quency error |�f | and the (d) Euclidean distance between the
trained crosstalk matrix S and the target matrix Starget when
the matrix is learned in the presence of qubit frequency mea-
surement uncertainty σmeas. ∈ {0, 0.5, 1} MHz. The distribution
over 100 different random realizations is shown using small cir-
cles, and the median values are shown using large circles. Both
quantities converge quickly in less than M = 100 training sets.
The protocol accuracy decreases as the frequency measurement
uncertainty increases.

minimizing the mean-squared-error cost function

C(Sk)= 1
M

M∑
i=1

‖( ��meas,i)k−[(V�0
k,k )

−1Sk �Vi + ( ��offset)k]‖2.

(3)

The first term in the cost function sum corresponds to
the measured flux on qubit k, and the second term cor-
responds to the estimated flux based on our crosstalk
matrix and the applied voltages. We minimize C(Sk)

with the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) gradient descent optimization algorithm
[33] implemented in PyTorch [34] (see Appendix C
for a comparison of different optimizers). For a visual
schematic of the calibration protocol, see Appendix D.
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The minimization of the cost function will converge as the
estimated fluxes approach the measured fluxes.

B. Protocol simulation

We analyze the performance of our protocol for learning
the crosstalk matrix on a simulated model of the 16-qubit
array of transmon qubits [shown in Fig. 1(b)]. Appendix
E contains further details of the simulation model. In
Fig. 2(c), we report the error in achieving the desired target
frequency �f = fq − ftarget when training the matrix using
a training set of size M .

For the simulations, we modeled the flux crosstalk cal-
ibration protocol using realistic values for the transmon
spectra parameters (V�0 , �offset, f max, EC, and d). For the
optimal crosstalk matrix Starget, we used the previously
characterized crosstalk matrix for the 16-qubit array of
transmons. In these simulations, each time a qubit fre-
quency is “measured,” we add normally distributed error
with standard deviation σmeas., reflecting frequency mea-
surement imprecision [Fig. 2(b)] due to the qubit spectral
linewidth arising from dephasing and power broadening,
as well as frequency shifts arising from dispersive shifts
and residual ZZ couplings [35]. We find that σmeas. ≈
0.5 MHz most closely reflects our experimental conditions
(see Appendix F for a discussion of frequency measure-
ment error sources). Based on the trend in Fig. 2(c),
we expect that the plateau frequency error |�f | can be
reduced by performing finer spectroscopy scans or mea-
suring qubit frequencies via Ramsey interferometry, at the
cost of longer overall calibration time. Another source of
frequency measurement error arises due to small disper-
sive frequency shifts, despite the detuning scheme. We
compensate for these detunings by using previously char-
acterized qubit-qubit couplings, but there could be some
error in the calculation of the uncoupled qubit frequency.

We then create a training set of size M and train S.
Finally, we validate our learned crosstalk matrix S with
a random vector of frequencies �ftarget independent of the
training set. These random frequency vectors are chosen in
the same way as the target frequency vectors used to learn
the matrix, i.e., all qubits are biased to 100 MHz–1 GHz
off the sweet spot with all qubits sufficiently detuned. We
attempt to set the qubits to these frequencies and record
the error |�fq − �ftarget|, with no error added to the simulated
measurement of �fq.

We study the convergence of the protocol in the pres-
ence of frequency measurement errors. We observe that in
the absence of measurement uncertainty (σmeas. = 0 MHz),
the protocol is capable of achieving a median frequency
error |�f | of the order of 1 kHz with M = 100 train-
ing sets. In Fig. 2(d) we consider the Euclidean distance
between the trained crosstalk matrix S and the target
crosstalk matrix Starget: ||S − Starget||2. As the frequency
measurement uncertainty increases, the performance of

the protocol degrades, leading to a larger |�f | value
when reaching the training plateau. We expect that, with
the anticipated uncertainty in measuring qubit frequencies
in experiments, we should be able to achieve a median
frequency error of the order of 100 kHz.

III. EXPERIMENTAL RESULTS

Next, we experimentally assess the performance of our
protocol by calibrating the static flux-crosstalk matrix for
a 16-qubit array of transmons. Starting from the assump-
tion that S = I, we generate a set of 200 random volt-
age vectors, apply each voltage vector to the flux lines,
and measure the corresponding qubit frequencies simulta-
neously via spectroscopy. Despite targeting > 200 MHz
detuning between neighboring qubits, each qubit experi-
ences a frequency shift due to its interaction with other
qubits. We calculate the uncoupled qubit frequencies from
the measured shifted frequencies using the precharacter-
ized qubit-qubit couplings. Using Eq. (1), we convert these
frequencies into a vector of fluxes experienced by each
SQUID loop in the system corresponding to each applied
voltage vector. We use different subsets of the measured
set {�Vi, ��meas

i }i=1:200 to learn the device crosstalk matrix.
Prior to training, we selected a validation set of ten tar-

get frequency vectors. This validation set was generated in
the same way as target frequency vectors for training, with
the added condition that each qubit is placed at least twice
in the upper, middle, and lower regions of the frequency
training region. For each value of M , we randomly selected
20 different subsets of {�Vi, ��meas

i } with size M . With each
subset, we learned the crosstalk matrix and then recorded
the frequency error in setting the qubits to the validation
frequencies.

In Figs. 3(a), 3(b), and 3(c) we show the qubit fre-
quency deviation from the target validation set value (�f )
for training sets of size M = 10, 20, and 100, respectively.
The shaded region in the figures indicates the 5th to
95th percentiles of the distribution. We observe that, by
using a larger training set, the distribution of �f becomes
narrower.

In our experiments, we notice irregularities in the trans-
mon spectra of four of the qubits, presumably due to
two-level-system (TLS) defects coupled to the qubits. The
frequency of a qubit coupled to coherent defects shifts,
resulting in deviations from the transmon spectrum. In
such frequency regions, we experience an error in setting
the frequency of just a single qubit. Therefore, we do not
include those qubits in the validation. The flux crosstalk
for these four qubits can still be learned by excluding the
regions of their transmon spectra impacted by TLSs. We
can repeat the same learning-based protocol, biasing each
of the four qubits of interest to a defect-free frequency,
while applying quasirandom voltages to all other qubits

024070-4



LEARNING-BASED CALIBRATION OF FLUX CROSSTALK. . . PHYS. REV. APPLIED 20, 024070 (2023)

5 0 5

10 1

10 2

100

Pr
ob

. d
en

si
ty

M = 10

5 0 5
f (MHz)

M = 20

5 0 5

M = 100

(a)

(d)

(b) (c)

Training set size M

FIG. 3. Experimental implementation of the protocol using a
16-qubit array of transmon qubits. We see the distribution of off-
set in the measured qubit frequencies from the target values (�f )
for the crosstalk matrix trained with (a) M = 10, (b) M = 20,
and (c) M = 100 training sets. The shaded region indicates the
5th to 95th percentiles of the distribution. (d) Error in target-
ing the qubit frequency |�f | after training the crosstalk matrix
with a different number of measurement sets. We observe that,
by increasing the training set size M , the median error (maroon
points) decreases until reaching a plateau of approximately
290 kHz.

and measuring the frequencies of the four qubits of inter-
est. The resulting voltages and fluxes can be used to learn
the corresponding four rows of S. In Appendix E, we report
the full learned S for the 16-qubit array.

We demonstrate the experimental scaling of the fre-
quency error |�f | as a function of M in Fig. 3(d) when
learning the crosstalk matrix with our protocol. The fre-
quency error generally decreases with the training set size
and reaches a plateau at M = 50 with a median error of
approximately 288 kHz.

IV. PROTOCOL SCALING

In order to demonstrate the extensibility of our
approach, we simulate the learning procedure with an
extension of the crosstalk model (see Appendix E) for
larger transmon array sizes. We show the scaling of the fre-
quency error for qubit arrays of sizes N = 16, 64, and 100
qubits in Fig. 4(a), assuming, conservatively, a frequency
measurement uncertainty of 0.5 MHz. We observe a rapid
convergence of the error in the target frequency when
using a training set with a size larger than the number of
qubits.

In Fig. 4(b), we study the error scaling by keeping the
training set size constant [vertical slices of Fig. 4(a)]. For
training set sizes of M = 200, 300, and 400, the frequency

16 25 36 49 64 81 100
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Training set size M
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100
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300

|
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H
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FIG. 4. Simulation of extensibility. (a) Frequency error scal-
ing for N = 16, 64, 100 qubits. We observe rapid convergence
of the frequency error after the training set size exceeds the
number of qubits. The distribution over ten different random
realizations is shown using small circles, and the median val-
ues are shown using large circles. (b) Vertical slices of the data,
highlighted in (a) by shaded boxes, show the median frequency
error as a function of the number of qubits for fixed train-
ing set sizes M ∈ {100, 200, 300, 400}. The simulation assumes
that each qubit frequency measurement includes a measurement
uncertainty of 0.5 MHz.

error empirically scales linearly with the number of qubits
and remains below 200 kHz. The sources of error used
in our model simulations are inaccuracies in character-
izing the transmon spectrum parameters and uncertainty
in qubit frequency measurements. Hence, we expect the
frequency error to be lower in the simulation compared to
our experiments.

Based on the scaling observed in the simulation, in addi-
tion to the experimental demonstration, we conclude that
using our learning-based crosstalk optimization protocol
we would be able to accurately train the crosstalk matrix
with M ≈ 2N spectroscopic frequency measurements per
qubit. Since we can perform simultaneous frequency mea-
surements, the total measurement time for the training set
will be proportional to 2N .

V. DISCUSSION

In this work, we describe an extensible approach for
accurate flux crosstalk characterization and calibration
based on machine learning. We experimentally verify the
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performance of our approach by employing the protocol
to calibrate the static flux crosstalk of a 16-qubit flux-
tunable transmon processor and observe convergence to a
median frequency error less than 300 kHz with only M =
50 spectroscopy measurements of each qubit frequency,
which can be done in parallel for all qubits. The proto-
col can also be used to calibrate the crosstalk matrix for
fast-flux pulses (see Appendix G).

We have demonstrated that our protocol enables us to
realize a qubit frequency layout with accuracies better
than < 300 kHz. In order to perform high-fidelity oper-
ations, we measure the frequency of each qubit using
Ramsey interferometry after setting the qubit frequencies.
In Appendix H, we discuss the impact of frequency errors
on gate fidelities. The learned crosstalk matrix from our
protocol also extrapolates to frequency layouts outside
of the crosstalk training region defined in Fig. 2(a) (see
Appendix I).

The accuracy of the protocol for each qubit relies on
a precise characterization of the transmon spectrum fit
parameters. Furthermore, spectrum irregularities caused by
TLS defects coupled to the qubit inhibit the convergence
of the crosstalk optimization. To address the former, we
perform simulations (see Appendix K) that show that the
method is robust against realistic errors in each fit parame-
ter. To combat the impact of TLSs, we could use exclusion
zones to avoid choosing frequencies in the spectrum that
diverge from the transmon model.

We also study the performance of our protocol for dif-
ferent levels of crosstalk (Appendix N). We find that our
method can effectively learn the device crosstalk when off-
diagonal elements stay below roughly 10%. Flux crosstalk
in current planar arrays of flux-tunable transmons is gener-
ally comfortably within this bound [4,5,29,36,37], and it is
even lower in multilayer devices that can better suppress
crosstalk [see Fig. 8(a)]. This also suggests that routine
recalibration of S will be efficient, and we numerically find
that it should require fewer measurements than the initial
calibration (see Appendix L).

Advances in calibration efficiency and extensibility are
essential as processor sizes increase. The learning-based
flux crosstalk calibration procedure introduced in this
work requires relatively few spectroscopic measurements,
is robust to measurement error, and scales favorably as
the array size increases. Alternatively, one can use Ram-
sey measurements to determine the qubit frequencies,
which is faster than spectroscopy for single-qubit fre-
quency measurements. Future implementations could use
simultaneous spectroscopy measurements to initially learn
the matrix, and then use Ramsey measurements to fine-
tune the calibration if necessary. This approach reduces
the characterization time and improves the accuracy of
the flux crosstalk matrix characterization—and ultimately
the performance of algorithms and simulations run on
superconducting qubit processors.
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APPENDIX A: 3D-INTEGRATED, FLIP-CHIP
DEVICE

Our experimental sample is an array of 16 flux-tunable
transmon qubits fabricated using a flip-chip process [31].
Unlike a planar architecture, where all chip elements are
mounted on the same surface, the flip chip has two separate
tiers that are stacked on top of each other. The qubit tier
houses the qubits and the interposer tier houses all other
chip elements. The benefits of the flip-chip design include
decreased distances between control lines and the qubits
they target and increased shielding between neighboring
qubits, which significantly reduces overall crosstalk levels
for dc flux control and fast-flux pulses. For the device’s
transmon spectrum parameters, see Table I. For further
details about the device, see Ref. [32].

The nearest-neighbor coupling on this device is fixed
at J/2π = 5.89 ± 0.4 MHz, measured at qubit frequen-
cies of 4.5 GHz. Before performing the learning-based
protocol, we characterize the qubit-qubit couplings. With
the detuning scheme we use for training (> 200 MHz
detuning between nearest-neighbor qubits and > 50 MHz
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TABLE I. Qubit parameters for the 3D-integrated flip-chip
device. Mean values plus or minus one standard deviation are
reported. Deviations in parameter values are due to unintentional
fabrication imperfections.

Qubit parameter Measured value

f max 4.887 ± 0.110 (GHz)
V�0 29.2 ± 2.7 (V)
d 0.35 ± 0.04
EC/h 196.1 ± 5.2 (MHz)
|�offset| 19.7 ± 5.9 (m�0)

detuning between any two qubits), we have a mean dis-
persive shift of around 180 kHz, which we correct for (see
Appendix F). This shift is less than the final frequency set-
ting precision using the optimized crosstalk matrix, which
is approximately 300 kHz. In our simulations, we incorpo-
rate frequency measurement error and observe frequency
error convergence for σmeas. = 0.5 MHz. We, therefore,
expect that this relatively small dispersive shift does not
greatly impact the final frequency setting precision of our
protocol.

APPENDIX B: COMPARISON TO THE DIRECT
MEASUREMENT APPROACH

One alternative to the learning-based approach to
crosstalk calibration described in this paper is to directly
measure each element of S. A downside to this approach is
that the number of elements of the crosstalk matrix scales
quadratically with the number of qubits in the array.

We note that in our experimental setup, we can simul-
taneously measure all 16 qubits’ frequencies, and we are
able to leverage this simultaneous frequency measurement
in the learning-based protocol. We cannot perform simul-
taneous frequency measurement in the direct measurement
approach, because we cannot bias more than one qubit
off of the sweet spot without introducing flux crosstalk
effects. We might wish to sweep the voltage applied to
one flux line and measure the response of all other qubits.
Unfortunately, this approach to direct measurement will
not work due to the broadness of the transmon spectrum
(since 1/V�0

i,j 	 1/V�0
i,i for i �= j ) and the relatively nar-

row tuning range for our voltages applied to flux lines. We
will be unable to accurately fit the transmon spectrum and
extract V�0

i,j . To resolve elements of S, we must first bias
a qubit to a steep (flux-sensitive) section of the transmon
spectrum and then sweep the voltage applied to another
qubit’s flux line. Therefore, we cannot perform a simulta-
neous frequency measurement to obtain all the crosstalk
elements due to one flux line. There are creative methods
by which we can obtain more than one crosstalk element
via simultaneous measurements, but it will be impossible
to obtain a full column of the crosstalk matrix at once in
this fashion.

We simulate the direct measurement approach for a
16-qubit array while varying the frequency measurement
uncertainty (as in Fig. 2). For the direct measurement
approach, we bias qubit i away from its sweet spot by
applying a voltage Vi to flux line i. Then, we sweep the
voltage of flux line j across its full tuning range. For our
voltage source and qubit V�0 ’s, this is approximately ±0.3
times the average V�0 of a qubit. We fit the transmon spec-
trum, holding f max, EC, and d fixed. The new flux offset
will be approximately

�offset = Vi

V�0
i,i

+ �offset,i. (B1)

Using this initial guess for the flux offset and using the
slope of the measured frequencies to determine the sign of
V�0

i,j (to constrain it), we fit the curve to find V�0
i,j (we also

obtain �offset from the fit, but this information is irrelevant).
Finally, the measured element of the crosstalk matrix is

Si,j = V�0
i,i

V�0
i,j

. (B2)

We see that, for a reasonably assumed measurement uncer-
tainty of 0.5 MHz, the direct measurement approach
reaches the same level of precision as the learning-based
approach with a size M = 30 training set when the num-
ber of data points reaches ten [Fig. 5(a)]. This tells us that
the direct measurement approach requires 5 times as many
measurements to reach the same level of precision as the
learning-based approach.

In the learning-based approach, each qubit’s frequency
is measured 30 times. In the direct measurement approach,
each qubit’s frequency is measured ten times for each flux
line, for a total of 15 × 10 = 150 times. So, for 16 qubits,
we already achieve approximately a 5 times speedup by
using the learning-based protocol.

APPENDIX C: GRADIENT DESCENT
OPTIMIZERS

One critical piece of the protocol is minimizing the
mean-squared-error cost function in a gradient descent
optimizer. Throughout this work, we use the L-BFGS opti-
mizer in PyTorch, with a learning rate of 1.0. In order to
ensure proper convergence of our gradient descent min-
imization, we compared the L-BFGS results to a couple
of other PyTorch optimizers: stochastic gradient descent
(SGD) and Adam (see Fig. 6). On a practical level, it
does not matter which optimizer we use, since this is
not a bottleneck in our calibration protocol. However,
we find that the L-BFGS optimizer converges with fewer
optimizer iterations in comparison to other optimizers.
Additionally, other optimizers have additional parameters
that need to be set. For example, the SGD optimizer has
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FIG. 5. Scaling of the direct measurement approach. Simulation of direct measurement convergence for a frequency measurement
uncertainty of 0.5 MHz. We sweep the number of frequency measurements between Vj = −0.3V�0 and Vj = +0.3V�0 . (a) For N = 16
qubits, the performance of the direct measurement approach exceeds the performance of the learning-based approach with M =
30 ≈ 2 × N training sets when the number of frequency measurements is approximately ten. The median frequency errors for the
direct measurement approach are fitted linearly with a black line, which crosses over the learning-based median frequency error
at approximately 12 data points. The medians are computed over ten simulation repetitions. In (b), we examine the performance
of the direct measurement approach for N = 16 qubits under varying levels of frequency measurement uncertainty σmeas.. We find
that the crossover location (again, for the median frequency error using the learning-based approach with M = 30 ≈ 2 × N training
sets) increases as σmeas. increases. The medians are computed over 20 simulation repetitions. In (c), we examine the scaling of this
crossover location for up to N = 100 qubits, assuming that σmeas. = 0.5 MHz. The number of frequency measurements required to
match the learning-based protocol’s performance grows empirically linearly with the number of qubits. (d) The number of frequency
measurements required for each qubit, given by the crossover location times N − 1, diverges from the learning-based M = 2 × N
measurements per qubit.

a momentum parameter that may need to be changed for
optimal performance.

We find that the L-BFGS optimizer consistently con-
verges in the least iterations compared to other optimizers,
and additionally requires no tuning of parameters, making
it a good choice for practical use in the laboratory.

APPENDIX D: SCHEMATIC OF THE
LEARNING-BASED PROTOCOL

The goal of flux crosstalk calibration is to control
qubit frequencies precisely. The learning-based approach
described in this paper is an intuitive approach to this
problem since it actively addresses the goal of the cal-
ibration via the calibration process. The intuitiveness of
the learning-based approach stands in contrast to a direct
measurement approach, which seeks to resolve individual
elements of the crosstalk matrix S, but does not directly
evaluate the ability of the calibrated S to set qubit frequen-
cies precisely. For a quantitative comparison of these two
approaches, see Appendix B.

The general concept behind the learning-based approach
to flux crosstalk calibration is to use an initial estimate
for S to target frequencies �ftarget and then measure the
frequencies of the qubits. The difference between the mea-
sured and targeted frequencies gives us insight into how
to adjust S to minimize frequency error. Specifically, we
utilize the linear flux crosstalk relation [Eq. (2)] and the
transmon spectrum [Eq. (1)] to obtain a cost function with
a well-defined gradient that can be minimized in a gradi-
ent descent optimizer. In Fig. 7, we provide a flowchart
visualization of the calibration process.

We note that the cost function we are minimizing is
convex due to the constrained frequency range for target
frequencies. Although the transmon spectrum is periodic,
we restrict our target frequencies to one portion of the
spectrum, allowing for a 100-MHz buffer from the upper
sweet spot (and an even larger buffer from the lower sweet
spot). With this restriction, assuming reasonable crosstalk
levels of < 10%, we eliminate the possibility of convert-
ing the measured frequency to an incorrect experienced
flux.
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FIG. 6. Comparison of gradient descent optimizers. We minimize a mean-squared-error cost function to optimize S row by row. In
(a), we consider the final minimized cost versus the function change tolerance of the L-BFGS optimizer for N = 16 qubits. The mean
costs were computed over 100 simulation repetitions, and the x axis is inverted for clarity. The shaded region is the 95% confidence
interval for the mean. In (b), (c), and (d), we compare the minimization of the cost function of the L-BFGS, SGD, and Adam optimizers
for N ∈ {16, 64, 100} qubits. The L-BFGS optimizer terminates on tolerance, whereas the SGD and Adam optimizers terminate after
a given number of iterations. The L-BFGS tolerance is set to 10−10 with a learning rate of 1.0. The SGD learning rate is 1.0 with a
momentum of 0.7. The Adam learning rate is 0.002 with betas of (0.7, 0.999). The SGD and Adam parameters were selected for the
best performance for N = 16 qubits. The mean costs were computed over ten simulation repetitions, and the shaded region is the 95%
confidence interval for the mean.

For the purposes of this paper, which are to intro-
duce and demonstrate the efficacy and extensibility of
the learning-based approach, we did not optimize the

end-to-end calibration time. One way the efficiency of
this calibration protocol could be improved is to learn
the crosstalk matrix iteratively. We could easily modify

Start with an
initial guess

Apply voltages
targeting frequencies

Measure frequencies and
convert to fiuxes experienced:

Use the rela
(Measured flux)i – (Measured flux)i

tion

to train

Repeat times
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ext/ 0
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FIG. 7. Flowchart for the learning-based protocol. We begin with an initial S, which could be the identity or an estimate. We select
target frequencies from a range of approximately 100 MHz to approximately 1 GHz off the sweet spot and apply voltages �V targeting
these frequencies. We measure the qubits’ frequencies and convert them to fluxes experienced. After repeating this process M times,
we have a size-M training set of pairs of applied voltages and experienced fluxes. We use the linear flux crosstalk relation to train each
row of S (Sk) by minimizing the mean-squared-error cost function C(Sk) of the measured flux and the estimated flux in a gradient
descent optimizer. The resultant S minimizes the difference between measured and experienced fluxes.
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this protocol to learn S in batches. Instead of applying
all voltages and measuring all frequencies, we can instead
perform a size-m training set with m < M , and then use
the resultant trained S as our new estimate for S for the
next training set. The advantage to this batched approach
is that each iterative S will become closer and closer to
the optimal S. Therefore, the actual qubit frequencies will
be closer to the target frequencies in the training sets,
which means that we need to scan over a smaller range of
frequencies to locate our qubits. Since frequency measure-
ments are the most time-consuming part of this protocol,
minimizing the time per measurement will speed up the
protocol.

APPENDIX E: CROSSTALK MODEL

For all simulations of the calibration process for a 16-
qubit array, we used the measured flux crosstalk matrix for
the 16-qubit device discussed in this paper. The crosstalk
matrix for this device is shown in Fig. 8(a). The measured
crosstalk matrix we used was from a previous cooldown,
but the overall crosstalk matrix changes relatively little
from one cooldown to the next. For the simulation of pro-
tocol scaling, we needed a model for crosstalk to generate
realistic crosstalk matrices for larger array sizes.

One possible way to model crosstalk is to consider the
strength of crosstalk versus the Euclidean distance between
the site of the flux line and the influenced qubit. For the
16-qubit device, the magnitude of crosstalk versus the
Euclidean distance is shown in Fig. 8(b).

One compelling reason to model crosstalk in this way
is that once current flows through a local flux line, it must
flow through the superconducting ground plane to ground.
The paths that these currents take through the chip are
unknown and cannot be modeled. We do know, however,
that a current dispensed at the end of a flux line must flow
to the edge of the chip. If we consider a circle of radius
r centered on the end of the flux line, we can assume that
there is an equal probability of the current flowing through
any point on this circle (namely, s/2πr probability for an
arc of length s). We can therefore assume that the proba-
bility of a current flowing past a point a distance r from the
end of a flux line is proportional to 1/r.

We fit the curve in Fig. 8(b) with a shifted 1/r decay:
1/(ax + 1) + c. This equation is a 1/r decay that passes
through (0, 100%) when c = 0. We obtain fit values of
a = 178.2 and c = 0.264. The model qualitatively fits the
data, with the nearest-neighbor crosstalk slightly elevated
compared to longer-range crosstalk.

To generate crosstalk matrices for larger arrays, we used
this exponential model. Since we do not have experimental
measurements for Euclidean distances beyond the furthest
distance on a 16-qubit array, we used the standard devia-
tion of the magnitude of all off-diagonal crosstalk elements
for the 16-qubit array: σ = 0.342. For a given crosstalk
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FIG. 8. The dc crosstalk matrix. (a) The measured flux
crosstalk sensitivity matrix for the 16-qubit flip-chip device in
our lab, rescaled by a factor of 100 such that each element is
a percentage. The average off-diagonal crosstalk level is < 1%.
We use the distribution of crosstalk sensitivity Si,j versus the
Euclidean distance between qubit i and qubit j to generate real-
istic crosstalk matrices for simulations of protocol scaling. (b)
The off-diagonal crosstalk versus the Euclidean distance between
the flux line and qubit can be fitted with a 1/r decay defined by
� = 100/(ax + 1) + c with a = 178.2 and c = 0.264.

element Si,j with i �= j , we compute the crosstalk level �

corresponding to the Euclidean distance between qubit i
and qubit j and then pick the magnitude of Si,j from a nor-
mal distribution N (�, σ). Then, we randomly multiply the
element by ±1.

APPENDIX F: FREQUENCY MEASUREMENT
ERROR SOURCES

One of the limiting factors in the frequency precision
of our protocol is the measurement error inherent in the
training sets. In each training set measurement, we mea-
sure the frequency of each qubit and convert that to a flux
experienced. The accuracy of this frequency measurement
therefore directly influences the frequency error plateau for
the protocol.

We have identified three primary sources of error in
our frequency measurements: spectroscopic measurement
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TABLE II. Error budget for the frequency measurement based
on the known primary sources of uncertainty. Estimates for
average error are reported.

Error source Estimated error (kHz)

Spectroscopic inaccuracy 120
Uncompensated dispersive shift 120
Residual ZZ coupling 230
Total estimate 280

inaccuracies, uncompensated dispersive shifts, and resid-
ual ZZ couplings. We report the estimated error from each
of these sources in Table II. In this section, we discuss
these estimates and their implications.

We measure our qubit frequencies via spectroscopy. The
spectroscopy scans have a frequency step of 0.5 MHz to
rapidly scan ftarget ± 30 MHz for each qubit. We fit the
peak to a Lorentzian lineshape. To obtain an estimate for
the error of the fitted spectroscopy peak, we consider the
distribution of fit uncertainties for the size M = 200 ini-
tial training set used in our experiment. After removing
outliers where no peak was found, the mean error in the fit-
ted peak was 118 kHz. We report the estimated error from
spectroscopic inaccuracies as 120 kHz.

The qubits experience dispersive shifts due to interac-
tions with nearest-neighbor qubits via direct capacitive
coupling and with other qubits in the array via stray
capacitances. We characterize the qubit-qubit couplings
before calibrating flux crosstalk, and we use these cou-
pling strengths and the measured frequency of each qubit
to determine the dispersive shift experienced by each qubit
and compensate for it. From the initial size M = 200 train-
ing set in our experiment, the mean value of the calculated
dispersive shift is approximately 180 kHz.

Given a vector of measured frequencies �fmeas. and the
qubit-qubit coupling matrix J, we determine the uncoupled
qubit frequencies �f in the following way. The elements
of �f are the frequencies of the qubits in the case of no
qubit-qubit coupling: J = 0. Therefore, we diagonalize the
matrix f + J, where f is a diagonal matrix whose entries
are �f . The entries of this diagonalized matrix, which are
the eigenvalues of f + J, will be �fmeas. (although perhaps in
a different order).

To find �f , we first compute the eigenvalues �λ of the
matrix f + J and sort them in ascending order. We deter-
mine �f by using a Nelder-Mead optimizer to minimize the
cost function:

C(�f ) = ‖�λ(�f ) − �fmeas.‖2 (F1)

with both �λ(�f ) and �fmeas. sorted in ascending order.
This dispersive shift compensation scheme relies on the

accuracy of the characterized J. In practice, we do not
characterize the full matrix J, but instead only measure

nearest- and next-nearest-neighbor couplings. Stray capac-
itances, however, can exist between any two qubits in
an array. Using the measured frequencies from the size
M = 200 initial training set, we compare the calculated �f
when using J versus using a modified J′ with stray capaci-
tances. We set the beyond-next-nearest-neighbor elements
of J′ to the absolute value of random numbers normally
distributed around zero, with a standard deviation of σ ∈
J × {0.01, 0.03, 0.05}, where J = 2π × 5.98 MHz is the
mean nearest-neighbor coupling for our device. The cor-
responding mean frequency errors, assuming that J′ is the
true coupling matrix, are �f = 49, 122, 164 kHz for σ =
0.01J , 0.03J , 0.05J . We therefore estimate that the error
due to dispersive shift compensation is 120 kHz. This error
is around 67% of the average dispersive shift compensa-
tion of 180 kHz, which means that the overall benefits of
our dispersive shift compensation are minimal, given our
experimental conditions.

The qubits also have residual ZZ coupling, which leads
to shifts in the qubit frequencies depending on the states
of their neighbors. Assuming that the qubits have only
three energy levels, the frequency shift due to residual ZZ
coupling between two qubits (1 and 2) is given by

�ω1 = α1 + α2

(�12 + α1)(�12 − α2)
J 2, (F2)

where αi is the anharmonicity of qubit i, J is the cou-
pling strength between the qubits, and �12 = ω1 − ω2 is
the frequency detuning between the qubits [38,39].

From the measured frequencies of the size M = 200
training set used in our experiment, we can find the mean
shift due to nearest-neighbor ZZ coupling. We assume
that each anharmonicity is the mean of the anharmonic-
ities: αi/2π = −218.4 MHz. We also assume that each
nearest-neighbor coupling is the mean of the nearest-
neighbor couplings, J/2π = 5.89 MHz, for our device,
and the coupling between qubits that are not directly capac-
itively coupled is 0. We find that the standard deviation of
the frequency shifts due to ZZ coupling is approximately
231 kHz. Since next-nearest-neighbor qubits also interact
somewhat strongly and non-nearest-neighbor qubits also
interact via stray capacitances, we believe this estimate of
error (230 kHz) to be conservative.

In Table II, we report the estimated error for each of
these sources, as well as a total estimated error. We assume
that these sources of error are uncorrelated and compute
the total estimated error by adding in quadrature. We esti-
mate a total average error of 280 kHz, which is less than the
frequency measurement uncertainty of σmeas. = 0.5 MHz
we use in our protocol simulations. Other potential sources
of frequency error are more challenging to characterize,
such as small frequency shifts due to weak coupling with
coherent defects or ZZ coupling due to higher transmon
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energy levels. From the conservative error budget dis-
cussed above and other potential sources of error, we
believe that σmeas. = 0.5 MHz is a reasonable upper bound
for the frequency measurement uncertainty on our device.

APPENDIX G: FAST-FLUX CROSSTALK
CALIBRATION

We can control our qubits via the local flux lines by
applying dc voltages or baseband fast-flux pulses. These
fast-flux pulses are square pulses with a cosine ramp and
no modulations. The learning-based protocol described in
this paper can also be used for fast-flux crosstalk calibra-
tion. In Fig. 9, we report the fast-flux crosstalk matrix
for our 16-qubit flip-chip device. We find that the off-
diagonal crosstalk levels are much smaller for fast-flux
pulses, with most off-diagonal elements having a magni-
tude of the order of 0.01%. The average off-diagonal dc
flux crosstalk level [Fig. 8(a)] is around 1%, so the fast-flux
crosstalk levels are around 2 orders of magnitude smaller
than dc flux crosstalk levels.

In order to learn the fast-flux crosstalk for each qubit,
we tune that qubit to a target frequency using a 100-ns
fast-flux pulse and measure the qubit frequency via spec-
troscopy. We then use the same pulse amplitude for the
target qubit, apply flux pulses with random amplitudes
through the other flux lines, and measure the change in
the target qubit’s frequency. The voltages applied and the
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FIG. 9. The fast-flux crosstalk matrix. The measured fast-flux
crosstalk matrix for the 16-qubit flip-chip device, rescaled by a
factor of 100 such that each element is a percentage. The average
off-diagonal crosstalk level is approximately 2 orders of mag-
nitude smaller for fast-flux crosstalk than for dc flux crosstalk.
Elements labeled ±0.0 are crosstalk percentages of magnitude
< 0.05%. The fast-flux microwave line for qubit 12 was broken,
so there is no information for this qubit.
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FIG. 10. Simulations of single-qubit gate fidelity in the pres-
ence of frequency error. The qubit is prepared in the excited state
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FIG. 11. Simulation of frequency error in other bias regions.
The crosstalk is learned by placing the qubit frequencies ran-
domly in the standard training region spanned by 100 MHz to
1 GHz off the sweet spot, and then the error in setting qubit
frequencies is determined for five different bias regions, high-
lighted in (a). We target random frequency vectors in each bias
region to evaluate the learned crosstalk matrix. For these simu-
lations, we disregard the detuning conditions normally used in
our experiments. In (b), we show the convergence of frequency
error in each bias region as the training set size increases. The
frequency precision is best for region 1, closest to the sweet spot,
and decreases the further the bias region is from the upper sweet
spot. The medians are computed over 100 simulation repetitions,
and all data points are shown in the plot.
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uncertainty σmeas.. The error converges by around 15 measurements. The means are computed over 50 simulation repetitions.

changes in the frequency of the target qubit from the train-
ing set that we use for learning the fast-flux crosstalk
matrix are shown in Fig. 9.

APPENDIX H: SINGLE-QUBIT GATE FIDELITY

In this paper, we report an experimental median fre-
quency error on our 16-qubit device of approximately 300

Training set size M Training set size M Training set size M

(a) (c) (e)

(b) (d) (f)

FIG. 13. Effect of error in transmon spectrum parameters on crosstalk precision. Simulation of protocol convergence for varying
levels of error in f max (a),(b), d (c),(d), and Ec (e),(f). The frequency error is shown in (a), (c), and (e) and the Euclidean norm
between the trained crosstalk matrix Sopt. and the actual crosstalk matrix S is shown in (b), (d), and (f). The distribution over ten
different random realizations is shown using small circles, and the median values are shown using large circles. The convergence of
the protocol is robust to small errors in these parameters, but breaks down in the large error limit. The medians are computed over ten
simulation repetitions, and all data points are shown in the plots. A frequency measurement uncertainty of 0.5 MHz (see Fig. 2) was
used for these simulations.
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Training set size M Training set size M

(a)

(b)

(c)

(d)

FIG. 14. Error analysis of V�0 and �offset. Simulation of protocol convergence for varying levels of error in V�0 (a),(b) and �offset
(c),(d). The frequency error is shown in (a) and (c) and the Euclidean norm between the trained crosstalk matrix Sopt. and the actual
crosstalk matrix S is shown in (b) and (d). The distribution over ten different random realizations is shown using small circles, and
the median values are shown using large circles. The convergence of the protocol is particularly sensitive to errors in V�0 , and fairly
sensitive to errors in �offset. A frequency measurement uncertainty of 0.5 MHz (see Fig. 2) was used for these simulations.

kHz after learning the crosstalk matrix with a size M = 50
training set. We now address the effect of this error on
single-qubit gate fidelity.

We would like to be able to arrange the qubits in
frequency layouts with high fidelity so that we can per-
form quantum simulations and/or computations. If qubit
frequencies are off from their target frequencies by over
10 MHz (as is the case on our device before learning the
crosstalk) then qubits may interact more or less strongly
than intended. An important thing to note is that after set-
ting qubits in a frequency layout, we would perform Ram-
sey measurements to further refine the qubit frequencies
(i.e., ensure that we are driving qubits on resonance). Also,
we could repeat the crosstalk learning protocol for a spe-
cific frequency layout to further reduce frequency errors.

In the event that we do not tune up our drive frequencies,
we could consider the impact of the frequency error on our
single-qubit gate fidelities. For an X gate, a drive detun-
ing tilts the effective driving field away from the X axis in
the X -Z plane. In Fig. 10, we can see the unitary fidelity
for �f ∈ {0.1, 0.3, 0.5} MHz as we apply successive 2π

rotations around the X axis, with a pulse amplitude corre-
sponding to a Rabi frequency of ωR = 2π · 10 MHz. For
�f < 0.3 MHz, we maintain over 95% fidelity with 100
successive 2π -X gates. We therefore consider 300 kHz to
be an acceptable median frequency error, especially since

we can further improve upon this frequency error by per-
forming Ramsey measurements or learning the crosstalk
for a specific frequency layout.

APPENDIX I: BIAS REGION EXTRAPOLATION

We use the frequency region spanned by 100 MHz to 1
GHz off the sweet spot to learn our crosstalk matrix. We
now explore whether the crosstalk matrix learned in this
region extrapolates to other bias regions.

In Fig. 11, we simulate the protocol’s performance
when evaluated in different bias regions. We still learn the
crosstalk matrix using the standard training region (100
MHz to 1 GHz off the sweet spot), and then report the
frequency error when attempting to set qubit frequencies
to the five different bias regions highlighted in Fig. 11(a).
For each bias region, we choose frequency vectors that
place each qubit in that bias region (i.e., all voltages
are nonzero). We note that in these simulations, we dis-
regard the detuning conditions normally required in our
experiments.

In Fig. 11(b), we see that the performance of the pro-
tocol is best for the bias region closest to the sweet
spot, which makes sense since the applied voltages are
the smallest. The performance of the protocol decreases
the further the bias region is from the upper sweet spot,
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Training set size M

(a)

(b)

FIG. 15. Crosstalk matrix recalibration. Simulation of protocol
convergence for varying levels of error in the off-diagonal esti-
mates of the initial crosstalk matrix used at the start of training.
Both the (a) median frequency error and (b) median Euclidean
norm between the trained crosstalk matrix Sopt. and the actual
crosstalk matrix S converge by M = 20 to the originally trained
median from Fig. 2 (gray line, assuming that M = 30 and a
measurement uncertainty of 0.5 MHz). The medians are com-
puted over ten simulation repetitions, and all data points are
shown in the plots. A frequency measurement uncertainty of 0.25
MHz was used for these simulations. Since we already know
where the qubits are, we can assume a finer frequency scan
(lower power leading to less power broadening) and therefore
less measurement uncertainty.

with the worst performance occurring in regions 4 and 5,
with approximately 800 kHz and approximately 850 kHz
median frequency errors, respectively, for training set size
M = 50.

In Appendix H, we found that a frequency error of
500 kHz impacts gate fidelities, particularly for more than
20 successive gates. Therefore, we expect that using the
learned crosstalk matrix from the standard training region
for frequency layouts with qubits primarily placed in bias
regions 4 and 5 will result in worsened computational
performance.

We note, however, that the frequency error in these
regions follows the same convergence pattern as in other
regions while starting from a higher initial error. In
this sense, the learned crosstalk matrix extrapolates to
different bias regions. Furthermore, we expect that fre-
quency layouts with different qubits placed in different
bias regions [as described in Fig. 11(b)] will have a
median frequency error somewhere in between the min-
imum and the maximum errors in Fig. 11(b). To improve
frequency setting precision in other bias regions, we would
recommend repeating crosstalk training for the specific

frequency layouts or bias regions desired. Additionally, we
can perform Ramsey measurements to further refine qubit
frequencies.

APPENDIX J: SINGLE-QUBIT
CHARACTERIZATION

Before we can conduct the learning-based protocol
described in this paper, we must perform single-qubit
characterizations. One of the essential assumptions of the
protocol is that we can convert accurately between flux
experienced by a qubit’s SQUID loop and its frequency.
This conversion is described by the transmon spectrum
[Eq. (1)]. In the case of a single qubit, the protocol relies on
the ability to convert between voltage V applied to its flux
line and flux �ext experienced by the qubit’s SQUID loop.
This conversion is described by �ext = V/V�0 + �offset,
where V�0 is the voltage required to tune the qubit by one
magnetic flux quantum �0, and �offset is a flux offset.

We determine V�0 , �offset, f max, d, and EC by perform-
ing qubit spectroscopy. We sweep the voltage V across the
full extent of our tuning range (which in practice turns out
to be approximately ±0.3V�0 ) and measure the qubit fre-
quency. We fit this curve with Eq. (1), substituting �ext =
V/V�0 + �offset, where V�0 is the voltage required to tune
the magnetic flux through the SQUID loop by one flux
quantum. Naturally, the more data points we take for the
spectroscopy fit, the more precise our fit parameters will
become. We investigate the precision of our fit parameters
under the presence of frequency measurement uncertainty
σmeas. ∈ {0.1, 0.5, 1.0} MHz.

In Appendix K, we investigate how errors in fit parame-
ters impact the convergence of the learning-based protocol.
From our analysis in this section (Fig. 12), we can see that
we can achieve the required precision in fit parameters with
< 15 frequency measurements per qubit.

APPENDIX K: ERROR ANALYSIS

We investigated, via simulation, the effect of error in the
system on the efficacy of the protocol. One key assumption
of the protocol is that we can convert between a qubit’s
frequency f and flux experienced by its SQUID loops �

using the transmon spectrum, Eq. (1). If the parameters
f max, d, or EC have significant errors, the protocol will
break down because we will be unable to accurately deter-
mine the fluxes experienced by the SQUIDs to train S (i.e.,
we will not have an accurate training set {�Vi, ��meas

i }i=1:M ).
We note that Eq (1) is an estimation, which is another
potential source of error in our experimental results. We
assume, however, that the transmon spectrum is an exact
equation for all simulations of protocol performance.

We simulated the calibration protocol for the 16-qubit
array while varying the standard deviation of error for
these parameters, shown in Fig. 13. We find that the pro-
tocol begins to fail when the standard deviation of fmax
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exceeds 0.5 MHz, the standard deviation of d exceeds 1%,
or the standard deviation of EC exceeds 10%.

Another key assumption of the protocol is that we can
form an accurate estimate for the flux experienced by the
SQUID loops, given an optimized crosstalk matrix and the
voltages applied. This is the linear crosstalk relation:

��ext = (V�0)−1S�V + ��offset. (K1)

This assumption breaks down when there are errors in the
measured V�0 and ��offset. Errors in V�0 and ��offset will
render the argument of the cost function

C(Sk) = 1
M

M∑
i=1

‖( ��i)k − [(V�0
k,k )

−1Sk �Vi + ( ��offset)k]‖2

(K2)

inaccurate, preventing us from converging to the correct
minimum.

We simulated the calibration protocol for the 16-qubit
array while varying the standard deviation of error for
these parameters, shown in Fig. 14. We find that the proto-
col fails when the standard deviation of V�0 exceeds 0.1%
or the standard deviation of ��offset exceeds 1%.

APPENDIX L: EFFICIENT RECALIBRATION

An advantage to the learning-based approach to cal-
ibration is that it can be used to efficiently recalibrate

the crosstalk matrix. With a direct measurement approach,
there is no simple way to recalibrate the crosstalk without
repeating the measurements over again.

We follow the same procedure, except we use a good
initial guess for S instead of the identity. This will mean
that the qubit frequencies will already be close to their tar-
gets with no additional training, enabling us to perform a
finer spectroscopy scan with less measurement uncertainty.
In Fig. 15, we can see that the frequency error quickly con-
verges to the median error from Fig. 2 (gray line, assuming
that M = 30 and a measurement uncertainty of 0.5 MHz).
This means that we can use the same protocol to recalibrate
our crosstalk matrix efficiently.

APPENDIX M: TRAINING V�0 AND �offset

Another advantage of this learning-based protocol is
that it can be used to efficiently retrain V�0 and ��offset.
For our superconducting devices, the dc flux crosstalk
matrix remains essentially constant throughout an entire
cooldown and also changes minimally from cooldown to
cooldown. The qubits’ V�0 and �offset, however, can drift
throughout a cooldown. In particular, the flux offsets can
drift substantially.

Once we have learned S, we can use the same learning-
based protocol to retrain V�0 and ��offset. Instead of opti-
mizing S in the gradient descent optimizer, we can instead
optimize one or both V�0 and ��offset by minimizing
C(V�0 , ��offset).
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Training set size M

FIG. 16. Off-diagonal crosstalk level. Simulation of protocol convergence for varying levels of off-diagonal crosstalk in the target
crosstalk matrix Starget. Both the median frequency error (a) and median Euclidean norm between the trained crosstalk matrix Sopt. and
the actual crosstalk matrix S (b) begin to fail to converge when off-diagonal crosstalk levels exceed 10%. For a training set of size
M = 100, the median frequency error (c) and median crosstalk matrix error (d) grow exponentially for large off-diagonal crosstalk
levels. The medians are computed over ten simulation repetitions, and all data points are shown in the plots. A frequency measurement
uncertainty of 0.5 MHz (see Fig. 2) was used for these simulations.
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APPENDIX N: CROSSTALK LEVEL SCALING

The calibration approach outlined in this paper is appli-
cable to other systems with low to moderate levels of
crosstalk. We simulated the convergence of the protocol
for a 16-qubit array while varying the magnitude of the off-
diagonal crosstalk elements of the target crosstalk matrix
Starget. For a given off-diagonal crosstalk level �, we ran-
domly assign each off-diagonal element of Starget to be ±�.
In each simulation repetition, this arrangement of plus and
minus changes, but the magnitude of each off-diagonal
element remains fixed.

We find that the protocol breaks down when the off-
diagonal crosstalk levels exceed 10%. For a training
set of size M = 100, the median crosstalk matrix error
[Fig. 16(d)] begins to rise after off-diagonal crosstalk lev-
els reach 6%. While crosstalk matrix error is a potentially
useful metric for protocol simulations, it is not measurable
experimentally, as the target crosstalk matrix is unknown.
The experimentally measurable quantity, the median fre-
quency error [Fig. 16(c)], begins to rise later after off-
diagonal crosstalk levels reach 10%. This protocol will
function well for systems with crosstalk levels ≤ 10%.
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