
PHYSICAL REVIEW APPLIED 20, 024019 (2023)

Timing Constraints Due to Real-Time Graph-Traversal Algorithms on
Incomplete Cluster States in Photonic Measurement-Based Quantum Computing

John R. Scott1,* and Krishna C. Balram2,†

1
Centre for Doctoral Training in Quantum Engineering, Department of Physics, University of Bristol, United

Kingdom
2
Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of

Bristol, BS8 1UB, United Kingdom

 (Received 1 September 2022; revised 20 April 2023; accepted 24 July 2023; published 8 August 2023)

Understanding the computational overheads imposed by classical control systems on quantum comput-
ing platforms becomes critically important as these quantum machines grow in scale and complexity. In
this work, we calculate the overheads imposed by the implementation of real-time graph traversal algo-
rithms needed to find computational paths through incomplete cluster states for the implementation of
one-qubit gates; a necessary requirement for a realistic implementation of photonic measurement-based
quantum computing. By implementing two different algorithms, a global breadth-first search that searches
the entire cluster state and an incremental version that traverses a narrow subsection of the cluster state,
we analyze the trade-off between the accuracy of finding viable paths and the speed at which this opera-
tion can be performed, which constrains the overall photonic clock cycle of the system. We also outline
the broader implications of our results for implementing classical control systems for measurement-based
photonic quantum computing.

DOI: 10.1103/PhysRevApplied.20.024019

I. INTRODUCTION

As quantum computing platforms grow in scale and
complexity, it has become increasingly clear that the clas-
sical control infrastructure required to support these quan-
tum machines must keep up in performance and sophistica-
tion. This is best illustrated by Google’s ground-breaking
quantum supremacy experiment [1], where the final exper-
imental run took approximately 200 s, but the classical cal-
ibration and control needed to get the quantum processor
ready for this data collection run required approximately
36 h for the first cooldown, and 4 h per day thereafter.

A more interesting classical overhead is caused by clas-
sical computations that need to be performed in real time,
while the quantum processor is running. This is required,
for example, in implementations of measurement-based
photonic quantum computing (MBQC) [2] or error-
correction protocols [3,4]. In both cases, measurement
outcomes are processed and used to perform subsequent

*johnrscott0@gmail.com
†krishna.coimbatorebalram@bristol.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

operations on the quantum state in order to ensure that
state evolves deterministically. These classical calculations
must be precisely quantified and their run times character-
ized through analysis of concrete control system architec-
tures, because they may severely constrain the operation of
the quantum processor.

Measurement-based photonic quantum computers pro-
vide an ideal test platform to study these overheads, since
the upper bound on the lifetime of a qubit in integrated
platforms is defined by the length of an on-chip delay line,
of the order of a few nanoseconds [5]. As we showed in
our previous work [6], even a relatively idealized photonic
quantum computer with a defect-free cluster state shows
significant timing constraints when the control system is
implemented with a state-of-the-art field-programmable
gate array (FPGA), because of the need to track classical
bits (byproduct operators) and implement measurement-
induced feedforward operations [7]. In that work, most of
the timing constraints were of hardware origin, with the
latency originating primarily from the finite speed of the
digital logic inside the FPGA, rather than the complexity of
the algorithms being implemented. In this work, we extend
our analysis to the case of imperfect cluster states, as
would be realistically encountered in any physical imple-
mentation of MBQC, and ask what additional constraints
arise when the classical control needs to perform more
sophisticated real-time calculations [8–10].

2331-7019/23/20(2)/024019(19) 024019-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.20.024019&domain=pdf&date_stamp=2023-08-08
http://dx.doi.org/10.1103/PhysRevApplied.20.024019
https://creativecommons.org/licenses/by/4.0/

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

Our main aim in performing this detailed analysis is
to understand the scale of the classical overhead intro-
duced by the need to perform pathfinding algorithms in real
time, i.e., within one photonic clock cycle. Performing an
explicit timing analysis of pathfinding algorithms, account-
ing for every memory access and computation time, is
critical to show that the computational loop can be closed.
This places a stronger constraint on feasibility than esti-
mates based on the classical computational efficiency of
such algorithms, and has heretofore been ignored. We note
that we do not present an implementable hardware design
in this paper; instead, we use emulations of a hardware
model to analyze the potential execution time of these
algorithms. This analysis can then be used to help deter-
mine attributes of the control system hardware, such as
the memory architecture [11], and the design of the con-
trol path for the system [12], or motivate consideration of
new algorithms.

An analysis like this is the only way to understand
whether off-the-shelf electronics (like fast FPGAs) can
meet the requirements of photonic MBQC, or if cus-
tom application-specific integrated circuits (ASICs) are the
only way forward.

We use software emulation of the system shown in Fig.
1 (described in Sec. II) to track key memory-related met-
rics that can be directly translated into timing constraints
(in Sec. V), relevant to the operational speed of a photonic
quantum computer. A thorough description of the classi-
cal algorithms we emulate is given in Secs. III A and III B.
This analysis forms a prerequisite step before realizing a
full digital design, which would afford a complete analysis
of all classically imposed timing constraints. Our analysis
methodology (emulating instances of the classical algo-
rithms and counting memory operations) can be readily
extended to any photonic quantum computing architecture,
or other settings in which real-time closed-loop control of
quantum states is required.

II. THE SYSTEM MODEL

This paper concerns the implementation of one-qubit
gates along paths through incomplete cluster states in a
model of MBQC. Incomplete cluster states arise in pho-
tonic quantum computing due to the probabilistic nature
of entangling gates [13]. The resulting incomplete clus-
ter state, with missing edges, is the underlying quantum
resource for photonic MBQC [8]. Figure 1 shows the
model of the quantum computing system we consider in
this paper.

The interface between the classical control system and
the quantum system is shown in Fig. 1(a). A cluster state
generator creates an incomplete two-dimensional (2D)
cluster state of height H and block width B, which is the
number of columns of photons “alive” at any given time
(the block shaded green and red).

The classical control system [Fig. 1(a), right] receives
graph edge data from the cluster state generator, and mea-
surement outcomes from the measurement blocks M , and
uses this information to implement MBQC measurement
patterns [7,14]. This paper is devoted to the implemen-
tation of one-qubit gates mapped onto paths through this
incomplete cluster state. To perform this task, in each
photonic clock cycle, the control system must

(1) find a way to extend the logical one-qubit path into
the newly generated column of the cluster state,

(2) map a measurement pattern to the path, containing
the rules for how to implement a one-qubit gate,

(3) compute measurement basis settings required for
the next measurement round,

(4) use measurement outcomes to update the byproduct
operators.

Of these steps, (1) and (2) are performed after a new col-
umn of photons is added by the cluster state generator, step
(3) is used to obtain measurement bases to measure out a
column of photons on the right (the red column), and step
(4) involves processing the measurement outcomes into
byproduct operators and generating information about how
to set the next round of measurement bases.

All these steps must occur within the photonic clock
cycle, Tp . While the computation is taking place, the pho-
tons are stored in a Td = BTp delay line (either on chip or
in optical fibre), of length proportional to the block width
B. This width must be large enough to ensure that there is
a reasonable chance of finding paths, by providing a suf-
ficient buffer region for the control system algorithms to
operate correctly.

The memory model for the control system, which is the
basis for the timing results in this paper, is shown in Fig.
1(c). It is based on a ring buffer, an implementation of
a first-in–first-out data structure, which allows new (col-
umn) data to be added without having to move all the data
already in the buffer [15]. Therefore, the insertion time into
the structure when a new column of photons is generated
is O(H), an essential requirement for an efficient control
system. Each segment shown in Fig. 1(c) includes all the
data for a particular column, comprising the edge data, and
algorithm data that may include flags, distances, offsets,
and other algorithmic variables.

Each measurement is performed by a measurement
block, shown in Fig. 1(b), which measures a (discrete-
variable) photonic qubit in the dual-rail encoding. Two
modulator angles are necessary: α, which determines the
x-y-plane angle of the measurement; and β, which chooses
between a computational basis measurement and an x-
y-plane measurement. The system involves high-speed
analog devices (amplifiers, latches, analog-to-digital con-
verters, and latches), which we do not consider in this
paper, but that must operate fast enough to meet Tp minus

024019-2

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

Path construction

Byproduct operators

Measurement pattern

Modulator basis settings

R
in

g-
bu

ffe
r

m
em

or
y

m
od

el

C
lu

st
er

st
at

e
ge

ne
ra

to
r

Height H

Block width B

Delay Tp

Photon
direction

M

M

M

M

M

Missing edge data

Quantum system Classical system

Outcomes

Bases

D
at

a
ad

de
d

Block ring buffer
The purpose of a

ring buffer is to avoid
rewriting measurement
outcomes and edge data

for each new block.

Block end (head)
Add new column

Block start (tail)
Measure-out column

Edge data
Entanglement
success or fail-
ure (missing edge
data)

Algorithm data
Search temporary
data, path data,
measurement pat-
tern data, etc.

|1〉 α β

|0〉

0

ADC

π
2 − (−1)sθ

0π
2

z

Latch

Outcome m

Digital control system interface

Measurement block, M

(a)

(c)(b)

FIG. 1. (a) Schematic showing the interface between the photonic quantum computer and the classical control system. The quantum
computation proceeds by single-qubit measurements (M) of the incomplete cluster state on the left, where successful entanglement is
represented by solid block lines. The classical control system needs to calculate a path through this incomplete cluster state to generate
the desired measurement pattern (which implements a one-qubit gate) and update the byproduct operators based on the measurement
outcomes. These classical computations need to be performed before setting the bases for the next round of measurements and our
main focus in this work is to estimate the timing overheads these calculations place on the photonic clock cycle. The arrows in the
classical system show the computational dependencies, with the green arrows highlighting the critical timing path. (b) Schematic of
the measurement block that implements the (discrete-variable, dual-rail-encoded) photonic qubit basis measurement. The value of the
z bit selects the angle in the multiplexer (gray trapezium), which is then amplified (yellow triangle) to set the bias voltage on the
modulator. The basis angle is generated using an analog-to-digital converter (ADC). (c) The ring-buffer data structure used to store
all the graph data (entanglement edges), and the node data generated by the graph traversal algorithms. A detailed discussion can be
found in Appendix A.

024019-3

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

the time taken up by the classical computation steps (the
classical overhead).

A. The one-qubit measurement pattern

The measurement pattern implemented by the system is
the arbitrary one-qubit gate along a path of edges through
the cluster state. In the special case that the path is hori-
zontal and the cluster state is fully connected, this pattern
is shown in Fig. 2. Red boxes containing Z are the compu-
tational basis measurements needed to disconnect nearby
entangled qubits from the path (cut out qubits). Green
boxes containing an angle θ are measurements in the x-
y plane of the Bloch sphere at an angle (−1)sθ to the x
axis [16]. The choice of this angle determines what logical
one-qubit operation is performed. The individual measure-
ment outcomes mn, pn, qn from cluster qubits (either 0 or
1) are used to calculate the byproduct operators, which
are then used for determining the adaptive measurement
settings s. Provided that the pattern terminates on an even-
indexed column n = 2k (counting from zero), and the θ
angles are chosen as shown in Fig. 2 (note the minus signs),
the following arbitrary one-qubit gate is implemented:

U2k = (Rx(φ2k−1)Rz(φ2k−2)) · · · (Rx(φ1)Rz(φ0)). (1)

The interpretation of this pattern (for the example n = 2)
is as follows, assuming that the cluster state is 3 × 3: if the
first qubit (marked A in Fig. 2) began in state |φin〉, before
it was entangled with the rest of the cluster state, then the
final qubit B (the only qubit that is left unmeasured) would
be in state

|ψout〉 = X xZzU2|ψin〉
= X m1+(p1+q1)Zm0+(p0+q0)Rx(φ1)Rz(φ0)|ψin〉. (2)

The byproduct operator term X xZz, which may be read out
beneath the terminating column n = 2 as shown in Fig. 2,
is an intrinsic feature of measurement patterns, and may be
corrected after measuring the final state from the quantum
computation [7]. However, adaptive measurement settings
are derived from byproduct operators, so they must be cal-
culated in real time while the measurement pattern is being
executed.

It is important to keep in mind that the logical one-qubit
gate X xZzU2 is applied to the logical state |ψin〉 to pro-
duce the output state |ψout〉, which evolves as the cluster
qubit measurements are performed, but is not associated
with any particular cluster qubit in the pattern. The logi-
cal Rx and Rz rotations implemented in Eq. (2) are distinct
from the one-qubit operations applied to cluster qubits to
set the x-y plane or Z measurements.

X

Z

Xm1+(p1+q1)Zm0+(p0+q0)

. . .

. . .

. . .

0

. . .0

. . .
z

x

s −φ0

Z

Z

q0

m0

p0

s −φ1

Z

Z

q1

m1

p1

s −φ2

Z

Z

q2

m2

p2

s −φ3

Z

Z

q3

m3

p3

Rz(φ0) Rx(φ1) Rz(φ2) Rx(φ3)

A B

FIG. 2. Schematic implementation of an arbitrary one-qubit gate mapped on to a 2D cluster state, showing the sequence of opera-
tions. The green line encodes the logical one-qubit gate, in this case along a horizontal line. The adjacent rows of the cluster state are
removed (cut out) using Z measurements (shown in red). The byproduct operators swap every other column, as shown in the blue trace
at the bottom, for purposes relating to the quantum simulation of the measurement pattern (see Appendix C). The circles denote (clas-
sical) bitwise XOR operations. The computations shown here are also representative of mapping the one-qubit gate onto an arbitrary
path through an arbitrarily connected cluster state. The byproduct operators display the same behavior, alternating with incrementally
increasing path index n. Measurement outcomes for any cut-out cluster qubits adjacent to a path qubit qn are added to the measurement
outcome from qn, before this is added to the byproduct operator z2k. How this pattern is mapped onto an arbitrary path is shown in the
algorithm in Fig. 5.

024019-4

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

Rigorous information about how to derive measurement
patterns is available in Ref. [7]; a quicker tutorial intro-
duction is Ref. [14]. Measurement patterns are more easily
derived in practice using the ZX-calculus, as described, for
example, in Ref. [17, Ch. 6].

This pattern must be mapped onto a path through the
cluster state. The process of finding this path is discussed
in the next section.

B. Path search

After a new column of photons has been generated,
an algorithm is required to quickly extend the one-qubit
path and pattern from column x to column x + 1 of the
green block in Fig. 3(a), so that the next red column
may be measured and removed. Following Ref. [9], we
divide the pathfinding process into a search process, which
establishes potential paths extending all the way to the
rightmost (new) column of the green block, and a path
extension phase, which selects one path out of the set of
available paths [shown in blue in Fig. 3(a)].

The simpler process is the path extension, which is
shown in Fig. 4. It consists of stepping along potential
paths, making random choices at each branch point, until
it reaches a right node [shown as a red filled triangle in

Fig. 3(a)]; this is the first node along the path having the
property that all path successors lie strictly [18] to the right
of it. If the path is not advanced to a right node then the
measurement of the leftmost column of the green block
will potentially cut off the path so that it is not possible
to extend it further to the right, thereby ending the quan-
tum computation. The calculation of right nodes, which
must be performed before extending the path, intrinsically
involves a traversal of the graph backwards, as we describe
in Secs. III A and III B.

C. Pattern generation

Once the search process is complete, the measurement
pattern must be mapped to the path extension, before mea-
surement settings can be derived. An algorithm suitable
for this purpose is shown in Fig. 5. The algorithm out-
puts local rules, specifically designed to be compatible
with the ring-buffer structure in Fig. 1(c), which control
how measurements are performed when the red column is
measured out.

The meaning of “local” is that each node in the col-
umn to be measured contains rules that specify in what
basis to measure it, and what to do with the measurement
outcome, without needing to refer to rules or outcomes

(a)

0 1 2 3 4 5 6 7 8 9
x x + B

X X

X X

X

X X

X X

Z

Z

Z

Z

Z

Z

Z

Photon direction

Path evolution

(b)
Start, x = 0

Get block x

Calc. right nodes

Extend path

Gen. pattern

Meas. column x

x = N? x = x + 1

Stop

No

Yes

FIG. 3. (a) Diagram of the incomplete cluster state being searched. Compared to Fig. 1(a), the direction of photon movement is
reversed so that the path can be depicted as evolving from left to right. The one-qubit path is shown by the green line, and red lines
show entanglement links that must be removed (cut out). The diagram shows the one-qubit identity operation, where all on-path qubits
are X measurements. (b) Diagram of the algorithm for finding path extensions and generating the measurement pattern. The incomplete
cluster state is searched one block at a time (the block starting at column x) to establish a path for the qubit. The search process is
decoupled from the path extension through the establishment of right nodes on the path (see Sec. II B). Once the path is established,
the measurement pattern is generated, taking account of qubits that must be cut out around the path; then the leftmost column of the
block is measured out. In the implementation considered here, data relating to the nodes in the shaded green region are stored in a ring
buffer, as described in Appendix A.

024019-5

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

Start at node n

n has a
successor?

No viable path

Select a successor m of n

m in next
column?

n = m

m a right
node? Path extension found

No

Yes

No

Yes

No Yes

FIG. 4. Algorithm for extending the path to a right node in the
next column. The algorithm advances along a potential path [the
blue lines in Fig. 3(a)], and picks a successor at random whenever
a branch point is encountered. The algorithm stops when a right
node is encountered, which guarantees that the leftmost column
of the green block can be safely removed without compromising
the path.

from surrounding nodes. This maximizes the efficiency
of the measurement process, reducing data dependencies
and making it parallelizable. In addition, per-node data are
easily stored in the ring-buffer structure.

The rules can be briefly summarized as follows. Each
node an along the path (indexed by n) contains a value
θ(an) that sets the x-y-plane measurement basis of this
node. A rule Rs(an) describes how to compute the adap-
tive measurement setting for an from the current byproduct
operators. Finally, Rb(an) describes how to update the
byproduct operators from the measurement outcome from
an. Cut-out qubits surrounding the path also have rules
specifying how to compute byproduct operators in line
with Fig. 2. More information about how the rules are
defined is contained in Appendix B.

The cost of this algorithm must also be accounted for
in the digital processing time, although we have not per-
formed this analysis in this paper because it is substantially
less than the main bottleneck involved in the classical
computation. This is the search process, for establishing
potential paths and right nodes, which is discussed in the
next section.

We verified that the pattern rules do indeed enable the
encoding of a one-qubit measurement pattern, by perform-
ing a quantum simulation of the entire scheme. This is
described in Appendix C.

Start at node an

Set θ(an)

Set Rb(an)

Set Rs(an)

an has
unvisited
neighbor

/∈ P?

Get unvisited
neighbor b of an

Rb(b) = Rb(b) ⊕ Rb(an)

an right
node?

Stop

n = n + 1

No

Yes

No

Yes

FIG. 5. Algorithm for generating local pattern rules on a path
extension (up to the next right node). The path extension is
traversed once, forwards. Here, θ is the base angle, Rb is the
byproduct operator update rule, and Rs is the rule for comput-
ing the adaptive measurement setting. The set of on-path nodes
is abbreviated P. The presence of neighboring qubits around
the on-path node an leads to an update in Rb, to account for
the effect of cut-out qubits (the “unvisited” status of the cut-
out qubits only applies to the innermost loop; any given cut-out
qubit may be visited more than once from different on-path
qubits). As an example, for the identity pattern, all on-path mea-
surements are X : θ(an) = 0, Rs(an) = (0, 0), and Rb(an) = (n +
1 mod 2, n mod 2). Further information about the local pattern
rules is provided in Appendix B.

III. THE TWO SEARCH ALGORITHMS

Previous work in photonic quantum computing has
focused on the threshold graph-state edge probability
required for the existence of paths through cluster states
(percolation) [19], with implementation questions stopping
at whether or not the required pathfinding algorithms are
polynomial time [20]. Often the efficient computational
complexity of the algorithms is considered a sufficient con-
dition for their feasibility in practice. As we show below,
what is required in addition is a full algorithm implemen-
tation, based on a hardware model, that can be used to
count the number of operations and form an estimate of
the absolute runtime of the algorithm (in seconds). This
can be compared with other system-level requirements of
the photonic system to establish whether or not the system
is realizable in practice.

024019-6

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

The main timing analysis derived in Sec. V is based
on the implementation of two search algorithms, for find-
ing potential paths through the cluster states. The first, the
global breadth-first search (GBFS), is a naïve algorithm
based on repeated breadth-first search of the active area
[green and red block in Fig. 3(a)]. This algorithm works
all the time (provided the edge probability in the cluster
state is high enough), but is very inefficient. The sec-
ond algorithm, the incremental breadth-first search (IBFS),
attempts to solve the efficiency problem of the GBFS
algorithm by using search information from previous
searches to cut down the run time of the algorithm. In Sec.
IV, where we emulate the algorithms, we show that IBFS
fails in nearly all cases. However, incremental algorithms
of this kind may form a more promising basis for investi-
gation into better search algorithms, due to their capacity
for substantially reduced memory counts.

The details of the GBFS and IBFS algorithms are
outlined in the following sections.

A. Global breadth-first search

The GBFS algorithm is shown in Fig. 6. The algorithm
begins after a new column of photons has been generated,
and edge data have been recorded in the ring buffer. It
comprises a forward breadth-first search over the nodes in
the ring buffer, which calculates distance and predecessor
information, followed by a reverse pass that calculates the
successors (that form candidates for the path extensions)
and the right nodes. This information is stored at each node
in the ring buffer. The data used by GBFS (and IBFS; see
Sec. III B) are summarized in Table I.

1. Breadth-first search

The first step of the algorithm is a breadth-first search
(BFS). The BFS begins at a particular node on the path
(x, y), in the leftmost of the block [the red column labeled
x in Fig. 3(a)]. First, the algorithm must reset all the
local data (see Table I) in the ring buffer, which con-
stitutes temporary information from one photonic cycle
to the next.

Next, a standard implementation of the BFS algorithm
[21] is used to construct a tree of predecessors, and each
node is assigned a distance d that is one greater than its
predecessor. A queue (first-in–first-out) structure Q is used
to maintain the breadth-first order of traversal of the nodes.

2. Reverse pass and right-node calculation

The tree of predecessors is used in the reverse pass of
the algorithm to iterate from exit nodes (visited nodes in
the rightmost column of the block) back to the root node.
At each node, the predecessor relationship is recast as
a successor relationship, which forms the basis for path
extensions. It is important to note that this step cannot be

optimized away—it is not possible to obtain path exten-
sions using local predecessor information, because there is
no (local) way to obtain viable successors from a given
node, based only on the predecessors’ information. The
right node along each potential path is identified as the first
node encountered in column x + 1 during the reverse pass
[see the red triangle in Fig. 3(a), found by traversing the
blue tree backwards].

3. Performance problems in GBFS

Local data for all the nodes must be unconditionally
cleared at the beginning of the GBFS algorithm, resulting
in a lower bound of HB writes to those memory locations.
Then, with high probability (depending on the edge prob-
ability p), a high proportion of the block nodes are visited
again and assigned predecessor and successor information,
much of which likely duplicates the data that were already
there before it was cleared. All these writes have to happen
in the timescale of a single photonic clock cycle.

This is the primary motivation for developing an alter-
native, such as the IBFS algorithm in the next section.
However, attempting to reuse the data in the block is not
as simple as it may appear, We discuss the major failure of
the IBFS algorithm, and how it relates to the resetting of
the data in the ring buffer, in Sec. III B 3.

B. Incremental breadth-first search

The IBFS algorithm is the simplest possible attempt to
remove the main defect of GBFS—the resetting of all the
search data at the beginning of each new clock cycle. The
algorithm begins after a new column of photons has been
generated, and edge data have been recorded. However,
this time, only the region between the penultimate col-
umn and the rightmost column of the block is searched.
This significantly reduces the amount of the graph that
must be traversed each photonic clock cycle. However, as
a result of keeping the data from previous searches, several
changes must be made in the reverse pass of the algorithm.

The IBFS algorithm is shown in Fig. 7, and described
in the sections below. Local data used in IBFS are shown
in Table I. This includes a new flag, to mark when an exit
node becomes inaccessible. This relates to the main new
feature of IBFS compared to GBFS—the need to prune
failed paths.

The implementation of BFS in this algorithm is quite
similar to the version in GBFS. However, it is not neces-
sary to reset the data in the ring buffer, because the main
purpose of IBFS is to reuse the contents of the buffer.

Secondly, the BFS does not start with just one root node;
instead, it begins with all the exit nodes from the previ-
ous block. These are the visited nodes that were in the
rightmost column of the previous block, and are now in
the penultimate column due to the newly added column
of photons. These nodes are already assumed to be in the

024019-7

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

Forward pass Reverse pass

Start at column x,
initial node (x, y)

Reset block
search data

Push (x, y) to Q

Q empty?

Set n = pop(Q)

n has
unvisited
neighbor.?

Get unvisited
neighbor m of n

Set d(m) = d(n)+1

Set pred(m) = n

Push m to Q

Set y = 0

Set n = (x + B − 1, y) y = H?

Node n
visited?

y = y + 1

Done

Set F = False

Set m = pred(n)

Push n to succ(m)

m root?

m.x = x + 1
and F =
False?

Set m as right node

Set F = True

n = m

No

Yes

No

Yes Yes

Yes

No

No

No

Yes

Yes

No

FIG. 6. Flowchart outlining the
GBFS algorithm, which searches
block x [beginning at column x; see
Fig. 3(a)]. The forward pass is a
standard BFS used to construct a
predecessor tree. The reverse pass
traverses backwards through this
predecessor tree to establish right
nodes for path extension.

queue from the previous iteration of the algorithm [22].
This is the main “incremental” feature of the algorithm;
only the new columns on the right are searched each
photonic clock cycle.

As a result of the need to begin each search with the
queue populated by exit nodes, it is necessary to fill Q
with the exit nodes at the end of the search process. This
is achieved by looping over the rightmost column of the
block and pushing any visited node to the queue.

Although it would appear that IBFS performs an identi-
cal search process to GBFS, albeit over several photonic
clock cycles instead of one, the two algorithms are not
equivalent. Not only may they produce different predeces-
sor relationships, but it is not even necessarily the case
that they will assign the same distances to nodes. This is
because a newly added column on the right may expose
a shorter path to an already visited node inside the block.

Because nodes are only ever visited once (in GBFS they
may be visited once per clock cycle), the distances are not
rewritten. This is not a problem, because shortest paths
are not an important criterion in our analysis of photonic
MBQC.

The main problem with IBFS is the possibility that a
path may be invalidated when a new column is added—for
example, if it turns out that path leads to a dead-end. This
problem is addressed in Sec. III B 2.

1. Reverse pass and right-node calculation

Like the GBFS algorithm, it is necessary to perform
a reverse pass over the block in order to establish right
nodes. Because of the incremental nature of the algorithm,
it is only necessary to traverse the predecessor paths up

024019-8

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

TABLE I. Local data required for the implementation of GBFS and IBFS, and notation used in Figs. 6 and 7. In traversing the graph
forwards from the starting node, the distance to each node is recorded. In addition, each node apart from the starting node stores a
predecessor, the node from which it was visited. These predecessors are reversed to generate a successor set for each node, which is
used in the path extension algorithm (see Fig. 4). Finally, a flag is used to indicate whether a given node is a right node. For IBFS, an
additional flag is required as part of the failed path-pruning step.

Ring-buffer data Meaning

Distance d(n) The distance from the root node to node n
Predecessor pred(n) The unique BFS predecessor of n
Inaccessible flag (IBFS only) A Boolean flag to indicate whether n is an inaccessible exit node
Right-node flag A Boolean flag to indicate whether n is a right node
Successors succ(n) The set of successors of n
Other notation and terms
n.x and n.y The x and y coordinates of the node n in the cluster state
pop(Q) Get the next element from queue Q
Root node The starting point for the current path extension (in the red column)
F,A Two additional flags required for the implementation of the algorithms
x, y Two integer variables used for the implementation of the algorithms

to an exit node in column x + B − 2 (the penultimate col-
umn), on the grounds that a previous iteration of IBFS will
have established successor information before that point.

However, it is not possible to compute right nodes in
this way. Although one could try to establish right nodes
in column x + B − 2, by marking the first node in column
x + B − 2 a right node, this will not work, because it is
highly likely the path may backtrack into the left region
of the block via a path not yet visible to the algorithm
(because those photonic columns have not been created
yet). As a general rule, we found it is best to calculate right
nodes at the left side of the block, because this maximizes
the forward path length on which the right node is based.
Therefore, it is still necessary to make at least one reverse
pass over the entire block, even though no full forward
pass is necessary. This is still simpler than GBFS, because
the reverse pass only involves checking for right nodes,
not writing all the successor information (as we show in
Sec. IV).

2. Failed path pruning

The most important new part of the algorithm is the need
to prune failed paths. Failed paths arise because a string
of successors established during the searching of block x
may become invalid when block x + 1 is searched, if the
path leads to a dead-end. This cannot happen in the GBFS
algorithm, because the ring buffer is reset at the start of
each block search.

To establish failed paths, it is necessary to establish
failed exit nodes. These are exit nodes in the penultimate
column that have not led to exit nodes in the rightmost col-
umn. These exit nodes are easily established as part of the
reverse pass. First, any exit node in the penultimate column
encountered during the reverse pass is marked as accessi-
ble. Then, after the reverse pass is complete, one loop over
the penultimate column can be used to check which exit

nodes have not been marked as accessible—these are the
failed exit nodes.

Once failed exit nodes have been established, a final
reverse pass of the block can be used to prune any suc-
cessor paths that lead to these failed exit nodes. This is
achieved by deleting the successor from the root of any
tree that only leads to failed exit nodes.

3. Main cause of failure

There are a number of other issues that arise in the
implementation of IBFS. The one that ultimately causes
the version of the algorithm presented here to fail is
related to the inability to revisit nodes during the BFS
phase of the forward pass. This is a direct consequence of
not deleting all the search data from the previous search
block.

The main failure case is depicted in Fig. 8, which we
found occurs almost immediately for nearly all combina-
tions of search parameters. It happens when IBFS finds
a horizontal path through a fully connected region of the
cluster state. In this case, along this section, all path prede-
cessors point backwards to the left (the blue arrows in Fig.
8). If a column is reached that is missing a horizontal seg-
ment to extend this path then IBFS will fail, even though
the path could extend up or down in order to circumvent
the missing horizontal link.

This failure occurs because the BFS algorithm does not
“know” about edges above and below the horizontal line,
that it could use to avoid this missing edge, because it
cannot revisit the nodes along the path from different direc-
tions. In the GBFS algorithm, these opportunities to extend
the path above and below would have been found, because
the algorithm is able to rewrite the reverse path tree in the
whole block when a new column is added.

024019-9

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

Breadth-
first search

Reverse
path tree

Failed path
pruning

Fill Q with
exit nodes

Start at block x

Q empty?

Set n = pop(Q)

n has
unvisited
neighbor.?

Get unvisited
neighbor m of n

Set d(m) = d(n)+1

Set pred(m) = n

Push m to Q

Set y = 0

y = N?

Set n = (x + B − 1, y)

n has been
visited?

Set F = False
Set A = False

Set m = pred(n)

Push n to succ(m)

m is root?

m.x =
x + B − 2,
A = False

m.x = x + 1,
F = False Mark m accessible

Set A=True

Set F=True

y += 1

Mark m right node

Set y = 0

y = N?

Done

Set n = (x + B − 2, y)

n is an
inaccessible

exit?
y += 1

Set m = pred(n)

#succ(m)
> 1?

Delete n as
successor of m

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

No

FIG. 7. Flowchart outlining the IBFS algorithm. The IBFS algorithm shares a lot of similarity with the GBFS algorithm, with the
key differences being the reduced search volume, the reuse of predecessor tree data, and the associated need to perform failed path
pruning (right).

This deficiency dramatically reduces the effectiveness of
the IBFS algorithm, as we show in the next section. A solu-
tion to this problem would require a modification to the
BFS process in the IBFS algorithm. It may be possible to
improve IBFS using heuristic algorithms that attempt to

get out of the failure state when it occurs. For example,
one could attempt to perform a bounded-depth BFS around
the failed node. Such modifications increase the algorith-
mic complexity of the solution, but may still represent an
improvement over GBFS.

024019-10

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

0 1 2 3 4 5 6 7

Cluster state edges
Breadth-first search predecessors
Reverse path tree subset
Selected path subset

FIG. 8. Diagram showing the most common failure case in the
IBFS algorithm. Even though the path can clearly be extended,
the algorithm is not able to extend the path because it cannot
“see” a way around the dead-end, shown as the red cross. This is
because the reverse-path tree is missing valid edges that could be
used in the path). The problem is due to the inability of IBFS to
rewrite the path predecessors more than once. Some kind of local
search may be required to avoid this error.

IV. EMULATING THE SEARCH ALGORITHMS

We have written software to emulate the algorithms dis-
cussed in the previous sections [23], for the purpose of
deriving timing constraints that may be present in hard-
ware implementations. We used a 2D lattice, as shown in
Fig. 3(a), with (independently) randomly generated edges
following a uniform binary distribution with edge proba-
bility p . The emulation records the number of memory-
related operations that are performed in the course of the
algorithm, such as the number of times a distance is written
in GBFS. Memory access tends to be the main bottleneck
in many real-time architectures [24]. The results of this
emulation are described below. All results were obtained
using a graph of height H = 20. The choice of height 20
in this paper was chosen large enough to allow pathfind-
ing to succeed, but small enough to keep the runtime of
our experiments manageable. It is possible to simulate
much larger cluster states; however, we did not perform a
detailed analysis of how the results depend on cluster state
height. In each graph, each point represents the result of

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

500

1000

1500

2000
Boosted type-II fusion

Edge probability p

A
ve

ra
ge

m
ax

im
um

pa
th

de
pt

h 3
4
5
6
7
8
9
10
11
12
13
14

FIG. 9. Average maximum path depth achieved using GBFS,
as a function of the block width parameter (given in the leg-
end), for cluster states with varying edge probabilities. The graph
shows that the block width has a significant impact on the achiev-
able depth, but there is limited benefit available from arbitrarily
increasing the block width. The upper bound depth 2000 is due to
only simulating cluster states of width 2000. The vertical dashed
line shows the edge probability achieved by using boosted type-
II fusion gates to generate the cluster state. This line may be used
to establish what block width is necessary to achieve a particular
target depth.

averaging 1000 runs of the emulator for each combination
of parameters p (the x axis) and B (the legend).

Figure 9 shows that the GBFS algorithm works, repro-
ducing the results of Ref. [9]. Specifically, when the edge
probability p > 0.5, the chance of paths existing increases
strongly [9], and the GBFS algorithm is able to find these
paths for block widths B = 5 to 10. The graph also shows
the success probability of the boosted type-II fusion gate
[25], which is one possible method to produce the photonic
entanglement required for the cluster state. The leveling off
of the graphs at depth 2000 is an artefact due to the limit of
our simulation. What is important is that, for large enough
B, the depth approaches 2000 (the limit).

In contrast, the IBFS algorithm does not work, as shown
by Fig. 10. The failure is due to the issue identified in Sec.
III B 3, that viable paths are excluded by the mechanism we
used for calculating successors. The failure exists across
all edge probabilities p and block widths B, apart from the
degenerate case p = 1. It may be possible to modify this
algorithm into one that works without too much difficulty;
for example, a further (local) search step in the calculation
of successors may help the algorithm avoid the primary
failure mode.

The main purpose of the emulation is to estimate the
number of computational operations that are required in the
implementation of these algorithms, in order to derive tim-
ing constraints on the photonic quantum computer. Here,

024019-11

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

20

40

60

80

100

Boosted
type-II
fusion

Edge probability p

A
ve

ra
ge

m
ax

im
um

pa
th

de
pt

h 3 9
4 10
5 11
6 12
7 13
8 14

FIG. 10. Average maximum path depth achieved using IBFS,
as a function of the block width parameter (given in the leg-
end), for cluster states with varying edge probabilities. The graph
shows that the IBFS algorithm performs substantially worse than
GBFS for nearly all edge probabilities, due to the limitations
outlined in Sec. III B. This experiment was performed alongside
GBFS using the same cluster state width 2000.

we focus on memory-related operations. Figure 11 shows
the average number of times a predecessor is written into
the ring buffer during each photonic clock cycle, in the
execution of the GBFS algorithm. As the block width
B increases, the number of writes increases, because the
graph is larger.

As the edge probability p approaches 1, the number of
writes asymptotically approaches a constant 2BH , because
there is a higher chance that the whole graph will be visited
twice by the algorithm (once in the resetting step, and a
second time in the calculation of the predecessors).

The graph of predecessor writes per block for the IBFS
algorithm is shown in Fig. 12. Compared to GBFS, the
IBFS algorithm does not require more predecessor writes
for larger block widths, because only the new part of the
graph at the right-hand side of the green region [Fig. 3(a)]
is searched at each photonic clock cycle. As a result, as the
edge probability p → 1, the number of writes per block
approaches H (only one column). This improvement com-
pared to GBFS justifies the investigation of these types
of algorithms; however, more work is required to find a
variant that works properly.

V. TIMING IMPLICATIONS FOR PHOTONIC
QUANTUM COMPUTERS

The y axis of Figs. 11 and 12 in Sec. IV may be
interpreted in the context of memory latency for a target
memory technology used to implement the ring buffer. In
the model discussed here, the memory accesses are per-
formed sequentially, and must all be completed within the

0.0 0.2 0.4 0.6 0.8 1.0

100

200

300

400

500

600

Edge probability p

A
v e

ra
ge

pr
ed

ec
es

so
r

w
ri

te
s

pe
r

bl
oc

k

3 11
4 12
5 13
6 14
7
8
9
10

FIG. 11. Average number of predecessors written to memory
during each block search process when using GBFS. At lower
edge probabilities, fewer predecessors are written because less of
the block may be accessible. As the edge probability increases,
the number of predecessors written approaches 2HB, where H
is the cluster height and B is the block width. The factor of 2 is
due to the need to clear the ring buffer at the start of the search
process.

photonic clock cycle. If the photonic clock cycle is Tp , and
the average number of predecessor writes per block search
is Wpred, then the average maximum acceptable memory
write time twrite is given by

twrite = Tp

Wpred
. (3)

For example, if the photonic cycle time is 1 ns, and the
edge probability p is taken as the type-II fusion probability
(75%), then a block width of B = 5 (required to achieve a
path depth of approximately 1000, from Fig. 9) would lead
to a maximum acceptable write time of twrite = 5 ps (corre-
sponding to 200 predecessor writes). This is an extremely
tight timescale in which to achieve a memory write in a
digital system. In real-time systems, memory performance
is highly dependent on the specific problem being solved
and the memory architecture used [11]; for reference, a
recent high-performing device achieved memory latencies
of the order 150 ps [26].

Taking the FPGA in our previous work [6] as an exam-
ple, memory switching times for distributed RAM are of
the order of 0.5 ns [27]—2 orders of magnitude too slow
for the implementation of the GBFS algorithm discussed
here. This means that it would likely not be feasible to
implement the ring-buffer-based control system using this
FPGA; a higher performance device, or an ASIC, would
be required.

For the GBFS algorithm, in the limit of high edge prob-
abilities (the asymptote visible at each block width in Fig.

024019-12

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

Edge probability p

A
v e

ra
ge

pr
ed

ec
es

so
r

w
ri

te
s

pe
r

bl
oc

k
3 7 11
4 8 12
5 9 13
6 10 14

FIG. 12. Average number of predecessors written to memory
during each block search process when using IBFS. Compared to
GBFS, the predecessor-write overhead is substantially reduced.
At higher edge probabilities, the average number of distance
writes is equal to H (the cluster height, fixed at 20 in this exper-
iment), and does not scale with the block width. This is because,
on average, only the final column of the block is searched in each
IBFS block search process. As the edge probability decreases, the
memory overhead increases, because there is a chance that the
search process will have to visit previously inaccessible columns
in the inner part of the block, which has been made available by
the addition of new edges in the final column.

11), it is possible to provide a specific formula for the
maximum acceptable latency, in terms of implementation
parameters of the system:

twrite ≈ Tp

2BH
(4)

with H the cluster state height and B the block width.
Performing the same calculation as before, the IBFS

algorithm would lead to a maximum acceptable memory
write time of twrite = 50 ps. Although this is a substan-
tial improvement compared to the 5 ps of GBFS, it is still
some way off the 150-ps latency discussed above. More-
over, if the IBFS algorithm is modified to fix the failure
mode discussed previously, it is likely that some additional
timing overhead will be introduced in the process (poten-
tially bringing it more in line with the computational cost
of GBFS).

VI. DISCUSSION

Throughout the literature on photonic quantum comput-
ing based on MBQC, the breadth-first search algorithm and
its variants are considered as the primary mechanism for
finding paths through cluster states [8,9,25]. It is argued
that the efficient classical complexity of these algorithms

(i.e., polynomial time) makes them suitable for use in the
control system for the quantum computer [8,10]. We show
here that this is not the case, due to the large number of
memory operations that must be performed (in absolute
terms). It is certain that, at the very least, these algorithms
must be aggressively optimized and/or parallelized, if they
are to be considered viable contenders for the solution of
this problem.

However, it is much more likely that entirely differ-
ent approaches must be adopted for control systems in
MBQC-based quantum computing. For example, it may
be possible to cast the problem in the framework of in-
memory computation, often more appropriate for memory-
intensive real-time systems, which may remove some of
the overhead inherent in moving data about in the con-
trol system [11]. However, due attention should be paid to
fundamental timing constraints, for example arising from
trace lengths inside FPGAs, or wires connecting different
parts of the digital system, which are often of the order
100 ps [26]. Only a few of these delays in a serial system
are necessary before a 1-GHz photonic clock rate is not
feasible.

Modern approaches to photonic quantum computing do
not remove these problems; rather, they modify the specific
algorithms involved. For example, in fusion-based quan-
tum computation [28], it is no longer necessary to search
for paths through cluster states. Instead, it is necessary
to implement an error-correction-like procedure to imple-
ment quantum computations in a fault-tolerant framework.
In this case, the complexity of these algorithms in a partic-
ular implementation model must be analyzed, especially
regarding the memory overheads involved, to show that
timing constraints relating to the overall photonic system
are met.

These more advanced and realistic approaches to pho-
tonic quantum computing, including error-correction pro-
tocols, can be analyzed following the same methodology
we have used. First, a specific implementation of all
required algorithms should be identified, and mapped to
a hardware model that can be used to estimate the number
of memory and computational operations involved in their
execution. These operation counts form a first approxima-
tion to the runtime of the algorithm, sufficient to provide an
overall picture of the feasibility of the approach. The form
of the program used to perform the emulation will likely
be highly specific to the algorithms used. For example, our
code [23] is quite tightly coupled to implementing graph
algorithms, and is not necessarily easily modifiable to
cover other settings. However, the central idea of the pro-
gram, counting memory operations, can be easily extended
to any algorithm and hardware model. Ultimately, the tim-
ing analysis from a full hardware implementation using an
FPGA or ASIC process is preferable to establish whether
or not a theoretical quantum computing architecture can be
realized in practice.

024019-13

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

VII. CONCLUSION

In this work, we have demonstrated that classical con-
trol systems impose a significant overhead on photonic
implementations of quantum computing, and these over-
heads must be accounted for in control system designs.
In particular, the probabilistic generation of cluster states
requires sophisticated real-time graph traversal algorithms
to be implemented within a photonic clock cycle. We
showed through two different implementations of these
pathfinding algorithms that there is an inherent trade-off
between implementation speed and pathfinding accuracy.
Moreover, failure cases (such as shown in Fig. 8) are inher-
ently tied to the implementation details and need to be
accounted for in the design emulation phase. Pathfind-
ing, as we show here, is an intrinsically memory-intensive
algorithm and the memory access speeds (both read and
write) ultimately become the limiting bottleneck on the
speed with which computations can be performed in this
system.

There are two main implications of this work for pho-
tonic quantum computing: the first is that the design of
classical control systems needs to be given equal footing
in the architectural layout of photonic quantum computers.
More precisely, without a concrete control system spec-
ification, it is hard to verify the system-level constraints
that will eventually occur in these systems. However, by
picking a concrete control system algorithm (for exam-
ple, GBFS using B = 5 and H = 20), it follows that a
memory technology capable of a read or write time of
150 ps likely places a lower bound on the photonic clock
period of 30 ns, purely due to the digital processing
requirement. This is substantially higher than is often con-
sidered in the context of photonic quantum computing
[29,30].

A second theme is the need to construct explicit imple-
mentations of control systems, including algorithms spec-
ified in terms familiar to classical computer architects.
These explicit proposals for control system algorithms
must be specified as a prerequisite step before tackling
the much more difficult problem of finding an appro-
priate digital design, including questions of pipelining,
parallelization, interface latencies, and choice of memory
technologies [12].

The analog-photonic interface between the digital sys-
tem will impose additional constraints on the quantum
computer. Adding the time needed for digital operations to
the analog-digital conversion time required for the detec-
tors, and digital-analog conversion time needed for stabi-
lizing the analog voltages on the modulators, provides a
lower bound on the photonic clock cycle time. Estimating
each of these quantities precisely is a critical next step in
system-level specifications of photonic MBQC, and these
methods can be readily extended to any architecture for
photonic quantum computing.

ACKNOWLEDGMENTS

The authors would like to thank Lana Mineh, Naomi
Solomons, and Oliver Thomas for reading through the
manuscript and providing valuable suggestions. J.R.S.
received funding from the Bristol Quantum Engineer-
ing Center for Doctoral Training, EPSRC Grant No.
EP/L015730/1. K.C.B. would like to thank the European
Research Council for funding support (ERC-StG SBS3-5,
758843).

APPENDIX A: RING-BUFFER MODEL FOR
COUNTING MEMORY OPERATIONS

A ring buffer is an implementation of a first-in–first-
out data structure [15] that consists of a bounded buffer
region whose ends are logically connected, as shown in
Fig. 1(c). The advantage of this structure is that it may
be implemented simply in hardware or software by utiliz-
ing a contiguous block of memory, and storing the next
available location for writing [one past the head in Fig.
1(c)], and the last valid location for reading (the tail).
When data are added to the buffer, the head is incremented
once [advances one position anticlockwise in Fig. 1(c)],
and when data are read, tail is incremented once. This
way, old data are continually overwritten by new data, and
no error occurs provided that tail is always strictly in
front of head.

The advantage of block-based MBQC as shown in Fig.
3(a) is that the block is a fixed size, so the buffer need
only be as large as the block width (B + 1, to account
for the possibility of write before read). In addition, even
though the block subwindow logically moves to the right
in Fig. 3(a), appearing to require the rewriting of all data at
each new block, the ring-buffer model means that each col-
umn is only written once. Instead of moving the data, the
head and tail pointers are moved, and old column data
are overwritten by new column data as the head pointer
moves anticlockwise around the buffer.

Each entry in the buffer shown in Fig. 1(c) stores a col-
umn of block information, and its associated data. This
includes the vertical edge data for that column, and the
horizontal edge data connecting one column to the next.
In addition, the buffer must also store local information
required by the implementation of the various algorithms
involved in the control system: searching for paths, map-
ping the measurement pattern, and computing updates to
byproduct operators.

In order to simplify the implementation as much as pos-
sible, we constrain the classical algorithms to only use
data that is compatible with storage in the ring buffer.
This means that the following two requirements must be
satisfied.

024019-14

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

(a) The algorithm data must be storable in a way that
is distributed across the ring buffer, one data structure per
cluster qubit location.

(b) The data structure must be the same at all cluster-
qubit positions in the ring buffer.

Both requirements are intended to simplify a hardware
realization of the control system model as much as pos-
sible (e.g., using an FPGA). The first requirement removes
the need to consider another data structure in addition to
the ring buffer for the storage of algorithm data. The sec-
ond requirement guarantees straightforward alignment of
the ring buffer in memory (by requiring that each buffer
location be the same size), which ensures that hardware
logic for processing buffer entries does not have to depend
on which entry is being read.

In the C++ software [23], the ring buffer is modeled by
the NodeWindow class in src/node-window.hpp.
The data stored in the ring buffer have a type con-
structed using MakeNode (src/make-node.hpp),
which amalgamates different classes defined in files of the
form src/*-node.hpp. This corresponds to the data
shown in Table I.

APPENDIX B: LOCAL PATTERN RULES
DEFINING MEASUREMENT OPERATIONS

The measurement pattern is encoded in a set of local
pattern rules, described briefly in Sec. II C, which are
designed to be stored in the ring buffer. Pattern rules are
required to simplify the column measurement implemen-
tation as much as possible. In making the measurements,
it is necessary to step through each cluster qubit in the red
column [Fig. 1(a)], set its measurement basis (including
the adaptive measurement setting), make the measurement,
and then use the outcome to update byproduct operators.
This process is simplified if all these measurements can be
made in parallel, and each is fully controlled by informa-
tion that is local to the cluster qubit being measured (and
does not involve, for example, the collection and process-
ing of information stored at multiple nodes). By making
each measurement use identical information, the speed of
the measurement process in a digital implementation may
be maximized, by ensuring that no measurement takes
longer than any of the others.

The ring-buffer data required for storing local pattern
information are summarized in Table II, and described in
the following sections.

1. Byproduct operator update rules

The measurement pattern rules make reference to the
pair (x, z), which is the running value of the byproduct
operators (x2k, z2k). This is updated as the measurement
pattern is evaluated by XORing measurement outcomes into
either the x or z term in the pair, using rules defined here.

TABLE II. Table showing the data required for storing the
measurement pattern. The pattern is stored as a set of local rules
(one per cluster qubit), which completely specify how each clus-
ter qubit should be measured, and what should be done with the
measurement outcome. The pattern rules are generated after a
path extension has been found (see Fig. 5).

Data Meaning

z Flag indicates the Z measurement or x-y-plane basis
θ Base angle (only for the x-y-plane measurement)
Rs Adaptive measurement setting rule, (r, s)
Rb Byproduct operator update rule, (r, s)

As shown in Fig. 2, the measurement outcome m from an
on-path qubit an is XORed into x or z depending on whether
n is even or odd:

(x, z) �→
{
(x, z ⊕ m) if n is even,
(x ⊕ m, z) if n is odd.

(B1)

This rule is stored as a pair Rb = (r, s) that is either (1, 0) or
(0, 1), depending on whether the outcome should be added
to x or z, respectively. The value of this pair for a qubit an
is denoted Rb(an).

For each on-path qubit an whose measurement outcome
m is added to a term in (x, z), the measurement outcome
from any adjacent cut-out qubit must also be added to that
same term (see Fig. 2 for the special case where the an
lie along a horizontal line). This leads to the rule that the
outcome m from a cut-out qubit b may be added to either
of the terms (x, z) multiple times, because b may be adja-
cent to multiple on-path qubits. To account for this, each
cut-out qubit stores a pair Rb = (r, s), which expresses the
net effect of this cut-out qubit on the byproduct operators,
when the measurement outcome from this cut-out is m:

(x, z) �→ (x ⊕ mr, z ⊕ ms). (B2)

This pair is obtained for a particular cut-out qubit b by
adding (pairwise modulo 2) all the values Rb(a) for on-path
qubits a (a ∈ P) that are adjacent to b (a ∼ b):

Rb(b) =
⊕
a∼b
a∈P

Rb(a). (B3)

This calculation is performed by the inner-most loop in
Fig. 5.

2. Measurement basis angle and dependency rules

Each qubit in the cluster state is either measured in the Z
basis (if it is a cut-out qubit, or if it is not directly connected
to the measurement pattern), or the x-y plane, for all other
measurements. A flag z is stored in each cluster qubit node
to specify in which basis it is measured.

024019-15

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

The measurement basis angle for each x-y-plane mea-
surement is stored as a base angle θ , and an adaptive
measurement setting s. The base angle is shown inside the
green filled boxes in Fig. 2, and the measurement setting
is shown as the input in the bottom-left corner of each
square. For example, the second on-path qubit in Fig. 2
has θ = −φ1, and s is the current value of the byproduct
operator z2k just before the measurement of that qubit. The
base angle is a static property of the pattern (it does not
depend on any measurement outcomes or byproduct oper-
ators), and relates to what Rx and Rz rotations are realized
by the pattern.

The adaptive measurement setting rule Rs(an) is stored
as a pair (r, s), which describes how to calculate the adap-
tive measurement setting s from the current values of the
byproduct operators (x, z):

s = Rs(an) · (x, z) = rx ⊕ sz. (B4)

In the C++ software, the local pattern rules described
above are stored in the ring buffer, in data defined by the
PatternNode class (see src/pattern-node.hpp).
One copy of this data structure is stored at each location in
the ring buffer, each corresponding to a single cluster qubit.

APPENDIX C: VERIFICATION OF THE VALIDITY
OF THE MODEL

The emulated implementation of the model quantum
computing system presented in this paper was verified to
ensure that it is correct. This was achieved by performing
a quantum simulation of the entire system, including all
the algorithms presented in this paper, and comparing the
fidelity of the output state of the simulated logical qubit
(in the MBQC measurement pattern) to the state of a ref-
erence qubit that has undergone the same logical one-qubit
operation.

Figure 13(a) shows a summary of the steps involved in
the simulation. It is only necessary to store two columns
of entangled cluster qubits, independent of the block width
or the width of the cluster state [31]. In each “simulation
round,” a new column is added on the right and entan-
gled with the column on the left. Then, the column on the
left is measured and removed according to the local pat-
tern rules constructed using the algorithm in Fig. 5 (see
also Appendix B). On a laptop with 8-GiB memory, this
permits the simulation of systems up to H = 14 (although
H = 10 is a more practical upper limit from the point of
view of execution time). This leads to an upper limit on
the simulation height of seven qubits. It is important to note
that this restriction only applies if a full quantum simula-
tion is required; pathfinding algorithms can be emulated on
much larger cluster state heights. There is no limit on the
total number of columns in the simulation, nor on the block
width B, apart from the simulation time that is proportional

to the total cluster state width. The simulator [23] is based
on the quantum simulator QSL [32,33], which contains a
specialist resizing simulator for the purpose of efficiently
performing the operations shown in Fig. 13(a) [34, Ch. 4].

The output of the simulation (after all columns have
been simulated) can be compared to the reference logical
qubit. However, it is desirable to verify the simulation at all
columns of the cluster state, so as to be able to locate where
an error occurred (in what might be a very long cluster
state).

In the ideal verification scheme, the measurement pat-
tern would be truncated just after the column being verified
(i.e., before the entanglement step), and would be post-
selected to have the same measurement outcomes as the
main simulation, so as to leave one qubit that would act as
the “final” qubit of the measurement pattern. This hypo-
thetical proposal is shown by the “Copy” arrow from
Figs. 13(a) and 13(b), where the state is first copied to pre-
serve the main simulation, and then postselected to obtain
the measurement outcome.

However, it is not necessarily possible to postselect the
verification column [Fig. 13(b)] using the measurement
outcomes from the main simulation, for the reason shown
by the minimal example in Fig. 13(c). In that case, the
verification column a1a0 is state |ψ〉 = |0+〉 + |1−〉 (nor-
malization is omitted). If qubit a1 is measured in the Z
basis, and a0 is measured in the X basis, then the only pos-
sible outcomes are 00 or 11. However, when a2 and a3 are
entangled as shown (all the lines in the figure are CZ gates),
the state on all four qubits a3a2a1a0 becomes

|ψ〉 = | + 00+〉 + |−01−〉 + |−10−〉 + | + 11+〉. (C1)

When a0 and a1 are measured in the same bases as before,
all four outcomes 00, 01, 10, and 11 are possible. This
latter set of possibilities reflects a larger set of potential
outcomes from the main simulation. Therefore, it may not
be possible to enforce the same measurement outcomes in
the verification column.

As a result, it is necessary to allow the verification
columns [the copied columns shown in Fig. 13(b)] to be
measured without constraints. This may lead to outcomes
that differ from the main simulation, in this particular mea-
surement round. However, since the main simulation and
verification measurement outcomes only diverge in the
current simulation round, the verification does check that
the columns strictly before the current column are correct.
It therefore serves equally well as a column-by-column
verification of the entire pattern.

The “output” from each verification column is a single
unmeasured qubit, which represents the end of the one-
qubit path. The state of this qubit is compared with a
reference qubit that has undergone the same logical oper-
ations that the quantum computing system is supposed to

024019-16

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

(a) Add column

A new column
x = 1 is added,
which is en-
tangled with
column x = 0

0
0

1

2

3

4

X

Z

Z

Z

Z

(b)

Simulation

Verification

Postselecting
based on simu-
lation outcomes
is not valid

Copy

0
0

1

2

3

4

X

Z

Z

Z

Z

Postselect out

0
0

1

2

3

4

1

0

1

1

0

|+〉

|+〉

|+〉

|+〉

a0

a1

a2

a3

00, 01
10, 11

(c)

|+〉

|+〉

a0

a1

Circuit

00, 11
a1 and a0
possible
outcomes

Measure out

Measure the
leftmost column
x = 0 according
to local pattern
rules

0 1
0

1

2

3

4

X X

Z

Z

Z

Z

Z Z

Z Z

0 1
0

1

2

3

4

X1

Z

Z

1

0

1 Z

0 Z

FIG. 13. (a) Review of the main simulation procedure, where a column is added to the right, and then the leftmost column is
measured-out according to local pattern rules. (b) The “ideal” method of verification, where outcomes are made to agree between the
simulation and verification by postselecting the verification column. (c) A minimal example showing how the incompatibility arises
in a simple case. In both circuits shown, a1 and a0 are measured in the Z and X bases, and the possible outcomes are shown below the
circuits.

have performed. If the two states agree (fidelity = 1) then
the emulator is verified.

A side effect of column-by-column verification is the
ability to introduce noise into the measurement bases
shown in Fig. 1(b), and investigate the effect of these errors
on the fidelity of the output state. An example of this
analysis is shown in Fig. 14 for the identity gate. This
line of inquiry may be extended to a numerical (compu-
tational) analysis of errors in MBQC systems, which may
complement more theoretical analysis of error-correction
schemes.

The cluster state simulation is performed by the
ClusterSim class in src/cluster-sim.hpp [23].
Each simulation round is performed by the simulate

member function of the PathSim class (src/path-
sim.hpp), which also performs the verification steps.

APPENDIX D: REPRODUCING THE RESULTS

The results in the paper may be reproduced on a
Linux-based computer by obtaining the MBQCSIM Git
repository [23] (master branch, commit cc5a0bf5),
compiling the main C++ library according to the instruc-
tions in the README file, and then running the script
scripts/paper-figures.py. Figures 9–12 and 14
contain seed-based random elements. The seeds used for
each of the figures in this paper are contained in the file

024019-17

SCOTT and BALRAM PHYS. REV. APPLIED 20, 024019 (2023)

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

Time (µs)

M
od

ul
at

or
no

is
e

σ
(m

V
)

Fidelity

0.95

0.96

0.97

0.98

0.99

1.00

FIG. 14. The heatmap shows the average fidelity of the logi-
cal qubit realized using the identity path pattern, as a function of
elapsed time (derived from a photonic cycle time of 1 ns), and the
standard deviation of the Gaussian white noise in the modulator
voltage. The experiment was conducted by simulating a pathfind-
ing process using GBFS in a cluster state of height H = 7 for a
range of noise levels. Each experiment was repeated 1000 times
and the results averaged. The simulation assumes that Vπ = 1 V
for the modulators that set the measurement bases.

python/mbqcsim/paper.py, which also shows what
parameter combinations were used to reproduce the results.

The failure case shown in Fig. 8 may be reproduced by
running the following command, which shows a step-by-
step breakdown of the evolving pathfinding algorithm:

$ pathf -s3996592937216137949 -d -aibfs \
-p0.9 -B4 -H9 -W10000

The pathf program is built as part of the compilation
process in the Git repository. For more information about
the programs pathf and esim, see the README file.

[1] F. Arute, et al., Quantum supremacy using a programmable
superconducting processor, Nature 574, 505 (2019).

[2] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and
M. Van den Nest, Measurement-based quantum computa-
tion, Nat. Phys. 5, 19 (2009).

[3] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois,
C. Leroux, C. Hellings, S. Lazar, F. Swiadek, and J. Her-
rmann, et al., Realizing repeated quantum error correction
in a distance-three surface code, Nature 605, 669 (2022).

[4] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cle-
land, Surface codes: Towards practical large-scale quantum
computation, Phys. Rev. A 86, 032324 (2012).

[5] L. Zhou, X. Wang, L. Lu, and J. Chen, Integrated optical
delay lines: A review and perspective, Chin. Opt. Lett. 16,
101301 (2018).

[6] J. R. Scott and K. C. Balram, Timing constraints imposed
by classical digital control systems on photonic implemen-
tations of measurement-based quantum computing, IEEE
Trans. Quantum Eng. 3, 1 (2022).

[7] R. Raussendorf, D. E. Browne, and H. J. Briegel,
Measurement-based quantum computation on cluster
states, Phys. Rev. A 68, 00 (2003).

[8] K. Kieling, T. Rudolph, and J. Eisert, Percolation, Renor-
malization, and Quantum Computing with Nondeterminis-
tic Gates, Phys. Rev. Lett. 99, 130501 (2007).

[9] S. Morley-Short, S. Bartolucci, M. Gimeno-Segovia, P.
Shadbolt, H. Cable, and T. Rudolph, Physical-depth
architectural requirements for generating universal pho-
tonic cluster states, Quantum Sci. Technol. 3, 015005
(2017).

[10] D. Herr, A. Paler, S. J. Devitt, and F. Nori, A local and scal-
able lattice renormalization method for ballistic quantum
computation, npj Quantum Inf. 4, 1 (2018).

[11] S. Mittal, G. Verma, B. Kaushik, and F. A. Khanday, A sur-
vey of SRAM-based in-memory computing techniques and
applications, J. Syst. Archit. 119, 102276 (2021).

[12] J. L. Hennessy and D. A. Patterson, Computer Architec-
ture: A Quantitative Approach (Elsevier, San Francisco
(California), 2011).

[13] P. Kok and B. W. Lovett, Introduction to Optical Quan-
tum Information Processing (Cambridge University Press,
Cambridge (UK), 2010).

[14] D. E. Browne and H. J. Briegel, One-way quantum com-
putation—a tutorial introduction, ArXiv:quant-ph/0603226
(2006).

[15] R. L. Kruse and A. J. Ryba, Data Structures and Program
Design in C++ (Prentice-Hall, Inc., Upper Saddle River
(New Jersey), 2000).

[16] This measurement can be implemented in the dual-rail
encoding by setting α = π/2 − (−1)sθ and β = π/2 in
Fig. 1(b).

[17] J. van de Wetering, ZX-calculus for the working quantum
computer scientist, ArXiv:2012.13966 (2020).

[18] Allowing path successors above and below is excluded
to enforce the uniqueness of the right node in each
column.

[19] M. Pant, D. Towsley, D. Englund, and S. Guha, Percolation
thresholds for photonic quantum computing, Nat. Commun.
10, 1070 (2019).

[20] D. E. Browne, M. B. Elliott, S. T. Flammia, S. T. Merkel,
A. Miyake, and A. J. Short, Phase transition of computa-
tional power in the resource states for one-way quantum
computation, New J. Phys. 10, 023010 (2008).

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.
Stein, Introduction to Algorithms (MIT Press, Cambridge
(Massachusetts), 2022).

[22] For simplicity, we do not consider in detail how all the edge
cases for these algorithms are implemented (for example,
the initial block and final block of the window). The inter-
ested reader should consult the code for MBQCSIM, which
is publicly available.

[23] J. R. Scott, MBQCSIM: C++ library for MBQC simulation,
https://gitlab.com/johnrscott/mbqcsim (2021).

[24] S. Williams, A. Waterman, and D. Patterson, Roofline: An
insightful visual performance model for multicore architec-
tures, Commun. ACM 52, 65 (2009).

024019-18

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/nphys1157
https://doi.org/10.1038/s41586-022-04566-8
https://doi.org/10.1103/physreva.86.032324
https://doi.org/10.3788/COL201816.101301
https://doi.org/10.1109/tqe.2022.3175587
https://doi.org/10.1103/physreva.68.022312
https://doi.org/10.1103/physrevlett.99.130501
https://doi.org/10.1088/2058-9565/aa913b
https://doi.org/10.1038/s41534-018-0076-0
https://doi.org/10.1016/j.sysarc.2021.102276
https://arxiv.org/abs/quant-ph/0603226
https://arxiv.org/abs/2012.13966
https://doi.org/10.1038/s41467-019-08948-x
https://doi.org/10.1088/1367-2630/10/2/023010
https://gitlab.com/johnrscott/mbqcsim
https://doi.org/10.1145/1498765.1498785

TIMING CONSTRAINTS DUE TO REAL-TIME. . . PHYS. REV. APPLIED 20, 024019 (2023)

[25] M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and
T. Rudolph, From Three-Photon Greenberger-Horne-
Zeilinger States to Ballistic Universal Quantum Computa-
tion, Phys. Rev. Lett. 115, 020502 (2015).

[26] E. Sadredini, R. Rahimi, M. Lenjani, M. Stan, and K.
Skadron, in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA) (IEEE, San
Diego, 2020), p. 86.

[27] AXilinx: Kintex-7 FPGAs Data Sheet: DC and AC Switch-
ing Characteristics, v2.19 ed. (2021), dS182.

[28] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C.
Dawson, M. Gimeno-Segovia, E. Johnston, K. Kieling,
N. Nickerson, M. Pant, F. Pastawski, T. Rudolph,
and C. Sparrow, Fusion-based quantum computation,
ArXiv:2101.09310 (2021).

[29] H. Bombin, I. H. Kim, D. Litinski, N. Nickerson, M. Pant,
F. Pastawski, S. Roberts, and T. Rudolph, Interleaving:

Modular architectures for fault-tolerant photonic quantum
computing, ArXiv:2103.08612 (2021).

[30] J. E. Bourassa, R. N. Alexander, M. Vasmer, A.
Patil, I. Tzitrin, T. Matsuura, D. Su, B. Q. Baragi-
ola, S. Guha, G. Dauphinais, K. K. Sabapathy, N. C.
Menicucci, and I. Dhand, Blueprint for a scalable pho-
tonic fault-tolerant quantum computer, Quantum 5, 392
(2021).

[31] This follows from a similar argument to that used in [7,
Sec. II.D] for concatenating measurement patterns, which
shows that the measurements may be interleaved with the
entangling operations.

[32] L. Mineh and J. Scott, Quantum Simulation Library (QSL),
https://github.com/lanamineh/qsl (2021).

[33] L. Mineh, Ph.D. thesis, University of Bristol, 2021.
[34] J. Scott, Ph.D. thesis, University of Bristol, 2022, available

on request.

024019-19

https://doi.org/10.1103/physrevlett.115.020502
https://doi.org/10.1109/HPCA47549.2020.00017
https://arxiv.org/abs/2101.09310
https://arxiv.org/abs/2103.08612
https://doi.org/10.22331/q-2021-02-04-392
https://github.com/lanamineh/qsl

	I. INTRODUCTION
	II. THE SYSTEM MODEL
	A. The one-qubit measurement pattern
	B. Path search
	C. Pattern generation

	III. THE TWO SEARCH ALGORITHMS
	A. Global breadth-first search
	1. Breadth-first search
	2. Reverse pass and right-node calculation
	3. Performance problems in GBFS

	B. Incremental breadth-first search
	1. Reverse pass and right-node calculation
	2. Failed path pruning
	3. Main cause of failure

	IV. EMULATING THE SEARCH ALGORITHMS
	V. TIMING IMPLICATIONS FOR PHOTONIC QUANTUM COMPUTERS
	VI. DISCUSSION
	VII. CONCLUSION
	ACKNOWLEDGMENTS
	A. APPENDIX A: RING-BUFFER MODEL FOR COUNTING MEMORY OPERATIONS
	B. APPENDIX B: LOCAL PATTERN RULES DEFINING MEASUREMENT OPERATIONS
	1. Byproduct operator update rules
	2. Measurement basis angle and dependency rules

	C. APPENDIX C: VERIFICATION OF THE VALIDITY OF THE MODEL
	D. APPENDIX D: REPRODUCING THE RESULTS
	. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

