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Quantum reservoir computing (QRC) exploits the information-processing capabilities of quantum sys-
tems to solve nontrivial temporal tasks, improving over their classical counterparts. Recent progress has
shown the potential of QRC exploiting the enlarged Hilbert space, but real-time processing and the
achievement of a quantum advantage with efficient use of resources are prominent challenges towards
viable experimental realizations. In this work, we propose a photonic platform suitable for real-time
QRC based on a physical ensemble of reservoirs in the form of identical optical pulses recirculating
through a closed loop. While ideal operation achieves maximum capacities, statistical noise is shown
to undermine any quantum improvement. We propose a strategy to overcome this limitation and sustain
the QRC performance when the size of the system is scaled up. The protocol is conceived for experimental
implementations to be viable with current technology.
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I. INTRODUCTION

Quantum photonic technologies are currently being
exploited for quantum communications, quantum comput-
ing, and quantum information processing [1,2], for their
speed-of-light propagation, ultrafast operations and gates,
and weak interactions with the environment even at room
temperature. In the context of computation, photonic quan-
tum computing for boson sampling has shown a time
advantage of 14 orders of magnitude over today’s classi-
cal supercomputers [3,4]. In measurement-based one-way
quantum computing in continuous-variable (CV) regimes
cluster states up to one million modes have been reported
using time multiplexing [5] and reconfigurable cluster
states achieved with frequency multiplexing [6]. Vari-
ational eigensolvers implemented in photonic quantum
processors [7] have achieved much more efficient use of
quantum resources than alternative algorithms, such as
quantum phase estimation. Quantum states of light have
also been used in Ising machines, proving more effi-
cient than current algorithms in certain scenarios [8,9]
and complementing the results obtained for alternative
classical approaches [10,11]. In this work, we propose
a quantum photonic approach to time series processing
designing and addressing the scalability, memory and per-
formance for time-series prediction of an optical setup
in the quantum reservoir computing (QRC) framework.
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Reservoir computing (RC) is a paradigm of machine
learning in which the information-processing capabilities
of dynamical systems are exploited for solving temporal
tasks, with real-world examples such as the prediction of
monthly electricity production [12], and financial [13,14]
or water-level forecasting [15,16]. In addition, RC can also
be applied to solve static tasks, such as the classification
of phonemes [17] or the detection of human finger move-
ments from EEG data [18]. In practice, RC can solve these
information-processing tasks without the need for an exter-
nal memory thanks to the fading memory present in the
internal state of the reservoir itself [19]. Since RC exploits
generic dynamical systems for computing, the concept of
RC has been successfully transferred to physical substrates
[20], with the prominent example of high-speed photonic
and optoelectronic implementations [21–24]. Ultimately,
RC has been generalized to the quantum regime in order
to benefit from the large number of degrees of free-
dom available in quantum systems [25,26]. In order to
experimentally achieve time-series processing with supe-
rior performance in quantum reservoir computing with
respect to classical approaches, several challenges need to
be addressed, identifying the most promising applications,
efficient platform designs and dealing with quantum mea-
surement retaining improvements over classical analogues
[25,27,28].

With respect to classical reservoir computing, where sin-
gle measurements on the reservoir produce the relevant
information at the output layer, when moving into the
quantum realm, one usually extracts the expectation val-
ues of observables at the output, from large ensembles
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of experiment copies. In the pioneering experimental
implementation of quantum reservoir computing in noisy
intermediate-scale quantum (NISQ) platforms [29], this
was achieved by repeating the input processing sequence
several times, being this an obstacle towards viable real-
time technological realizations. Our goal is to show a
strategy to move to temporal signal processing, operat-
ing in a continuous way and without buffering inputs in
external memories. The approach can be adapted to differ-
ent photonic platforms and takes advantage of light-speed
propagation and fast operation to monitor the reservoir pro-
cessor. Optical sources producing high repetition pulses
and optical fibers allow one to design an ensemble of
identical reservoirs inside a closed loop, which removes
the necessity for an external classical memory. The reser-
voir signal is continuously driven by the external inputs
and monitored through a beam splitter and homodyne
detection, thus obtaining expected values of observables
without external buffers. We are restricting the analy-
sis here to vacuum Gaussian states, as we know they
can provide universal RC [30]. These reservoir states
can be engineered as complex networks in the frequency
domain [6,31–33].

After introducing the photonic platform and main tools
for quantum reservoir computing in Sec. II, we address
its memory capabilities (Sec. III) both in the ideal case
of an infinite ensemble (Sec. III A) where statistical errors
vanish and in a realistic scenario of a finite ensemble
assessing the limitations of statistical noise (Sec. III B).
The analysis of noise detrimental effects in the reso-
lution of past inputs allows identification of strategies
to improve the performance when the reservoir size
is scaled up (Sec. III C). We also address the perfor-
mance of our proposal for chaotic time-series prediction
(Sec. III D).

II. PHOTONIC PLATFORM

A. Platform description

Before introducing the photonic setup for QRC, let us
start by recalling the main features of reservoir comput-
ing for time-series processing. RC schemes [15] consist
of three main layers: the input, the reservoir, and the out-
put. First, an input signal, typically belonging to a time
series, is injected into the reservoir, a dynamical system
(often a recurrent neural network) that performs a com-
plex nonlinear transformation to the injected data. Then,
in the readout layer, a certain number of reservoir observ-
ables are measured and their combination (usually linear)
is optimized to match the desired target, depending on
the temporal task, like, e.g., linear memory or chaotic
series prediction (see Appendices A and B for further
details).

The RC paradigm has been recently extended to quan-
tum reservoirs [25,34–36] showing a quantum improve-
ment due to the enlarged Hilbert space and therefore
to the increased processing capability. Nevertheless, this
approach also presents several challenges to be viable
experimentally. In order to act as an online time-series
processor, the reservoir needs to continuously receive the
input data and produce output extracted for the desired
task. The relevant information for the readout layer is
generally encoded in the expected values of the observ-
ables and due to the stochastic nature of quantum mea-
surements, several detections are needed. Furthermore,
the act of measuring yields backaction into the system
that may also negatively affect the performance of the
reservoir. Two strategies to overcome this last issue in
qubit platforms have been recently proposed in Ref. [28]
using weak measurements and partial sequence repetition
(rewinding). Otherwise one needs to restart the protocol
for each input injection, buffering the input sequence as in
Ref. [29]. In the following, we propose a photonic platform
design for QRC offering fast and easily scalable opera-
tion accounting for measurements. We have conceived the
protocol to be experimentally feasible with state-of-the-art
technologies.

The proposed design is based on continuous variables
and revolves around the use of optical pulses, whose
individual dynamics along the feedback loop defines the
reservoir computer [see scheme in Fig. 1(a)]. Indeed the
reservoir is a traveling pulse, containing N modes whose
interaction is mediated by a nonlinear (χ(2)) crystal and is
modeled as a complex network [bottom inset in Fig. 1(a)].
The input is encoded in each ancilla pulse [see top inset
in Fig. 1(a)] coupled with the reservoir through a beam
splitter (BS) and is prepared in a product state of N Gaus-
sian squeezed vacuum states. We consider their squeezing
angles as the classical inputs as this guarantees a good
QRC performance [30]; alternatively, the ancilla state
could be directly treated as a quantum input itself to be
processed, providing quantum (instead of classical) infor-
mation [25,37]. The reservoir pulse travels in a closed
feedback loop, that can be enabled by an optical fiber. This
feedback allows information from previous inputs to be
retained, an essential requirement for temporal series pro-
cessing. At the other output arm of the BS, the reflected
input and transmitted reservoir signals are instead detected,
after interacting with a nonlinear crystal. We are consider-
ing for this purpose a homodyne detector [HD in Fig. 1(a)],
common in CV quantum optical experiments whose band-
width continuous improvements allow for much faster
detections [38,39].

A crucial feature of the setup presented in Fig. 1 is the
possibility to delay several reservoir pulses enabling to run
the experiment with M copies of the pulses. This provides
the needed ensemble to effectively realize quantum mea-
surements without restarting the protocol by reinjecting
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(a) (b)

(c)

FIG. 1. Scheme of the process: (a) schematical drawing of the whole platform; (b) example of a series of the measured x quadrature
of the first mode for each pulse (horizontal axis) and a 3D representation of the estimated covariance matrix for the kth round trip
(covariance matrix representations for the following round trips are depicted below it). In this case we have taken N = 5, M = 5000,
and R = 0.75. The horizontal axes represent the position of each term in σest. (c) Sequence of estimated σest for three consecutive
inputs.

the input sequence. Indeed, the same input is encoded
in M ancilla states before being updated [upper inset
in Fig. 1(a)] and every pulse interacts with a matching
reservoir pulse at a given round trip. This creates a phys-
ical ensemble of M copies of the same reservoir in real
time, whose expected values are obtained via homodyne
detection. High optical repetition rates and fast process-
ing determine the potential of this scheme for sequential
input processing while the signal is continuously injected.
Beyond the reservoir size (the number of modes N in each
pulse) and the ensemble size (M input repetitions), other
crucial parameters determining the reservoir features are
the BS reflectivity R (we assume partial transmission, i.e.,
R �= 0, 1) and the time interval between pulses �τ (the
time interval that a whole round trip lasts is τRT = M�τ ).
At the kth round trip, the injected pulses are squeezed vac-
uum states that have the input sk encoded in their squeezing
angle. We focus on CV Gaussian states and then model the
effect of each element through the covariance matrix of the
external pulses (see Appendix C for details). In particular,
the BS couples the feedback and the external signal, gen-
erally entangling the feedback loop pulses with the ones
traveling to the detector. The χ(2) crystals induce squeez-
ing and correlations between the modes in each pulse and
are modeled by two (in principle different even if we omit
a distinguishing label) Hamiltonians Ĥχ(2) = Ĥfree + Ĥint

with

Ĥfree =
N∑

i=1

ωiâ
†
i âi

Ĥint =
∑
j >i

(
gij â†

i âj + ihij â†
i â†

j + h.c.
)

(1)

where âi (â†
i ) is the annihilation (creation) operator of

mode i; ωi is its frequency and parameters gij and hij
depend on the second-order nonlinearities of the crystals
and are not tuned but rather assumed to be random real
numbers and different for each one of the two crystals. We
assume that these crystals have a high enough bandwidth
to keep the entering pulses independent of one another, and
only couple the modes inside each pulse. The time each
pulse spends inside a χ(2) material is labeled as �t (equal
for both crystals).

For the measurement scheme we propose multimode
homodyne detection: we measure, at the same time, the
same quadrature operator for every mode. That is, for
every incoming pulse the detector measures all x quadra-
tures x̂i = âi + â†

i (i = 1, . . . , N ), obtaining a set of
stochastic outcomes, Xi, defining a quantum trajectory
[40,41]. Thus, the measurement output of the mth pulse
at the kth round trip is given by the vector X(k,m) =
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(X (k,m)

1 , . . . , X (k,m)
N )� and, from these quadrature measure-

ments, we can access the expected values of the covari-
ance matrix, fully characterizing the squeezed vacuum
states at the output for our readout layer. That is, for
each round trip (and thus, each input in the sequence)
we extract N (N + 1)/2 outputs for the readout layer O(k)

ij

= 〈X (k)
i X (k)

j 〉M − 〈X (k)
i 〉M 〈X (k)

j 〉M with j ≥ i = 1, . . . , N
and with 〈·〉M corresponding to the ensemble average over
M pulses. These outputs give the estimated covariance
matrix

[
σ

(k)
est

]
ij

= O(k)
ij at each kth round trip, in which

the input sk is injected. While here we restrict to the N -
position quadrature (and homodyne detection), one could
also consider momenta (i.e., 2N quadratures) through het-
erodyne detection. Higher-order moments could also be
considered as features for the readout layer to improve the
performance in some temporal tasks (see Sec. III D). For
Gaussian states, these higher-order moments are functions
of the first- and second-order ones. Here we restrict our
analysis to the covariance matrix for the linear and non-
linear memory. In Fig. 1(b), a visual representation of this
readout protocol is shown. The outcome measurements of
the M sequence of X (k,m)

1 at an unspecified step k are shown
and the black dashed line is the mean, vanishing because
we are working with vacuum states. The (blue shaded)
standard deviation of X1 provides [σest]1,1 shown below,
and, considering all N modes, one estimates the covariance
matrix. The covariance matrix at each time step k consti-
tutes the output layer [Fig. 1(c)], optimized by a simple
linear regression (see Appendix A) to achieve the best per-
formance in the desired task. We notice that a measurement
in one of the beam-splitter outputs generally influences the
conditional state of the other beam (being these generally
entangled), but we consider here only ensemble-averaged
quantities for Gaussian states when these expected values
correspond to the unconditional quantities.

The design proposed in Fig. 1(a) is reminiscent of other
photonic approaches for RC based on time-delay feed-
back and time multiplexing [21,24]. In analogy to these
works, the feedback loop provides the mechanism for
fading memory in the optical implementation. The time
multiplexing instead has a different role: in our platform
it has the distinctive function to provide the ensemble for
quantum measurements of the covariance matrix, while
in classical approaches it serves as a way to increase the
dimensionality of the reservoir. The reservoir size in the
current proposal depends instead on the number of (fre-
quency or spatial) modes contained in each temporal pulse.
Let us remark that the main novelties of our proposal are
both the feedback loop, providing memory to the quan-
tum system, and the physical ensemble stored in the optical
fiber. This allows us to compute averages in real time. Our
protocol can be applied to any quantum state, even not
Gaussian, but the Gaussian states are suitable for a deeper

analytical treatment based on the symplectic formalism
(see Appendix C 2).

B. Feasibility of the photonic design

In this section, we discuss the viability of experimental
implementations of our proposal with state-of-the-art tech-
nology. The main aspects of interest are the engineering
of the input ancilla states, the generation of complex net-
works using χ(2) nonlinearities, the multimode detection
of the output pulses (measuring all the modes at once) and
the losses due to the fiber propagation.

Input states’ generation: in the frequency domain,
squeezed states can be deterministically generated at high
rates for a wide spectrum band. Specifically, over 108

pulses per second containing up to 21 squeezed spectral
modes each have been recently attained [42]. The abil-
ity to encode the inputs in the squeezing phase of each
pulse is also required for the feasibility of our platform.
Highly accurate and versatile phase-setting devices have
been demonstrated using programmable phase shifters in
Xanadu’s Borealis platform [43]. Accurately changing the
squeezing levels and phases of pulses at time intervals
below 100 ns has also been attained recently by continu-
ously modulating the pump light of a waveguide optical
parametric amplifier [44].

Optical networks: network topologies similar to the ones
considered in Eq. (1) are experimentally attainable in the
frequency domain [6,31,32,42,45]. Reconfigurability in
the spectral network shapes can also be reached by chang-
ing the measurement basis of the homodyne detection
[6,42].

Homodyne detection: being able to measure several fre-
quency modes at once is another key requirement for the
real-time processing capabilities of our platform. Multi-
mode homodyne detection of several frequency bands has
been demonstrated in experimental setups [46,47].

Fiber losses: retaining the ensemble pulses inside a
long optical fiber without great losses is another relevant
aspect to tackle for the experimental implementation of our
real-time processing proposal. Low-loss fiber delay lines
have been successfully implemented in several CV optical
setups [5,8,9,43,48], ranging from single pulse-delay lines
[5,48] to over 105 recirculating pulses in a 5-km fiber [9].
So fiber losses do not constrain the viability of our platform
with state-of-the-art technology.

In summary, the key aspects of our suggested plat-
form have already been demonstrated experimentally. The
main challenge ahead is to combine them in a common
realization.

III. RESULTS

In this section, we present a detailed analysis of
the information-processing capabilities of the quantum
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photonic platform for time-series processing. RC systems
require the ability to retain the memory of previous sig-
nal inputs, the capacity to reproduce nonlinear functions
of the inputs and high dimensionality, which requires that
the readout observables are linearly independent functions
of the inputs. For the evaluation of the reservoir memory,
we numerically compute the linear capacity of the pho-
tonic QRC, which measures how accurately can the system
reproduce inputs in the past. It is a normalized output-
target correlation that ranges from 0 to 1. The higher the
value of the linear capacity, the better the target input is
reproduced by the reservoir. To test both the nonlinearity
as well as the high dimensionality, we make use of the
total information-processing capacity (IPC) [49], which
generalizes the linear capacity memory to nonlinear con-
tributions (see Appendix B for a detailed explanation). It
quantifies the expressivity of a wide variety of dynamical
systems and has recently been used in quantum settings
[30,50]. The IPC ranges from 0 to the number of out-
put observables (upper bound). When this upper bound
is reached, it means that all the readout observables are
linearly independent. In our case, as we are using the
covariance matrix of the measured x quadratures, the num-
ber of observables (〈x̂ix̂j 〉) is equal to N (N + 1)/2 (N
denoting the reservoir size, or the number of modes in each
pulse).

In the following, we consider the memory capacity of
the proposed photonic QRC both in ideal conditions and
when explicitly accounting for statistical noise. In par-
ticular, we consider the N mode frequencies to be equal
and scale time so that ωi = 1 ∀i in Eq. (1). This is
a reasonable approximation when considering modes in
the frequency domain, as usually in experiments with
frequency combs the detuning is much smaller than the
coupling strengths between modes [6,45]. The coupling
parameters gij and hij have been chosen from a uni-
form distribution in the intervals [〈g〉 − �g, 〈g〉 + �g]
and [〈h〉 − �h, 〈h〉 + �h], respectively, where 〈g〉 = 0.2,
〈h〉 = 0.3, and �g = �h = 0.1, while the interaction time
(�t) inside each crystal is set to one. These coupling val-
ues have been chosen to ensure the stability of the system,
that is, the energy of every pulse traveling through each
crystal remains bounded for any interaction time values.
This is not a necessary condition, but it ensures that the
fading memory condition is fulfilled at every realization
(see Appendix F for details). The model in Eq. (1) allows
us to describe a broad scenario of possible implementa-
tions including squeezing and hopping. We have ensured
that this Hamiltonian coupling choice does not produce
squeezing levels far above what is experimentally attain-
able. Concretely, the average squeezing has values well
within what was produced in the multimode setting [6],
with at most 3 dB of squeezing. Furthermore, none of our
simulated crystals produce squeezing larger than 6.5 dB,
which is feasible in frequency multiplexed quantum optics

[6]. We also notice that the frequencies ωi in Eq. (1) can
be considered as detunings with respect to some reference
(lab) frequency.

The external inputs sk are encoded in the ancilla as
squeezing angles, providing a nonlinear input encoding
[30]; each one of the M pulses in the ancilla train is
a squeezed vacuum state with covariance matrix equal
to σ (k)

anc = ⊕N
i=1 σ (k)

sq , where σ (k)
sq is the covariance matrix

of a single mode squeezed state. In particular, squeez-
ing strength is set to rk = 1 while the squeezing angle
encoding is φk = 3πsk/4 (further details in Appendix C). It
was recently reported how the encoding choice affects the
degree distribution of the IPC [30] and our choice provides
a balanced contribution of the linear terms and the non-
linear ones. Different angle encodings would provide dif-
ferent linear to nonlinear contributions (see Appendix D).
The input parameters, even when random, are set to lead
to squeezing levels currently viable with state-of-the-art
technology, which is around 15 dB [51], equivalent to
rk � 1.7.

A. Ideal case

In the ideal case of an infinite number of pulses, the
covariance can be obtained as the limit

σ
(k)
ideal = lim

M→∞
σ

(k)
est . (2)

While not experimentally attainable, this ideal covariance
matrix sets the performance of our reservoir in the absence
of statistical noise, providing an insight to quantify the
effect of this noise in realistic (finite ensemble) scenar-
ios. Furthermore, the ideal performances we present here
can be compared with most results in QRC in the lit-
erature [25], generally not accounting for experimental
limitations.

As a consequence of the linearity of our photonic plat-
form, by inspecting the inputs’ dependence of σideal (see
Appendix E), we observe that inputs at different times
contribute additively to the covariance matrix, so we can
decompose the covariance as

σ
(k)
ideal =

∞∑
d=0

γ
(k)
d , (3)

where the matrices γ
(k)
d are functions of a single input with

delay d. Hence, if we are in the kth round trip, the covari-
ance is a sum of nonlinear functions γ

(k)
d of the previous

inputs sk−d and γ
(k)
d : � → �N × �N turns each input into

an N × N positive symmetric matrix (N denoting the size
of the reservoir). The reflectivity R of the BS is found to
be the physical parameter determining the relative size of
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these terms (see Appendix E)

γ
(k)
d ∝ (1 − R)2Rd−1, for d ≥ 1, (4)

with an exponential decay Rd−1 in the delay for the average
magnitude of the observables. Indeed, each time a feed-
back pulse gets reflected by the BS in the fiber loop, it is
scaled by R. If the signal recirculating in the loop is weak
(small reflectivity R), a much faster decay in the magni-
tude of delayed matrices γ

(k)
d is observed (when the delay

d increases). The BS reflectivity is then expected to have
a strong influence on the fading memory in this setup. As
for the term (1 − R)2 in Eq. (4), it is due to the repeated
transmission through the BS of each delayed term: first as
an ancilla signal when it enters the loop and then when
it leaves the loop towards the detector. Then, on the one
hand, increasing the value of the reflectivity R reduces
the amount of feedback light reaching the detector; on the
other hand, it also increases the memory retention of the
reservoir, as the magnitude decay of the delayed matrices
in Eq. (3) is slower.

We now present the numerical results for the perfor-
mance of the QRC in the ideal limit, starting with the linear
capacity, which brings information about the ability of our
system to reproduce the encoded inputs at different times
in the past (linear memory). In Fig. 2(a), the linear capac-
ity is shown as a function of the delay, d, of the target
input. By increasing the number of modes (from N = 8
to N = 10) and consequently the size of the output layer,
the system can reproduce more delayed inputs, extending
the memory. In contrast, the capacity for low delays does
not change. Interestingly, tuning the BS reflectivity R alters
the shape of the linear capacity curve. Consistently with
Eq. (4), for higher values of the BS reflectivity R, fur-
ther terms into the past can be resolved, although the curve
starts to descend earlier from its maximum value, achieved
with smaller reflectivity.

The total IPC for different values of the reservoir size
N is shown in Fig. 2(b) as a bar plot, where each bar is
split into different linear and nonlinear memory contribu-
tions (identified by their polynomial degree). Concretely,
the linear contributions [blue bars in Fig. 2(b)] corre-
spond to areas below the lines in Fig. 2(a). The dashed
blue line—representing the normalized capacity equal to
one—shows that the capacity saturates its maximum theo-
retical value N (N + 1)/2 for every N , corresponding to
the number of output degrees of freedom (terms of the
covariance matrix). Actually, our QRC platform is found
to display both fading memory and echo state property,
which are required for good RC performance (see proof in
Appendix F). This explains why the normalized IPC is sat-
urated, as the readout observables are linearly independent
and the above properties are fulfilled [49]. Furthermore,
this occurs for every value of the reflectivity R that has
been tested [e.g., we show the total IPC for both R =

(a)

(b)

FIG. 2. Capacity in the ideal case: (a) linear capacity as a func-
tion of the delay of the input for different values of the BS
reflectivity R (color) and different values of the reservoir size
N (line); (b) IPC as a function of N for R = 0.9. The bars fol-
low the vertical axis at the left, which shows the total absolute
capacity. Each bar is also split into different degree contributions.
The discontinuous blue line follows the vertical axis at the right,
which depicts the normalized IPC. Black stars follow the left axis
and correspond to the value of the total IPC for R = 0.75, as a
function of N . Every plot is the result of averaging over 100 real-
izations with different random networks in the coupling crystals
and different input strings (this average has been performed in
every figure of the paper).

0.9 and R = 0.75 in Fig. 2(b)]. The degree distribution
shown in Fig. 2(b), displaying significant contributions up
to cubic degree, also does not change significantly with
R, being mainly determined by the encoding choice (see
Appendix D for details).

B. Finite measurement ensemble

In this subsection, a more realistic scenario is consid-
ered, when the physical ensemble is limited by the finite
number of pulses, M , inside the loop. Then, any estima-
tion of the observables is affected by statistical errors,
whose average magnitude depends on M . Additive noise
in the readout layer has been considered in Gaussian CV
models for RC with coherent states [52], and for nontem-
poral tasks [53]. Here we explore statistical noise due to
a physical ensemble of reservoirs for temporal tasks and
for QRC with squeezed vacuum states. Hence the per-
formance based on estimated covariance elements will be
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(a)

(b)

(c)

FIG. 3. (a) Linear capacity as a function of the delay for dif-
ferent values of the ensemble size M ranging in powers of 10
from 300 to 3 × 106, as well as the curve from the ideal case
(M → ∞). In all curves the reservoir size is equal to N = 10
and the reflectivity is R = 0.9; (b),(c) SNR (in decibels) for the
delayed terms γd as a function of the delay (d). In (b) this is
shown for fixed R = 0.9 and different values of M and in (c) it is
shown for fixed M and two values of R. In both figures N = 10.

quantified and used to determine how the resources scale
in this platform when the reservoir size increases. To sim-
ulate the ensemble, we compute the conditional evolution
and measurement outcome of every realization (as shown
in Appendix C 2) and perform the averages among them.
In Fig. 3(a), the linear capacity as a function of the delay
is shown in the ideal case and for different values of the
ensemble size M , while the reservoir size N and the reflec-
tivity R are kept fixed. The number of delayed inputs a
10-node reservoir can ideally reproduce with good capac-
ity is high (approximately 30 injection steps). The collapse
of the linear capacity for finite samples is clearly seen in
Fig. 3(a) for finite ensemble sizes M . Even though we
show a progressive improvement up to 3 × 106 fiber pulses
(with a memory of up to 10 further delays times when
increasing the ensemble size by factors of 10), we also see
that the ability to reproduce inputs further into the past of
the ideal system is hard to reach. The origin of this perfor-
mance scaling can be traced back to the exponential decay
of the delayed terms, γ

(k)
d , in Eq. (4) and is quantified in

the following.
In order to be able to reproduce a given input term

with delay d, the ratio between its corresponding term γd
in the ideal covariance and the statistical error should be
large enough on average. As the magnitude of γd decays

exponentially with d, it becomes harder to keep the sta-
tistical noise below it, actually requiring an exponential
increase of pulses with the delay to resolve further inputs
in the past. Scaling with the reservoir size N will also
be severely affected by statistical errors as the root of
performance improvements by increasing N is in the abil-
ity of the system to reproduce further delayed terms (see
Sec. III C).

The performance presented in Fig. 3(a) can be quanti-
fied distinguishing in the measured observables, σest, the
ideal case contribution, σideal, and an added stochastic
noise term, ξM , which depends on the number of pulses
circulating the fiber, M :

σ
(k)
est = σ

(k)
ideal + ξ

(k)
M . (5)

The additive stochastic noise term for large ensembles has
a standard deviation std

(
ξ

(k)
M

)
∝ M−1/2. In contrast, the

ideal covariance terms γ
(k)
d decay exponentially with the

delay d [Eq. (4)]. The delay resolution will then be deter-
mined by the number of terms γ

(k)
d whose magnitude is

greater than the noise magnitude. How much do we need to
increment the ensemble size M in order to maintain equiv-
alent signal resolution at larger delays? This can be deter-
mined by constraining the signal-to-noise ratios (SNRs), as
shown in Appendix G 1, and leads to an exponential factor
in the increment in the number of the pulses

〈∣∣∣∣∣
γ

(k)
d

ξ
(k)
M

∣∣∣∣∣

〉

s,Ĥ

=
〈∣∣∣∣∣

γ
(k)
d+�d

ξ
(k)
M ′

∣∣∣∣∣

〉

s,Ĥ

−→ M ′

M
= R−2�d, (6)

where 〈·〉s,Ĥ stands for the average among realizations of
the reservoir [Eq. (1)] and random input strings. γ

(k)
d ξ

(k)−1
M

is a (N × N ) matrix whose elements are
[
γ

(k)
d ξ

(k)−1
M

]
ij

≡
[
γ

(k)
d

]
ij

[
ξ

(k)
M

]−1

ij
. This ratio matrix represents the SNR of

γ
(k)
d . The SNR constraint [Eq. (6)] establishes that good

visibility is obtained by incrementing the number of pulses
by a factor exponential in the delay, �d. Equivalently, the
delay resolution enhancement �d is a logarithmic function
of the ensemble size ratio M ′/M [see Eq. (G6)]. Consis-
tently with the ideal case Eq. (4), the dependence on the
reflectivity through the scaling factor, R−2�d, is reduced
by increasing the reflectivity R, implying a more conve-
nient implementation (requiring fewer measurements) for
large reflectivity BS.

Some implications of Eqs. (4) and (6) are illustrated
in Figs. 3(b) and 3(c) where the SNRs are plotted as
functions of the delay, d, in decibels. We observe that
they are straight lines with height equal to 〈|γ (k)

1 ξ
(k)−1
M |〉s,Ĥ

(at delay 1) and slope dependent only on the BS reflec-
tivity, which is due to the Rd−1 dependency in Eq. (4).
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In Fig. 3(b), we see that the effect of incrementing the
ensemble size is a uniform improvement of the SNR
at each delay, corresponding to a shift equal to
5 log10

(
M ′/M

)
(see Appendix G 2). In Fig. 3(c) instead,

the reflectivity R is changed while keeping M fixed. This R
change alters both the SNR of γ

(k)
1 (height) and the decay

of the SNR for further d (slope). A change from R to R′

yields a difference of the SNR of γ
(k)
1 of

〈∣∣∣∣∣
γ

(k)
1 (R′)

ξ
(k)
M

∣∣∣∣∣

〉

s,Ĥ

−
〈∣∣∣∣∣

γ
(k)
1 (R)

ξ
(k)
M

∣∣∣∣∣

〉

s,Ĥ

= 20 log10

[
1 − R′

1 − R

]
.

(7)

Hence for small delays, a large reflectivity corresponds
to a reduced feedback light measured in the detector and
can be detrimental, while for larger delays the situation is
reversed. Increasing the value of the reflectivity R trans-
lates into an enhancement of memory retention improving
the reservoir performance. Indeed more delayed terms
remain above the noise threshold [zero line for the SNR
in Fig. 3(c)].

C. Strategy to improve size scaling performance

A main advantage of quantum with respect to classical
RC is the possibility to access a large Hilbert space [25,34,
54]. Our aim is to test this potential when including quan-
tum measurement, addressing how statistical noise affects
the performance of the system when increasing the size of
the reservoir, N . We have seen that in the ideal case, the
total IPC grows quadratically with N [Fig. 2(b)] due to the
delay depth enhancement [Fig. 2(a)]. In the finite ensemble
case, however, the IPC displays a suboptimal growth with
the reservoir size [blue bars in Fig. 4(a)]. Indeed the resolu-
tion of high delay inputs becomes increasingly demanding
as the ideal delayed terms decrease exponentially with the
delay d, Eq. (4). It follows that in order to maintain a con-
stant normalized IPC when increasing the reservoir size
N one needs to improve the measurement precision, by
increasing the ensemble size M . Our aim is to quantify how
to scale the resources (here the number of feedback loop
pulses M ), to maintain a good IPC for larger reservoirs,
as in the ideal case. In principle, if the delay depth is a
function d(N ) ∼ αN 2 (in the ideal case) we would require
(in the finite ensemble case) the ensemble size M to be an
exponential function of the network size N of the form pro-
portional to R−2αN 2

for the delay resolution to also improve
quadratically with N . In the following, we show the per-
formance of a less demanding use of resources, with the
ensemble size M scaling with a polynomial, instead of an
exponential, factor in the reservoir size N but still allowing
to resolve longer delays.

From our previous discussion [Fig. 3(c)], it can be
inferred that reservoirs with a smaller size, N , will exhibit

(a)

(b)

FIG. 4. (a) Total IPC as a function of the reservoir size N
for the case of constant reflectivity R = 0.72 and ensemble size
M = 1.4 × 105 (blue) and the case where R(N ) = 1 − 10N−2

and M (N ) = 3N 6. (b) Normalized IPC as a function of N for
four different cases: when both R and M are constant (blue), when
M is constant and R varies with N (orange), when R is constant
and M varies with N (green) and when both R and M vary with
N (red). The constant values of the reflectivity and the ensemble
size are R = 0.72 and M = 1.4 × 105, while the N -variable ones
follow the functions R(N ) = 1 − 10N−2 and M (N ) = 3N 6.

shorter memory and therefore achieve better performance
for smaller values of the reflectivity R. In contrast, as N
increases, making R larger would be beneficial, improving
the resolution in accessing higher delayed input informa-
tion. This suggests a strategy to improve the performance
and the scaling of our reservoirs by tuning the reflectivity
of the BS, which is typically an accessible parameter in
experimental setups. We propose to take both the reflectiv-
ity R and the ensemble size M as functions of the reservoir
size N , R ≡ R(N ) and M ≡ M (N ), in order to sustain a
high normalized IPC when increasing N . We find that a
good resolution of delayed terms can be maintained for
larger reservoirs when considering

R(N ) = 1 − C
N 2 and M (N ) ∝ N 8, (8)

in which C is an arbitrary constant (see derivation in
Appendix G 3). We notice that the convenience of the
quadratic dependence in the reflectivity follows from the
scaling of the delay depth with the system size. Therefore
for non-Gaussian states, where the output layer could grow
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faster than quadratically with N , a different scaling could
be needed.

The condition in Eq. (8) ensures a quadratic scaling
of the delay resolution with the network size, N . It thus
may also guarantee a similar scaling with N of the total
IPC. Actually, in the parameter range explored here, even
numerical results limited to a less demanding number of
pulses, choosing the scaling of the ensemble size M (N ) ∝
N 6 but for the reflectivity R(N ) = 1 − 10N−2, succeed
in displaying a quadratic growth of the IPC [red bars in
Fig. 4(a)]. In other words, we achieve the ideal perfor-
mance scaling and a sharp improvement with respect to
the suboptimal scaling for the reflectivity and the ensem-
ble size kept constant [blue bars in Fig. 4(a)]. In Fig. 4(a),
we compare the total IPC scaling with the reservoir size
N for the case of constant ensemble size M and reflec-
tivity R (blue bars) and the case in which both M and R
scale with N (red bars). We set a 0.6 target normalized
IPC obtained with M (N = 6) = 1.4 × 105 measurements
for the smallest considered reservoir (N = 6). Of course a
higher target could be set with a larger ensemble M (N =
6). A quadratic capacity scaling is achieved with the men-
tioned growth of reflectivity and ensemble size with N [red
bars in Fig. 4(a)]. In order to assess the respective influ-
ences of increasing R and M , in Fig. 4(b), we compare the
normalized capacities of the two previous cases (blue and
red curves, respectively), with two more scenarios, when
one of these parameters is kept constant. Both the increase
of the reflectivity and the ensemble size are found to play
a key role in achieving the best performance. These results
illustrate that this photonic quantum platform exhibits the
three main ingredients for QRC, namely memory, nonlin-
earity and high dimensionality (quantum advantage), in a
realistic scenario.

D. Performance for a time-series prediction task

In this section, we analyze the performance of our reser-
voir in forecasting a chaotic time series. The concrete
task is to predict the next step in the series, so the tar-
get function is ȳ(sk) = sk+1. We use, as common in the
literature, the so-called Santa Fe dataset of experimental
measurements of a chaotic laser [55,56]. The angle encod-
ing chosen to perform the task is φk = 3πsk/4 as it pro-
vides high linear memory, as well as nonlinear memory [as
shown in Fig. 2(b) and Appendix E]. For the output layer,
we consider the covariance matrix and also fourth-order
moments:

{〈
X 2

i X 2
j

〉
M

,
〈
X 3

i Xj
〉
M

}
j ≥i

for i, j = 1, . . . , N (the

k superscripts, denoting the round trip, have been omitted
for clarity). These observables have been added to avoid
underfitting the data and, as a technical note, provide func-
tions of crossed input terms of the form sk−dsk−d′ , which
are relevant for performing this prediction task. Different
input encodings on Gaussian states than the ones used

in this paper have been shown to provide crossed input
functions in their second-order moments as well [52].

The dataset analyzed in this work contains a total of
4000 input points, which we divide into three consecutive
sequences: the wash-out steps (of length Lm), the training
steps (of length L) and the testing steps (of length L′). The
length of the training step sequence is always fixed to be
L = 3000, while the wash out and testing length would
depend on the choice of the BS reflectivity R. The wash-out
sequence length is set to guarantee the echo state property,
and from Eq. (4) we require RLm < 10−8 (so that Lm � 27
for R = 0.5 and Lm � 175 for R = 0.9). Given that the
higher the reflectivity, the higher the memory retention of
the reservoir, the number of wash-out steps to forget the
initial conditions increases with R. The testing phase is
done with the remaining data after the wash-out and the
training phases.

In Fig. 5(a), we compare a sequence of signal values
belonging to the testing phase with the reservoir predic-
tions, both in the ideal case and in the finite ensemble
case (with ensemble size M = 106). They provide accu-
rate predictions, although the finite ensemble case shows
a higher error when the oscillation amplitudes change
abruptly. In Fig. 5(b) the normalized mean square error
(NMSE), defined in Eq. (A5), is plotted as a function of the

(a)

(b)

FIG. 5. Time-series prediction of chaotic signal: (a) predic-
tion of chaotic signal (blue lines and dots) using a reservoir of
N = 12 modes and reflectivity R = 0.75 both in the ideal case
(green circles) and the finite ensemble case with size M = 106

(green stars). (b) Box plot of the normalized mean squared error
(NMSE) as a function of the size of the ensemble M for different
values of R. For a given value of M , the boxes for each reflec-
tivity are split in the x axis to avoid overlapping. In all cases the
number of modes inside each pulse was N = 12.
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ensemble size M (including the ideal limit M → ∞) for
different values of the BS reflectivity R. The performance
consistently improves when the ensemble size increases,
reaching state-of-the-art performance (with NMSE ∼ 10−2

[57–59]) for high ensemble sizes.
In the ideal scenario, errors below the 10−2 threshold

are reached with a relatively small reservoir size (N = 12).
As shown in Fig. 5(b), for relatively small measurement
ensembles, the best performance is achieved with R = 0.5,
while for higher values of M the optimal reflectivity is
R = 0.75. As we have seen in Sec. III B, for smaller val-
ues of R the SNR of the nearest past inputs (with a small
delay) is greater [see Fig. 3(c)]. For very small ensembles,
and thus a very high statistical noise, these setups with
small reflectivity become more robust. When the ensem-
ble size increases, a high SNR of further delayed inputs
(higher memory) becomes more relevant, and thus the case
of R = 0.75 improves its performance in comparison to the
R = 0.5 case. Still, forecasting and memory performance
are often varying differently [60]. It seems that, although
the R = 0.9 case provides the most amount of memory, it
is not so relevant for this forecasting task, and a higher
SNR for small and intermediate delayed inputs [the case
of R = 0.75 in Fig. 5(b)] has the best performance.

IV. DISCUSSION AND OUTLOOK

Optical platforms have been successful in classical RC
[61] and for their features, such as fast processing rates and
low decoherence, are also promising candidates for the first
quantum implementations [25]. In ideal conditions, pho-
tonic platforms for QRC have been predicted to achieve
optimal performance, displaying a quantum improvement,
in particular the access to an enlarged Hilbert space and
operation with low signals [30,62]. Still, to implement
successfully and in real-time temporal tasks with a QRC
advantage, open challenges need to be overcome [28,29,
62,63], namely the limited experimental precision when
estimating the output layer, as well as reducing the needed
resources, also avoiding the use of external memories.
Here, we have proposed an optical platform suitable for
real-time QRC based on a physical ensemble of reservoirs,
as independent pulses recirculating inside an optical fiber
at each input injection.

The proposed setup displays the needed features for RC,
such as fading memory and, in the limit of an infinite
ensemble, it achieves optimal performance, with quadratic
scaling of the IPC with the reservoir size (number of modes
inside each pulse) for vacuum Gaussian states. This ideal
limit is degraded by the effect of statistical noise and, as we
increase the size of the reservoir N , the number of pulses in
the fiber to sustain this quantum performance needs to be
boosted. The strategy proposed here to overcome this lim-
itation in large Hilbert space allows sustaining a quadratic
scaling of the IPC, with efficient use of resources, thanks to

an increase of the beam-splitter reflectivity when the reser-
voir size is scaled up. Indeed, being the dynamics of our
platform linear, we can get analytical insights and find a
bound factor for the number of pulses that is polynomial
in the reservoir size. Beyond the performance in terms of
memory, we have also checked that our platform can be
used for nontrivial temporal tasks such as chaotic series
prediction.

Optical devices required to implement our proposal in
a laboratory are available with state-of-the-art photonic
technology and the proposed architecture for on-line time-
series processing provides both a tunable fading memory
and the possibility to realize large measurement ensem-
bles. With respect to recent experiments in NISQ circuits
[29], our approach overcomes the need for external storage
of input and repeating the experiment, just requiring the
photonic QRC to be faster than the input rate to achieve
real-time processing. For nontemporal classification tasks,
a general dynamical framework applicable in circuit QED
platforms has been reported in Ref. [63], while integrated
photonic circuits [62] have been proposed using a quan-
tum memristor. Our approach can be extended also to these
platforms and going beyond Gaussian states.

Our work paves the way to real-time time-series pro-
cessing with QRC, with state-of-the-art photonics tech-
nology and displaying a scalable quantum improvement
leveraging limited resources.
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APPENDIX A: RESERVOIR COMPUTING

Reservoir computing (RC) is a ML framework that
takes advantage of complex dynamical systems to per-
form learning tasks with a low-cost training protocol. It is
especially suited for temporal tasks regarding time series.
Every RC scheme can be separated into three steps and lay-
ers: the input layer, the reservoir dynamics and the readout
layer. For the input layer, a vector sk from the time-series
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signal, {s1, s2, . . . , sL}, is encoded and fed into the
dynamical system, also called reservoir, degrees of free-
dom. While in general each sk can be a vector, throughout
our work we take it as a scalar (the same applies to the
output elements). The length of the list, L, denotes the
number of training samples, or training steps, to perform
the learning protocol. After each introduction of an input,
the reservoir degrees of freedom, vk−1, evolve in time
through a nonlinear mapping for a fixed time �t (reser-
voir dynamics). The reservoir observables and degrees of
freedom, vk, are measured and taken as outputs. A linear
mapping is then applied to these observables to yield an
output vector yk (readout layer), which is built as a function
of the weight parameters that are updated in the training
stage. After the last step, the protocol continues for the
following input, sk+1.

We can write the dynamical mapping of the reservoir
degrees of freedom as

vk = H (vk−1, sk) ; k ∈ Z, (A1)

in which we need H to be a nonlinear mapping of the input
sk. This mapping will remain fixed throughout the whole
protocol. Following standard RC practices, we take the
output layer function to be a linear function of the reservoir
observables

yk = w0 + w�vk

= (
1, v�

k

) (w0
w,

)
(A2)

with the (DR + 1)-dimensional vector W = (
w0, w�)�

containing the training weights (we add a constant bias
term w0). For a given set of L inputs that we feed to the
reservoir, we can define the following matrices:

V =

⎛
⎜⎜⎜⎜⎝

1 v�
1

1 v�
2

...
...

1 v�
L

⎞
⎟⎟⎟⎟⎠

; y =

⎛
⎜⎜⎜⎝

y1

y2
...

yL

⎞
⎟⎟⎟⎠ , (A3)

so that the following equation holds:

y = VW. (A4)

After choosing a given target function that we want our
reservoir to reproduce, ȳ, we want to find the weights that
minimize the normalized mean-square error (NMSE) of

the predicted y and the target

NMSEL(y, ȳ) =
∑L

k=1(yk − ȳk)
2

∑L
k=1 ȳ2

k

. (A5)

The optimal set of weights for this condition to hold are
the ones obtained through the following procedure [64]:

Wopt = VMPȳ, (A6)

where VMP = (
V�V

)−1 V� is the Moore-Penrose inverse
of V. The higher the value of L the more precise our
estimation of the optimal weights will usually be.

APPENDIX B: LINEAR CAPACITY AND
INFORMATION-PROCESSING CAPACITY

Throughout this paper, we test the performance of our
(already trained) reservoirs using the capacity to repro-
duce a function of the inputs. We consider a reservoir
that has already finished the learning protocol to repro-
duce a given target function ȳ. We thus take a given
string of L′ inputs s = (s1, s2, . . . , sL′) and a vector ȳ =
(ȳ1, ȳ2, . . . , ȳL′) with components ȳk = ȳ(s, k). The length
of the additional sequence of inputs and target function
vectors, L′, denotes the number of testing steps right after
the learning protocol. Then, the capacity of our reservoir
to reproduce the given target function ȳ is

Cȳ = max [0, 1 − minW NMSEL′(y, ȳ)] , (B1)

where y is the output vector of the reservoir, as defined
in Eq. (A4), after the training of the weights has been
performed. To check the memory of the system we use
the linear capacity, in which we set the target functions
to be ȳd(sk) = sk−d, where the parameter d denotes the
delay of the input. As a quantitative measure of how well
our reservoir performs in general, we use the informa-
tion processing capacity (IPC) or total capacity [49]. The
main idea is to compute the capacity of all the different
orthogonal functions that our reservoir can approximate.
By choosing a complete, orthogonal family of functions,
{ȳ}, the IPC can be estimated as

IPC =
∑

ȳ

Cȳ. (B2)

In our simulations, we have chosen the family of functions
to be

ȳ(d)
D (sk) = PD(sk−d), (B3)

where the function PD is the normalized Legendre polyno-
mial of degree D. As we cannot sum over an infinite num-
ber of delays and degrees, we have chosen d ∈ [0, dmax]
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and D ∈ [1, Dmax]. For every simulation in this article, it
has sufficed to take dmax = 75 and Dmax = 5.

Fading memory is a necessary property for any dynam-
ical system to work as a reservoir computer [65]. In our
platform, short-term memory is ensured by the BS cou-
pling (proof on Appendix F). In fact, as it was shown in
Eq. (4), the magnitude of the delayed terms γ

(k)
d dropped

as Rd (d denoting the delay and R denoting the BS reflec-
tivity). For a large enough delay, the reservoir would not
be able to resolve that delayed input information. As we
start our reservoir in a completely random state, we first
introduce a list of Lm wash-out inputs, before starting the
learning protocol, just to ensure the initial conditions have
been forgotten by the reservoir. We make Lm large enough
to have the prefactor going below the numerical precision.
This is equivalent to fulfilling the following condition:

RLm < 10−16, (B4)

so the number of wash-out steps depends on R. For our
estimations of the linear capacity and the IPC on Sec. III,
the training steps have been chosen to be L = 104 and the
testing steps L′ = 5000.

APPENDIX C: GAUSSIAN STATES

The evolution of an N -mode Gaussian quantum state ρ̂

is completely determined by the dynamics of its displace-
ment vector r of dimension 2N and its positive symmetric
covariance matrix σ of dimension 2N × 2N [66,67]. Each
element of r (σ ) denotes the mean value (covariance)
of each quadrature for each mode. As we inject vac-
uum states, the displacements of the external signal are
null vectors. The covariance matrix of the ancilla state is
the composition of N independent and identical squeezed
states. We can thus write its covariance matrix at round trip
k as σ (k)

anc = ⊕N
i=1 σsq(sk), in which σsq(sk) is the covari-

ance matrix of each single external mode. It is a nonlinear
function of the kth input, sk, which can be expanded as

σsq(sk) =
(

c+(sk) z(sk)

z(sk) c−(sk)

)
, (C1)

for the following functions:

c±(sk) = cosh (2rk) ± cos (φk) sinh (2rk) (C2)

z(sk) = sin (φk) sinh (2rk) . (C3)

The two main parameters to tune are the squeezing
strength, rk, and the squeezing angle, φk. As commented at
the beginning of Sec. III, we use the following encoding:
rk = 1 and φk = 3πsk/4.

1. Gaussian measurements on multipartite systems

In this section, we provide an analytical treatment
to describe the effect of quantum measurements on the

quadrature operators. We start by defining a composite
Gaussian state, which we can separate into subsystems
A and B. We can define the displacement vector and
covariance matrix of the total Gaussian state as

r =
(

rA
rB

)


 =
(

σA σAB
σAB σB

)
, (C4)

where rA (rB) and σA (σB) are the displacement vector and
covariance matrix of subsystem A (B), while σAB denotes
the correlations between subsystem A and B. We now con-
sider measurements that can be performed on subsystem
B so that the conditional state of subsystem A remains
Gaussian. For that we consider the family of general-dyne
measurements [67,68], in which homodyne detection is
included. Thus, measuring the subsystem B with a random
outcome, rB

out, gives rise to the following conditional state
of A:

r′
A = rA + σAB (σB + σm)−1 (rB

out − rB
)

(C5)

σ ′
A = σA − σAB (σB + σm)−1 σ�

AB, (C6)

where σm is a positive symmetric matrix that depends
on the kind of general-dyne measurement that is being
performed. The measurement outcome is drawn from a
multivariate Gaussian distribution with covariance matrix
equal to σB + σm and mean vector equal to rB. Thus, we
can write

rB
out = rB + √

σB + σmu(0, I), (C7)

where u(0, I) is a random vector drawn from a Gaussian
distribution with 0 mean and covariance matrix equal to
the identity, I . With this, we can rewrite Eq. (C5) as

r′
A = rA + σAB (σB + σm)−1/2 u(0, I), (C8)

which describes how measuring subsystem B has affected
the state in A.

For the specific case of homodyne detection of the x
quadratures of each mode, we have [66,67,69]

σm = lim
z→∞

N⊕
i=1

diag
(
z−2, z2) . (C9)

In this case, the term of Eqs. (C5) and (C6) (σB + σm)−1

in the limit of z tending to infinity, tends towards the
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following expression:

lim
z→∞

[
σB +

N⊕
i=1

diag
(
z−2, z2)

]−1

= (�σB�)MP , (C10)

where � = ⊕N
i=1

(
1 0
0 0

)
and MP stands for the

Moore-Penrose inverse, [69]. The outcome vector from the
homodyne measurement can be modeled from Eq. (C7),
using the σm matrix from Eq. (C9). However, special care
has to be taken in this case, as in the limit of z → ∞ we
are introducing a divergent variance in the p-quadrature
degrees of freedom. The shape that the inverse matrix
from Eq. (C10) takes in this limit ensures convergence of
Eqs. (C5) and (C6), as the p-quadrature degrees of freedom
of the measurement outcome do not play a role in deter-
mining the conditional state of A. In practice, to obtain
the outcome observables of the homodyne detection, we
trace out the diverging degrees of freedom and, thus, con-
sider only the x quadratures. The resulting probability
distribution of the outcome becomes

p(xB
out) =

exp
{
− (

xB
out − xB

)�
σ−1

B,x

(
xB

out − xB
)}

πN
√

Det(σB,x)
, (C11)

where σB,x = Trp (σB) and xB = Trp (rB) (the degrees of
freedom of the p quadratures have been traced out). The
notation Trp [•] does not actually stand for the usual par-
tial trace of a matrix, it is just a way of writing we are
tracing out the components of the covariance matrix and
first-moment vector, which contain information of the p
quadratures of every mode. For a generic 2N -dimensional
covariance matrix, σ , tracing out these components would
yield a N -dimensional matrix with components:

[
Trp (σ )

]
ij = 〈

x̂ix̂j
〉− 〈

x̂i
〉 〈

x̂j
〉
, (C12)

where the mean values stand for the quantum expected val-
ues of the observables for a given quantum state. This is
consistent with the fact that, in experiments, homodyne
detection only yields an outcome of one quadrature for
each mode.

In our platform, we can easily identify the two subsys-
tems. Before the BS coupling, we have the pulse coming
out from the fiber and the external ancilla pulse, which
are both independent of one another. After the BS cou-
pling, we have the pulse that belongs to the fiber path as
one subsystem and the one that travels to the homodyne
detector (HD) as another. In this last case, there is gener-
ally entanglement between them (appearing as correlation
terms in the σAB matrix). As the x quadratures of each
pulse that reaches the detector is measured, the relative
pulse (going through the fiber path) is conditioned to the

measurement outcomes as detailed in Eqs. (C5) and (C6).
The observables averaged over this ensemble of condi-
tional states resemble the unconditional evolution, as it
is expected in the case of Gaussian states [68]. Backac-
tion effects in other quantum substrates would generally
affect averages performed over conditional ensembles, so
the unconditional evolution is not completely obtained
through averaging. In the context of QRC this can nega-
tively affect the performance, as it was shown in the case
of qubits [28].

2. Round-trip dynamics of the reservoir

In this section, we describe the dynamical evolution of
a single pulse at each round trip. As a physical ensemble
of pulses is found in the fiber, the resulting equations will
hold true for every pulse. At round trip k, every pulse com-
ing out from the fiber will eventually couple to an external
ancilla state through the BS. The quantum state of the
whole system prior to the BS coupling can be described
with the following displacement vector and covariance
matrix:

r(k)
0 =

(
r(k)

R
0

)
(C13)



(k)
0 =

(
σ

(k)
R 0
0 σ (k)

anc

)
, (C14)

where we write it as a composite system in which rR and
σR are the displacements and covariance matrix of the
pulse coming out from the fiber and σanc is the covariance
matrix of the ancilla pulse; the subindex 0 is introduced
to denote the initial state in which the ancilla pulse and
the reservoir pulse have not yet arrived to the BS. We
remark that the ancilla pulse has a null displacement vec-
tor, as it is a vacuum state. Also, as both pulses are initially
independent, the off-diagonal matrices of 
0 are null. As
there are N modes inside each pulse, with two quadratures
each, the displacement vectors of each subsystem are 2N
dimensional and their covariance matrices are 2N × 2N
matrices. In total, r0 is a 4N -dimensional vector and 
0
is a 4N × 4N matrix. The action of the BS can be written
in the following matrix form:

BR =
( √

R I2N
√

T I2N

−√
T I2N

√
R I2N

)
, (C15)

where I2N is the 2N × 2N identity matrix. We recall that R
(T) is the reflectivity (transmissivity) of the BS. In turn, the
symplectic matrix that describes the evolution inside both
nonlinear crystals is the following:

S(�t) =
(

S1(�t) 0
0 S2(�t)

)
, (C16)
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in which S1 (S2) describes the evolution inside the crys-
tal placed at the feedback fiber (detector) path. These
matrices describe the evolution of the quadrature opera-
tors under the action of quadratic Hamiltonians such as
the ones we are considering in Eq. (1). Concretely, the
matrices S1(�t) and S2(�t) are analog to the generic uni-
tary operator Û(�t) = exp

[
−iĤχ(2)�t

]
for each nonlinear

crystal. They act on the quadrature operators in phase space
[66,67]. In our discussion of the parameters at the begin-
ning of Sec. III, it was mentioned that the materials were
not allowed to produce squeezing levels far beyond 15 dB.
The squeezing produced by the materials can be computed
by the Bloch-Messiah decomposition of matrices S1 and
S2 [70,71]. We write the symplectic matrix of the whole
process (BS + nonlinear crystals) as follows:

S′(�t) = S(�t)BR. (C17)

After both pulses have come out from the nonlinear media,
their state parameters have evolved as follows:

r′ = S′(�t)r0, (C18)


′ = S′(�t)
0S′(�t)�, (C19)

where the k labeling has been omitted for clarity. We can
now split both r′ and 
′ into two subsystems: one for the
pulse that is being reinjected into the fiber and another one
for the pulse that travels to the detector. We thus label with
the “fiber” (“HD”) subscript to the parameters of the pulse
that is reinjected in the fiber (traveling to the detector). So
the resulting displacement vector and covariance matrix
from Eqs. (C18) and (C19) can be written as

r′ =
(

rfiber
rHD

)
, (C20)


′ =
(

σfiber σcorr
σ�

corr σHD

)
, (C21)

in which σcorr is a 2N × 2N matrix containing the cor-
relations between the fiber pulse and the detected pulse.
It is equivalent to σAB in Eq. (C4). As we saw in Sec.
C 1, and equivalent to the result in Eq. (C7) the measure-
ment outcome of the measured pulse quadratures is the
following:

r(k)
out = r(k)

HD +
√

σ
(k)
HD + σmu(k), (C22)

where, again, u(k) is a random 2N -dimensional vector
whose components are drawn from a normal distribution
with zero mean a variance equal to one. The feedback pulse
coming out from the fiber in the following round trip will

have the following parameters:

r(k+1)
R = r(k)

fiber + σ (k)
corr

[
σ

(k)
HD + σm

]−1/2
u(k), (C23)

σ
(k+1)
R = σ

(k)
fiber − σ (k)

corr

[
σ

(k)
HD + σm

]−1 [
σ (k)

corr

]�
, (C24)

in which the state of the pulse is conditioned to the
outcome measurement from the homodyne detector [see
Eqs. (C5) and (C6)].

3. Recursive equations

In this subsection, we work from Eqs. (C23) and (C24)
to obtain expressions for the relevant output parameters
as functions of the input history. These expressions are
going to be useful to obtain the ideal case observables
from Eq. (3). We start with the output displacements. From
Eq. (C18) we have the following simple relations:

r(k)
fiber =

√
RS1(�t)r(k)

R (C25)

r(k)
HD = −

√
TS2(�t)r(k)

R . (C26)

We can substitute Eq. (C23) into Eqs. (C25) and (C26).
Thus, by recursion, it yields the result

r(k)
fiber =

k∑
d=1

Rd/2Sd
1(�t)σ (k−d)

corr

×
[
σ

(k−d)
HD + σm

]−1/2
u(k−d) (C27)

r(k)
HD = −TS2(�t)

k∑
d=1

R(d−1)/2Sd
1(�t)σ (k−d)

corr ,

×
[
σ

(k−d)
HD + σm

]−1/2
u(k−d). (C28)

Deviations from the origin (vacuum) in the reservoir pulse
are originated by the stochastic displacements that the
recurrent backaction produces. The same procedure can be
performed with the covariance matrices. From Eq. C19,
these relations follow

σ
(k)
fiber = S1(�t)

[
Rσ

(k)
R + Tσ (k)

anc

]
S1(�t)�, (C29)

σ
(k)
HD = S2(�t)

[
Tσ

(k)
R + Rσ (k)

anc

]
S2(�t)�, (C30)

σ (k)
corr =

√
RTS1(�t)

[
σ

(k)
R − σ (k)

anc

]
S2(�t)�. (C31)

From the equation for σfiber, we note that similar recursion
equations can be obtained by substituting it in Eq. (C19).
By recursion we can, again, get the expression of the
covariance matrix in Eq. (C30) as functions of the input
history. We write only the expression for σHD below, as
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FIG. 6. Encoding choice effect on the IPC: bar plot of the nor-
malized IPC as a function of different angle encodings φk = βsk.
Each bar is split into different degree contributions. In all cases
the reservoir size is N = 10 and the reflectivity is R = 0.5.

it is the only one that is necessary for the mathematical
derivations in the next section:

σ
(k)
HD = RS2σ

(k)
ancS�

2

+ TS2

[
k∑

d=1

Rd−1Sd−1
1

[
TS1σ

(k−d)
anc S�

1

−σ (k−d)
corr

[
σ

(k−d)
HD + σm

]−1 (
σ (k−d)

corr

)�] (
Sd−1

1

)�]
S�

2 .

(C32)

The �t dependency of S1 and S2 has been omitted for
clarity.

APPENDIX D: INPUT ENCODING AND
NONLINEARITY

In this brief section we are going to elaborate on the
degree distribution of the IPC as a function of the encod-
ing choice, which is known to influence the nonlinear-
ity [30,72,73]. We recall that the input ancilla states are
single-mode squeezed vacuum states with the input signal
encoded in their covariance matrices as in Eqs. (C1)–(C3).
Concretely, in the main text we have used a squeezing
angle encoding setting rk = 1 and sk = 3πsk/4. The input
could also be encoded in the squeezing strength rk, yield-
ing a different degree distribution [30,72]. In this Appendix
we focus our attention on angle encodings with rk = 1 and
φk = βsk, where β > 0. In Eqs. (C2) and (C3) the input
nonlinearity comes from the functions sin(φk) and cos(φk).
We now write the Taylor expansion of these functions as

sin(βsk) = βsk + β3s3
k

6
+ O(β5), (D1)

cos(βsk) = 1 − β2s2
k

2
+ O(β4). (D2)

And so we actually see that the smaller the value of β, the
closer c±(sk) (z(sk)) are from being linear functions of sk

and s3
k (s2

k). So for smaller values of β the linear and low
nonlinear contributions to the IPC will be greater. On the
other hand, as we increase the value of β, the high non-
linear terms will be more relevant. This is visualized in
Fig. 6.

APPENDIX E: ENSEMBLE AVERAGES AND
IDEAL CASE LIMIT

In this section, we derive the expression for the covari-
ance matrix of the output signal in Eq. (C22) for an infinite
ensemble of pulses, so that we get rid of any statistical
error. It is relevant to remark that, as we are not consider-
ing any filter, every pulse in the ensemble is conditioned
to a measurement outcome history throughout a certain
number of round trips. As we see, by averaging over an
ensemble of conditioned realizations with no filters, the
unconditional state arises. As it was already commented
in Sec. II, this is an already known feature of conditional
Gaussian states under general-dyne monitoring, [68].

To denote the ensemble pulses we add a label m, which
ranges from 1 to M (the total number of pulses in the
ensemble). In that manner, we take Eq. (C22) and add the
ensemble label, so the measurement outcome of the mth
pulse is

r(k,m)
out = r(k,m)

HD +
√

σ
(k)
HD + σmu(k,m). (E1)

In Fig. 1(b) the outcome measurement of the first term
of r(k,m)

out for some number of pulses in the ensemble was
shown. As we discussed at the end of Sec. C 1, for homo-
dyne detection of the x quadratures the readout vector has
N terms (instead of the 2N terms that r(k,m)

out in a more
general scenario). For this section, we arrive at the final
expressions in the general case and, then, take the homo-
dyne limit. In Sec. II, we introduced the ensemble averages
as

〈
A(k)〉

M = 1
M

M∑
m=1

A(k,m) (E2)

for any generic measured observable, A. We use the fol-
lowing notation to denote the average limit of an infinite
number of ensemble realization:

〈
A(k)

〉 ≡ limM→∞
〈
A(k)

〉
M .

Having this defined, we consider the expected value of the
covariance of the output signal from Eq. (E1) and obtain

〈
r(k)

outr
(k)�
out

〉
=
〈
r(k)

HDr(k)�
HD

〉
+ σ

(k)
HD + σm, (E3)

in which we have taken advantage of the fact that the terms
of every vector u(k,m) are taken from a one-dimensional
normal distribution with zero mean and variance equal
to one. If we substitute r(k,m)

HD with its expression from
Eq. (C28), perform the average over infinite pulses, and
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also substitute σ
(k)
HD from its expression in Eq. (C32), we

can derive the resulting expression
〈
r(k)

outr
(k)�
out

〉
= RS2σ

(k)
ancS�

2 + σm

+ T2S2

[
k−1∑
d=1

Rd−1Sd
1σ

(k−d)
anc

(
Sd

1

)�
]

S�
2 . (E4)

We already note that these second moments resemble the
unconditional dynamics, as there are no terms depending

on σ (k−d)
corr

[
σ

(k−d)
HD + σm

]−1
σ (k−d)�

corr , which determined the
conditional evolution of the feedback pulses, as seen in
Eqs. (C23) and (C24). Although the pulses that reach the
detector are not, in general, vacuum states (due to the con-
ditional displacements), we can easily see that

〈
r(k)

out

〉
= 0

(back to the unconditional scenario). In that case, the sec-
ond moments’ expression that we derived in Eq. (E4) is
equal to the covariance matrix of the output signal, that
is,
〈
r(k)

outr
(k)�
out

〉
= cov

(
r(k)

out

)
. We rename cov

(
r(k)

out

)
to σ

(k)
ideal,

yielding

σ
(k)
ideal =

∞∑
d=0

γ
(k)
d + σm, (E5)

in which each γ
(k)
d is the term including σ (k−d)

anc from
Eq. (E4). Expression (E5) is similar to Eq. (3). The only
difference lies in the fact that in Eq. (3) the covariance cor-
responds to the position quadratures block as we have con-
sidered homodyne detection of the x quadratures to obtain
σ

(k)
ideal. This is equivalent to tracing out the p-quadrature

degrees of freedom from every term in Eq. (E5), taking into
account that Trp (σm) = 0 (for this measurement scheme).
This yields the expression

γ
(k)
0 = RTrp

{
S2σ

(k)
ancS�

2

}

γ
(k)
d = (1 − R)2Rd−1Trp

{
S2Sd

1σ
(k−d)
anc

(
Sd

1

)�
S�

2

}

for d ≥ 1, (E6)

in the case of homodyne detection of the x quadratures.
We have replaced the transmissivity T by 1 − R to make
the relation between Eqs. (E6) and (4) more evident. It can
be noted from Eq. (E6) that the dependence on d is not only
found on Rd−1, but also inside the trace (in the terms Sd

1).
However, we observe numerically that averaging among
different Hamiltonians and different input strings removes
every dependency on d apart from the one in Rd−1.

APPENDIX F: FADING MEMORY CONDITION
AND ECHO STATE PROPERTY

In this section, we briefly state how both the fad-
ing memory condition and the echo-state property [15,

65], which are necessary conditions for a functional RC
platform, are fulfilled by our platform. We begin from
the theorem formulated in Ref. [30] for linear Gaus-
sian dynamics. We have a linear Gaussian system whose
quadrature operators evolve at the kth time step such as

r̂(k+1)
R = Ar̂(k)

R + Br̂(k)
anc, (F1)

where r̂(k)
R is the quadrature operator vector of the reservoir

and r̂(k)
anc the one of the ancilla input, both at time step k.

Then both the echo-state property and the fading memory
condition are fulfilled if ρ [A] < 1, being ρ [•] the spec-
tral radius of a matrix. In our case, the symplectic matrix
determining the dynamics of our platform is the one from
Eq. (C17), which can be explicitly written in the form

S′(�t) =
( √

RS1(�t) −√
1 − RS1(�t)√

1 − RS2(�t)
√

RS2(�t)

)
. (F2)

In our platform, it can be clearly seen how A ≡ √
RS1(�t),

so we must have ρ
[√

RS1(�t)
]

= √
Rρ [S1(�t)] < 1. It

can be shown that ρ [S1(�t)] = 1. The proof is carried
out as follows: from the time evolution of the quadra-
ture operators in the Heisenberg picture under a quadratic
Hamiltonian [as on Eq. (1)] it can be shown that the result-
ing symplectic transformation can be written as S1(�t) =
exp (�H1�t), where H1 is a 2N × 2N symmetric matrix

and � = ⊕N
i=1

(
0 1

−1 0

)
. We have considered only sta-

ble Hamiltonians in our simulations, so H1 > 0 (positive
definite). In this scenario, it can be shown that the eigen-
values of �H1 are purely imaginary [67], which means that
ρ [exp (�H1�t)] = 1. We thus have that in our platform
ρ(A) = √

R, which is always < 1, and thus both the fading
memory condition and the echo-state property are fulfilled.

APPENDIX G: RESOLUTION ANALYSIS

In this section, we analyze in detail the main mathemat-
ical relations concerning the SNR of the delayed terms,
γ

(k)
d . We thus show how we have obtained the main the-

oretical results from Sec. III B. We start from the delayed
SNR matrix,

∣∣∣γ (k)
d /ξ

(k)
M

∣∣∣, that was introduced in Sec. III B.
If we average the SNR among realizations of the input
story and the Hamiltonians, we observe that

〈∣∣∣∣∣
γ

(k)
d

ξ
(k)
M

∣∣∣∣∣

〉

s,Ĥ

= Rd−1

〈∣∣∣∣∣
γ

(k)
1

ξ
(k)
M

∣∣∣∣∣

〉

s,Ĥ

. (G1)

Equation (G1) is a key numerical observation and will
be useful in the following arguments. For the rest of the
section, the subindex s, Ĥ and the label (k) are removed
for simplicity. That is, when averaging over realizations
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the magnitude of the ideal delayed terms differs only on a
factor equal to Rd−1. In Eq. (G1) the γ1 term can be further
expanded as

〈∣∣∣∣
γ1

ξM

∣∣∣∣
〉

=
√

M (1 − R)2CSNR. (G2)

In Eq. (G2) the term
√

M comes from the dependency of
M of the noise, while the term (1 − R)2 denotes the trans-
missivity dependence from Eq. (4) that has been already
commented. The term CSNR is neither a function of M , R
nor d, but can be dependent on all the other parameters
(including N ). From Eqs. (G1) and (G2) we are going to
derive the main theoretical equations regarding the SNR.

1. Derivation of Eq. (6)

In this subsection, we derive an expression that accounts
for how much we have to scale the number of measure-
ments M to be able to resolve �d steps in the past. We start
by considering that we can already, with M measurements,
properly resolve inputs up to a certain delay d. That is,
the SNR of γ

(k)
d for a statistical noise ξ

(k)
M is high enough.

We now impose the SNR of γd+�d to be equal to the one
of γ

(k)
d . This would require a higher number of measure-

ments, which we call M ′. This equality can be written as
follows:

〈∣∣∣∣
γd

ξM

∣∣∣∣
〉

=
〈∣∣∣∣

γd+�d

ξM ′

∣∣∣∣
〉

. (G3)

If we now substitute from Eqs. (G1) and (G2), we get

√
MRd =

√
M ′Rd+�d. (G4)

By reordering and simplifying the equation above we end
up with the following result:

M ′

M
= R−2�d, (G5)

which is the one shown in Eq. (6). We can isolate the term
�d from Eq. (G5) to yield the following result:

�d = logR

√
M
M ′ . (G6)

This relation relates the measurement increase, M ′/M ,
with the resolution enhancement, �d. We note that a lin-
ear increase in the delay resolution yields an exponential
increase in the number of measurements.

2. SNR main equations

The SNR lines shown in dBs in Figs. 3(b) and 3(c) have
a simple mathematical representation. From Eq. (G1) we
can infer that

10 log10

〈∣∣∣∣
γd

ξM

∣∣∣∣
〉

= 10 log10

〈∣∣∣∣
γ1

ξM

∣∣∣∣
〉

+ 10(d − 1) log10 R, (G7)

which is just a linear equation of d. In visual representa-
tions, such as in Figs. 3(b) and 3(c), the slope corresponds
to 10 log10 R and the height to 10 log10〈|γ1ξ

−1
M |〉. Using

Eq. (G2), we can further expand the SNR of γ
(k)
1 inside

the logarithm as

10 log10

〈∣∣∣∣
γ1

ξM

∣∣∣∣
〉

= 10
[

1
2

log10 M + 2 log10(1 − R)

+ log10 CSNR
]

. (G8)

The SNR thus has a simple behavior when changing the
parameters M and R. For instance, changing the number
of measurements from M to M ′ yields a difference on the
SNR of γ

(k)
1 of

〈∣∣∣∣
γ1

ξM ′

∣∣∣∣
〉
−
〈∣∣∣∣

γ1

ξM

∣∣∣∣
〉

= 5 log10

(
M ′

M

)
. (G9)

For the case of changing the reflectivity from R to R′, the
difference on the γ

(k)
1 term is given by

〈∣∣∣∣
γ1(R′)

ξM

∣∣∣∣
〉
−
〈∣∣∣∣

γ1(R)

ξM

∣∣∣∣
〉

= 20 log10

(
1 − R′

1 − R

)
. (G10)

The term multiplying (d − 1) (slope) also changes to
10 log10 R′.

3. Derivation of Eq. (8)

In this subsection, we now consider a dependency with
the size of the system, N . We aim to get an equation that
allows us to improve the delay resolution quadratically
without an exponential scaling of M . We argued that only
the SNR of γ

(k)
1 has a dependency on N through the term

CSNR in Eq. (G2). In the size intervals we have consid-
ered for this paper (up to N = 12), 〈|γ1ξ

−1
M |〉 remained

practically constant with N , as it is shown in Fig. 7. We
have thus taken the approximation in which we consider
no dependency on N .

The strategy to get a quadratic increase in resolution as
we increase N , which ensures that the normalized IPC at
least remains constant, is conceived as follows. We know
that for higher values of R it is less costly to resolve further
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FIG. 7. SNR of γ
(k)
1 as a function of N . The different lines

correspond to a different value of R, while M = 106 for both.

terms into the past. We are thus interested in increasing the
value of R with N . We consider the following function:

R(N ) = 1 − C
N 2 , (G11)

in which C is an arbitrary constant. We recall the SNR
equality from Eq. (G3) that we used to obtain Eq. (G5), tak-
ing into account that now neither R nor M remain constant.
We take the delay so that, for a fixed SNR, d(N ) = αN 2,
where α is an arbitrary constant. This will ensure that the
resolution scales quadratically with N . We can rewrite the
equality in Eq. (G3) as

√
M (1 − R)2Rd−1 =

√
M ′(1 − R′)2(R′)d′−1, (G12)

where M , R, and d are functions of N and M ′, R′, and d′
are functions of N ′. The equality above can be reordered
as

√
M ′

M
=
(

1 − R
1 − R′

)2 Rd−1

(R′)d′−1
. (G13)

We now turn our attention to the last term regarding the
Rd−1 and (R′)d′−1. If we substitute the chosen functions
R(N ) and d(N ) in the term Rd−1, we can perform a series
expansion of N−1, yielding

R(N )d(N )−1 =
(

1 − C
N 2

)αN 2−1

= e−Cα + O (
N−2) . (G14)

Thus, the fraction of Rd−1/(R′)d′−1 � 1. With this,
Eq. (G13) can be rewritten as

M ′

M
�
(

N ′

N

)8

. (G15)

We end up with M (N ) ∝ N 8, which is the polynomial
scaling condition from Eq. (8).
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