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In addition to the need for stable and precisely controllable qubits, quantum computers take advantage
of good readout schemes. Superconducting qubit states can be inferred from the readout signal transmitted
through a dispersively coupled resonator. This work proposes a readout classification method for super-
conducting qubits based on a neural network pretrained with an autoencoder approach. A neural network
is pretrained with qubit readout signals as autoencoders in order to extract relevant features from the data
set. Afterward, the pretrained-network inner-layer values are used to perform a classification of the inputs
in a supervised manner. We demonstrate that this method can enhance classification performance, particu-
larly for short- and long-time measurements where more traditional methods present inferior performance.
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I. INTRODUCTION

The construction of a computer exploiting quantum—
rather than classical—principles represents a formidable
scientific and technological challenge. Nowadays, super-
conducting quantum processors are reaching outstanding
results in simulation [1–4] and computational power [5].
However, building a fault-tolerant quantum processor still
presents many technical challenges. First, the ability is
required to generate high-fidelity gates, exploiting both
hardware (e.g., improving the manufacturing process and
the design of available qubits [6–8]) and software improve-
ments (e.g., designing precise optimal control protocols
[9–11]). Second, one needs the ability to perform a com-
plete quantum error-correction protocol [12–14]. Finally, it
is of primary importance to have a high-fidelity qubit read-
out measurement to extract information from the device,
especially for observables that are very sensitive to it (for
an extreme case of this, see, e.g., Ref. [15]). In addition
to a careful design of the system parameters [16,17] or
improvement in fabrication processes extending the qubit
coherence time [6,18], the readout fidelity can be enhanced
through the use of machine-learning techniques.

The currently most common qubit readout technique is
the dispersive readout [in quantum electrodynamics (QED)
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circuit architecture], which couples the qubit to a read-
out resonator. In this approach, the state of the qubit is
determined by measuring the phase and amplitudes of
an electromagnetic field transmitted through the resonator
[19–22]. Hardware, random thermal noise, gate error, or
qubit decay processes that occur during measurements may
reduce the readout fidelity. Machine-learning techniques
and classification schemes could help to restore a good
fidelity by improving the classification precision of the sig-
nal to the correct state of the qubit. The Gaussian mixture
model (GMM) [23] is the most commonly used classifica-
tion method, given its ease of use. It exploits parametric
modeling of the probability distribution of the averaged
readout signals in terms of a sum of Gaussians to perform
a classification of each measurement. In Refs. [24–27],
the authors have developed and implemented various clas-
sification methods based on neural networks trained on
the full dynamics of the measurement, instead of on their
averages, obtaining good results. Another approach is the
hidden Markov model proposed in Ref. [28], which allows
for a detailed classification of the measurement results
and detection of the decay processes that the qubit could
undergo during the measurement. These schemes help to
improve the accuracy of the classification of the qubit
readout measurements.

In this work, we propose a semiunsupervised machine-
learning classification method based on autoencoder
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pretraining applied to the heterodyne readout signal of a
superconducting qubit [19,29]. Autoencoders are a type
of artificial neural network designed to encode a set of
data efficiently by learning how to regenerate them from
a synthetic encoded representation [30,31]. The encoding
process automatically isolates the most relevant and repre-
sentative features of the input data set, i.e., those features
that allow for the most faithful reconstruction of input
data while neglecting noise and irrelevant details [32,33].
Hence, the main idea of this work is to exploit this charac-
teristic of autoencoders and perform the data classification
not on the readout signals or on their time average but
on their encoded representation produced by autoencoder
training. The model consists of two sections. The first is
composed of an autoencoder trained to reconstruct the data
set of the qubit readout signals. The second section is a
two-layer feed-forward neural network trained to classify
the encoded representation of the measurement signals. We
demonstrate that this method can enhance the state clas-
sification of readout signals—especially for short readout
times, where other more traditional methods have worse
performance—and, in general, shows a more stable per-
formance for a broad range of measurement-time lengths.
We remark on the fact that the most significant improve-
ment occurs with a combination of hardware and software
improvements, as obtained by the authors in Ref. [34]. In
this paper, the focus is only on software improvement on
present machines.

The paper is organized as follows. In Sec. I, the qubit
setup and readout and a review of machine-learning mod-
els of interest, as well as our proposed method, are pre-
sented. In Sec. II, the method is tested on two study cases,
based on real data, and the classification results together
with considerations of the applicability of the method are
presented. Finally, in Sec. III, conclusions are drawn.

II. METHODS

A. Qubit readout

We consider a transmon-type qubit coupled to a detuned
resonator (i.e., a quantum harmonic oscillator) in the con-
text of a strong projective dispersive measurement scheme
[20,21]. Our device is a qutrit with frequency ω01 = 2π ×
3.44 GHz, anharmonicity α = −2π × 208 MHz, and a
Rabi frequency of 5 MHz. It has a relaxation time T1 =
220 µs and a coherence time T2 = 20 µs. The device is
based on the work by Place et al. [18]. A 100-ns constant
π pulse of frequency ω01 is used to rotate the qutrit from
|0〉 to |1〉 and another 100-ns π pulse is used to rotate
the qutrit from |1〉 to |2〉. The coupling energy between
the qubit and the cavity (before the dispersive approxi-
mation) is 2π × 107 MHz. The cavity has a frequency
ωr = 2π × 7.24 GHz. The measurement pulse is a con-
stant pulse with ωr frequency of arbitrary duration. A
Purcell filter is present in the device.

Due to the qubit interaction, the readout resonator under-
goes a frequency shift, the value of which depends on the
qubit state. This dependency can be exploited to perform
measurements of the qubit state in the dispersive regime,
i.e., when the detuning of the qubit and resonator is large
relative to their mutual coupling strength [35]. Once the
resonator is irradiated with a specific microwave pulse,
the registered transmitted signal will incorporate different
amplitude and phase shifts based on the state of the qubit.
The demodulation procedure can extract such information
from the signal, discriminating between qubit states.

Our setup consists of a superconducting qubit controlled
by the quantum orchestration platform (QOP) program-
ming environment (QM Technologies Ltd.) through the
QUA programming language based on PYTHON [36]. In
this setup, the measurement pulse is sent into the read-
out resonator. In interacting with the system, this signal
is modulated by the response of the resonator. The output
signal is then filtered, amplified, and down-converted to an
intermediate frequency ωIF = ωr − ωLO through a signal
mixer, where ωLO is the frequency of the local oscillator
(an electronic component needed by the mixer to change
signal frequency). Finally, it has to be demodulated to
extract information about the qubit state that the readout
signal acquires in the interaction.

Formally, the demodulation is an integral of the signal
multiplied by a sinusoidal function:

I = 2
Tm

∫ Tm

0
r(τ ) cos(ωIFτ)dτ (1)

Q = − 2
Tm

∫ Tm

0
r(τ ) sin(ωIFτ)dτ , (2)

where the readout signal is denoted by r(τ ) and Tm is the
integration time.

In the usual approach, complete demodulation is per-
formed by integrating over time intervals Tm, obtaining a
single value for the I and Q components for each qubit
readout signal. In this way, each measurement can be
represented as a point in the I -Q plane. Due to the state-
dependent frequency shift of the qubit, these points will
accumulate in different zones of the I -Q plane. An example
is displayed in Fig. 1(b), where the points for a three-level
qutrit are reported.

However, an alternative approach can be employed, the
so-called sliced demodulation, which consists of dividing
the time interval [0, Tm] into N subintervals and perform-
ing the demodulation separately on each chunk of the
signal, namely:

I(t) = 2
�t

∫ t+�t

t
r(τ ) cos(ωIFτ)dτ (3)

Q(t) = − 2
�t

∫ t+�t

t
r(τ ) sin(ωIFτ)dτ , (4)
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(a)

(b)

FIG. 1. A pictorial representation of the qubit readout data. (a)
An example of the in-phase, I(t), and quadrature, Q(t), com-
ponents of the heterodyned signal of a single shot obtained via
sliced demodulation (as described in Sec. II A). The average of
these signals is a single point in the I -Q plane below. (b) An
example of the whole data set. Each point is the time average of
a measurement represented in the I -Q plane for qubit states 0,1,
and 2. The lines represent the two-dimensional (2D) Gaussian
contour plot (see Sec. II B 1) for the three-Gaussian distribution.
The dotted red-yellow line is an example of a measurement sig-
nal represented in the I -Q plane. The colors represent the time
evolution (in nanoseconds).

where �t = Tm/C is the subinterval length and C is the
number of intervals. In this way, we obtain two time series,
I(t) and Q(t), for each measurement. In Fig. 1(a), the I(t)
and Q(t) signals of a single readout signal are represented
as examples. Averaging these signals, we obtain a single
point in the I -Q plane as represented in Fig. 1(b). The
red-yellow line in Fig. 1(b) represents the I(t) and Q(t) sig-
nals plotted together as a trajectory (state-path trajectory).
The color gradient represents time. In Fig. 2, on the other
hand, the average signals 〈I(t)〉〉 and 〈Q(t)〉 (solid lines)
are reported together with the standard deviation for each
time step (the shaded range). The same graph also shows
individual readout signals (dashed lines). As can be seen,
the noise of the machine is high, as the standard-deviation
zones overlap heavily. However, one of the aims of this
work is to show how the proposed method can deal with
this noise and, in any case, improve the classification of
the measures.

(a)

(b)

FIG. 2. The average readout trajectories for state |0〉 and |1〉 in
both quadratures. The solid lines represent the mean of all tra-
jectories in the data set for state |0〉 (blue) and state |1〉 (orange).
The shaded regions represent the standard deviation of the aver-
age for each time step. The dashed line represents an example
of a single trajectory. (a) In-phase, I(t), signals. (b) Quadrature,
Q(t), signals.

In principle, sliced demodulation should retain infor-
mation that is otherwise lost in the averaging process of
complete demodulation. This information is exploited in
this work to increase the state-detection accuracy. Usually,
in full demodulation, the readout accuracy is adjusted and
maximized by tuning the readout length, i.e., the demodu-
lation integration time Tm. The aim is to obtain clouds of
points (as in Fig. 1) with a distribution that is as Gaus-
sian as possible, in order to use the GMM to perform
the classification (see. Sec. II B). In fact, short integra-
tion times produce poorly distinguishable states, while for
long times, the qubit states tend to decay during the mea-
surement, which produces a non-Gaussian data distribution
and, again, a low classification accuracy. In contrast to full
demodulation, sliced demodulation retains more informa-
tion about the qubit-state measurements and, in principle,
allows for increased accuracy of the state classification.
Moreover, as is observed in this work, it reduces the
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dependence of the classification result on Tm, since the data
do not need to be Gaussian distributed.

B. Machine-learning models

We briefly review the three machine-learning algorithms
used in this work.

1. Gaussian mixture model

Gaussian mixture models (GMMs) approximate the dis-
tribution of data [in this case, the clouds of mean demodu-
lation points in Fig. 1(b)] as a weighted superposition of
Gaussian distributions [23]. The GMM models the dis-
tribution by adjusting the Gaussian parameters through a
maximum-likelihood estimation over the data set of points
in the I -Q plane. A new point is attributed to one of the
classes based on the probability that it belongs to one of
the three Gaussians of the GMM.

2. Feed-forward neural network

Feed-forward neural networks (FFNNs) are the sim-
plest class of neural networks. Trained over a labeled data
set, they are capable of classifying new inputs. Formally,
the neural network implements a closed-form parametrized
function, Nφ , which maps input in X ⊆ Rm into a space
Y ⊆ Rn that encodes in some way the information on the
classes into which the inputs are divided. The inputs are
the full qubit readout signals. An optimal classification
of data is obtained by adjusting the parameters φ making
use of optimization algorithms. This is obtained by min-
imizing some type of loss function l between the correct
label yi of input xi and the neural-network-predicted label
ŷi = Nφ(xi), namely:

min
θ

∑
i

l
(
yi, Nφ(xi)

)
. (5)

This optimization is commonly carried out by making use
of the well-known back-propagation algorithm [30,37].

3. Autoencoders

Autoencoders are neural networks designed to learn,
via unsupervised learning procedures, efficient encoding
of data [31,38,39]. This encoding is achieved by adjust-
ing the weights and biases of the network to regenerate the
input data. It is composed of a first part, the encoder, which
learns to map the input data into a lower-dimensional
representation (the latent space), ignoring insignificant
features or noise, and a second part, the decoder, that,
conversely, is trained to reconstruct the original input
from the low-dimensional encoding in the latent space.
Autoencoders perform dimensionality reduction and fea-
ture learning.

Mathematically, the autoencoder is a model composed
of two closed-form parametrized functions, the encoder fθe

and the decoder gθd . The parameters θ = [θ e, θd] need to
be optimized to perform the correct input reconstruction.
These functions are defined as follows:

fθe : X → L,

gθd : L → X .

The function fθe takes an input xi ∈ X ⊆ Rm from the
data set

{
x1, x2, . . .

}
and maps it into the feature vector

hi ∈ L ⊆ Rp with p < m, i.e., hi = fθe(xi). Conversely,
the decoder function, gθd , maps the feature vector hi back
into the input space, giving a reconstruction x̃i of the input
xi.

The parameters θ of the autoencoder are optimized such
that the model minimizes the reconstruction error l(x, x̃),
i.e., a measure of the discrepancy of the reconstructed input
from the original one. The general minimization problem
is, therefore,

min
θ

∑
i

l
(
xi, gθd(fθe(xi))

)
. (6)

Again, this is optimized using the already mentioned back-
propagation algorithm [30,37].

C. Model: Neural network with autoencoder-type
pretraining

In this work, we propose a classification model based on
a neural network with an autoencoder pretraining, which
we denote “PreTraNN.” It is composed of two sections.

The first section consists of an encoder fθe the parame-
ters θ e of which are pretrained in advance as an autoen-
coder over the input data set. The encoder consists of
two layers with L1 and L2 neurons and a third layer, the
latent layer, with LH neurons. The decoder gθd necessary
for the pretraining has the same structure as the encoder
but is in reverse order. Given a input of dimension d, we
always set L1 = 3/(4)d, L2 = 2/(4)d and LH = 1/(4)d.
The activation functions are sigmoid for the first layer of
the encoder (and the last layer of the decoder) and the
tanh function for all the internal layers. The choice of
internal layer size is explained in Appendix A 1, while the
complete specifications of the autoencoder are reported in
Appendix B.

The second section is a feed-forward neural network,
Nφ , dependent on a set of parameters φ, which works as a
classifier taking as inputs the feature vector of the encoder
and, as outputs, the exact labels of the readout signals. It is
composed of two hidden layers with LN1 and LN2 neurons,
respectively, and an output layer with a number of neurons
equal to the number of data classes. Given the dimension
of the input, d, we set LN1 = 2d and LN2 = d. The activa-
tion functions are tanh for the internal layers and softmax
for the last layer, commonly employed for classification
purposes.
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The assignment of the label yi to a qubit readout signal
xi(t) works as follows:

(1) The discrete signal xi is flattened by stacking the I
and Q components in a single one-dimensional (1D) vec-
tor, i.e., Xi = [xi

I , xi
Q], so that it can be plugged into the

neural network.
(2) The input Xi is transformed in the feature vector hi

via the encoder function, i.e., hi = fθe(Xi).
(3) The feature vector hi is plugged into the feed-

forward neural network Nφ to be assigned to one out of
the three classes. Formally, Nφ(hi) = ŷi, where ŷi is the
predicted label for the input Xi.

A pictorial representation of the PreTraNN classification
working principle is displayed in Fig. 3.

1. Training

The training is performed separately for the two sections
that comprise the PreTraNN model.

The autoencoder is trained first. The data set is com-
posed by inputs xi with i = 1, 2, . . . , M , representing the
2D trajectories in the I -Q plane. The neural-network archi-
tecture requires a 1D vector input, so the xi need to be
flattened, stacking the I and the Q components in a single
1D vector. Therefore, we compose a new data set of Xi =
[xi

I xi
Q]. The parameters θ = [θ e, θd] of the autoencoder

Aθ (xi) = gθd(fθe(Xi)) are trained by minimizing Eq. (6),
where we choose as loss function l, the mean-square error
(mse):

l = 1
d

d∑
t=1

(
X i[t] − X̂ i[t]

)2
, (7)

in which d is the length of the input data Xi and X̂i =
Aθ (Xi) is the reconstructed input.

In a second step, the neural network Nφ is trained tak-
ing as input the feature vectors hi of the encoder fθe and,
as output, the real labels yi of the corresponding xi(t).
The optimal network parameters φ are obtained by mini-
mizing Eq. (5), where the loss function l is chosen to be
the cross-entropy loss function, which is widely used in
classification.

A pictorial explanation of the PreTraNN training proce-
dure is depicted in Fig. 4, while a complete specification of
the autoencoder structure is reported in Appendix B.

Note that although we use the term “pretraining,” Pre-
TraNN is not a pretrained model in the general sense. We
do not use a bulk neural network pretrained on a vast
quantity of data, attaching to it new layers that are then
trained on our specific classification problem. In the Pre-
TraNN model, we take as the “pretrained neural network”
the encoder part of an autoencoder that has previously been
trained over our specific readout data.

FIG. 3. A pictorial representation of the working principle and
the architecture of the PreTraNN method described in Sec. II C.
Section 1: an example of the measurement signal x(t) that we
want to classify with PreTraNN. Section 2: the input x(t)i is flat-
tened to obtain Xi, plugged into the encoder, previously trained
as an autoencoder, and transformed into its encoded representa-
tion hi. Section 3: the latent layer of the encoder, hi, is passed
into a feed-forward neural network trained to assign the label ŷi.

D. Benchmark methods

We compare the result of the proposed PreTraNN model
with two state-of-the-art methods introduced above: the
GMM and a simple FFNN.

The GMM is trained directly on I -Q points, averages of
the readout signal.

The FFNN is, instead, trained over the readout-signal
data set, taking as input the flattened vectors Xi = [xi

I , xi
Q]

and, as output, their labels yi. The architecture of the FFNN
consists of two inner layers of dimension LFF1 = 2d and
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FIG. 4. A pictorial representation of the PreTraNN training
described in Sec. II C. Section 1: the autoencoder is trained to
reconstruct the measurement signals—this should train the net-
work to extract the relevant features from each temporal chunk.
Section 2: after the training, the decoder part of the network is
removed and the encoded representation of data (represented in
the plot at the top right) is used as the training input data set for
the second section of the PreTraNN model, which is trained to
classify them into the correct class yi.

LFF2 = d, where d is the input dimension, and an output
layer. The activation functions are tanh for the internal
layer and softmax for the output layer. The structure of
the FFNN is the same as for the second section of the
PreTraNN model. The only difference is that while the Pre-
TraNN neural network takes as input the readout signal
encoded in the latent space, the hi vector, the FFNN takes
the signals Xi directly.

E. Metrics

To measure the accuracy of the classification systems,
we utilize the “classification accuracy,” i.e., the probability
that each signal is attributed to the correct label (i.e., the
correct state of the qubit). This classification is obtained as
a percentage of correctly attributed signals out of their total
number (for each state). The global accuracy is the average
of the accuracies of each state.

F. Data sets

As already mentioned, two versions of the same data set
are used in this work. They are now more clearly defined.

We collect heterodyned readout signals for each qubit
state. Each measurement is obtained by preparing the
device in a certain state (e.g., |0〉 or |1〉) and then by mea-
suring it immediately, storing the obtained signals. The
selection of the time windows �t for sliced demodula-
tion requires careful consideration. The demodulation time
step �t should span an integer number of periods of the

readout signal to avoid imprecise demodulation. The fre-
quency of the readout signal is ωIF = 60 MHz, so its period
is 1/ωIF ≈ 16 ns. For this reason, in this work, we take a
time window �t = 16 ns. Hence, each readout signal xi(t)
has a point every 16 ns. The length of the measurement,
Tm, is also an essential parameter. Here, we choose to con-
sider measurements of increasing length starting from 800
ns up to 8000 ns, corresponding to discrete signals the
number of elements of which spans from 50 to 500, to
study the efficiency of the classification methods in differ-
ent configurations. The collection of I(t) and Q(t) signals
are then smoothed with a window-smoothing algorithm,
with a Hanning window of 50-time-step length to remove
some noise.

Each measurement is, therefore, a 2D xi(t) = [I i(t),
Qi(t)] trajectory that, flattened to form the Xi inputs (see
Sec. II C), will form the data set for PreTraNN and the
FFNN. The data set for the GMM, on the other hand, is
obtained by time averaging each xi(t) measurement so as
to obtain two values that can be represented in I -Q space
[an example of which is shown in Fig. 1(b)]. The data set
is then shuffled and split into train and test data sets in
a 75%:25% proportion. The size of the data set impacts
the accuracy of the method and needs some consideration
to avoid under-fitting or unnecessarily long training times.
Such considerations are made in Appendix A 2.

It should be mentioned that the data preparation is not
error free. In fact, it may happen that the expected state
(|0〉,|1〉 or |2〉) is not actually prepared due to control errors
or environmental coupling. The |0〉 state is initialized with
an active reset procedure. This procedure works by per-
forming a short measurement on the qubit and applying a
π pulse to it if the state is |1〉 or |2〉 to push it back to
the ground state. However, there will be a residual ther-
mal population to deal with. An estimate of this quantity,
for the two-state case, is given by the confusion matri-
ces in Fig. 8, which quantify the percentage of |1〉-labeled
measurements that are actually |0〉. Due to these errors,
the classification will not be 100% accurate even with the
model proposed in this paper, because the data set suffers
from this inaccuracy.

We also emphasize that the readout data are all from the
same device. Although it may be interesting to study a mul-
tidevice classification system, in general, different devices
may show differences in the average behavior of the read-
out trajectories, due to design and control differences. This
obviously makes training more challenging and could bias
the results.

III. RESULTS

The purpose of this work is to demonstrate how the
feature-extraction capability of the autoencoder helps to
improve the effectiveness of qubit readout: hence, specif-
ically, how the PreTraNN method performs better than
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other commonly used methods for readout, namely the
GMM and a simple FFNN. In this section, PreTraNN
and the benchmark methods are compared in terms of
classification accuracy and their overall performance is
studied.

In addition, to deepen the analysis, the application of the
models is extended to two readout configurations. The first
is the readout of the usual two-level qubit and the second is
the readout of a three-level qutrit. This analysis will give an
idea of the good scalability of PreTraNN for multiple-level
readout.

A. Two-state qubit readout

In this case, the qubit is prepared and immediately mea-
sured in states |0〉 and |1〉. The data set consists of 16 000
readout signals (8000 for each state) and it is split into
training and test subsets in a 75%:25% proportion. Consid-
erations on the choice of the data set are made in Appendix
A 1. The PreTraNN, FFNN, and GMM setup is the one
defined in Secs. II C and II E.

1. Classification accuracy

We start by showing our results for the classification
accuracy of the three methods for increasing measurement
length Tm to compare their performance in different cases.
All experiments are carried out in the configuration defined
in Sec. II and every experiment is computed 10 times and
averaged. We report the state-classification accuracy for
each state separately in Fig. 5 and the global classification
between states |0〉 and |1〉 in Fig. 6.

We start by considering Fig. 5. In Fig. 5(a), the clas-
sification accuracy of the |0〉 state for the three models
as a function of measurement length is shown, while in
Fig. 5(b), the same information is reported but for the |1〉
state. First, it can be noted that, for short measurements, the
performance of all the models deteriorates. This behavior
should be attributed to the fact that, for short measurement
times, the data distributions overlap heavily, preventing
all methods, and especially the GMM, from fitting them
appropriately with two Gaussians (for an illustrative exam-
ple, see Fig. 7). On the other hand, for middle and long
measurement times, the GMM performs, respectively, bet-
ter and worse for state |0〉 and state |1〉 than the other
two methods. Moreover, the state-|0〉 classification accu-
racy remains high and stable for long measurements, while
that of state |1〉 presents a descending trend at longer times.
This behavior has a simple explanation: the qubit excited
state (e.g., the |1〉 state) has leakage to the ground state (the
|0〉 state) at a much higher rate than the opposite direction.
As a consequence, there is an asymmetry in the data-point
distributions. This results in states prepared as |1〉 being
spotted in the state-|0〉 distribution due to the decay pro-
cess, while the reverse is much more unlikely. Therefore
the GMM, which fits the distribution with two Gaussians,

(a)

(b)

FIG. 5. A comparison of the classification accuracy, for states
|0〉 and |1〉 separately, among the GMM, the simple FFNN, and
the PreTraNN methods. The readout time Tm spans from 800 ns
to 8000 ns. (a) Upper panel: the classification accuracy for state
|0〉 by the three methods as a function of the measurement time.
Lower panel: an enlargement of the (2400–8000)-ns part of the
plot. (b) Upper panel: the classification accuracy for state |1〉 of
the three methods as a function of the measurement time. Lower
panel: an enlargement of the (2400–8000)-ns part of the plot.

cannot handle this asymmetry and performs very differ-
ently in the two cases. The number of signals decaying
during the measurement procedure increases with the mea-
surement time and, in fact, the accuracy of state |1〉 drops
for long times. However, the FFNN has a fluctuating trend
and it often performs worse than the GMM. We can spec-
ulate that this behavior derives from the fact that, for very
large inputs, the training is more difficult and a simple
FFNN does not converge adequately. This suggests that the
FFNN is not completely adequate for this purpose. On the
contrary, the PreTraNN method shows very stable behav-
ior for both states, even for long measurement times. It not
only uses all the “history” of the measurements but also
exploits the feature extraction of the autoencoder.
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FIG. 6. The global-classification accuracy between states |0〉
and |1〉 for increasing measurement time Tm. The accuracy
obtained with the PreTraNN method is higher (or at most equal)
to those obtained with the GMM and the FFNN.

The global-discrimination accuracy between states |0〉
and |1〉 is reported in Fig. 6. It is obtained by averaging
the accuracies of the |0〉 and |1〉 states. In this global case,
the PreTraNN method outperforms the GMM and FFNN

methods for every measurement time (except for a mea-
surement time of 3200 ns, where the accuracies of the
GMM and PreTraNN coincide). The considerations of the
previous case also apply here.

It can also be noted that the GMM accuracy has a
global maximum at 3200 ns. As mentioned before, for
the GMM to work well, the distribution of I -Q points for
each qubit state must be as “Gaussian” and distinguishable
as possible. It happens that, for short measurement times,
the point distributions overlap, since the qubit-resonator
response is still in a transient state, while, for long times,
decay processes come into play, which makes the distribu-
tion skewed. Therefore, we can deduce that the length of
3200 ns produces the least-overlapping distributions that
allow the GMM to reach the greatest accuracy. This mea-
surement time is therefore the one that should be set for
the readout in the event of use of the GMM. The Pre-
TraNN method makes the need for this adjustment less
strict, since it works well for a larger interval of the exper-
imental parameters Tm. In general, it can be seen that, in
the PreTraNN method, the classification accuracy is only
increasing or constant. As a consequence, the trimming
is faster and easier, since the need to find the maximum
accuracy is obviated.

FIG. 7. A pictorial representa-
tion of the data set with exact,
GMM, and PreTraNN labeling.
Each point is the time aver-
age of the I(t) and Q(t) sig-
nals. The actual label, i.e., the
prepared state, is represented in
the first column. The GMM- and
PreTraNN-method labels are rep-
resented in the second and third
columns.
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We would also like to stress that in other works, such
as Ref. [24], the readout accuracy may be greater than the
one reported here. As described above, the machine used
for this work has a certain level of error in preparing state
|1〉. This, however, is of secondary importance, since the
purpose of the present work is not to present new hardware
that over-performs compared to the current state-of-the-art
hardware but only to propose a method to improve read-
out in the present machines. Thus, our interest is primarily
focused on improving the performance of a given machine
from the software point of view.

The classification obtained with PreTraNN not only
improves the classification accuracy but also better repro-
duces the actual distribution of data. In Fig. 7, a compar-
ison of the GMM and PreTraNN labeling results on data
with different readout times is reported. The labeling for
the FFNN is similar to that for PreTraNN, so it is omit-
ted for clarity. The first column shows data with the actual
labels (represented by colors) as they are prepared in the
quantum device. The second and third columns, on the
other hand, represent the same data but labeled accord-
ing to the GMM and PreTraNN, respectively. The same

analysis is performed for short, medium, and long times
(see the rows of the figure). As anticipated, we again con-
clude that the GMM misses the classification for short
times, simply dividing the overlapping distributions in
half, while PreTraNN provides a considerably more real-
istic and accurate classification. The two distributions of
overlapping points can now be spotted again.

The exact labels show the asymmetry in the data dis-
tribution due to the decay of the excited state: many
|1〉-labeled points lie in the |0〉 distribution. The compar-
ison between the labels highlights that there are many
points belonging to state |1〉 that even PreTraNN fails to
recognize. Probably, many of those points result from the
imperfect calibration of the π pulse used to prepare the |1〉
state on the machine.

Another important measure to take into account is the
confusion matrix, which helps to visualize the classifica-
tion performance of the three methods in comparison with
each other. The confusion matrices for the three methods in
three different measurement-length setups are reported in
Fig. 8. Each row reports the confusion matrices of the three
models for a specific measurement length. Clearly, the best

FIG. 8. Confusion matrices for the classification between states |0〉 and |1〉 for the three methods for short, medium, and long readout
times.
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(a)

(b)

FIG. 9. The training and classification times for the GMM,
FFNN, and PreTraNN methods. The times are reported in sec-
onds for a midrange laptop computer. (a) The training time as a
function of the measurement time (i.e., the length of the inputs).
(b) The classification time. The average times are 0.00013 s for
the GMM, 0.039 s for the FFNN, and 0.037 s for PreTraNN.

confusion matrices are those obtained for long times and
with the PreTraNN model.

2. Computational cost and scaling

The higher structural complexity of the PreTraNN archi-
tecture means longer training and classification times than
for the GMM. In the following, we report the results
together with some considerations on the scaling of the
method.

The training for every neural network is performed with
the “early stopping” approach to avoid over- or under-
fitting. Instead of fixing the number of epochs, the train-
ing is stopped when the accuracy of the model does not
increase for two epochs in a row. The results are reported
in Fig. 9. The upper table shows the training time of each
model with respect to the readout length Tm for a 16 000-
elements data set, while the lower table, on the other hand,
represents the average time for a single-input classification
for each method. In both cases, the times are represented in
logarithmic scale to spot trends better. Times are reported
in seconds and refer to a midrange laptop computer with
four cores and 8 GB of RAM.

Considering the training time, it can be noted that the
PreTraNN method takes a significantly longer time than
the parameter estimation for the GMM (from 2 to 3 orders
of magnitude) but not much more than the FFNN, despite
the two training sections of PreTraNN. As one might
expect, the training time of non-GMM methods increases

TABLE I. Classification times for PreTraNN and the GMM
as a function of the input batch size. Each reported time is the
result of an average of 100 experiments. The FFNN method is
not reported because its behavior follows that of PreTraNN.

Classification time Classification time
Input batch size PreTraNN (s) GMM (s)

1 0.04200 0.00012
100 0.04300 0.00013
10 000 0.22400 0.00043

as the input measurement time increases. In fact, long mea-
surement times correspond to wider neural networks and,
therefore, longer optimizations.

From the classification-time point of view, we see that
the times for PreTraNN to label a single data point (0.039
and 0.042 s, respectively) are almost equal and much
longer than for the GMM (0.00013 s). Moreover, for both
methods, the classification time does not depend on the
measurement length.

It is important to specify that the classification time for
an input batch of size S is not S times the classification
time for a single input. We report the actual classification
times as a function of the batch size in Table I.

Based on these data, some considerations can be made.
First, we can assert that the training for PreTraNN and the
FFNN remains easily manageable by any computer, even
for the longest measurement times. In fact, the training
times, although much larger than for the GMM, remain
very small in absolute value. In general, the training
process is not a problem since it is done in advance.

On the classification-time side, however, more careful
considerations must be made. If only an offline classifica-
tion is needed, there are no stringent time constraints and
the model could be considered fast enough for some appli-
cations. If, on the other hand, a real-time or online readout
on the machine is needed, the classification times must
be below the qubit lifetime. Since state-of-the-art super-
conducting transmon qubits have a lifetime of 200–500
µs [8,40], in principle we want a classification time that
is well below these values, possibly on the order of tens
or hundreds of nanoseconds. For this goal, neither the
GMM nor PreTraNN has, under the conditions used in
this work, the necessary characteristics. Of course, with
the use of more powerful computers, the classification time
can be reduced by a few orders of magnitude. Moreover, a
field-programmable gate array (FPGA) or an application-
specific integrated circuit (ASIC) implementation could
improve the efficiency of the classification step even more
or also improve the training process by implementing it in
an online way (see Refs. [41–44]).

To summarize, the ability to perform short-time mea-
surement classification (with higher accuracy) is of great
interest in quantum computing. The proposed approach
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allows for good accuracy for short measurements com-
pared to the GMM. This can be exploited for real-time
control systems, e.g., quantum orchestration platforms,
leading to measurement speed-up or reducing computa-
tional time in error-correction routines. Attention must be
paid to the classification speed of the system. At least
partially, however, the longer time required to perform
classification can be compensated for by shorter mea-
surements (as little as 1000 ns) than those for the GMM
(4000 ns) while achieving the same classification accu-
racy. PreTraNN performs well regardless of the readout
time, allowing one to potentially skip the readout time Tm
trimming. Moreover, this method can be utilized for the
usual two-level qubits or, conversely, extended to arbitrary
numbers of levels or qubits with slight modifications in its
structure and simply using different data sets. All this con-
sidered, the proposed method offers a promising approach
to exploit short measurements that disturb the device as
little as possible with less computational effort.

B. Three-state qutrit

In this case study, we exploit the possibility of accessing
the higher quantum levels of superconducting qubits. We
prepare and measure the qubit in the |0〉, |1〉, and |2〉 states
and store the obtained data. The whole data set consists
of 24 000 elements (8000 for each state), divided into 75%
training data and 25% test data. Again, for consideration of
how the data set is chosen, see Sec. II C. The architecture
of the models is the same as in the previous case (and as
defined in Secs. II C and II F ). The only difference between
the two cases is the number of classes in the data set. This
allows us to show the good scaling properties of the model.

1. Classification accuracy

In this subsection, the global-classification accuracy is
reported and discussed.

In Fig. 10, we present results for the global accuracy.
The PreTraNN method achieves better classification per-
formance for every measurement time. Again, the GMM
accuracy presents an increasing and decreasing trend with
a maximum located at 4000 ns, while the FFNN, notwith-
standing a reduction in the fluctuating trend, obtains a
lower classification accuracy than the other two methods,
possibly due to training difficulties for high-dimensional
data sets. PreTraNN, on the other hand, presents a stable
accuracy as a function of the measurement time. For fur-
ther details on the state-by-state classification accuracy, see
Appendix D.

We can also study the performance of PreTraNN as
a function of the number of qudit levels. This will give
us an idea of how the method scales with the number
of point clouds. To achieve this, we compute the differ-
ence in percentage points between the global-classification
accuracy of PreTraNN and that of the other methods. The

(a)

(b)

FIG. 10. The global-classification accuracy for the |0〉-, |1〉-,
and |2〉-state classification for a qutrit.

difference (in percentage points) between the PreTraNN
global accuracy and the GMM global accuracy for the two-
and three-level cases for every measurement time Tm is
reported in Fig. 11. The lower panel is an enlargement
of the middle- and long-time range. In the small panels
on the right, the average values for all Tm are highlighted.
An increasing value of this difference, as the levels of the
system increase, suggests a possible increasing advantage
in using the PreTraNN method for increasing system lev-
els. In this case, we observe that this trend can be clearly
seen. Figure 12, on the other hand, reports the same calcu-
lation referred to the FFNN method. Here too, the trend is
clear for both the whole set of measurement times and the
medium-long range.

(a)

(b)

FIG. 11. (a),(b) The difference in percentage points between
the accuracy of PreTraNN and GMM for the qubit and qutrit
cases for different measurement times Tm: (b) reports the anal-
ysis for only medium-long times. The small panels on the right
show the average of all values of the respective plot on the left.
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(a)

(b)

FIG. 12. (a),(b) The difference in percentage points between
the accuracy of PreTraNN and the FFNN for the two- or three-
qubit-state case: (b) reports the analysis for only medium-long
times. The small panels on the right show the average value of
the respective plots on the left.

This analysis suggests that there is a marginal increase
in the effectiveness of PreTraNN compared to the other two
methods as the classes of the data set increase (i.e., as the
data-set complexity rises). In other words, the difference in
the global-classification accuracy between PreTraNN and
the GMM or between PreTraNN and the FFNN is big-
ger, on average, in the case of the three-class data set,
corresponding to qutrit readout data.

This analysis, although limited to two- and three-class
problems, suggests that the PreTraNN method should scale
well as the qudit dimension increases. We can assume that
it also scales well with the number of qubits, since it also
reduces to a multiclass data set, but further analysis to
better characterize the performance is needed.

Furthermore, PreTraNN requires only minimal struc-
tural modifications for different qudit dimensions. One
only needs to adjust the number of output nodes in the
last section of the network and use an appropriate data set
with a different number of classes. While the training times
rise due to the increased data-set size (the training time
grows linearly with the data-set dimension), the classifica-
tion time remains the same as for the previous two-state
case.

IV. CONCLUSIONS

This work demonstrates that a feed-forward neural net-
work with autoencoder pretraining allows for a robust
qubit readout classification scheme with high accuracy
and a low dependence on the feature values of the exper-
imental device. It allows for a consistent classification
performance even for short readout times, unlike the more
traditional schemes affected by overlapping measurement

results. It also obtains good results for longer measurement
times, whereas the efficiency of the GMM is decreased
due to energy-relaxation processes and a simple feed-
forward neural network becomes difficult to train properly,
resulting in fluctuating results.

In addition, the proposed method allows for good clas-
sification on shorter measures, achieving a measurement
speed-up.

More importantly, this measurement speed-up is helpful
for real-time control systems, e.g., quantum orchestration
platforms or quantum error correction, where we need to
disturb the system as little as possible.

In general, it is shown that the proposed method per-
forms well for all measurement times, helping to increase
the accuracy of the classification results from a software
point of view. On the other hand, the classification times
for a single measurement are higher than for the standard
methods but can be improved with more optimized FPGA
and ASIC implementations. Lastly, the proposed approach
can be readily extended to an arbitrary number of states (or,
possibly, number of qubits) with minimal modification of
the model structure and can obtain marginally increasing
performance.
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APPENDIX A: NUMERICAL CONSIDERATIONS
ON AUTOENCODER

1. Autoencoder latent-space dimension

In the design of the architecture of a neural network,
there is no solid theoretical guidance but one has to rely
on a heuristic and “trial-and-error” attitude based on expe-
rience. However, to make the procedure more quantitative,
one can vary the structure in an automated way and study
how its metrics vary. In this way, one can identify, within
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FIG. 13. The PreTraNN global-classification accuracy for the
three-state case with 2400-ns readout inputs as a function of the
latent-space dimension. The higher accuracy is reached at 1/4
the input dimension.

a certain degree of approximation, the architecture that
works best for the specific problem.

In the case of the autoencoder, the main parameter is
its latent-space size. In principle, a latent space that is
too small is not sufficient to perform expressive encoding,
while too large a latent space increases the computational
cost without extracting, in a compact way, information
from the data set. In the limiting case of a latent space equal
to the input space, the neural network becomes equivalent
to applying an identity to the inputs.

In this appendix, we describe the procedure used in our
work to identify the best autoencoder structure. We take
the PreTraNN method with trajectories of 2400 ns (150
time steps of 16 ns, i.e., an input dimension of 300 val-
ues) and train it for different values of latent space. We
start from a latent dimension equal to the input dimension
and gradually go down to 1/10 of it. The dimension of the
other two inner layers is set to linearly interpolate between
the size of the input and the latent space. The decoder has
the same structure but reversed. Contextually, three prop-
erties of PreTraNN are studied as a function of the latent
dimension: the global-classification accuracy, the autoen-
coder training loss, and the autoencoder training time. To
obtain more consistent results, for each latent dimension
the training is repeated 10 times with different samplings
of the data set and the property values are averaged.

The PreTraNN global-classification accuracy for a
decreasing latent-space dimension is reported in Fig. 13.
The abscissa shows the size of the latent space in terms
of fractions of the input length (so that the information
extracted from this case can be scaled directly to the other
input lengths). The greatest accuracy—moreover, with the
smallest error bars—is achieved with a latent space the size
of which is 1/4 that of the input space. In absolute terms,
the classification accuracy is quite stable for every latent-
space dimension but an increasing trend from 1 to 1/4 can
be clearly spotted.

FIG. 14. The autoencoder training loss function as a function
of the training epochs for different latent-space relative dimen-
sions. Too large latent dimension (i.e. the ones with relative
dimension 1, 1/1.3 or 1/2 the input dimension) present a fluc-
tuating behavior and are useless for feature extraction, while too
small latent dimensions do not allow an effective encoding and
their loss function remains high (1/8 and 1/10 the input size).

The loss-function values (the mse) during the training
of the autoencoder for different latent-space dimensions
are represented in Fig. 14. For large latent-space sizes,
the training converges faster for the first epochs but then
assumes a fluctuating trend. For latent spaces that are small
(e.g., 1/10 or 1/8 the size of the input), on the other hand,
convergence stalls at much higher values of the loss func-
tion. Thus the best values are 1/2, 1/4, and 1/6 the input
length.

The training time is reported in Fig. 15, in sec-
onds. Clearly, the training time decreases as the latent
space decreases, since the number of network parameters
decreases. A short training time is preferable.

Given this PreTraNN behavior, we can choose the
latent-space dimension by making a trade-off between the
reported metrics. The value that maximizes the classifica-
tion accuracy and has at the same time good loss-function

FIG. 15. The autoencoder training time as a function of the
latent-space relative dimension. Clearly, larger latent spaces cor-
respond to neural networks with more parameters and thus longer
training times.
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convergence and a (relatively) short training time is a latent
dimension of 1/4 the input size. This is the value chosen
to carry out the analysis in this work. The dimension of the
two internal layers is set to linearly interpolate between the
latent space and the input dimensions.

2. Data-set size and convergence

In order to obtain a good training convergence that max-
imizes the classification accuracy, an adequate data set is
needed. Small data sets are fast to train but usually pro-
duce inadequate classification accuracies, while large ones
have the opposite behavior. At the same time, the growth of
the classification-accuracy capability decreases marginally
with an increasing data-set size. Here, we report some anal-
ysis on the behavior of PreTraNN as a function of the
data-set dimension, studying the same three properties as
introduced in Sec. A 1, i.e., the loss function, the classifi-
cation accuracy, and the training time. Even in this case,
we take the PreTraNN method with 2400 ns measurement
signals (150 time steps of 16 ns, i.e. an input dimension of
300 values) with a latent space of 75 neurons and train it
for different data-set dimensions. We start from a training
data set of 3000 elements (1000 elements for each class)
and gradually increase its dimension to 60 000 elements
(with 75% of them dedicated to training). For each data-set
dimension, the training is repeated 10 times with differ-
ent sampling of the data set and the property values are
averaged.

The global-classification accuracy is reported in Fig. 16,
as a function of the data-set size. It can be seen that the
accuracy increases as the data set grows, even if it grows
with decreasing speed.

Figure 17 represents the loss-function values (the mse)
during the training of the autoencoder for different config-
urations. The trend is quite neat. The larger the data set, the
better is the convergence, although for large data sets the
convergence becomes more unstable.

The training time is reported in Fig. 18, in seconds. As
expected, the training time increases linearly with the data-
set dimension. A short training time is preferable.

FIG. 16. The global-classification accuracy of PreTraNN as a
function of the number of data-set elements.

FIG. 17. The autoencoder loss (the mse) as a function of the
epochs for increasing data-set size.

Given these results, the trade-off among the accuracy,
the loss function, and the training time, in order to maxi-
mize effectiveness and minimize cost, is identified in the
24 000-item data set for the three-state case and in the
16 000-item data set for the two-state case.

APPENDIX B: MODEL SPECIFICATIONS

Here, we report the complete characterization of the
autoencoder, the PreTraNN, FFNN, and GMM models and
their training procedure.

In this work, the building and training of the neural net-
work are performed via the PYTHON package KERAS [45].
On the other hand, for the GMM, the SKLEARN PYTHON
package [46] is used.

1. Autoencoder

In every configuration employed in this work, the
encoder is composed of an input layer, a first hidden layer,
and a second hidden layer connected to the latent layer.
The decoder, on the other hand, has the same structure
but is mirrored. Therefore, it has a first hidden layer con-
nected to the latent layer, a second hidden layer, and finally
an output layer. We employ a full-connectivity network

FIG. 18. The training time for an increasing data-set dimen-
sion.
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TABLE II. The autoencoder specifications. The “Size” column
represents the number of neurons for each layer in a fraction of
the input dimension L. The “KERAS type” column reports the type
of KERAS layer employed.

Layer Size
Activation
function

KERAS
type

Encoder Input L Sigmoid DENSE
First hidden L × 3/4 Tanh DENSE
Second hidden L × 2/4 Tanh DENSE
Latent L/4 Tanh DENSE

Decoder First hidden L × 2/4 Tanh DENSE
Second hidden L × 3/4 Tanh DENSE
Output L Sigmoid DENSE

implemented with the DENSE layer specification in KERAS.
All the information on the network is reported in Table II.

The training is performed using the Adam stochastic
optimization algorithm [47], with the standard configu-
ration implemented in KERAS. The loss function is the
mean-square error (mse). The training is performed with
the EARLY STOPPING procedure, which stops the training if
the loss does not decrease for two epochs in a row.

2. FFNN and PreTraNN second section

The second section of PreTraNN is a simple feed-
forward neural network. It is composed of an input layer
(of the same dimension as the latent layer of the autoen-
coder), a first hidden layer, and a second hidden layer
connected to the output layer. The dimension C of the out-
put layer depends on the number of classes with which
we are doing the classification. Hence, C = 2 for the qubit
classification of Sec. III A, while C = 3 for the qutrit clas-
sification of Sec. III B. The connectivity between the neu-
rons is full. The optimization algorithm is Adam. The loss
function is the cross-entropy, which is suitable for classifi-
cation purposes. The training is performed with the EARLY
STOPPING procedure that stops the training if the loss does
not decrease for two epochs in a row. Other information is
summarized in Table III. The structure of the FFNN model
is the same but with a number of input neurons equal to the
data-set dimension instead of the latent-layer dimension.

TABLE III. The structure and specifications of the PreTraNN
second-section (FFNN) network with KERAS. L is the data-set
input length and C is the dimension of the output layer, which
changes based on the number of classes.

Layer Size Activation function KERAS type

Input L/4 (L) Tanh DENSE
First hidden L × 2/4 (2L) Tanh DENSE
Second hidden L/4 (L) Tanh DENSE
Output C Softmax DENSE

3. Gaussian mixture model

The GMM is implemented using the SKLEARN package
with the standard built-in parameters specifying only the
number of classes of the input data set.

APPENDIX C: AUTOENCODER FEATURES

In this appendix, we give examples of the two important
autoencoder features: input regeneration and latent-space
values. Figure 19 shows an example of 3200-ns (i.e.,
400 components) input reconstruction done by the autoen-
coder. The solid lines represent the original input (divided
into the two quadratures), while the lines with markers
represent the output of the autoencoder, i.e., the regener-
ation of the input from its synthetic representation in the
latent space of the autoencoder. It can be seen that the
reconstruction is quite faithful to the original.

The latent-space representation is presented in Fig. 20.
The thin colored lines represent the latent-space values of
different inputs, while the thick black line is the average
of such lines. It can be seen that the latent-space vectors
for the two states are somewhat different on average. Both
have zero on average but those for |0〉 have larger fluc-
tuations and a little structure. In particular, in both plots
specific points where all the hi vectors follow a definite
trend (e.g., the points around 20 and 60 for state |0〉) can
be spotted. These are the differences that allow the increase
in classification performance shown in this paper.

One might wonder how the input reconstruction varies
as the latent representation varies. To answer this question,
we can proceed as follows. We use the encoder to obtain
the latent representation of an input, we then vary just one
of its values slightly, and finally, we plug the modified
latent vector into the decoder to obtain its “reconstruction.”

(a)

(b)

FIG. 19. An example of input regeneration made by the
autoencoder. In both panels, the solid lines represent the mea-
surement signal divided into its two quadratures: (a) in-phase (I )
and (b) in-quadrature (Q), respectively. The lines with markers
represent the input reconstruction made by the autoencoder.
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(a)

(b)

FIG. 20. A representation of the latent space of the autoen-
coder for states (a) |0〉 and (b) |1〉. In both panels, the colored
lines are the latent-space representation (i.e., hi vector) of inputs
for state |0〉 or |1〉. The solid black lines represent the average of
these values.

We do this several times by varying the input slightly each
time. Figure 21 depicts the result of this procedure. The
thick lines represent the correct reconstruction of an input
(divided into I and Q components), while the thin lines rep-
resent the reconstruction for increasing values of the 20th
component of the latent representation. We can see that
by varying this value slowly, we obtain a slowly varying
family of reconstructions.

APPENDIX D: OTHER CLASSIFICATION DATA

In this appendix, we report classification-accuracy data
for the single states of the three-level qutrit case introduced
in Sec. III B.

(a)

(b)

FIG. 21. An example of how the input reconstruction varies if
a single value of the latent representation is varied slightly: (a)
the in-phase component and (b) the quadrature component. In
both panels, the thick lines are the original “correct” input recon-
struction and the thin lines represent the reconstructions obtained
by slowly varying a single value of the latent representation. In
both panels, arrows are used to indicate the direction of changes
induced by increasing the latent value.

(a)

(b)

(c)

FIG. 22. The state-by-state classification accuracy for the
qutrit case. (a) Upper panel: the state-|0〉 classification accuracy
for the three methods as a function of the measurement time in
the case of a qutrit. Lower panel: an enlargement of the medium-
long times. (b) Upper panel: the state-|1〉 classification accuracy
for the three methods as a function of the measurement time in
the case of a qutrit. Lower panel: an enlargement of the medium-
long times. (c) Upper panel: the state-|2〉 classification accuracy
for the three methods as a function of the measurement time.
Lower panel: an enlargement of the medium-long times.
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In Figs. 22(a), 22(b), and 22(c) we show the classifi-
cation accuracy for, respectively, states |0〉, |1〉, and |2〉.
The lower panel of each figure is an enlargement of the
(2400–8000)-ns part of the plot to see the details better.
Even in this configuration, we can see the same trends
as in the two-level case. All methods show bad results
for short times, especially the GMM, and the FFNN still
exhibits a seesaw pattern that makes it poorly suited to the
task. Again, the GMM performs better than PreTraNN in
state |0〉 and worse in the state |1〉 classification due to the
data-distribution asymmetry. For state |2〉, the difference
between the GMM and PrTranNN is even higher, since
state |2〉 can decay not only on the state |0〉 but also on
the state |1〉.
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