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When the energy of a quantum emitter aligns with the photonic bandgap of the waveguide, variety
of distinct quantum optical phenomena emerges. The paradigmatic example of such nontrivial interaction
results in the formation of a qubit-photon bound state (QPBS) where a single photon is exponentially local-
ized around the qubit position. Superconducting quantum circuits has been extensively used for studying
QPBS where the photonic band gaps are generated in two-dimensional periodic structures such as photonic
crystals and metamaterials. Nonetheless, in all the experiments reported so far, the exponential nature of
the bound state wave function is justified by making two assumptions (1) that the waveguide is infinite
in length and (2) the coupling to the external ports are absent. These assumptions are difficult to achieve
for a physical device and the transition from an experimentally realizable finite-size system to the theo-
retically assumed infinite device size has never been thoroughly understood. Here, we have realized an
alternative platform based on a three-dimensional (3D) rectangular waveguide that has a naturally occur-
ring low-frequency cutoff for generating QPBS as proposed in Shahmoon and Kurizki [Phys. Rev. A 87,
033831 (2013)]. In its theoretical description, we explicitly take into consideration the finite nature of the
3D waveguide arising due to its metallic boundaries and coupling to microwave ports and demonstrate
how the infinite waveguide limit arises in such a finite system.

DOI: 10.1103/PhysRevApplied.20.024058

I. INTRODUCTION

Engineering interaction between an atom or other quan-
tum emitters with quantized electromagnetic fields serve
as the building block of modern quantum technologies.
In particular, cavity quantum electrodynamics (cQED) that
describes the strong coupling between an atom and a single
mode of a high-Q cavity is now a well-understood the-
ory and underlies the development of quantum computers
based on superconducting qubits [1,2]. The natural exten-
sion of cQED leads to multimode cQED, where several
discreet modes of the cavity are simultaneously hybridized
with an atom [3,4]. The multimode cavity satisfies the
condition that κ � δω, where κ is the linewidth of the
modes and δω is the free spectral range that measures
the mode spacing [5]. In the opposite case of κ � δω

results in a continuum of overlapping modes that can
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be utilized to study waveguide-QED phenomenon that
emulates the dynamics of an atom embedded in a free
space [6,7]. In contrast to the standing waves of a cav-
ity, waveguides support a large bandwidth of propagating
waves that enable long-range photon-mediated interaction
between distant quantum emitters [8,9]. These properties
find direct applications in quantum communications for
realizing quantum networks [10,11], nonreciprocal photon
transmission [12,13], and routing [14].

Waveguides can also be engineered to support a non-
trivial dispersion relation that can result in photonic band
gaps or stopbands. When the qubit frequency lies in the
vicinity of the band edge, a pair of dressed states are
predicted to emerge. One of these dressed state merges
into the continuum while the other dressed state may be
pushed into the band gap wherein the photonic part of the
dressed state becomes an evanescent wave exponentially
localized around the qubit [15–18]. Such a dressed state is
referred to as the qubit-photon bound state (QPBS) and has
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been observed in the experiments with photonic crystals
[19,20] and metametarials [21,22]. It has been proposed
that the interaction between an array of such bound states
can be engineered for simulating tunable spin-exchange
interaction and quantum impurity models [22–26].

A common approach to generate stopbands is to use
photonic crystals and subwavelength [19,20] metamateri-
als [21,27] built using an array of coupled cavities. They
are typically fabricated as two-dimensional (2D) coplanar
structure on a chip that provides transverse confinement
to the traveling photons. Alternatively, this can also be
achieved in three-dimensional (3D) waveguides [28,29]
which has a naturally occurring low-frequency cutoff due
to its geometry. Furthermore, coupling between the qubits
and the waveguide can be enhanced by tailoring the elec-
tric dipole of the superconducting qubit in the 3D transmon
architecture [30].

Experimental results are usually explained by postu-
lating infinite size of a device and neglecting coupling
to the input and output ports. However, physical systems
employed in experiments are finite in size and interact
with measurement apparatus. For the waveguide support-
ing TEM modes [28], the infinite length approximation is
experimentally justified by using arguments of impedance
matching at the coupling ports. However, waveguides that
support TE and TM modes, impedance matching is more
difficult to achieve near cutoff frequency and signatures
of the standing waves always remain. Similarly, photonic
crystals and coupled-cavity array implementations use a
finite number of elementary cells and therefore the finite-
size effects of the system are even more pronounced.
While, matching networks can be designed to alleviate
this problem [31], it is impractical to build large band-
width matching networks since the length of the network
can be as long as the waveguide itself. Thus, a ques-
tion of validity of the infinite length limit as opposed to
the description, which utilize the single-mode (or mul-
timode) Jaynes-Cummings model [5] remains largely an
open question.

In this work we developed a unifying theory of qubits
interacting with a multiple number of electromagnetic
modes coupled to the ports. We treat both the ports and the
qubits in a similar footing, by considering the dipole-type
coupling with the waveguide. Furthermore, we apply the
Markov approximation (only for the ports), the rotating-
wave approximation, and considering only single-photon
excitation subspace, we apply Green’s function formalism
[32,33], which allows one to obtain analytical results for
all quantities of interest. We then apply this formalism to
a specific case of a 3D rectangular waveguide with two
qubits where we are able to sum over an infinite number of
waveguide modes. We evaluate transmission through the
waveguide (both empty and with the qubits), lifetime of
qubit-photon bound states in the stopband and exchange
interaction of two qubit-photon bound states. Our theory

shows how both the infinite limit and the opposite limit of
the single-mode Jaynes-Cummings interaction emerges for
a spatially finite system in different parameter domains. A
particular outcome of our theory is the generalized formula
for the Purcell decay rate and the exchange interaction
between qubits, which can include arbitrary (up to infinity)
number of cavity modes.

We also experimentally demonstrate how the finite-size
effects become negligible and the infinite waveguide limit
results in an exponential scaling for bound state interaction
strength. In the final part of the paper we show how our
formalism can be easily extended to any arbitrary waveg-
uide with a known dispersion relation. In particular, we
discuss the case of photonic crystal where summation over
an infinite number of modes is not even necessary.

II. GENERAL THEORY OF QUBIT IN A
FINITE-SIZE WAVEGUIDE

Let us model a generic waveguide taking into account its
finite size, denoting the length of the waveguide along the
z direction by L. The effective longitudinal Hamiltonian of
the free waveguide can be written as

H0 =
∑

k

εka†
kak k = lπ

L
, l = 1, 2, . . . , (1)

where k is the longitudinal mode index (wavevector), εk

is the mode’s eigenenergy, and ak(a
†
k) is the annihilation

(creation) operator of the kth mode. Note that both the
boundary conditions and the dispersion relation εk can be
kept arbitrary at this point.

As shown in Fig. 1, the waveguide is coupled to the (left
and right) ports at the points zL = −(L/2)+ de and zR =
+(L/2)− de as well as to the two qubits at the points z1

q,1ω q,2ω
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c
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c
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ΓL
g
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FIG. 1. Schematic of a typical waveguide QED setup
employed in experiments. The waveguide is finite in size with
boundaries located at ±L/2. The waveguide is driven from left
(cin) to right (cout) via input-output ports located at zL,R with th
corresponding coupling strengths denoted by �L,R. Pair of two-
level quantum emitters (ωq,1,2) are coupled to the waveguide and
placed symmetrically at ±d/2 with respect to the origin and
decays into the waveguide at the rate g1,2.

024058-2



QUBIT-PHOTON BOUND STATES. . . PHYS. REV. APPLIED 20, 024058 (2023)

and z2. We describe this system by the full Hamiltonian

H = H0 +
∑

s=L,R

(Hs + Hs,int)+
∑

j =1,2

(Hj + Hj ,int). (2)

Here we keep the number of qubits to be two for brevity
as this allows us to calculate explicitly all the single-qubit
effects and the most fundamental cooperative effects such
as the exchange interaction between two qubits. This con-
figuration is also reflected in our experiment with a 3D
waveguide as presented below.

Hereby the ports are modeled as structureless Marko-
vian reservoirs with linear dispersion,

Hs =
∫

dωsωsc†
ωs

cωs , (3)

in terms of the corresponding continuum field operators
obeying the canonical commutation relations [cωs , c†

ω′
s
] =

δ(ωs − ω′
s). The ports’ coupling to the waveguide is of

the dipole type treated in the rotating-wave approximation
(RWA)

Hs,int =
∑

k

fka†
k

√
Lψk(zs)

√
�s

π

∫
dωscωs + h.c., (4)

where ψk(z) is the longitudinal part of the kth eigenfunc-
tion of the three-dimensional Laplace operator. Here, we
assume that all modes of the same port are equally cou-
pled to a given waveguide’s mode k—this assumption
supports the Markovian modeling of the ports. In turn,
the waveguide’s dipole moment may have a dispersion in
the waveguide’s mode index k. Typically this dependence
is ∝ √

εk [34], so we define fk = √
εk/ωc, where ωc is

some relevant frequency scale (e.g., the low-energy cutoff
frequency, like it appears in our following application).

The two qubits (labeled by j = 1, 2) with the transition
frequencies ωq,j are described by the effective Hamiltoni-
ans

Hj =
(
ωq,j − i

γa,j

2

) 1 + σ (j )z

2
, (5)

which also take into account their nonradiative decay at
the rates γa,j . The qubits’ coupling to the waveguide is
analogous to Eq. (4)—the dipole coupling in the RWA:

Hj ,int =
∑

k

fka†
k

√
Lψk(zj )gj σ

(j )
− + h.c., (6)

where σ (j )z and σ
(j )
− = 1

2 [σ (j )x − iσ (j )y ] are the standard
Pauli matrices.

We note that the presented model is rather general and
can also be applied to a lattice realization of the waveguide.
In this case, the sum over k in Eq. (1) is finite, and the
coordinate zn = na is discrete and given by multiples of
the lattice constant a.

A. Calculating transmission

With the help of Hamiltonian (2) we derive (see details
in Appendix A) the Heisenberg equations of motion for
the (ports’ and waveguide’s) field operators and the qubits’
operators. Assuming that the incident field from the left
port enters the waveguide at t = 0, we define the input field

cin(t) =
∫

dωLcωL(t + 0+) (7)

in terms of the left-port operators. Since the transmitted
field is measured in the right port, we define the output
field

cout(t) =
∫

dωRcωR(t − 0+) (8)

in terms of the right-port operators. The infinitesimal shifts
of the time arguments in the above expressions reflect
the causality property—a feature of the input-output for-
malism [35]. The transmission amplitude SRL(ω) relates
the Fourier images c̃in/out(ω) = ∫∞

0 dt cin/out(t)ei(ω+i0+)t of
Eqs. (7) and (8),

c̃out(ω) = SRL(ω)c̃in(ω). (9)

In the single-excitation approximation, which is justified
for a weak pulse intensity and which is based on the
assumption that both qubits remain close to their ground
states in the time dynamics, that is 〈σ (j )z (t)〉 ≈ −1, we
establish the following relation (see again in Appendix A
for more details)

SRL(ω) = −2i
√
�R�LLG(zR, zL;ω). (10)

Here

G(z, z′;ω) =
∑

k,k′
fkψk(z)Gkk′(ω)fk′ψk′(z′) (11)

is the waveguide Green’s function written in the coordinate
representation. Its momentum-space counterpart

Gkk′(ω) =
(

1
ω − ε̂ −�(ω)

)

kk′
, ε̂kk′ = εkδkk′ , (12)

is dressed by the self-energy

�kk′(ω) = �
(p)
kk′ +�

(q)
kk′ (ω), (13)

which takes into account the effects of the interaction with
the ports

�
(p)
kk′ = −iL

∑

s=L,R

�sfkψk(zs)fk′ψk′(zs), (14)
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and with the qubits

�
(q)
kk′ (ω) = L

∑

j =1,2

g2
j

fkψk(zj )fk′ψk′(zj )

ω − ωq,j + i γa,j
2

. (15)

Note that the self-energy, Eq. (14), is frequency inde-
pendent, which reflects the Markovian modeling of the
ports.

An alternative representation for SRL(ω) can be worked
out which will be applied later in Sec. III B for the anal-
ysis of qubit-photon bound states. In particular, in order
to identify these states with resonant peaks in the trans-
mission data below the waveguide’s cutoff frequency, we
equivalently rewrite SRL(ω) as

SRL(ω) = −2iL
√
�R�LG(p)(zR, zL;ω) (16)

− 2iL2
√
�R�L

∑

j ,j ′
gj gj ′G(p)(zR, zj ;ω)

× Ĝjj ′(ω)G(p)(zj ′ , zL;ω). (17)

Here G(p)(z, z′;ω) is the waveguide Green’s function
dressed solely by the port-induced self-energy �(p)

kk′ : one
obtains G(p)(z, z′;ω) by replacing Gkk′ → G(p)

kk′ and�kk′ →
�
(p)
kk′ in Eqs. (12) and (13), respectively. In addition, we

introduce the dressed Green’s function of the qubits,

Ĝjj ′(ω) =
(

1

[Ĝ(0)(ω)]−1 − �̂(ω)

)

jj ′
, (18)

which is written in terms of the qubits’ bare Green’s
function

Ĝ(0)
jj ′ (ω) = δjj ′

ω − ωq,j + i γa,j
2

, (19)

and the qubits’ self-energy

�̂jj ′(ω) = gj gj ′LG(p)(zj , zj ′ ;ω), (20)

emerging due to their interaction with the waveguide.
Thus, the qubit-photon bound states are expected to

manifest themselves as poles of Green’s function, Eq. (18).
We refer to Appendix B for the proof of the equivalence
between Eq. (16) and Eq. (17), on one hand, and Eq. (10),
on the other hand.

B. Calculating the port-dressed Green’s function of
the waveguide

Recapitulating the definition of G(p)
kk′ (ω) in terms of the

Dyson equation

G(p)
kk′ (ω) = G(0)

kk′ (ω)+
∑

k′′,k′′′
G(0)

kk′′(ω)�
(p)
k′′k′′′G

(p)
k′′′k′(ω), (21)

where G(0)
kk′ (ω) = δkk′/(ω − εk) is the bare Green’s func-

tion of the waveguide, we explicitly solve Eq. (21) in
Appendix C. The obtained solution allows us to represent
(omitting for brevity the frequency argument)

G(p)(z, z′) = G(0)(z, z′)− iL
D
�RG(0)(z, zR)

× [1 + i�LLG(0)(zL, zL)]G(0)(zR, z′)

− iL
D
�LG(0)(z, zL)

× [1 + i�RLG(0)(zR, zR)]G(0)(zL, z′)

− L2

D
�R�LG(0)(z, zR)G(0)(zR, zL)G(0)(zL, z′)

− L2

D
�L�RG(0)(z, zL)G(0)(zL, zR)G(0)(zR, z′),

(22)

where

D = [1 + i�RLG(0)(zR, zR)][1 + i�LLG(0)(zL, zL)]

+ L2�R�LG(0)(zR, zL)G(0)(zL, zR), (23)

and we also defined the coordinate representation of the
bare waveguide Green’s function

G(0)(z, z′) =
∑

k

f 2
k
ψk(z)ψk(z′)
ω − εk

. (24)

It is remarkable that for the special choice of spatial argu-
ments z = zR, z′ = zL the expression (22) gets considerably
simplified:

G(p)(zR, zL) = G(0)(zR, zL)

D
. (25)

For a weak coupling to the ports we can approximate
Eq. (22) by its leading-order expansion in �’s

G(p)(z, z′) ≈ G(0)(z, z′)− iL�RG(0)(z, zR)G(0)(zR, z′)

− iL�LG(0)(z, zL)G(0)(zL, z′), (26)

which already includes the imaginary part necessary for
a description of the qubit-photon bound state resonance
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broadening. This becomes explicit after inserting Eq. (26)
into Eq. (20). We note that the � expansion leading to
Eq. (26) is well justified (at least) in the stopband, where
the density of states of the empty waveguide identically
vanishes and the corresponding Green’s functions G(0) are
featureless and nonsingular (see the next section for their
explicit evaluation). The weak coupling approximation,
Eq. (26), will be used later in Sec. III B 1 to fit a linewidth
of the bound state in the stopband: the fitting is well con-
trolled as long as a detuning of this resonance from the
cutoff frequency exceeds �L,R.

III. QUBITS IN RECTANGULAR WAVEGUIDE

Up to this point, we have nowhere used the waveguide’s
specific properties, in particular, its eigenspectrum εk and
its eigenmodes ψk(z). Instead we have expressed all quan-
tities, which are necessary for the transmission calculation
in terms of the bare Green’s function of the empty waveg-
uide (24) written in the coordinate representation. In this
section we demonstrate the application of our approach to
model a rectangular waveguide shown in Fig. 2. It will be a
subject of our subsequent experimental study in the regard
of the qubit-photon bound states that arise in the stopband.

A. Calculating the bare Green’s function of the
waveguide

The rectangular waveguide supports two types of
eigenmodes, the transverse electric (TEm,n) modes and

 zL

c
in c

out

ΓL

z
zR–L

ΓR

2
L
2

–d
2

d
2

0

q,1ω q,2ω

Q
1

Q
2

JΓb Γb

k

ωc

εk

qω

(c)(b)

(a)

405 μm 

100 μm 

10 cm

FIG. 2. (a) Schematic of a rectangular waveguide containing
two 3D transmon qubits Q1 and Q2 separated by a distance d.
When the qubits’ frequencies lie in the stopband, exponentially
localized photonic bound state can be induced, which are cen-
tered at the qubits’ positions. The bound states can be probed via
input-output ports separated by a distance zR − zL. (b) The actual
device used in the experiment consisting of a copper rectangular
waveguide with co-axial connectors used for input-output ports.
(c) Photon dispersion curve for the dominant TE10 mode. The
cutoff frequency ωc/2π = 6.5213 GHz and the qubit frequency
ωq (= ωq,1 = ωq,2) that lies in the stopband.

transverse magnetic (TMm,n) modes, with the fundamental
mode being TE1,0. For the rest of this section we assume
both the ports and the qubits are predominantly coupled to
the fundamental mode although coupling to TMm,n modes
can be, in principle, taken into account as well. The photon
dispersion associated with the TE1,0 mode is given by [28]

εk =
√

c2k2 + ω2
c , (27)

where ωc is the transverse cutoff frequency. The lon-
gitudinal contributions to the TE1,0 mode in the empty
rectangular waveguide with metallic walls are given by the
following longitudinal modes:

ψk(z) =
√

2
L

sin[k(z + L/2)], (28)

satisfying the open boundary conditions ψk(−L/2) =
ψk(+L/2) = 0. They are equivalent to the vanishing tan-
gential components of the electric field (Ex = Ey = 0) and
the vanishing normal component of the magnetic field
(Bz = 0) at the endpoints of the waveguide. In Ref. [36],
the periodic boundary condition has been applied for 3D
waveguides and a similar formalism has been developed.

Let us evaluate the bare Green’s function of the empty
waveguide as defined in Eq. (24). For the continuum
model of our present interest, the sum in Eq. (24) includes
infinitely many terms. A natural idea to truncate it at some
large longitudinal mode index Nr has however a flaw: the
summation convergence with respect to increasing Nr is
very slow for the frequencies lying in the stopband. This
drawback does not allow us to accurately quantify the
transmission through the empty waveguide at ω < ωc, as
will be shortly illustrated.

Instead of truncating the sum in Eq.(24), we first rewrite
it as

G(0)(z, z′;ω) = ω

ωc

∑

k

ψk(z)ψk(z′)
ω − εk

− 1
ωc
δ(z − z′), (29)

where the δ function emerges due the basis completeness
relation

∑
k ψk(z)ψk(z′) = δ(z − z′).

The second contribution to Eq. (29) is only efficient for
z ≈ z′, and it should be regularized on the length scale of
the contact size (which has been so far treated as point-
like). However, due to its frequency independence the
second term can only contribute to inessential energy-
level renormalization effects. Therefore, we completely
neglect it.

As we are interested in the transmission spectrum at fre-
quencies ω ≈ ωc, we can also approximate the first term
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contributing to Eq. (30) and thus obtain

G(0)(z, z′;ω) =
∑

k

ψk(z)ψk(z′)
ω − εk

. (30)

Note that both approximations made above can be alter-
natively deduced from the assumption that fk = 1, i.e., the
waveguide’s dipole moment does not depend on the mode
index k.

To calculate the infinite sum in Eq. (30), we exploit the
method frequently used in the condensed-matter physics,
which is known as the Matsubara frequency summation
[37]. By the analogy with the bosonic Matsubara frequen-
cies ωl = 2π l/β we define a formal analog β = 2L/c of
the inverse temperature in the original method. Then we
represent

cG(0)(z, z′;ω) = 1
β

∑

iωl

g(iωl), (31)

where in the conventionally denoted summation
∑

iωl
the

range of all integer l from −∞ to +∞ is implied, and g(w)
is a newly introduced function

g(w) = e−w |z−z′|
c − e−w |z+z′+L|

c

ω −√−w2 + ω2
c

, (32)

which can be analytically continued in the complex plane
of w. It has the two branch cuts (−∞, −ωc) and (ωc, +∞)

along the real axis of w, as well as the two poles w± =
±√ω2

c − ω2 ≡ ±w̄.
The main prescription of the (bosonic) Matsubara fre-

quency summation consists in replacing the sum by the
complex contour integral

1
β

∑

iωl

g(iωl) = 1
2π i

∮
dw

g(w)
1 − e−βw , (33)

where the integration contour embraces the above-
mentioned singularities of the g(w) function in the com-
plex plane running in the clockwise direction. An eval-
uation of this integral (see in Appendix D) results in the
following expression:

cG(0)(z, z′;ω) = ω

w̄
F(z, z′; w̄) (34)

+ 1
π

∫ ∞

ωc

dω̄

√
ω̄2 − ω2

c

ω2 + ω̄2 − ω2
c

F(z, z′; ω̄), (35)

where the auxiliary function

F(z, z′; w) = ew |z−z′|
c − ew |z+z′+L|

c

1 − eβw − e−w |z−z′|
c − e−w |z+z′+L|

c

1 − e−βw

(36)

obeys the correct boundary conditions F(±L/2, z′) =
F(z, ±L/2) = 0.

The pole contribution (34) to c G(0)(z, z′;ω) is dominant.
It features the exponentially decaying spatial behavior in
the stopband ω < ωc (w̄ is real), and the oscillating spatial
behavior in the passband ω > ωc (w̄ is imaginary).

The branch cut contribution, Eq. (35), might be only
useful for z ≈ z′ (otherwise the integrand is suppressed
by quickly decaying exponential terms). So we get an
approximation for the equal-point Green’s function

c G(0)(z, z;ω) ≈ −ω
w̄

− 1
π

∫ ωhf

ωc

dω̄

√
ω̄2 − ω2

c

ω2 + ω̄2 − ω2
c

(37)

= −ω
w̄

− 1
π

ln
2ωhf

ωc
(38)

+ ω

w̄
1
π

arcsin
w̄
ωc

+ O
(
ωc

ωhf

)
. (39)

In the above integral (see Appendix E for details of its
evaluation) we have introduced the high-frequency cutoff
ωhf � ωc in order to regularize its logarithmic divergence
(giving thus the leading branch cut contribution, which
is constant in frequency). The calculated subleading con-
tribution is nearly constant (approximately equal to 1/π )
near the threshold ω → ωc (w̄ → 0). As discussed on the
way from Eq. (29) to Eq. (30), such constant contributions
are negligible.

Overall we can omit the branch cut contribution,
Eq. (35), and reliably approximate c G(0)(z, z′;ω) by the
pole contribution, Eq. (34), alone. This approximation
gives consistent physical results in different limiting cases
considered below.

1. Long waveguide limit

In the long waveguide limit, which is defined by the con-
dition w̄(L/c) � 1 for ω < ωc, the condition |ωc − ω| �
c2/L2ωc automatically holds and the waveguide’s Green’s
function can be approximated by

G(0)(z, z′;ω) ≈ ω

cw̄
F(z, z′; w̄) ≈ − ω

cw̄
e−w̄ |z−z′|

c , (40)

that is by the translationally invariant expression for the
infinite waveguide length, which has no signatures of the
endpoints.

2. Short waveguide limit

For a rather short waveguide length L ∼ cπ/ωc (i.e.,
the longitudinal and transverse sizes of the waveguide
are comparable), such that the condition |ω − επ/L| �
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|ε2π/L − επ/L| ∼ cπ/L is fulfilled, we expect that the
expression (30) is well approximated by the first term in
the sum, i.e.,

G(0)(z, z′;ω) ≈ 2
L

sin
[
π
L

(
z + L

2

)]
sin
[
π
L

(
z′ + L

2

)]

ω − επ
L

=− 1
Lδ̄

[
cos

π |z − z′|
L

− cos
π |z + z′ + L|

L

]
,

(41)

where δ̄ = επ/L − ω. Note that δ̄ is defined with respect to
the fundamental waveguide mode επ/L, not with respect to
ωc.

Let us show that the same result can be recovered from
the term (34). Approximating

w̄ =
√
ω2

c − ω2 =
√
ω2

c − (επ
L

− δ̄)2 (42)

≈
√
ω2

c − ε2
π
L

+ 2επ
L
δ̄ ≈ i

cπ
L

(
1 − L2

c2π2 ε
π
L
δ̄

)
, (43)

we insert this into Eq. (34) and obtain

G(0)(z, z′;ω) ≈ ωL
ic2π

⎡

⎣ei π |z−z′|
L − ei π |z+z′+L|

L

1 − e
−2π i L2

c2π2 ε πL
δ̄

−e−i π |z−z′|
L − e−i π |z+z′+L|

L

1 − e
2π i L2

c2π2 ε πL
δ̄

⎤

⎦

≈ − ω

Lεπ
L
δ̄

[
cos

π |z − z′|
L

− cos
π |z + z′ + L|

L

]
. (44)

To the leading order in δ̄, this expression is equivalent
to Eq. (41). The smallness condition on δ̄, justifying the
expansions made above, reads

|δ̄| � c2π2

L2επ
L

∼ cπ
L

∼ |ε 2π
L

− επ
L
|, (45)

which accords with the initially made physical assump-
tions for this limiting case.

B. Qubit-photon bound states below cutoff

1. One qubit—one bound state

For a single qubit j = 1 in a 3D waveguide we obtain
on the basis of Eq. (17) an approximate transmission in

the stopband by omitting the background empty waveguide
contribution:

SRL(ω) ≈ −2i
√
�R�Lg2

1

× L2G(p)(zR, z1;ω)G(p)(z1, zL;ω)
ω − ωq,1 + i γa,1

2 − g2
1LG(p)(z1, z1;ω)

. (46)

Next, we approximate G(p) by G(0) in the numerator, and
G(p) by Eq. (26) in the denominator. The latter reads then
as

ω − ωq,1 − γ c G(0)(z1, z1;ω) (47)

+ i

[
γa,1

2
+ γL

c

∑

s=L,R

�s|c G(0)(z1, zs;ω)|2
]

, (48)

where γ = g2
1L/c. The validity of the weak coupling

approximation utilized above will be well justified in
fitting the experimental data in Sec. V B.

Assuming a weak resonance broadening quantified by
Eq. (48), we obtain from Eq. (47) the qubit-photon bound
state equation

ωb − ωq,1 − γ c G(0)(z1, z1;ωb) = 0. (49)

Expanding the denominator near the bound state frequency
ωb, and setting ω = ωb in the numerator, we find the
following Lorentzian approximation for the bound state
resonance

SRL(ω) ≈ −2i
√
�R�L

γL
c

Z(ωb)

× c G(0)(zR, z1;ωb) c G(0)(z1, zL;ωb)

ω − ωb + i�b
2

, (50)

in terms of the linewidth �b which is a sum of both non-
radiative decay �q = Z(ωb)γa,1 of the bound state and the
radiative decay �r,

�b ≈ 2Z(ωb)

[
γa,1

2
+ γL

c

∑

s=L,R

�s|c G(0)(z1, zs;ωb)|2
]

(51)

and the quasiparticle weight [37]

Z(ωb) = 1
1 − γ ∂

∂ω
c G(0)(z1, z1;ω)

∣∣∣∣
ω→ωb

< 1. (52)

For Z → 1 the bound state has more weight in the qubit
excited state, while for Z � 1 it is mostly photonlike (see
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below for a justification of this interpretation). Calculating
this factor for our model, we obtain the result

Z(ωb) = 1

1 + γω2
c

(ω2
c−ω2

b)
3/2

, (53)

in which we see that the Markov approximation (con-
sisting in the neglect of the frequency dependence in the
qubits’ self-energy) is justified for the bound state fre-
quency far below ωc (provided that γ � ωc), while for ωb
approaching ωc the Markov approximation breaks down.

Making the Lorentzian approximation for the transmis-
sion probability

|SRL(ω)|2 ≈ A(�b/2)2

(ω − ωb)2 + (�b/2)2
, (54)

we also define the amplitude at the resonance

A = |SRL(ωb)|2 ≈
∣∣∣4Z(ωb)

√
�R�L

�b

γL
c

∣∣∣
2

×
∣∣∣c G(0)(z1, zR;ωb)c G(0)(z1, zL;ωb)

∣∣∣
2
. (55)

It is also worth mentioning that the representation (B10)
gives us an immediate access to the photonic part ψ(1)

phot(z)
of the bound state wave function. Neglecting the port
couplings, we identify

|ψ(1)
phot(z)|2 = lim

ω→ωb
[(ω − ωb)G(z, z;ω)] (56)

= Lg2
1Z(ωb)|G(0)(z, z1;ωb)|2. (57)

Observing that
∫ L

−L
dz|ψ(1)

phot(z)|2 = −Z(ωb)γ c
∂

∂ωb
G(0)(z1, z1;ωb) (58)

= 1 − Z(ωb), (59)

we justify the interpretation of Z(ωb) given after its
definition in Eq. (52). In the long waveguide limit we apply
the approximation (40) to get

|ψ(1)
phot(z)|2 ∝ e−2

√
ω2

b−ω2
c

|z−z1|
c = e−2 |z−z1|

ξ(ωb) , (60)

that is ψphot(z) is exponentially localized near the qubit
position z1, with the localization length

ξ(ωb) = c√
ω2

c − ω2
b

. (61)

This spatial profile is actually sketched in Fig. 2(a).

2. Two qubits—two bound states

In the presence of the two qubits we have two bound-
state resonances, which can be identified with the poles of
the qubits’ Green’s function, Eq. (18). To neglect broaden-
ing of the resonances, we approximate �̂jj ′(ω) in Eq. (20)
by

�̂jj ′(ω) ≈ �̂
(0)
jj ′ (ω) = gj gj ′LG(0)(zj , zj ′ ;ω) (62)

as well as neglect nonradiative decay rates γa,j in Eq. (19).
Then the bound states are found from the equation

0 = det[Ĝ(ω)]−1 ≈ det
(

[Ĝ(0)(ω)]−1 − �̂(0)(ω)
)

≈ (ω − ωq,1 − �̂
(0)
11 (ω))(ω − ωq,2 − �̂

(0)
22 (ω))

− �̂
(0)
12 (ω)�̂

(0)
21 (ω). (63)

Due to the off-diagonal components �̂(0)
12 (ω) and �̂(0)

21 (ω)

of the qubits’ self-energy, which describe an effective
waveguide-mediated exchange interaction between the
qubits, the two bound states repel each other. The energy
splitting between them quantifies the strength J of the
exchange interaction, and it is the subject of our next
consideration.

For the symmetric setup with z1 = −z2 = −(d/2) and
g1 = g2, we have the identities �̂(0)

11 (ω) = �̂
(0)
22 (ω) and

�̂
(0)
12 (ω) = �̂

(0)
21 (ω). Tuning ωq,2 to the value ωq,2 = ωq,1 ≡

ωq in order to have a minimally possible splitting between
the two bound states, we get two separate equations for
each bound state

ωb,1 − ωq − �̂
(0)
11 (ωb,1)− �̂

(0)
12 (ωb,1) = 0, (64)

ωb,2 − ωq − �̂
(0)
11 (ωb,2)+ �̂

(0)
12 (ωb,2) = 0. (65)

Defining the splitting � = ωb,2 − ωb,1 as well as the mid-
dle point ω̄b = (ωb,2 + ωb,1)/2 we derive the following
self-consistent equation:

� = �̂
(0)
−

(
ω̄b + �

2

)
− �̂

(0)
+

(
ω̄b − �

2

)
, (66)

with �̂
(0)
± (ω) = �̂

(0)
11 (ω)± �̂

(0)
12 (ω), which implicitly

defines � as a function of ω̄b.
An approximation to Eq. (66) by expanding its right-

hand side up to the linear order in � yields

�(ω̄b) ≈ −2�̂(0)
12 (ω̄b)Z(ω̄b) ≡ J . (67)

Alternatively, this expression can be represented (see
Appendix F) as

�(ω̄b) ≈ 2|〈ψ(1)
phot|(ω̄b − H0)|ψ(2)

phot〉|, (68)
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that is (two times) the overlap between the photonic contri-
butionsψ(1)

phot andψ(2)
phot to the corresponding bound states at

their degeneracy point ω̄b, subtracting the correction term
〈ψ(1)

phot|H0|ψ(2)
phot〉 to avoid the double counting of H0 (since

it is used each time for determining both ψ(1)
phot and ψ(2)

phot
independently of each other).

In the long waveguide limit L � ξ(ω̄b), the coupling
between the two qubits is approximated by

J ≈ 2γ
ω̄bξ(ω̄b)

c
e− d

ξ(ω̄b)
1

1 + γ
ω2

c
c3 ξ

3(ω̄b)
. (69)

In the single-mode limit we obtain the coupling between
the two qubits by approximating Eq. (67) using Eqs. (41)
and (62):

J ≈ 2Z(ω̄b)
g̃1g̃2

επ
L

− ω̄b
, (70)

where

g̃j = gj
√

Lψπ
L
(zj ), (71)

and

Z(ω̄b) =
[

1 + g̃2
j

(επ
L

− ω̄b)2

]−1

. (72)

In particular, Z(ω̄b) ≈ 1 for |επ/L − ω̄b| � |g̃j | and we
recover the standard formula for the qubit exchange inter-
action through the cavity mode described by the Jaynes-
Cummings model [38].

IV. GENERALIZED PURCELL EFFECT

The spontaneous emission rate of a qubit depends on
both the nature of the electromagnetic environment to
which it is coupled as well as the detuning between the
frequency of the qubit and the modes of the environment.
In our formalism, the most general formula for calculating
the Purcell induced decay is given by

�r,Nr→∞ = 2Z(ωb)
γL
c

∑

s=L,R

�s|c G(0)(z1, zs;ωb)|2. (73)

Green’s function G(0) carries the information about the
environment as seen by the qubit. For a rectangular waveg-
uide that supports the infinite number of modes, Green’s
function is given by Eqs. (34) and (35).

Similarly, for a qubit coupled to a multimode environ-
ment with a finite number of resonances Nr, such as a
photonic crystal or a cavity array with N = Nr cavities,
Green’s function is represented as a discrete sum (see

an exemplary evaluation in the framework of the tight-
binding model in Appendix G). The decay rate can be then
estimated by the following formula:

�r,Nr = 2Z(ωb)
γL
c

∑

s=L,R

�s

∣∣∣∣∣c
Nr∑

l=1

ψkl(z1)ψkl(zs)

ωb − εkl

∣∣∣∣∣

2

. (74)

In the case of a single-mode cavity (Nr = 1), where the
qubit in only coupled to the fundamental resonance l = 1,
we obtain the bound state decay rate by approximating
Eq. (73) with Eq. (41),

�r,Nr=1 ≈ Z(ωb)
g̃2

j

(επ
L

− ωb)2
κ , (75)

where g̃j is defined in Eq. (71), and

κ =
∑

s=L,R

2�s|
√

Lψπ
L
(zs)|2 (76)

is the cavity decay rate. Taking into account Eq. (72),
which holds in the single-mode case, we observe that near
επ/L = ωb the decay rate, Eq. (75), is regularized,

�r,Nr=1 ≈ g̃2
j

(επ
L

− ωb)2 + g̃2
j
κ , (77)

and coincides with the cavity decay rate κ at επ/L = ωb.
In turn, for |επ/L − ωb| � |g̃j | it holds Z(ωb) ≈ 1, and we
obtain the well-known formula [39] for Purcell-induced
decay of a qubit coupled to a cavity mode described by
the Jaynes-Cumming model

�r,Nr=1 ≈ g̃2
j

(επ
L

− ωb)2
κ . (78)

In Fig. 3 we have compared the life time of a qubit cou-
pled to a cavity with a different number of modes. Below
the fundamental frequency, the propagating modes are sup-
pressed and the qubit predominantly couples to evanescent
modes. Therefore, in the (continuum) limit of Nr → ∞,
the qubit has the largest lifetime. In contrast, for fre-
quencies above the fundamental mode the qubit life is
modified due to presence of higher harmonic modes, which
contributes to the density of states available at the qubit
frequency. Consequently the qubit lifetime decreases with
increase in the number of modes.

V. EXPERIMENT

A. Waveguide characterization

We first characterize the waveguide without qubits
through a transmission measurement at room temperature
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FIG. 3. Comparison of the Purcell decay rate of a qubit cou-
pled to a cavity with different number of longitudinal modes
Nr.

and fit the experimental data to theoretical values given
by Eq. (16). Note that the coupling between the wave-
guside and the ports �s=L,R are the only free parameters
in the fit. We also let �L = �R = �L,R, which is a rea-
sonable assumption since we use the identical co-axial
connectors for both the ports. Furthermore, we observe
that the transmission amplitude reaches unity in the pass-
band of the waveguide indicating that there is no left-right
asymmetry in the couplings. In Fig. 4 we have compared
the transmission data to two different theoretical results.
The first one is based on the approximation where the
waveguide’s Green’s function is represented by a sum of
a finite number of resonances Nr truncating the sum in
Eq. (30)—effectively this is equivalent to replacing the
continuum model by a lattice counterpart with Nr sites and
the lattice constant L/Nr. In turn, the full sum (Nr → ∞)
provides the exact description of the continuum model
leading to the analytic expression Eq. (34) for the (bare)
Green’s function. We clearly see that the continuum limit
best represents the data and provides us with the estimate
of �L,R/2π ≈ 225 MHz. We also note that the small mis-
match in fitting the passband can be caused by our neglect
of the weak frequency dependence of the coupling between
the waveguide modes and the ports, which we made in
deriving the formula for the transmission. However, the
minor effect of this couplings’ dispersion is inessential
in the stopband, where all subsequent measurements are
performed.

B. Probing QPBS in the stopband

In order to detect QPBS in our experiment, we per-
formed a spectroscopy measurement by sweeping the fre-
quency ωq,1 of the first qubit (Q1) through the cutoff into
the stopband of the waveguide and observed the scatter-
ing properties. Throughout the experiment the frequency
ωq,2 of the second qubit (Q2) is placed in the passband

5 6 7 8
Frequency (GHz)

−100

−80

−60

−40

−20

0

|S
R

L
|(

dB
)

ωc/2π

Experiment
Nr = 10
Nr = 50
Nr = 100
Nr = ∞

FIG. 4. Transmission of the empty waveguide measured at
room temperature (black solid line). It is compared to the theoret-
ical results computed using two theoretical methods (we note that
the linear transmission does not depend on temperature, therefore
this comparison—in the absence of qubits—is fair). The dot-
dashed lines result from the numerical simulations of SRL using
the truncated sums in (30) at Nr = 10, 50 and 100 resonances.
The dashed pink line is calculated using the exactly evaluated
sum in (30) (i.e., at Nr → ∞). Exploiting its good agreement
with the experimental data, we estimate on the basis of its ana-
lytical expression the values of �L,R/2π ≈ 225 MHz. The cutoff
frequency is at ωc/2π = 6.5213 GHz.

and hence far detuned from ωq,1. As shown in Fig. 5(a),
when we tune the bare qubit frequency ωq,1 close to ωc, we
observe a peak in transmission signal in the stopband as a
result of the formation of a single-photon dressed bound
state that is localized around the position z1 of the qubit
and extends to the ends of the waveguide. The localization
length ξ given by Eq. (61) depends on the bound-state fre-
quency ωb, which differs from the qubit frequency by the
self-energy term, ωb − ωq,1 = �̂11(ωb) ≈ �̂11(ωq,1). Thus,
ξ is tuned in situ by changing ωq,1.

Although the density of states vanishes in the stopband,
the bound state acquires a finite linewidth due to the cou-
pling to the input and output ports. The strength of this
coupling depends on ξ , therefore measuring linewidth of
the bound state serves as an indirect measure of the local-
ization length. We extracted linewidth as a function of
the bound-state frequency ωb for both Q1 and Q2 from
independent spectroscopy measurements. In Figs. 5(c)
and 5(d), we compared experimental linewidth data with
our theoretical estimate given in Eq. (51) and find good
agreement for both the qubits. We further note that the
linewidth of Q2 is smaller than that of Q1. As we mea-
sure the waveguide output through the right port, the bound
state induced by Q1, which resides in close proximity to the
port, exhibits a larger spatial overlap with the port in com-
parison to the bound state induced by Q2. This results in
smaller linewidth for the bound state localized around Q2,
which can be observed by comparing Figs. 5(c) and 5(d).
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FIG. 5. (a) Measurement data and (b) is the simulation of waveguide spectroscopy reveals the dressed QPBS appearing as a peak
below the cutoff frequency ωc. The frequency of the QPBS is shifted lower by a self-energy �11 from the qubit frequencies, which in
turn appears as a dip. Note that the bound state always exists in the stopband, for qubit frequencies close to the cutoff it is photonlike
(Z � 1) and for frequencies deep in the stopband it is qubitlike (Z ≈ 1). (c),(d) Linewidths of the bound state measured from spec-
troscopy data for qubits Q1 and Q2 placed symmetrically from the center of the waveguide. (e),(f) Attenuation of peak amplitude as a
function of bound-state frequency, which has a similar trend as that of the linewidth. Note that the best fits for the plots are obtained
using the continuum model with �L,R/2π ≈ 525 MHz as the only free parameter.

Similar to the linewidth, the transmission amplitude of
the bound-state resonance also depends on ωb. In Figs. 5(e)
and 5(f) we show the attenuation of the bound-state signal
as a function of the frequency and find a good agree-
ment between the theoretical prediction [see Eq. (55)]
and the data for both Q1 and Q2. The qubit-waveguide
coupling strength g1,2 needed for the fitting is obtained
from the avoided-crossing data, which will be discussed in
Sec. V D. Therefore, the fit obtained for both linewidth and
amplitude has only one free parameter �L,R, which shows
the validity of the theory for our experimental results.

C. QPBS as an effective two-level system

Inducing a localized photonic mode in the band gap can
also be achieved by introducing dislocations in the unit cell
of a photonic crystal. This principle underlies the work-
ing of defect mode lasers where the localized mode acts as
a high finesse cavity [40,41]. In contrast, QPBS acts as a
nonlinear defect as it inherits the anharmonic nature of the
bare qubit seeding it. In order to probe the internal struc-
ture of the bound state, we detuned the qubit by 450 MHz
below the cutoff frequency such that the bound-state fre-
quency is at ωb/2π = 6.077 GHz and the corresponding
linewidth is measured to be �b/2π = 0.143 MHz. When
the qubit frequency lies deep in the stopband one can make
the Markovian approximation to eliminate the waveguide
modes and treat the bound state as an effective two-level
system with finite anharmonicity (see Appendix H).

When probed with a microwave tone, the bound state
responds by emitting photon out of both the input cin and
the output cout ports. Since the input signal is strongly

attenuated in the stopband, measurement of the radiation
coming out of the output port 〈cout〉 will be a direct mea-
sure of the bound-state polarization 〈σ (1)− 〉 as shown in
Eq. (H11). This should be contrasted to the measurement
in the passband where the radiation will be a sum of the
incoming radiation and the qubit emission described in
Eqs. (H9) and (H10). The large spacial separation between
the ports exponentially suppresses the coupling through the
waveguide modes and minimizes direct crosstalk between
the ports enabling direct measurement of the bound-state
polarization even in the presence of the probe field.

To elucidate the qubit nature of the QBPS we apply an
excitation pulse of fixed length τp = 1.3 µs to the input
port while measuring the emission from the output port.
In Fig. 6(a) one can see the emission as a function of
time and driving frequency ωd exhibiting the character-
istic chevron pattern of Rabi oscillations (at frequency
�r) for the pulse duration. More specifically, Fig. 6(c)
shows a horizontal line cut of which shows decaying Rabi
oscillations for the duration of the pulse τp and decays
exponential to zero after that. We also notice that, when
the drive frequency becomes resonant with the bound-
state frequency ωb, the Rabi oscillations vanish and the
emission has a constant value for the time period τp of
the drive. The amplitude of this emission depends on
the drive strength, dissipation rate, and the detuning δd =
ωd − ωb as shown in Eq. (H14). The steady state thus
obtained is not unique to bound states but a simple feature
of a driven-dissipate two-level system, which cannot be
revealed in a typical circuit-QED setup due to the absence
of direct coupling to the 〈σ−〉 component of the qubit.
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FIG. 6. (a) Chevron pattern of the Rabi oscillations obtained
by sweeping drive frequency in the vicinity of the bound-state
frequency ωb/2π = 6.077 GHz. The length of the drive pulse
is τp = 1.3 µs during which we observe oscillations. The signal
decays at the rate �b/2 after the pulse is turned off. (b) Numerical
simulation of the Chevron pattern with �b/�r ∼ 0.22 reproduces
qualitatively the features in the experimental data. (c) Horizontal
linecut (orange dashed line) of (a). The signal recorded here is
proportional to direct emission form the bound state.

The numerical simulation of the Lindblad master equation
for the qubit reduced density matrix dρq/dt = −i[Heff, ρq]

+ �b

(
σ
(1)
− ρqσ

(1)
+ − 1

2 {σ (1)+ σ
(1)
− , ρq}

)
, with Heff = −(δd/2)

σ (1)z + (�r/2)σ (1)x , which is equivalent to Eqs. (H12)
and (H13) upon identifying 〈σ̂ (1)±,z(t)〉 = Tr[σ (1)±,zρq(t)],
reproduces all features that we observe in the experimental
data as shown in Fig. 6.

D. Nonradiative dipole-dipole interaction between two
QPBS

So far in our experiment, we have considered the
formation of a single QPBS centered at the qubit co-
ordinate when ωq < ωc. However, many interesting quan-
tum effects in waveguide QED arise due to distinctive
photon-mediated interaction between multiple quantum
emitters. In this section, we study the interaction between
bound states that can be established by allowing the
individual photonic wave functions to overlap. Such a
type of interaction can be described by transverse-field
exchange Hamiltonian of the form HI = 1

2 J [σ (1)+ σ
(2)
− +

h.c.]. In order to measure the coupling J between the qubits
we tuned their transition frequencies into the stopband

such that two bound states are induced at the qubits’ posi-
tions. The amount of overlap between the two bound states
depends on the detuning between the bound-state frequen-
cies and the cutoff frequency. When both the bound states
are on resonance a single virtual excitation is exchanged
between them leading to the formation of symmetric (|+〉)
and antisymmetric (|−〉) pair of states: |±〉 = (|ge〉 ±
|eg〉)/√2, where |g〉 and |e〉 are the ground and first exited
levels of the bound states. We measured the coupling J
with respect to the “bare” bound-state frequency ω̄b =
(ωb,1 + ωb,2)/2 through waveguide spectroscopy, similar
to the measurement described in Fig. 5. When detuning
δ/2π = (ωc − ω̄b)/2π is 101.32 MHz, the measured cou-
pling strength J/2π = 32.49 MHz as shown in Fig. 7(a).
In comparison, the size of the avoided crossing reduces to
J/2π = 8.195 MHz when the qubit is tuned deep into the
stopband where the detuning δ/2π = 409 MHz as shown
in Fig. 7(b). We also utilized the general two qubit trans-
mission model described in Eq. (17) and reproduced all
the features that we observe in the experiment as shown in
Figs. 7(a) and 7(b).

The coupling between two QPBS can be shown [see
Eq. (69)] to decay exponentially with J ∝ e−|z1−z2|/ξ in the
long-waveguide limit (applicable for L � ξ ), where ξ is
the in situ tunable localization length, see Eq. (61). This is
in contrast to interactions mediated by propagating modes
in passband, which is oscillatory. In order to show the tun-
able nature of this interaction, we have measured the size
of the avoided crossings when both the qubits are on res-
onance as a function ω̄b. Note that the interaction strength
not only depends on detuning but also on the distance d of
separation between the qubits. As shown in Fig. 7, we mea-
sured the coupling for two different distances and observed
that J scales exponentially as predicted by Eq. (69). Fur-
thermore, by comparing Figs. 7(e) and 7(f) we precisely
find when the long waveguide limit is a good approxima-
tion. In our system, when the interqubit distance is large
d = 44.95 mm we find that the long-waveguide limit gives
the accurate description of the avoided crossings. On the
other hand, it breaks down when the interqubit distance
is small d = 22.95 mm. The only free parameters in the
fitting are the qubit-waveguide couplings g1,2, we assume
that both the qubits have approximately same coupling
strength g1 ≈ g2 = g and estimated it to be g/2π ≈ 62.53
MHz which we have also used in fitting Fig. 5. It is worth-
while to note that although the exponential nature of the
interaction may indicate that this interaction would vanish
in the long waveguide limit, ξ can be made equal to the
length of the total system by appropriately choosing δ and
d, hence the interaction is effectively long ranged.

VI. SUMMARY AND CONCLUSIONS

In summary, we developed a theory, which allows us
to calculate all the parameters of interest for a system of
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FIG. 7. (a) Avoided crossing measured by fixing the qubit frequency ωq,1 and sweeping the qubit frequency ωq,2. When both the
bound states are on resonance the coupling is J/2π = 60 MHz. (b) Same as (a) but the bound state is further detuned from the cutoff
frequency, here J/2π = 15 MHz. (c) and (d) are the simulations of the spectroscopy experiment that reproduce all the experimental
features, including both the bound states’ resonances (the dark regions) and the dips in the transmission (the light region) corresponding
to the qubit frequencies. (e),(f) The avoided crossing measured at different mean bound-state frequencies ω̄b for two different distances
of separation between the qubits. For d = 44.95 mm, the formula obtained from the long waveguide limit gives an accurate description
of the avoided crossings. We use this data to estimate the qubit-waveguide coupling g1/2π = g2/2π = g to be 62.53 MHz. When the
interqubit distance is reduced to d = 22.95 mm, we notice that the approximate formula starts to break down for avoided crossings
measured close to the cutoff.

two qubits coupled to a waveguide of finite length. More
specifically, knowing the waveguide dispersion relation
εk and its wave functions ψk(z) for a given waveguide
length L it is possible to account for boundaries through
the calculation of the waveguide Green’s function given by
Eq. (24). Our formulae then cover all parameter regimes as
well as properties of the qubits and waveguide above and
below the cutoff frequency. Although we consider only sin-
gle excitation in this work, our method can be extended for
studying multiphoton bound states. As shown in Ref. [42],
one can systematically evaluate nonlinear corrections to
transmission by expanding coherent light in multiphoton
sectors.

For systems like one-dimensional (1D) arrays of cou-
pled cavities or 1D photonic crystals, Green’s function can
be found by direct summation analytically (for a few cavi-
ties or cells) or numerically (for a large number of cavities
or cells). For the 3D waveguide we take into account an
infinite number of modes analytically by Eqs. (34)–(36).

Using the qubit-photon states below cutoff as a
benchmark we show that the infinite limit arises when√
ω2

c − ω2L/c � 1. Given that the localization length of
the photonic part of a wave function of the bound state
is ξ = c/

√
ω2

c − ω2 we have a simple physical interpreta-
tion: the infinite limit holds as far as the photonic wave
functions of the qubit-photon bound state do not reach the
boundaries of the waveguide. In this limit, the exponen-
tial spacial decay of the waveguide Green’s function arises
(40), which is then casted into exponential localization

of the photonic part of the qubit-photon bound state and
the experimentally observed exponential dependence of
various parameters on the qubits detuning.

It is also interesting to note that the applicability of
the infinite limit does not depend on the port properties.
Thus, the infinite limit will apply even for the case of the
small coupling where the transmission in the passband will
not be flat and will show sharp resonance transmission
peaks.

Equations (34)–(36) can also reproduce the Jaynes-
Cummings model behavior for the opposite—short waveg-
uide—limit. However, it should be noted that that once the
detuning of the qubit from the fundamental mode increases
the short cavity limit will break down and more modes will
be taken into account. It is especially visible for our gen-
eralized Purcell formula (73) describing the lifetime of the
qubit-bound state deviating from the conventional Purcell
formula (75) as the qubit detuning grows. We compare our
theoretical results to the experimental data where we cou-
pled two superconducting transmon qubits to a rectangular
copper waveguide. Here we focused on the regime where
the qubit frequencies are tuned below the cutoff frequency
in the stopband of the 3D waveguide. In this regime, both
the linewidth and the amplitude of the transmission peaks
corresponding to the qubit-photon bound states below cut-
off as well as the exchange interaction strength between the
two qubit-photon bound states show exponential depen-
dence as predicted by the formula predicted in the long
waveguide limit.
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Overall, our results provide a step towards the system-
atic description of the waveguide QED regimes with the
previously missing rigorous justification of the infinite-size
approximation for finite-size physical implementations.
Although there is no fundamental difference between 3D
and 2D waveguides, we note that 3D waveguide has a
band edge only at the lower frequency, offering more
bandwidth for manipulating bound states. This is differ-
ent to any of photonic crystal implementation that has both
upper and lower cutoff. In addition, 3D architecture pro-
vides additional flexibility in designing qubits with larger
geometrical dimensions (ex: 3D transmon with potentially
longer coherence times). In the future work a high-fidelity
dispersive readout of the bound state can be performed
by inserting a planar readout resonator inside the waveg-
uide [43], thereby effectively realizing circuit QED in our
setup. We have also shown the tunable nature of interaction
between two bound states through long-range nonradiative
dipole-dipole interaction. The exponential nature of these
interaction can be potentially used for performing quantum
simulations of quantum spin models in a 3D architec-
ture [44]. Since there is only a low-frequency cutoff, the
stopband width.
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APPENDIX A: HEISENBERG EQUATIONS OF
MOTION AND DERIVATION OF EXPRESSION

(10) FOR THE TRANSMISSION

With the help of Hamiltonian (2) we derive the Heisen-
berg equations of motion

d
dt

ak(t) = −iεkak(t)− i
√

L
∑

s=L,R

fkψk(zs)

√
�s

π

∫
dωscωs(t)

− i
√

L
∑

j =1,2

fkψk(zj )gj σ
(j )
− (t), (A1)

d
dt

cωs(t) = −iωscωs(t)− i

√
�s

π

∑

k

√
Lfkψk(zs)ak(t),

(A2)

d
dt
σ
(j )
− (t) = −i

(
ωq,j − i

γa,j

2

)
σ
(j )
− (t)

+ i
∑

k

gj
√

Lfkψk(zj )σ
(j )
z (t)ak(t). (A3)

Integrating the port-field operators

cωs(t) = cωs(0)e
−iωst − i

√
�s

π

∑

k

√
Lfkψk(zs)

∫ t

0
dt′e−iωs(t−t′)ak(t′), (A4)

we next evaluate

∫
dωRcωR(t) = −i

√
�R

π

∫
dωR

∑

k

√
Lfkψk(zR)

∫ t

0
dt′e−iωR(t−t′)ak(t′) (A5)

= −2i
√
π�R

∑

k

√
Lfkψk(zR)

∫ t

0
dt′δ(t − t′)ak(t′) (A6)

= −i
√
π�R

∑

k

√
Lfkψk(zR)ak(t). (A7)

Note that we used
∫ t

0 dt′δ(t − t′) = 1
2 , and set cωR(0) = 0,

which means no input pulse in the right port. In turn,
∫

dωLcωL(t) =
∫

dωLcωL(0)e
−iωLt − i

√
π�L

∑

k

√
Lfkψk(zL)ak(t). (A8)

For the input field we analogously obtain

cin(t) =
∫

dωLcωL(t + 0+) (A9)

=
∫

dωLcωL(0)e
−iωL(t+0+) − i2π

√
�L

π

∑

k

√
Lfkψk(zL)

∫ t

0
dt′δ(t + 0+−t′)ak(t′). (A10)

The last term vanishes, since t′ = t + 0+ lies outside the
integration range, and thus obtain

cin(t) =
∫

dωLcωL(0)e
−iωLt. (A11)

Next, we define the output field

cout(t) =
∫

dωRcωR(t − 0+) (A12)
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= −i2π

√
�R

π

∑

k

√
Lfkψk(zR)

∫ t

0
dt′δ(t − 0+−t′)ak(t′)

(A13)

= −i2
√
π�R

∑

k

√
Lfkψk(zR)ak(t). (A14)

Note that in contrast to Eq. (A7) we get now the
twice larger contribution, since t′ = t − 0+ < t entirely lies
inside the integration range.

Performing the Fourier transform

ãk(ω) =
∫ ∞

0
dtak(t)ei(ω+i0+)t, (A15)

we obtain

c̃out(ω) = −2i
√
π�R

∑

k

√
Lfkψk(zR)ãk(ω). (A16)

Inserting the solutions (A7) and (A8) into Eq. (A1), we
obtain

d
dt

ak(t) = −iεkak(t)− i
∑

k′
�
(p)
kk′ ak′(t) (A17)

− i
∑

j =1,2

√
Lfkψk(zj )gj σ

(j )
− (t) (A18)

− i
√

Lfkψk(zL)

√
�L

π
cin(t), (A19)

where the port-induced self-energy �
(p)
kk′ is defined in

Eq. (14). In the Fourier representation this equation reads

(ω − εk)ãk(ω)−
∑

k′
�
(p)
kk′ ãk′(ω)

−
√

L
∑

j =1,2

fkψk(zj )gj σ̃
(j )
− (ω)

=
√
�L

π

√
Lfkψk(zL)c̃in(ω). (A20)

In Eq. (A3) we approximate σ (j )z (t) ≈ −1, which is justi-
fied for a weak power of the incident pulse. Thus we get

the equations

d
dt
σ
(j )
− (t) = −i

(
ωq,j − i

γa,j

2

)
σ
(j )
− (t) (A21)

− i
∑

k

gj
√

Lfkψk(zj )ak(t). (A22)

Rewriting it in the Fourier representation, we eliminate
σ̃
(j )
− (ω):

σ̃
(j )
− (ω) = 1

ω − ωq,j + i γa,j
2

∑

k

gj
√

Lfkψk(zj )ãk(ω).

(A23)

Inserting these relations into (A20) yields

∑

k′
[(ω − εk)δkk′ −�kk′(ω)]ãk′(ω)

=
√
�L

π

√
Lfkψk(zL)c̃in(ω), (A24)

where �kk′(ω) is the full self-energy of the waveguide
defined in Eq. (13).

Introducing the fully dressed waveguide Green’s func-
tion (12), we solve (A24) for ãk(ω):

ãk(ω) =
√
�L

π

∑

k′
Gkk′(ω)

√
Lfk′ψk′(zL)c̃in(ω). (A25)

Inserting the result into (A16), we obtain the relation (9)
between the input and the output fields in terms of the
transmission amplitude

SRL(ω) = −2iL
√
�R�L

∑

k,k′
fkψk(zR)Gkk′(ω)fk′ψk′(zL),

which accords with Eq. (10).

APPENDIX B: TRANSMISSION
REPRESENTATION (16) AND (17)

To achieve the representation (16), (17) for the trans-
mission amplitude SRL(ω), we attempt to solve the Dyson
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equation for the fully dressed Green’s function Gkk′ of the
waveguide

Gkk′ = G(p)
kk′ +

∑

k′′,k′′′
G(p)

kk′′�
(q)
k′′k′′′Gk′′′k′ (B1)

≡ G(p)
kk′ +

∑

j ,j ′
Q̄(p)

kj Ĝ(0)
jj ′ Qj ′k′ . (B2)

Hereby the port-dressed Green’s function G(p)
kk′ of the

waveguide is defined

G(p)
kk′ (ω) =

(
1

ω − ε̂ −�(p)

)

kk′
(B3)

in terms of the port-induced self-energy (14). The qubit-
induced self-energy �(q)

kk′ is given in Eq. (15). In addition,
we define ψ̃k(z) = fkψk(z),

Q̄(p)
kj =

∑

k′′
G(p)

kk′′
√

Lψ̃k′′(zj )gj , (B4)

Q(p)
j ′k′ = gj ′

∑

k′′

√
Lψ̃k′′(zj ′)G(p)

k′′k′ , (B5)

and the analogous quantities without the superscript (p).
Finally, the bare qubits’ Green’s function Ĝ(0)

jj ′ is given in
Eq. (19).

Appropriately convoluting Eq. (B1), we arrive at the
equation

Qj ′k′ = Q(p)
j ′k′ +

∑

j ,j ′′
�̂j ′j Ĝ(0)

jj ′′Qj ′′k′ , (B6)

where �̂jj ′ is the full qubits’ self-energy given in (20).
Inverting the matrix in the qubits’ space in Eq. (B6), we

obtain

Qjk′ =
∑

j ′

(
1

1 − �̂Ĝ(0)

)

jj ′
Q(p)

j ′k′ . (B7)

Inserting this expression into Eq. (B2), we establish

Gkk′ = G(p)
kk′ +

∑

j ,j ′
Q̄(p)

kj

(
Ĝ(0) 1

1 − �̂Ĝ(0)

)

jj ′
Q(p)

j ′k′ (B8)

= G(p)
kk′ +

∑

j ,j ′
Q̄(p)

kj Ĝjj ′Q(p)
j ′k′ , (B9)

where Ĝjj ′ is the fully dressed qubits’ Green’s function
given in Eq. (18). Hence, we find the coordinate-space
solution

G(z, z′;ω) = G(p)(z, z′;ω)

+ L
∑

j ,j ′
gj gj ′G(p)(z, zj ;ω)Ĝjj ′(ω)G(p)(zj ′ , z′;ω),

(B10)

which immediately leads to the representation (16)
and (17) of the transmission amplitude (10).

APPENDIX C: SOLUTION OF THE DYSON Eq. (21)

We notice that Eq. (21) is analogous to Eq. (B1): the
latter is obtained from the former by the replacements

Gkk′ → G(p)
kk′ , (C1)

G(p)
kk′ → G(0)

kk′ , (C2)

Ĝ(0)
jj ′ → −iπδjj ′ , j , j ′ → L, R, (C3)

gj →
√
�j

π
, (C4)

�̂jj ′ →
√
�j�j ′

π
LG(0)(zj , zj ′). (C5)

Therefore we can exploit the solution (B10), making in
it the same replacements. Most of them are obvious, and
we comment only on the matrix Ĝjj ′ : in the (L, R) basis it
reads

Ĝ =
(

− 1
iπ − �L

π
LG(0)(zL, zL) −

√
�L�R
π

LG(0)(zL, zR)

−
√
�R�L
π

LG(0)(zR, zL) − 1
iπ − �R

π
LG(0)(zR, zR)

)−1

= − iπ
D

(
1 + iL�RG(0)(zR, zR) −iL

√
�L�RG(0)(zL, zR)

−iL
√
�R�LG(0)(zR, zL) 1 + iL�LG(0)(zL, zL)

)
(C6)
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FIG. 8. Integration contour for the integral in the right-hand
side of Eq. (33) in the complex plane of w. It embraces the poles
w = ±w̄ of g(w) (the red crosses) as well as the branch cuts
of g(w) (the branching points w = ±ωc are indicated by the fat
black points).

together with D defined in Eq. (23). Expanding the sums
over j and j ′ in Eq. (B10) we obtain Eq. (22).

APPENDIX D: FURTHER DETAILS ON
EVALUATION OF THE MATSUBARA SUM (33)

To switch from the sum in the left-hand side of Eq. (33)
to the integral in its right-hand side, which is performed
along the contours shown in Fig. 8, it is also necessary to
make sure that at Re w �= 0 the integrand goes to zero,

∣∣∣
g(w)

1 − e−βw

∣∣∣ → 0, (D1)

faster than 1/|w| as |w| → ∞.
Excluding the special point z = z′ (which we consider

separately later), we first inspect the case Re w > 0 and
observe the exponentially decaying terms e−|Re w|(|z−z′|/c),
e−|Re w|(|z+z′+L|/c).

For Re w < 0 we obtain the exponentially decaying
terms e−|Re w|[(2L/c)−(|z−z′|/c)], e−|Re w|[(2L/c)−(|z+z′+L|/c)], pro-
vided that z and z′ do not appear on the waveguide’s
endpoints. The latter condition is however not restrictive,
since we know that the bare Green’s function vanishes if
one of its arguments approaches +(L/2) or −(L/2).

Having established the sufficient conditions to deform
the integration contour to the shape shown in Fig. 8, we
easily find the pole contribution (34) by evaluating the cor-
responding residua values. In turn, to evaluate the branch

cut integrals we observe that

g(ω̄ + i0+)− g(ω̄ − i0+) = (e−ω̄ |x−x′|
c − e−ω̄ |x+x′+L|

c )

×
[

1

ω + i sgn(ω̄)
√
ω̄2 − ω2

c

− 1

ω − i sgn(ω̄)
√
ω̄2 − ω2

c

]
. (D2)

This observation leads to the expression (35).
In the special case z = z′, the sum in the left-hand side

of Eq. (33) diverges logarithmically, and we regularize
it by subtracting from it the analogous sum with ω = 0.
Defining the function

g̃(w) = 1

ω −√−w2 + ω2
c

+ 1√−w2 + ω2
c

(D3)

= ω√−w2 + ω2
c

1

ω −√−w2 + ω2
c

, (D4)

we see that it produces the same pole contribution (34) as
g(w) does at z = z′ (when neglecting the regular contribu-
tion ∝ e−w(|z+z′+L|/c)). Eventually this observation means
that the proposed regularization is equivalent to intro-
ducing the high-frequency cutoff ωhf in Eq. (37), which
also captures the logarithmically diverging frequency-
independent contribution.

APPENDIX E: EVALUATION OF THE INTEGRAL
IN EQ. (37)

Let us perform the integral in Eq. (37) by making the
variable change ω̄ = ωc cosh λ:

− 1
π

∫ ωhf

ωc

dω̄

√
ω̄2 − ω2

c

ω2 + ω̄2 − ω2
c

= − 1
π

∫ arccosh
ωhf
ωc

0
dλ

sinh2 λ
(
ω
ωc

)2
+ sinh2 λ

(E1)

≈ − 1
π

ln
2ωhf

ωc
+ 1
π

ω2

ω2
c

∫ ∞

0

2dλ

2
(
ω
ωc

)2
− 1 + cosh 2λ

,

(E2)

where the last approximation is valid for ωhf � ωc.
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The next change of variable y = e2λ leads to
∫ ∞

0

2dλ
2( ω

ωc
)2 − 1 + cosh 2λ

=
∫ ∞

−∞

dλ

2
(
ω
ωc

)2
− 1 + cosh 2λ

=
∫ ∞

0

dy
(y + cos 2α)2 + sin2 2α

= 2α
sin 2α

= ω2
c

ωw̄
arcsin

w̄
ωc

, (E3)

where we have parameterized ω = ωc cosα and w̄ =√
ω2

c − ω2 = ωc sinα. Combining Eq. (E3) with Eq. (E2),
we obtain the result shown in Eq. (39).

APPENDIX F: EXPLANATION OF THE FORMULA
(68)

Traditionally, the bound state in the presence of a sin-
gle qubit is found from the eigenvalue problem H |ψ(1)

BS 〉 =
ωb|ψ(1)

BS 〉, where in Hamiltonian (2) the coupling to the
ports and to the second qubit is neglected. Representing

|ψ(1)
BS 〉 = α(1)|eg〉|vac〉 + |gg〉

∑

k

β
(1)
k a†

k |vac〉, (F1)

where |vac〉 is the photonic vacuum state, we obtain the
following equations for the coefficients α(1) and β(1)k :

(ωb − ωq,1)α
(1) = g1

∑

k

√
Lψk(z1)β

(1)
k , (F2)

(ωb − εk)β
(1)
k = g1

√
Lψk(z1)α

(1). (F3)

It follows

|ψ(1)
BS 〉 = α(1)

[
|eg〉|vac〉 + |gg〉

∑

k

g1
√

Lψk(z1)

ωb − εk
a†

k |vac〉
]

.

(F4)

In particular, from this expression we recover the photonic
part (57) of the bound-state wave function

ψ
(1)
phot(z) = α(1)

∑

k

g1
√

Lψk(z1)ψk(z)
ωb − εk

(F5)

=
√

Z(ωb)Lg1G(0)(z, z1;ωb), (F6)

with α(1) = √
Z(ωb).

Analogously we find a bound state emerging due to the
coupling of the waveguide only with the second qubit:

|ψ(2)
BS 〉 = α(2)

[
|ge〉|vac〉 + |gg〉

∑

k

g2
√

Lψk(z2)

ωb − εk
a†

k |vac〉
]

.

(F7)

In the symmetric setup with g1 = g2, ωq,1 = ωq,2, and z1 =
−z2, the energy of this bound state has the same value ωb
as for the state (F4).

When the both qubits are coupled to the waveguide, we
can find the energy splitting of the two bound states from
the overlap of the photonic contributions to the states (F4)
and (F7). In addition, we must subtract the matrix element
of H0, given in Eq. (1), since this Hamiltonian has been
already used twice, that is in the eigenvalue problems for
each bound state. Thereby we get

〈ψ(1)
BS |(ωb − H0)|ψ(2)

BS 〉 = 〈ψ(1)
phot|(ωb − H0)|ψ(2)

phot〉

= Z(ωb)g1g2L
∑

k

ψk(z1)ψk(z2)

ωb − εk

≡ Z(ωb)�̂
(0)
12 (ωb). (F8)

APPENDIX G: LATTICE REALIZATION OF THE
WAVEGUIDE

Let us model a cavity array or a photonic crystal by a
chain of N sites (labeled by n = 1, . . . , N ). Treating it in
the tight-binding approximation we introduce the nearest-
neighbor hopping amplitude −t and the uniform on-site
energy ωc + 2t. The energy spectrum (see Fig. 9) and the
eigenfunctions of this model are

εk = ωc + 2t − 2t cos ka, (G1)

ψk(zn) =
√

2
L

sin(kzn), (G2)

where k = lπ/L is labeled by integer l, 1 ≤ l ≤ N . Hereby
we introduced the chain’s length L = (N + 1)a in terms
of the lattice constant a, as well as the nth-site coordinate
zn = na. We note the normalization a ×∑N

n=1 ψ
2
k (zn) = 1.

All observables discussed in the paper are expressed via
the core object—the waveguide’s bare Green’s function
(29). Its lattice analogue reads

G(0)(zn, zn′ ;ω) ≡ G(0)
nn′(ω) (G3)

= ω

ωc

N∑

l=1

ψ lπ
L
(na)ψ lπ

L
(n′a)

ω − ε lπ
L

− δnn′

ωca
(G4)
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ω
c

ε
k

–π/a π/a

ω

4t

δ

k

FIG. 9. Dispersion relation of a waveguide modeled as cavity
array. The detuning is given by δ and the size of the passband is
2t.

≈
N∑

l=1

ψ lπ
L
(na)ψ lπ

L
(n′a)

ω − ε lπ
L

. (G5)

This finite sum can be easily evaluated numerically.
For large N , we can replace the sum by the integral

G(0)
nn′(ω) ≈ 2

π

∫ π/a

0
dk

sin(kna) sin(kn′a)
ω − ωc − 2t + 2t cos ka

(G6)

= 1
a

∫ π

−π

dk̄
2π

eik̄|n−n′| − eik̄|n+n′|

ω − ωc − 2t + 2t cos k̄
(G7)

≡ I|n−n′| − I|n+n′|. (G8)

Evaluating the integral In̄ at integer n̄ ≥ 0 and ωc − ω ≡
δ > 0 [in practice, the condition should be δ � ta2(π2/L2)

in order to justify the integral approximation (G6)], we
obtain

In̄ ≡ 1
a

∫ π

−π

dk̄
2π

eik̄ n̄

ω − ωc − 2t + 2t cos k̄
(G9)

= − 1
a
√
(4t + δ)δ

(
2t

2t + δ + √
(4t + δ)δ

)n̄

. (G10)

For the broad bandwidth 4t � δ we further approximate

In̄ ≈ − 1

a
√

4tδ
e−n̄

√
δ
t , (G11)

and then

G(0)
nn′(ω) ≈ I|n−n′| ≈ − 1

a
√

4tδ
e−|n−n′|

√
δ
t . (G12)

In general, the low-energy approximation εk ≈ ωc +
(k2/2meff) in terms of the effective mass meff = 1/2ta2

directly leads to Eq. (G12). This formula is obtained from
the integral

G(0)
nn′(ω) ≈ −

∫ ∞

−∞

dk
2π

eika|n−n′|

δ + k2

2meff

(G13)

after closing the integration contour in the upper half-plane
of complex k and evaluating the residue value at the pole
kp = i

√
2meffδ.

To draw an analogy of the present tight-binding model
with the 3D waveguide model (27), we note the value
meff = ωc/c2 for the latter case. Thereby we also recover
(40) at ωc � δ > 0, which coincides with (G12) (up to
the relabelling of the parameters). This observation implies
that the bound state properties near the cutoff frequency ωc
in both the 3D waveguide model, Eq. (27), and the cavity
array model, Eq. (G1), are physically equivalent.

APPENDIX H: BOUND STATE AS A TWO-LEVEL
SYSTEM

For a single-qubit detuned deep in the stopband, we
derive an effective description in terms of the two-level
system coupled to the ports by eliminating the waveguide
modes.

From Eq. (A20) it follows

ãk(ω) =
√

L
∑

j =1,2

∑

k′
G(p)

kk′ (ω)fk′ψk′(zj )gj σ̃
(j )
− (ω)

+
√
�L

π

√
L
∑

k′
G(p)

kk′ (ω)fk′ψk′(zL)c̃in(ω). (H1)

Deep in the stopband we make the Markov approximation
G(p)

kk′ (ω) ≈ G(p)
kk′ (ωq,1). After this we transform ãk(ω) back

to the time domain, and insert ak(t) into Eq. (A22), relaxing
the weak-intensity approximation σ (j )z ≈ −1.

For a single qubit j = 1 this gives

d
dt
σ
(1)
− (t) ≈ −i

(
ωq,1 − i

�q,1

2
− �̂11(ωq,1)

)
σ
(1)
− (t) (H2)

+ ig1σ
(1)
z (t)

√
�L

π
LG(p)(z1, zL;ωq,1)cin(t). (H3)

Averaging over an initial coherent state and denoting

2g1

√
�L

π
LG(p)(z1, zL;ωq,1)〈cin(t)〉 = �re−iωdt (H4)

in terms of the Rabi frequency �r and the driving fre-
quency ωd, we obtain the equation

d
dt

〈σ (1)− (t)〉 ≈ −i
(
ωb − i

�b

2

)
〈σ (1)− (t)〉 (H5)
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+ i
2
�re−iωdt〈σ (1)z (t)〉. (H6)

In addition, we derive

d
dt

〈σ (1)z (t)〉 ≈ −�b[1 + 〈σ (1)z (t)〉] (H7)

− i�r〈e−iωdtσ
(1)
+ (t)− eiωdtσ

(1)
− (t)〉. (H8)

Inserting the approximate ak(t) into Eq. (A14) we obtain
the effective input-output relation

cout(t) = −2i
√
�R�LLG(p)(zR, zL;ωb)cin(t) (H9)

− 2ig1

√
π�RLG(p)(zR, z1;ωb)σ

(1)
− (t). (H10)

In the stopband the value of G(p)(zR, zL;ωb) is negligible,
therefore 〈σ (1)− (t)〉 is a direct measure of 〈cout(t)〉. In the co-
rotating frame, where 〈σ̂ (1)− (t)〉 = 〈σ (1)− (t)〉eiωdt, 〈σ̂ (1)z (t)〉 =
〈σ (1)− (t)〉, and 〈ĉout(t)〉 = 〈cout(t)〉eiωdt, we relate

〈ĉout(t)〉 ≈ −2ig1

√
π�RLG(p)(zR, z1;ωb)〈σ̂ (1)− (t)〉. (H11)

As well we get the following equations for the qubit
observables:

d
dt

〈σ̂ (1)− (t)〉 ≈ i
(
δd + i

�b

2

)
〈σ̂ (1)− (t)〉 + i

2
�r〈σ̂ (1)z (t)〉,

(H12)

d
dt

〈σ̂ (1)z (t)〉 ≈ −�b[1 + 〈σ̂ (1)z (t)〉] − i�r〈σ̂ (1)+ (t)− σ̂
(1)
− (t)〉,
(H13)

where δd = ωd − ωb. On their basis we find the steady-
state value

|〈σ̂ (1)− 〉ss| = |〈σ (1)− 〉ss| =
�r

√
4δ2

d + �2
b

2�2
r + 4δ2

d + �2
b

. (H14)
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