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This study explores the possibility and presents a methodology to synthesize a classical mechanical
analogue to the quantum mechanical one-dimensional (1D) Kitaev model. While being fundamentally
different, we identify significant conceptual similarities between the two models that culminate in the
occurrence, in the classical analogue system, of topologically nontrivial bound states that are akin to
Majorana zero modes. By reformulating the Hamiltonian of the classical system in a form reminiscent
of second quantization, we show that a 1D staggered classical mechanical chain can exhibit dynamic
characteristics analogueous to Kitaev’s 1D superconducting model, as well as its characteristic bound
states. The nontrivial topological nature of the bound states is further confirmed by the topological band-
structure analysis and by the topological invariant. While the non-Abelian nature of these states remains an
open question, these results allow envisioning the possibility to achieve topological braiding in classical
mechanical systems.
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I. INTRODUCTION

Several studies in the general area of metamaterials
have shown the many conceptual similarities between pho-
tonic, phononic, and mechanical systems. As an example,
acoustic and mechanical systems can be devised to simu-
late digital electronic circuits [1–6] in which logic gates,
switches, and other components are realized via acous-
tic or mechanical components. More recently, this same
trend was observed also with respect to quantum mechan-
ical [7] and even topological materials [8–12], although
the correspondence with classical systems becomes more
elusive and often hidden in details of the mathematical
structure describing the high level dynamics. As an exam-
ple, in quantum information processing, the Majorana zero
mode (i.e., the quasiparticle that represents the solid-state
electronic counterpart of the Majorana fermion [13]) has
been shown to be a potential candidate to serve as a quan-
tum bit (qubit) in future quantum computers due to its
non-Abelian braiding statistics and to its topologically pro-
tected fault-tolerant nature [14–26]; a critical aspect to
control computational errors. Only in very recent times, a
handful of studies investigated the possibility to synthe-
size classical electrical [27,28] and mechanical [8–12,29]
analogues of the Majorana zero modes.

During the past decade, various concepts and experi-
mental investigations on classical systems (including pho-
tonic and phononic) have shown the ability to reproduce
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analogue mechanisms to quantum topological mechanisms
at the basis of topological insulators and other topo-
logical materials in classical electromagnetic, acoustic,
and mechanical systems [8–11,30–63]. A common trait
of these different implementations was the synthesis of
dynamical matrices (that describe the dynamics of the sys-
tem based on the classical equations of motion or perturba-
tive coupled-mode methods) resembling the Hamiltonian
operator (i.e., the matrix representation) of the target topo-
logical quantum system. Such analoguey is possible thanks
to similarities in the underlying mathematical representa-
tion, that however might not lead to a direct correlation of
certain physical properties. A simple example of this dis-
crepancy is seen in the comparison between quantum and
classical plane waves. A free quantum mechanical parti-
cle having only kinetic energy in the Hamiltonian has the
wave function of a plane wave, while an acoustic plane
wave involves an exchange between kinetic and poten-
tial energies via the medium supporting the wave, so the
Hamiltonian includes both kinetic and potential energy
terms. Although the existing approach has been shown to
be successful in creating analogue systems, the dynamical
matrix is not the only representation of the classical sys-
tem, therefore not the only way to connect quantum and
classical systems.

This study presents a first attempt to synthesize classi-
cal mechanical analogues to quantum topological systems
at the Hamiltonian level, rather than at the dynamical
matrix level. This goal was achieved by developing a
second-quantization-like formalism applicable to classical
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systems. By means of this method, the classical Hamilto-
nian is expressed in terms of on-site and hopping energy
terms. These terms show a highly correlated mathematical
structure with the second quantized form of a solid-state
system, hence offering an alternative and powerful tool to
analyze differences and similarities between classical and
quantum mechanical systems. Particularly, we focus on
replicating the one-dimensional (1D) Kitaev superconduct-
ing chain [14] and the Majorana zero modes with classical
mechanical elements (e.g., springs and mass particles) and
show that a dimerized mechanical chain (having staggered
particle masses or spring constants) has a similar Hamil-
tonian to Kitaev’s model. Also, we show that topological
bound states described by a Hamiltonian analogueous to
the one underlying Majorana zero modes appear at the ends
of topologically nontrivial chain. The dynamical behavior
and the topological invariant of the classical mechanical
chain can be also obtained by substituting the Hamiltonian
into the classical Hamilton’s equations.

The 1D superconducting chain model proposed by
Kitaev [14] is described by the following Hamiltonian in
second quantization formalism,

ĤKitaev = −μ
N∑

j =1

ĉ†
j ĉj − t

N−1∑

j =1

(
ĉ†

j +1ĉj + H.c.
)

+
N−1∑

j =1

(
�ĉ†

j +1ĉ†
j +H.c.

)
, (1)

where ĉ†
j and ĉj are the fermion creation and annihi-

lation operators, and μ, t, and � represent the on-site
energy, hopping, and superconducting coefficients, respec-
tively. The system has a symmetric spectrum about zero
energy that is protected by particle-hole symmetry. Con-
cerning the proposed classical mechanical chain that is the
object of this study, a classical “second quantized” nota-
tion is derived based on time-reversal eigenmodes of each
building-block oscillator, and an analogue particle-hole
symmetry is identified and found to be responsible for a
symmetric spectrum. Kitaev [14] also demonstrated in the
same model that under two extreme cases (1)μ � t = |�|,
and (2) μ � t = |�|, the Hamiltonians can be written as

Ĥ1 = i
μ

2

N∑

j =1

(
γ̂1γ̂2

)
j , (2a)

Ĥ2 = it
N−1∑

j =1

(
γ̂1
)

j +1

(
γ̂2
)

j , (2b)

with the self-conjugate Majorana operators γ̂1,2 following
ĉ† = 1/2

(
γ̂1 + iγ̂2

)
, and ĉ = 1/2

(
γ̂1 − iγ̂2

)
. These equa-

tions indicate two types of pairing of γ̂1,2 and Majorana

zero modes (as unpaired Majorana operators) appear at the
ends of the topologically nontrivial (μ < t = |�|) chain.
The same result is also found in the classical mechanical
chain where Majorana-like bound states manifest at the
terminals of the chain.

In the literature, 1D and quasi-1D periodic classical
mechanical systems following the conventional dynamical
matrix approach usually fall into the category of classical
analogues to the Su-Schrieffer-Heeger [64] (SSH) model
[55–58,65–67], while there are also recent studies focus-
ing on creating Majorana-like bound states by involving
complex structures [9–11]. The major difference between
Kitaev’s model and the SSH model lies in the supercon-
ducting pairing terms �ĉ†

j ĉ†
j +1 +�∗ĉj ĉj +1 in Eq. (1). It

is shown that the superconducting terms are inherent in
the Hamiltonian of a mechanical chain under the classical
second quantized notation.

With the proposed second quantized notation and the
Hamiltonian analoguey approach, we are able to construct
a classical system analogue to the Kitaev chain and exhibit-
ing Majorana-like bound states. This unique approach also
provides an alternative perspective on possible strategies
to link classical and quantum systems.

II. CLASSICAL ANALOGUE KITAEV CHAIN

A. Hamiltonian of a 1D classical mechanical chain

Consider a 1D classical mechanical chain composed of
N particles with mass mj connected by springs with con-
stants κj , where j = 1, . . . , N , with terminals connected to
the ground by springs, as shown in Fig. 1.

Assuming only longitudinal motions are allowed (parti-
cles follow a frictionless slide), the Hamiltonian of such a
classical mechanical chain is the total energy,

H =
N∑

j =1

p2
j

2mj
+

N∑

j =0

κj

2
(xj +1 − xj )

2, (3)

where (pj , xj ) are momentum and spatial coordinate of the
j th particle, and the 2N -tuple (p; x) forms a set of canon-
ical coordinates; it can be easily verified that {xj , xl} =
{pj , pl} = 0, and {xj , pl} = −{pj , xl} = δjl, where the curly
brackets represent Poisson brackets, and δjl is the Kro-
necker δ. For convenience, in Eq. (3) we have let x0 =
xN+1 ≡ 0 representing grounded (or fixed) ends.

m1 m2

κ2

x2 x3x1

κ1 κ3
m3

κ0 … mN

κN

xN

FIG. 1. Sketch of an arbitrary 1D mechanical chain. Mass of
the j th particle is labeled mj , while κj indicates the constant
of the spring next to the j th particle. The conjugate momenta
and coordinates (. . . , pj , . . . ; . . . , xj , . . . ) form the canonical
coordinates.
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We can write the Hamilton’s equations of motion for
such a finite chain,

ṗj = −∂H
∂xj

, (4a)

ẋj = ∂H
∂pj

. (4b)

Let X ≡ (p; x), and the above two sets of equations can be
written in a more compact form,

Ẋ = E
∂H
∂X

, E =
(

0 −1
1 0

)
, (5)

where the bold 1 and 0 in matrix E are N × N identity and
zero matrices, respectively. ∂H/∂X is a 2N × 1 column
vector with each of the components evaluated as ∂H/∂Xj .
It prescribes a linear operation on X given that H is a
homogeneous quadratic polynomial in Xj . Equation (5)
can be written as a set of linear differential equations as
Ẋ = HX by letting E(∂H)/∂X ≡ HX, where H is the coef-
ficient matrix of Hamilton’s equations. Substituting the
time-harmonic ansatz X → Xe−iωt gives the eigenvalue
problem

HX = −iωX. (6)

With the system being time-reversal invariant, i.e.,
H(p, x, t) = H(−p, x, −t), the matrix H always has sym-
metric spectra ±ω corresponding to time-reversal pairs
of eigenmodes X and X∗ [68], reminiscent of particle-
antiparticle symmetry in the Dirac equation.

However, it is generally impossible to open up a band
gap at zero frequency for a classical linearly elastic
mechanical chain and hence impossible for the zero-
frequency bound states to exist. Even if possible, a zero-
frequency (static) mode would not carry a phase infor-
mation other than 0 or π thus have less significance in
signal processing, information, as well as vibration and
noise control applications.

In the following, we show that the 1D dimerized lat-
tice has symmetric ω2 spectrum with respect to a nonzero
reference level. This situation is rather similar to particle-
hole symmetry in solid-state systems, where the symmetry
of the energy spectrum is with respect to a reference
level (Fermi level) instead of zero energy. Such analogue
particle-hole symmetry results from the combination of
time-reversal, space inversion, and odd sublattice symme-
try of the chain (namely, a negative sign in the perturbation
terms showing up upon exchanging the positions of the two
internal degrees of freedom, i.e., the sublattices). Under
these conditions, both topological transitions and bound
states can be created at either internal interfaces or termi-
nals of the chain, with the bound-state Hamiltonian being
similar at least, in mathematical form to the solid-state
Majorana zero modes.

B. Dimerized mechanical chain

In the following, we consider the particle-spring chain
with staggered mass and spring constants. Such alternating
pattern is also reminiscent of the SSH model [64] when
only the spring constants are varied, and of the Rice-Mele
[69] model when both variations in the spring and the mass
constants are considered. The SSH and Rice-Mele models
have been used in the literature to describe dimerized poly-
mer chains, hence we also use the word dimerized to refer
to the chain with alternating masses and spring constants.
Previous studies have suggested that the classical analogue
SSH chain with alternating springs exhibits a nontriv-
ial topological phase [55–58,65–67], while chains with
alternating particle masses are associated with the Rice-
Mele model and lack well-defined topological phases [58],
which include the diatomic chain with only alternating par-
ticle masses but a constant spring constant. However, a
key difference between the SSH and the Rice-Mele models
lies in the fact that the former respects inversion symme-
try whereas the latter does not. We show that the diatomic
chain with nonzero particle mass variation but no variation
in the spring constant can still produce similar topological
phase, as this configuration restores inversion symmetry in
the chain. However, to ensure global inversion symmetry,
the chain must have an odd number of particles; this lat-
ter case does not have a real-world quantum mechanical
counterpart because polymer chains comprising diatomic
unit cells always have an even number of atoms. In later
analyses, we discuss how the classical chain under investi-
gation exhibits a duality between the spring and mass con-
stants’ variations, and how nontrivial topological phases
and bound states can exist in a system possessing either
one of the two variations.

The matrix H of a nonuniform chain with varying mj and
κj can be expressed in terms of the dimerization parame-
ters. Note that mj appears in the denominator of the kinetic
energy term, while κj appears in the numerator of the
potential energy term in the Hamiltonian function. Then,
we can set the reference mass m0 and the spring constant
κ0 and rewrite mj and κj with two dimensionless dimer-
ization parameters rj and εj , which control the strength of
the staggering process in the following way (|rj | < 1 and
|εj | < 1):

mj = m0

(
1 − rj

1 + rj

)
, (7a)

κj = κ0(1 + εj ). (7b)

These relations are plotted in Fig. 2. Such a setup [par-
ticularly the counter intuitive Eq. (7a)] is devised so that
each term in the Hamiltonian function [see Eq. (3)] is lin-
ear in finite rj and εj . Note that if we simply let mj =
m0(1 − rj ), the parameter r will appear in the denominator
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FIG. 2. Plots of (a) the particle mass mj and (b) the spring
constant κj versus the dimerization parameters rj and εj , respec-
tively. The dimerization in m follows a constant harmonic mean
as m appears in the denominator of the kinetic energy terms of the
Hamiltonian function. The dimerization in κ satisfies a constant
arithmetic mean as it shows in the numerators of the potential
energy terms in the Hamiltonian function.

and the Hamiltonian can only be linearized in the case of
infinitesimal perturbation r.

For a diatomic lattice, the mass of the particles and of
the spring constants repeat identically every other element,
as graphically shown in Fig. 3. These staggered mass and
spring constants are described by Eq. (7) with ±r and ±ε,
respectively (“+” for index 1 and “−” for index 2),

m1,2 = m0

(
1 − ±r

1 ± r

)
, (8a)

κ1,2 = κ0(1 ± ε). (8b)

The reference spring constant κ0 is the arithmetic mean of
κ1 and κ2, while the reference mass m0 is the harmonic
mean of m1 and m2,

κ0 = 1
2
(κ1 + κ2) , (9a)

1
m0

= 1
2

(
1

m1
+ 1

m2

)
, or m0 = 2m1m2

m1 + m2
. (9b)

The reference frequency can then be defined as

ω0 =
√

2κ0

m0
, (10)

m1 m2

κ2

yj xj +1xj

κ1 κ1
m1

κ2
m2

yj −1

κ1 ……
j th cell

FIG. 3. Sketch of the 1D dimerized (staggered, or diatomic)
mechanical chain. Two particles with mass m1, m2, and two
springs with constants κ1, κ2 compose a unit cell. For the j th
cell, the conjugate momenta and coordinates of the two particles
are labeled (pj , qj ; xj , yj ).

which stands for the resonance frequency of a refer-
ence oscillator composed of a particle with mass m0 and
attached to the ground on both sides via springs of constant
κ0.

Since the lattice is dimerized, it is convenient to sepa-
rate the two inner degrees of freedom (sublattices) within
a unit cell. Hence, we employ (pj , xj ) for the first particle
(sublattice A) and (qj , yj ) for the second one (sublattice B),
obtained via the following substitutions:

{
p2j −1 → pj , p2j → qj

x2j −1 → xj , x2j → yj
, j = 1, . . . , N , (11)

where now j is the unit cell index and N is the
number of unit cells in a chain. It follows that there
are 2N particles in the chain, the state vector X =
(. . . , pj , qj , . . . ; . . . , xj , yj , . . . ) becomes a 4N tuple, and
the Hamiltonian function reads

H =
N∑

j =1

[
(1 + r)

p2
j

2m0
+ (1 − r)

q2
j

2m0

]

+
N∑

j =0

[
(1 + ε)κ0

2
(yj − xj )

2 + (1 − ε)κ0

2
(xj +1 − yj )

2
]
.

(12)

C. Second-quantization formalism for classical systems

In this section we develop the “second-quantization”
formalism for the classical mechanical lattice. Second
quantization is the standard language in quantum many-
body physics. While clearly there is no real notion of
quantization in classical systems, this formalism can help
to draw closer comparisons between the classical and
quantum systems, based on their Hamiltonian’s represen-
tations.

We consider the coordinate transformation from
(pj , qj ; xj , yj ) to (a+

j , b+
j ; a−

j , b−
j ) following

a±
j ≡ 1√

iω0

1√
2

(
pj√
m0

∓ i
√

2κ0xj

)
, (13a)

b±
j ≡ 1√

iω0

1√
2

(
qj√
m0

∓ i
√

2κ0yj

)
. (13b)

The coefficients multiplying the terms parenthesis ensures
that the alternative coordinate system remains canoni-
cal (and therefore Hamilton’s equations still hold, see
Appendix A). The terms in parentheses are the two eigen-
modes (time-reversed counterparts) considering each par-
ticle as a stand-alone oscillator. Dulock and McIntosh [68]
presented a ladder-operator approach applied to a single
classical oscillator, but a similar approach has not been
applied to classical many-body systems. Such classical
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second-quantized variables (a±) share some properties of
the quantum fermionic creation and annihilation operators
(ĉ†, ĉ) but also exhibit some differences. For example, the
classical variables are scalars, thus they always commute
under the multiplication operation. The anticommutation
relations of fermionic operators are replaced by Poisson
brackets (see Appendix B for details). It is worth not-
ing that in the second-quantization formalism of quantum
mechanics, the creation and annihilation operators oper-
ate on the Fock space by adding or removing particles
from a specific mode (i.e., at a specific site). However,
in the proposed classical description, scalar quantities are
used instead of operators, and the idea of energy quantiza-
tion does not apply. Also in this classical framework, the
Hamiltonian is represented as a scalar quantity. Despite
these differences, we show how the classical and quan-
tum systems share similar mathematical structures, which
allow applying the proposed representation to classical
many-body systems in a way that resembles the quantum
mechanical second-quantization formalism.

1. Hamiltonian function and equations of motion

In the dimerized mechanical lattice, consider an admis-
sible state vector whose motion only localizes at a
single particle, while all others are fixed, i.e., X =
(0, . . . , pj , . . . , 0; 0, . . . , xj , . . . , 0) or X = (0, . . . , qj , . . . ,
0; 0, . . . , yj , . . . , 0). Substituting into Eq. (12) gives the
“on-site energy” at the specific particle site,

HA,j = (1 + r)
p2

j

2m0
+ 2κ0x2

j

2
, (14a)

HB,j = (1 − r)
q2

j

2m0
+ 2κ0y2

j

2
, (14b)

where the effect of staggered spring constants ε is can-
celed by two neighboring springs, resulting in a equivalent
spring constant 2κ0, and only r appears in the kinetic
energy term. The same terms can be rewritten via a±

j ,
b±

j , and r by using the transformation rules in Eq. (13),
obtaining

HA,j (r) = iω0
1
4

(
(1 − r)(a+

j + a−
j )

2 − (a+
j − a−

j )
2
)

,

(15a)

HB,j (r) = iω0
1
4

(
(1 + r)(b+

j + b−
j )

2 − (b+
j − b−

j )
2
)

.

(15b)

Note that when r = 0, they reduce to

HA,j (r = 0) = iω0 a+
j a−

j , (16a)

HB,j (r = 0) = iω0 b+
j b−

j , (16b)

which is reminiscent of the on-site energy of a quantum
mechanical system.

These “on-site energy” terms represent part of the total
Hamiltonian shown in Eq. (12). The remaining terms
are the interparticle terms −(1 + ε)κ0 xj yj and −(1 −
ε)κ0 xj +1yj found in the second line of Eq. (12). They
can be expressed in terms of the analogue “hopping” and
“superconducting” terms defined as

Hhop,A↔B,j ≡ iω0

(
a−

j b+
j + c.c.

)

= pj qj /m0 + 2κ0xj yj , (17a)

Hsc,A↔B,j ≡ iω0

(
a−

j b−
j + c.c.

)

= pj qj /m0 − 2κ0xj yj , (17b)

Hhop,B↔A,j ≡ iω0

(
b−

j a+
j +1 + c.c.

)

= pj +1qj /m0 + 2κ0xj +1yj , (17c)

Hsc,B↔A,j ≡ iω0

(
b−

j a−
j +1 + c.c.

)

= pj +1qj /m0 − 2κ0xj +1yj . (17d)

In the mechanical lattice, the hopping and superconducting
terms always appear with opposite coefficients as there is
no pq coupled terms in the Hamiltonian function. Finally,
the Hamiltonian in the second-quantized form is found as

H =
N∑

j =1

HA,j (r)+ HB,j (r)

+ 1
4

N∑

j =0

[
(1 + ε)

(
Hsc,A↔B − Hhop,A↔B

)

+ (1 − ε)
(
Hsc,B↔A − Hhop,B↔A

) ]
j . (18)

Or explicitly in terms of a±
j and b±

j , it reads

H = iω0

4

{ N∑

j =1

[
(1 + r)

(
a+

j +a−
j

)2
−

(
a+

j −a−
j

)2

+ (1 − r)
(

b+
j +b−

j

)2
−

(
b+

j −b−
j

)2
]

+
N∑

j =0

[
(1 + ε)

(
a−

j b−
j −a−

j b+
j +c.c.

)

+ (1 − ε)
(

b−
j a−

i+1−b−
j a+

i+1+c.c.
) ]}

. (19)

The Hamiltonian expressions identified above [either in
(p , q, x, y) or (a±, b±), see Eqs. (12), (19)] contains j = 0
and j = N + 1 variables, where we let, for j = 0 and j =
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N + 1, xj = yj = 0, pj = qj = 0, and a±
j = b±

j = 0 repre-
senting the ground. The current Hamiltonian describes a
chain with both ends connected to the ground by springs
with constant (1 − ε)κ0 at both the left and the right ends.
To study a chain with different boundary conditions, one
must simply modify the corresponding terms in the Hamil-
tonian. For example, the Hamiltonian of the chain with
free-free ends is given by the current Hamiltonian to which
we subtract the potential energy contributed by the two
terminal springs,

Hfree = H − (1 − ε)
κ0

2
(
x2

1 + y2
N

)
(20)

= H − (1 − ε)
−iω0

8

[(
a+

1 −a−
1

)2 + (
b+

N −b−
N

)2
]

.

(21)

Similarly, we could remove the last particle from the chain,
hence resulting in an odd number of particles (spring-
spring boundary conditions), and the Hamiltonian would
be given by

Hodd = H − HB,N − 1
4

[
(1 + ε)

(
Hsc,A→B − Hhop,A→B

)

+ (1 − ε)
(
Hsc,B→A − Hhop,B→A

)]

N
. (22)

From the knowledge of the Hamiltonian, the system
matrix H can then be obtained from Hamilton’s equa-
tions with the alternative second-quantized basis X =
(a+

1 , b+
1 , . . . , a+

N , b+
N ; a−

1 , b−
1 , . . . , a−

N , b−
N )

ᵀ, in the following
form:

H = σ3 ⊗ H0 + iσ2 ⊗�0

=
(

H0 �0
−�0 −H0

)
, (23)

where ⊗ indicates the Kronecker product, σj are the Pauli
matrices, while H0 and �0 are 2N × 2N matrices, with N
the number of unit cells (such that each unit cell contains
two particles). In explicit form, they read

H0 = −iω0

[ N∑

j =1

(
1 + r

2

)
|2j − 1〉 〈2j − 1|

+
(

1 − r
2

)
|2j 〉 〈2j |

−
(

1 + ε

4

)
(|2j − 1〉 〈2j | + H.c.)

−
(

1 − ε

4

)
(|2j 〉 〈2j + 1| + H.c.)

]
+ HB.C., (24)

�0 = −iω0

[ N∑

j =1

r
2

|2j − 1〉 〈2j − 1|

− r
2

|2j 〉 〈2j |

+
(

1 + ε

4

)
(|2j − 1〉 〈2j | + H.c.)

+
(

1 − ε

4

)
(|2j 〉 〈2j + 1| + H.c.)

]
+�B.C., (25)

where we use the notation |j 〉 to represent a 2N × 1 column
vector with its lth component equal to δjl, and HB.C. and
�B.C. are the contributions from boundary conditions that
are different from the default spring-spring condition. The
effects of dimerization (r, ε) manifests itself in the system
matrix. As an example and in order to illustrate the specific
pattern of the Hamiltonian matrix, we report here below
the system matrix of a four-particle (two-cell) chain under
spring-spring boundary conditions

H = −iω0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + r
2 − 1+ε

4 0 0 r
2

1+ε
4 0 0

− 1+ε
4 1 − r

2 − 1−ε
4 0 1+ε

4 − r
2

1−ε
4 0

0 − 1−ε
4 1 + r

2 − 1+ε
4 0 1−ε

4
r
2

1+ε
4

0 0 − 1+ε
4 1 − r

2 0 0 1+ε
4 − r

2

− r
2 − 1+ε

4 0 0 −1 − r
2

1+ε
4 0 0

− 1+ε
4

r
2 − 1−ε

4 0 1+ε
4 −1 + r

2
1−ε

4 0
0 − 1−ε

4 − r
2 − 1+ε

4 0 1−ε
4 −1 − r

2
1+ε

4
0 0 − 1+ε

4
r
2 0 0 1+ε

4 −1 + r
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

This matrix possesses a block structure reminiscent of the Bogoliubov-de Gennes (BdG) formalism [70] of the
Hamiltonian of the 1D superconductor, which has the form (when � ∈ R),

HBdG =
(

H �

−� −H

)
. (27)
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(a)

0 0.5π π 1.5π 2π
0.0
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0.4
0.6
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1.0
1.2
1.4
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ω
ω0

(b)

0 0.5π π 1.5π 2 π
0.0

0.5

1.0

1.5

2.0

k a

ω2

ω0
2

FIG. 4. (a) ω-k and (b) ω2-k band structures of a classical
dimerized mechanical chain with r = 0.2 and ε = 0.1. The ω2

spectrum is symmetric about the level ω2
0 = 2κ0/m0.

Such a system has a particle-hole symmetry,

PHBdGP = σ 1H∗
BdGσ 1 = −HBdG, (28)

where the particle-hole symmetry operator P = σ 1K, K is
the complex conjugate operator, and σ 1 = 1 ⊗ σ1. It is this
symmetry that leads the system to acquire a symmetric ±E
energy spectrum. Having the same block-matrix structure,
the classical diatomic chain certainly possesses the same
±ω symmetry in the spectrum, interpreted as time-reversal
symmetry, but does it show any additional hidden symme-
try? The ω-k dispersion of the dimerized mechanical chain
is found as (see Appendix C)

ω(k) = ±ω0

√
1 ± F(k), (29a)

F(k) =
√

1 + (1 − r2)(1 − ε2)(cos k − 1)/2, (29b)

which indicates that the band structure ω2-k is symmet-
ric about ω2

0, (and also about ka = nπ ). Figure 4 shows
the typical ω-k and ω2-k band structures of a dimerized
mechanical chain. In this example, r = 0.2 and ε = 0.1.

Therefore, we can reformulate the original eigenvalue
problem HX = −iωX as H2X = −ω2X and study the
alternative system matrix H2.

The matrix H2 has a constant term −ω2
0 along its main

diagonal, which shifts the entire spectrum to the reference
level −ω2

0 without affecting the eigenvectors. It is conve-
nient to drop the constant term and focus on the rest of the
matrix H̃2,

H2 = ω2
0

(
−1 + H̃2

)
. (30)

Note that H̃2 is nondimensionalized, and has the form,

H̃2 = 1 ⊗ H′
0 + σ1 ⊗�′

0

=
(

H′
0 �′

0
�′

0 H′
0

)
, (31)

where 1 represents the 2 × 2 identity matrix. H̃2 is com-
posed of the 2N × 2N blocks H′

0 and �′
0 that, in explicit

form, are expressed as

H′
0 =

N∑

j =1

[
r |2j − 1〉 〈2j − 1| − r |2j 〉 〈2j |

−
(

1 + ε

2

)
(|2j − 1〉 〈2j | + H.c.)

−
(

1 − ε

2

)
(|2j 〉 〈2j + 1| + H.c.)

]
+ H′

B.C., (32)

�′
0 = r

N∑

j =1

[(
1 + ε

2

)
(|2j − 1〉 〈2j | − H.c.)

−
(

1 − ε

2

)
(|2j 〉 〈2j + 1| − H.c.)

]
+�′

B.C. (33)

The matrix H̃2 for the same four-particle chain is shown
here below,

H̃2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r − 1+ε
2 0 0 0 r(1+ε)

2 0 0
− 1+ε

2 −r − 1−ε
2 0 − r(1+ε)

2 0 − r(1−ε)
2 0

0 − 1−ε
2 r − 1+ε

2 0 r(1−ε)
2 0 r(1+ε)

2
0 0 − 1+ε

2 −r 0 0 − r(1+ε)
2 0

0 r(1+ε)
2 0 0 r − 1+ε

2 0 0
− r(1+ε)

2 0 − r(1−ε)
2 0 − 1+ε

2 −r − 1−ε
2 0

0 r(1−ε)
2 0 r(1+ε)

2 0 ε−1
2 r − 1+ε

2
0 0 − r(1+ε)

2 0 0 0 − 1+ε
2 −r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)
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At first glance, H̃2 lost the BdG-like block-antisymmetry
pattern seen in H. However, it gains additional antisym-
metry in the A-B sublattices; the dimerization parameters
r and ε appear with opposite signs in 2j − 1 and 2j com-
ponents in H̃2. In other words, the A-B sublattice degree of
freedom contributes to the determination of the analogue
particle-hole degree of freedom. Note that both the SSH
[64] and the Rice-Mele [69] models also consider dimer-
ized 1D lattices. However, they are not superconducting
models and do not have the pairing terms �ĉ†

j ĉ†
j +1 + H.c.

in their Hamiltonians. In the case of dimerized mechan-
ical lattices, the use of the dynamical matrix approach
allowed identifying these systems as classical analogue to
the SSH systems [55–58,65–67], however when employ-
ing the second quantized form of the Hamiltonian the
analogue “superconducting” and “hopping” terms natu-
rally appear simultaneously. These terms also make the
system very similar (at a mathematical level) to a Kitaev
chain model. Also, under the alternative coordinates of
a±

j , b±
j , the off-diagonal block �′

0 in H̃2 becomes anti-
symmetric, which is aligned with the BdG form of the
Hamiltonian.

Note that H̃2 is dimensionless and so are its eigen-
values. Let ω̃2 = (ω2 − ω2

0)/ω
2
0 be the normalized eigen-

value, then H̃2X = ω̃2X, where X is the same eigenvector
satisfying HX = −iωX. Given that ω always shows in

positive-negative pairs, the ω2 and ω̃2 spectra are always
doubly degenerate, hence corresponding to time-reversal
pairs of eigenvectors. In addition, the number of distinct
ω̃2 values matches the number of particles in a chain.

Before analyzing the symmetry of the system, let us
first take a look at some selected numerical results within
a specific scenario. Figure 5 shows the spectrum and the
mode shapes of a classical diatomic chain with 36 parti-
cles (18 cells) and spring-terminated ends. r is fixed at 0,
with ε varying from −1 to 1. When ε < 0, bound states
with ω = ω0 appear at both ends of the mechanical chain.
The entire spectrum is symmetric with respect to ω = ω0,
which can be ascribed to the synthetic particle-hole sym-
metry in the dimerized mechanical chain. Further exam-
ples under different parameters are shown in Appendix D
for reference.

2. Synthetic particle-hole symmetry

The synthetic particle-hole symmetry operator P under
the second-quantized basis (a+

j , b+
j ; a−

j , b−
j )

ᵀ can be
expressed as

P = σ3 ⊗ D ⊗ (iσ2) , D =
⎛

⎝
�

1
�

⎞

⎠

N×N

,

(35)

–1.0 –0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

ϵ

ω
ω0

2

(a)

(b) (c) (d)

FIG. 5. (a) Spectrum and (b)–(d) mode shapes of the diatomic chain with 36 (even) particles (18 cells), both ends terminated by
springs connected to ground, r = 0, and varying ε values. When ε < 0, Majorana-like bound states with ω = ω0 appear at the two ends
of the mechanical chain. Symbolic representations of the chains for ε < 0: |= • − • · · · • −• =|, and ε > 0: |−• = • · · · • = •−|.
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with D the N × N skew-diagonal identity matrix. Explic-
itly, P in matrix form looks like,

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

+1
−1 0

. .
.

−1
0 +1

. .
.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

4N×4N

. (36)

The action of P on a state vector can be interpreted as
follows: (1) the σ3 term adds minus signs to the “hole”
components, i.e., a−

j and b−
j components. This is effec-

tively a complex conjugate (time-reversal) operator if one
transforms the vector back to the (p , x) phase space, as it
will reverse the phase difference between p and x, (2) D
reverses the cell order in the chain, and (3) iσ2 swaps and
adds alternating signs to the a and b components. The intra-
cell swapping and cell-order-reversing D together make a
space-inversion operator for a state vector. The alternating-
sign operation represents the sublattice (or chiral) sym-
metry. Its matrix representation reads σ3 acting on (A, B)
sublattice space. Essentially, such operation multiplies the
state vector ψ by the vector v = (+1, −1, +1, −1, . . . )
in real space. Note that vj = eiπ j = ei(2π/a)j , where a = 2
is the lattice constant. In k space, v(k) is a unit impulse
located at k = 2π/a. The multiplication in real space is
performed as convolution in k space, and the operation
manifests in ψ(k) → ψ(k + 2π/a), i.e., the wave num-
ber increases by 2π/a. In the first Brillouin zone, where
k is limited to the interval [−π/a,π/a], the shift in the
wave number does not change k but it does produce a
switch from the low-frequency (acoustic) branch to the
high-frequency (optical) branch, and vice versa. It follows
that, if vectors before and after the sublattice symmetry
operation are both eigenvectors of a chain, they are of
identical wave number, and such operation will swap them
vertically in the ω2-k spectrum.

In summary, the synthetic particle-hole symmetry oper-
ator P is a composite operator comprising time-reversal,
space-inversion, and sublattice symmetry operations. As
seen in Sec. II D 1, the k-space analysis will lead to the
same conclusion.

Under current (a+
j , b+

j ; a−
j , b−

j )
ᵀ-basis representation, P

is an orthogonal (real unitary) matrix, Pᵀ = P−1. For a
chain with an even number of particles and both ends
spring-terminated (composed of complete unit cells), its
system matrix H̃2 [e.g., Eq. (34)] satisfies the synthetic
particle-hole symmetry,

PH̃2P−1 = −H̃2. (37)

For an eigenmode X of the chain, which satisfies
H̃2X = ω̃2X, we have PH̃2X = ω̃2PX. With the manipu-
lation PH̃2P−1PX = ω̃2PX, we obtain −H̃2PX = ω̃2PX,
or H̃2PX = −ω̃2PX. That is, for any eigenvector X of H̃2

with eigenvalue ω̃2, its synthetic-particle-hole-exchanged
vector PX is still an eigenvector of H̃2, with the alternative
eigenvalue −ω̃2.

This synthetic PHS holds for chains with even numbers
of particles with spring terminations (complete cells), hav-
ing the patterns like |−• = ◦ − • = ◦−|. Here we intro-
duce the notations “•,” “◦,” “−,” “=,” and “|,” which
stands for heavier and lighter particles, softer, and stiffer
springs, and the ground, respectively. By printing only 2
(or 1.5) cells (which is enough to observe chains’ pat-
terns and their symmetry), we can symbolize the same
kind of chains with minimal notation. For a chain with
an odd number of particles (see Fig. 12 in Appendix D),
there is an odd number of distinct eigenvalues and the
spectrum cannot be perfectly symmetric about the ref-
erence level, unless there is one uniformly lying on the
reference level (see Fig. 13 in Appendix D). Also, for a
chain with an odd number of particles, its system matrix
H̃2

odd is of dimensions (4N − 2)× (4N − 2), and the syn-
thetic PHS operator Podd with the same dimensions can
be built by dropping the last columns and rows in each
of the four blocks. It turns out that the synthetic PHS
operator for odd-particle chains does not map between
eigenvectors of the same chain. Instead, it maps between
two chains with opposite dimerization parameters, e.g.,
|−• = ◦ − • =| ↔ |= ◦ − • = ◦−|, namely, two chains
with patterns displaced by a half lattice,

PoddH̃2
odd(r, ε)P−1

odd = −H̃2
odd(−r, −ε). (38)

Note that shifting the pattern by half of a lattice in a peri-
odic (infinite) chain does not affect the response of the
chain. For a finite chain with a large number (N � 1) of
cells (i.e., in the thermodynamic limit), the contribution to
the bulk modes due to the boundary is minimal, so the bulk
spectra shown in Fig. 12 in Appendix D and Fig. 6 still all
look symmetric.

In addition, in the off-diagonal blocks �′
0, there are

quadratic rε coupled terms. When rε = 0, that is, either
r or ε vanishes, the coupled terms disappear. In terms
of symmetry in the chain, the bulk pattern will then
acquire inversion symmetry (e.g., · · · − • = • − · · ·, or
· · · ◦ − • − ◦ · · ·). Concerning the inversion symmetry of
a finite chain, it needs accounting also for the boundary
conditions. Particularly, the example just shown [that is
(1) even, spring-spring, r = 0, |= • − • = • − • =|, see
Fig. 5 and (2) odd, free-free, ε = 0, • − ◦ − •, see Fig. 12
in Appendix D] are chains with inversion symmetry. For
chains with inversion symmetry, the bound states always
show in pairs at the two ends because the two ends appear
to be identical when viewed from each side. This is in line
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spring-spring free-free spring-free

even

odd

FIG. 6. Spectra of the diatomic chains in the (r, ε)-parametric space with various combinations of boundary conditions. Section
curves on the high-symmetry planes r = 0 and ε = 0 are emphasized with blue and magenta curves, respectively.

with the Kitaev model [14], where Majorana zero modes
must show in pairs, since they are obtained by splitting
electrons into halves.

Figure 6 shows the spectra of the diatomic chains
under (r, ε)-parametric space with various combinations of
boundary conditions. Spectra on the cross sections with
inversion symmetry bulk patterns (r = 0 or ε = 0) are
emphasized with blue or magenta curves, respectively. For
chains with inversion symmetry, there can be either (1)
two Majorana-like zero modes (one at each end), or (2)
no Majorana-like modes at all; these two cases correspond
to topological and trivial phases. For a chain with the bulk
pattern respecting inversion symmetry (although the chain
itself does not, due to terminal conditions), there can be a
single Majorana zero mode at one of the ends, or at none
of them.

3. Single bound state in the mechanical chain

1D topological quantum systems such as the Kitaev
model or the SSH model always have the bound states
appearing in pairs at the two ends of the chain. The bound
states can be interpreted as quasiparticles with half of the
degrees of freedom of a unit cell of the original chains. The
Majorana bound states and the topological bound states of
the SSH chain must show in pairs due to the fact that in

the Kitaev chain, the total number of electrons must be an
integer, while in the SSH chain (polyacetylene, [C2H2]n)
there is always an even number of carbon atoms.

The classical mechanical lattices presented in this work
possesses even greater flexibility, as the chain can be
truncated at any point (including locations in between sub-
lattices), hence also leading to individual bound states, as
shown in Fig. 13 in Appendix D. Nonetheless, whenever
rε = 0, that is, bulk pattern has inversion symmetry locally
(while the global inversion symmetry could be broken due
to the number of particles or different boundary condi-
tions), the bound states always have zero frequency ω̃ = 0
with respect to the reference level, or ω = ω0, and hence
they are zero modes. In the following paragraph we show
with asymptotic analysis the presence of the zero modes,
and its Hamiltonian akin to the Majorana zero modes of
the Kitaev model.

4. Majorana-like Hamiltonian of the zero modes

The topological analysis of the band structure neces-
sary to show the nontrivial (topological) nature of the zero
modes will be addressed in the next section after present-
ing the k-space representation of the system. In this section,
we offer a phenomenological point of view, which explains
the existence of localized modes at zero frequency (about
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κ1κ2 κ1κ2 κ2 …
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…

ϵ →

ϵ→

−1,  (κ1, κ2) →

→ →

→ →

→

 (0, 2κ0)

  +1,  (κ1, κ2)  (2κ0 ,0)

r  −1,  (m1, m2)  (∞ , ½ m0)

r  +1,  (m1, m2)  (½ m0, ∞ )

Free terminals, ϵ = 0Spring terminals, r = 0
(a)

(b)

(c)

(d)

m2 m2

m2m2m2

m1 m1 m1

m1 m1

FIG. 7. Phenomenological interpretation of the bound states. (a),(b) Chains with spring terminals and r = 0 under two extreme
conditions: ε approaching −1 and 1, respectively. An unpaired simple resonator with m0 and 2κ0 (ω = ω0) appears at the end of
the chain in the former case. (c),(d) Chains with free terminals and ε = 0 under two extreme conditions: r approaching −1 and 1,
respectively. An unpaired simple resonator with 0.5m0 and κ0 (ω = ω0) appears at the end of the chain in the latter case.

the reference level) under certain parameter ranges. Kitaev
[14] considered two extreme conditions in his model [see
Eq. (1)]: the on-site energy (μ) being much greater than
the hopping and superconducting amplitude μ � t = |�|,
and vice versa, μ � t = |�|. They correspond to differ-
ent ways of pairing the Majorana fermions. In the latter
case, unpaired Majorana fermions can be found at the
ends. Here, a similar idea can be utilized to understand the
existence of the zero bound states.

Let us first consider a spring-terminated chain with r =
0 (all particles with identical mass m0) under two extreme
conditions: (1) ε → −1 and (2) ε → +1, as shown in the
left of Fig. 7.

In both cases, the dimerization leads to a sequence
of decoupled diatomic oscillators given that one of the
two spring constant vanishes. These oscillators have two
eigenmodes: the internal contraction and extension mode
(1, −1) with eigenfrequency ω = √

4κ0/m0 = √
2ω0 and

the rigid body mode (1, 1) with ω = 0. They compose the
N -fold degeneracy (assuming N pairs) at ω2 = 2ω2

0 and
ω2 = 0, on the left and right sides of the spectrum shown
in Fig. 5. Nevertheless, in the first case (ε− → −1), the
first particle is not paired with its neighboring particle,
but attached to the ground with a spring having κ2 = 2κ0.
This condition leads to a local resonant mode with ω =√

2κ0/m0 = ω0. Further, if the chain possesses inversion
symmetry, the same thing will happen at the other termi-
nal, hence resulting in a twofold degeneracy at ω = ω0 as
ε → −1, as shown in Fig. 5.

The Hamiltonian under the first condition (r = 0, ε =
−1) reads [cf. Eq. (19)]

H1 = iω0

∑

j

[
a+

j a−
j +b+

j b−
j

+ 1
2

(
b−

j a−
j +1+b+

j a+
j +1−b−

j a+
j +1−b+

j a−
j +1

) ]
. (39)

The first two terms in the summation provide only the ref-
erence level ω0. Recall that, in condensed-matter systems,
the Majorana operator γ̂ is obtained by taking either the

real or the imaginary part of the fermion creation and anni-
hilation operator, ĉ† = 1/2

(
γ̂1 + iγ̂2

)
, ĉ = 1/2

(
γ̂1 − iγ̂2

)
.

Following the same idea, if we define γ A
j = i/

√
2(a−

j −
a+

j ), and γ B
j = i/

√
2(b−

j − b+
j ) [that are self-conjugate(

γ
A/B
j

)∗
= γ

A/B
j ], the remaining terms in the Hamiltonian

are then

H̃1 = −iω0

∑

j

γ B
j γ

A
j +1. (40)

The Hamiltonian says that the B sublattice of the j th
cell is paired with the A sublattice of the (j + 1)th cell.
Such pairing leaves the A sublattice of the first cell and
the B sublattice of the last cell behind, and they become
unpaired bound states, similar to the nontrivial Kitaev
chain Hamiltonian [Eq. (2b)].

On the other hand, the Hamiltonian under the second
condition (r = 0, ε = +1) reads

H2 = iω0

∑

j

[
a+

j a−
j +b+

j b−
j

+ 1
2

(
a−

j b−
j +a+

j b+
j −a−

j b+
j −a+

j b−
j

) ]
, (41)

or,

H̃2 = −iω0

∑

j

γ A
j γ

B
j , (42)

which pairs the A/B sublattices within each unit cell,
without leaving any unpaired states; this latter case is
reminiscent of the trivial Kitaev chain [Eq. (2a)].

On the right-hand side of Fig. 7, another situation is con-
sidered: a diatomic chain with free ends and with ε = 0.
Now, let us consider two extreme conditions: (1) r → −1
and (2) r → +1. In both cases, r → ±1 corresponds to
one mass approaching infinity and the other approach-
ing a value of half of the reference mass [according to
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Eq. (7a)]. A particle with infinite mass could be inter-
preted as the ground, or considered as almost fixed. So,
again, the dimerized chain becomes a series of decou-
pled oscillators, separated by the infinite-mass particles,
which hardly transfer any force or displacement. Inside
each oscillator there is a particle with mass 1/(2)m0 con-
nected by two springs of constant κ0, and the resonant
frequency is

√
4κ0/m0 = √

2ω0. All the local resonators
contribute a N -fold degeneracy at ω2 = 2ω2

0 in the spec-
trum as r → ±1. The N -fold degenerate eigenfrequencies
at ω2 → 0 are ascribed to the heavy particles—they are not
truly fixed—but all the eigenmodes involving their motion
have eigenfrequencies approaching zero since the modal
mass approaches infinity. Particularly, in case 2, there is
a particle not bounded by two heavy ones but suspended
at the end with only one connected spring. It has natural
frequency ω = √

κ/(m0/2) = ω0 and results in the zero
bound state.

At first glance, there is no direct analogue to the pair-
ing of Majorana modes in a unit cell, given in every
oscillator there is only one moving particle. In fact, the
analogue lies in pairing of springs rather than particles,
as in each oscillator there are two springs with deflections
of equal amount but opposite signs. Nevertheless, given
that we are using “particle-standard” notations (includ-
ing pj , qj , xj , yj and their derivative quantities a±

j , b±
j ),

the Majorana states cannot be efficiently formulated for
such chains. If instead, “spring-standard” notations are

adopted (using spring deflections as variables such as
ξj = yj − xj , ηj = xj +1 − yj and so on), a dual formulation
reminiscent of the previous examples could be obtained.
Nevertheless, the duality between both cases is shown in
various examples (e.g., Figs. 5 and 12).

D. k-space representation and the topological invariant

To express the Hamiltonian in k space and second-
quantization formalism, consider the discrete Fourier-
transform pairs,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a±
k = 1√

N

N∑

j =1

e−ikj a±
j ,

a±
j = 1√

N

N∑

q=1

e+ikj a±
k ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b±
k = 1√

N

N∑

j =1

e−ikj b±
j ,

b±
j = 1√

N

N∑

q=1

e+ikj b±
k .

(43)

For all k ∈ (0, 2π ], the transformed equations become

H̃2
k(k)

⎛

⎜⎜⎝

a+
k

b+
k

a−
k

b−
k

⎞

⎟⎟⎠ = ω̃2
k

⎛

⎜⎜⎝

a+
k

b+
k

a−
k

b−
k

⎞

⎟⎟⎠ , (44)

in which the system matrix reads

H̃2
k(k)

=

⎛

⎜⎜⎜⎜⎝

r − 1
2

(
e−ik(1 − ε)+ ε + 1

)
0 1

2 r
(
e−ik(1 − ε)+ ε + 1

)

− 1
2

(
eik(1 − ε)+ ε + 1

) −r − 1
2 r

(
eik(1 − ε)+ ε + 1

)
0

0 1
2 r

(
e−ik(1 − ε)+ ε + 1

)
r − 1

2

(
e−ik(1 − ε)+ ε + 1

)

− 1
2 r

(
eik(1 − ε)+ ε + 1

)
0 − 1

2

(
eik(1 − ε)+ ε + 1

) −r

⎞

⎟⎟⎟⎟⎠
.

(45)

Note that the matrix is not Hermitian particularly due to
the fact that the selected basis a±

k (b±
k ) are not complex

conjugate pairs. Based on Eq. (44), a±
k

∗ = a∓
−k (note the

sign change in k), which is different from the quantum
mechanics convention, where ĉ†

k is the Hermitian conju-
gate of ĉk. The detail of the Fourier transform is provided
in Appendix E for reference.

H̃2
k(k) can be decomposed into two pairs of identical 2 ×

2 blocks and can be expressed as

H̃2
k(k) = 1 ⊗ H̃2

k(k)1,1 + σ1 ⊗ H̃2
k(k)1,2, (46)

where

H̃2
k(k)1,1 = −1

2
[(1 − ε) cos k + (1 + ε)] σ1

− 1 − ε

2
sin k σ2 + rσ3, (47a)

H̃2
k(k)1,2 = ir

2
{

[(1 − ε) cos k + (1 + ε)] σ2

− [(1 − ε) sin k] σ1
}
. (47b)

As a 4 × 4 matrix, H̃2
k(k) has four eigenvalues that form

two doubly degenerate pairs. The two distinct eigenvalues
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are found to be

ω̃2
±(k) = ±

√
1 + (1 − r2)(1 − ε2)(cos k − 1)/2, (48)

which is identical to F(k)/ω0 [see Eq. (29a) in p. 7]
obtained using conventional dynamic matrix approach.
Again, double degeneracy is due to time-reversal sym-
metry, and each eigenvalue corresponds to a pair of
time-reversal eigenmodes.

Also, remember that ω̃2
± are defined with respect to the

reference squared frequency ω2
0 = 2κ0/m0, around which

the spectrum is symmetric,

ω2 = ω2
0

(
1 ± ω̃2)

= 2κ0

m

[
1 ±

√
1 + (

1 − r2
) (

1 − ε2
)
(cos k − 1)/2

]
.

(49)

1. Synthetic particle-hole symmetry in k space

The k-space representation of the synthetic particle-hole
symmetry operator, which is an antiunitary operator, can
be expressed as P = UPK, where UP is a unitary operator
and K the complex conjugation. The matrix form of UP
can be deduced from the real-space version of P. Under
current (a+

k , b+
k , a−

k , b−
k )

ᵀ representation,

UP =

⎛

⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎠ = −σ3 ⊗ (iσ2) . (50)

As an example, P = UPK acting on a vector X =
(u, v,μ, ν)ᵀ yields

P

⎛

⎜⎝

u
v

μ

ν

⎞

⎟⎠ = UPK

⎛

⎜⎝

u
v

μ

ν

⎞

⎟⎠ = UP

⎛

⎜⎝

u∗
v∗
μ∗
ν∗

⎞

⎟⎠ =

⎛

⎜⎝

−v∗
u∗
ν∗

−μ∗

⎞

⎟⎠ . (51)

It can be easily checked that the synthetic particle-hole
symmetry holds for the system; applying P on the system
matrix H̃2

k(k) gives

PH̃2
k(k)P

−1 = UPK H̃2
k(k)K−1U−1

P (52)

= UP

[
H̃2

k(k)
]∗

U−1
P (53)

= −H̃2
k(k). (54)

It leads to the fact that for a given eigenvector Xj (k)
of H̃2

k(k) with eigenvalue ω̃2
j (k), there is another eigen-

vector Xl(k) = PXj (k) with opposite eigenvalue ω̃2
l (k) =

a

FIG. 8. Illustration of mapping produced by the applications
of the synthetic particle-hole symmetry operator in k space.

−ω̃2
j (k). Furthermore, the system matrix has the attribute,

H̃2
k(−k) =

[
H̃2

k(k)
]∗

[see Eq. (45)], thus

UPH̃2
k(−k)U−1

P = −H̃2
k(k), (55)

or U−1
P H̃2

k(k)UP = −H̃2
k(−k). (56)

Therefore, given an eigenvector Xj (k) of H̃2
k(k)with eigen-

value ω̃2
j (k), there is an eigenvector Xl(−k) = U−1

P Xj (k)
of H̃2

k(−k) with eigenvalue ω̃2
l (−k) = −ω̃2

j (k). Figure 8
shows the discussed correspondences in the ω2-band struc-
ture (of a chain with r = 0.1, ε = 0.2). Note that −k is
equivalent to 2π − k, hence symmetry about k = 0 also is
identical to symmetry about k = π .

2. Topological invariant, Pfaffian approach

The Pfaffian is an invariant quantity of an even-
dimensional antisymmetric matrix, and can be used in the
calculation of the topological invariant of the present sys-
tem. Another approach to derive a topological invariant
can be based on first-principles Berry connection integral,
which is known as the Zak phase for 1D systems, and can
be interpreted as the winding number in the parametric
space, as shown in Appendix F. Both approaches return
equivalent results.

Kitaev [14] showed that the Z2 topological invariant
ν (= 0 or 1) of a 1D topological superconductor system
can be defined as the product of the sign of the Pfaffian of
the Hamiltonian matrix at the two high-symmetry points
k = 0,π ,

(−1)ν = sign [Pf(A|k=0)] sign [Pf(A|k=π)] . (57)

As in the Kitaev chain, the band gap can only close and
reopen (when the band topology may change) at these two
points as parameters evolve.

In reference to the diatomic chain considered in this
study, the band gap only closes at k = π when both r =
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(a)

topological

trivial

trivialtopological

(b)

–1.0 –0.5 0.0 0.5 1.0
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ϵ

FIG. 9. (a) ω2 spectrum at the high-symmetry point ka = π in the (r, ε) parametric space. Section curves on the high-symmetry
planes r = 0 and ε = 0 are emphasized with blue and magenta curves, respectively. (b) Topological phases defined by the Pfaffian of
system matrices under enforced symmetry condition rε = 0.

ε = 0 (condition at which the diatomic chain degener-
ates into a monoatomic chain); therefore we focus only on
k = π . Substituting k = π into Eq. (45), the system matrix
can be greatly simplified as

H̃2
k(π) ≡ H̃2

π =

⎛

⎜⎝

r −ε 0 rε
−ε −r −rε 0
0 rε r −ε

−rε 0 −ε −r

⎞

⎟⎠ . (58)

Similarly to what is shown for the real-space system
matrix, the off-diagonal blocks contain nonlinear terms of
rε. These terms can be eliminated only if r = 0 or ε = 0,
which is when the diatomic chain acquires inversion sym-
metry. We note that such inversion symmetry constraint
enriches the topology of the diatomic chain system, as
elaborated later. Figure 9(a) plots ω2 at k = π in the (r, ε)-
parametric space. As shown, the band gap closes only
at an isolated point (r, ε) = (0, 0). Given that topologi-
cal transition only takes place when the band gap closes
and reopens, and the entire gapped domain is connected,
it seems that the system with all possible configurations
should stay in the same topological phase. However, if we
exclude r (or ε) in the parametric space and force it to van-
ish, so that the only degree of freedom is ε (r), then as
ε (r) continuously evolves from ε0 (r0) to −ε0 (−r0), the
band gap must close and reopen once, indicating a possi-
ble topological transition at ε = 0 (r = 0). In Fig. 9(a), two
sectional planes of r = 0 and ε = 0 are shown. The eigen-
values under such constraints are simple linear relations,
ω̃2 = ±ε and ω̃2 = ±r, as depicted in magenta and blue
lines, respectively.

Figure 10 provides a comparison of the spectra at ka =
π on two different sectional planes, namely ε = 0 (shown
in magenta) and ε = 1/4 (shown in dashed light red), with
varying r. The former curve exhibits a crossing at r = 0,

which is a typical signature of a system possessing particle-
hole symmetry. Conversely, the latter curve demonstrates
a repulsion between the two bands, despite being sym-
metric with respect to ω̃2 = 0. This repulsion indicates
the absence of synthetic PHS, resulting from the lack of
inversion symmetry.

To identify the topological phases of chains possessing
synthetic PHS, we can evaluate the Pfaffian of the system
matrix. When r = 0 or ε = 0, the system matrix becomes

H̃2
π |ε=0 =

⎛

⎜⎝

r 0 0 0
0 −r 0 0
0 0 r 0
0 0 0 −r

⎞

⎟⎠ = 1 ⊗ (rσ3) , (59a)

–1.0 –0.5 0.0 0.5 1.0
–1.0

–0.5

0.0

0.5

1.0

r

ω~2

ω0
2 = 0

= 1
4

ϵ

ϵ

FIG. 10. The ω̃ spectra at ka = π on sectional planes ε = 0
(magenta) and ε = 1/4 (light red), with varying r. The former
exhibits a crossing at r = 0 as a result of synthetic PHS. The
latter shows a repulsion between the two bands, indicating the
absence of synthetic PHS, due to broken inversion symmetry,
and no topological phases can be defined thereon.
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H̃2
π |r=0 =

⎛

⎜⎝

0 −ε 0 0
−ε 0 0 0
0 0 0 −ε
0 0 −ε 0

⎞

⎟⎠ = 1 ⊗ (−εσ1) .

(59b)

Each of the two matrices contains two identical 2 × 2
blocks representing two sets of decoupled equations. This
corresponds to the twofold degeneracy in the ω2 spectrum.
To evaluate the Pfaffian, we need to first make the matrices
antisymmetric via a change of basis. Given the matrix

Q = 1√
2

(
1 1
−i i

)
, (60)

Q rotates the three Pauli matrices, Qσ1,2,3Q† = σ3,1,2 or
Q†σ1,2,3Q = σ2,3,1. Given σ2 is antisymmetric, we trans-
form the matrices so that they align with σ2, then the
Pfaffian can be evaluated,

Q† (εσ1)Q = εσ2 = i
(

0 −ε
ε 0

)
, Pf (iεσ2) = ε, (61a)

Q (rσ3)Q†=−rσ2 = i
(

0 r
−r 0

)
, Pf (i(−r)σ2) = −r.

(61b)

It turns out, under the constraint r ≡ 0, that the chain is
topological when ε < 0 as Pf (εσ1) < 0 and ν = 1, and it
becomes trivial when ε > 0. On the other hand, for the case
of ε ≡ 0, the chain is topological when r > 0 as Pf (rσ3) <

0 and ν = 1, and it becomes trivial when r < 0, as shown
in Fig. 9(b).

This again reveals the duality between the variations ε
and r (or, equivalently, between the spring and the mass
variations). As we see from Fig. 6, the chain with even
(odd) number of particles (springs) and spring terminals
shows bound states for ε < 0, and the chain with even
(odd) number of springs (particles) and free terminals
shows bound states for r > 0. Similar dual relationships
are also found in other chain configurations in Fig. 6.

These results match the existence of the topological zero
modes in the numerical results shown in Figs. 12 and 5.
However, we should note that ε > 0 and ε < 0 (and sim-
ilarly r > 0 and r < 0) describe the same bulk periodic
chain, only with their choices of unit cells displaced by
half a lattice constant. Similar to charge polarization in a
lattice, the value ν of the diatomic chain is not well defined,
as it depends on the choice of the unit cell, but the change
in ν is. Under a fixed reference frame (choice of unit cell),
tuning the lattice from ε = −ε0 to +ε0 must change the
topological invariant from ν to ν ′ = (ν + 1) mod 2. The
assembled chain with two chains having distinct ν values
will then have a “skipping” in the pattern and a localized
topological state at the connection. Figure 11 shows the

(a)

0 5 10 15 20 25 30 35
–1.0
–0.5

0.0
0.5
1.0

DW

Spring #

κ~

(b))

FIG. 11. (a) Spring constants of the assembled chain connect-
ing two topologically distinct chains with r = 0 and ε = ±0.5.
The domain wall is identified by an anomaly in the alternating
spring constant pattern. (b) Mode shapes of the assembled chain.
One mid-gap bound state appears at the position of the domain
wall.

zero bound state located at the dislocation interface. On
the other hand, if we always take the first two particles
from the left as the reference unit cell, adding a particle
from the left also switches ν, which creates or annihi-
late the Majorana zero mode; this latter comment is also
well aligned with previous arguments based on paired or
isolated Majoranas at the terminal.

III. CONCLUSIONS

In this study, we investigate a simple yet topologi-
cally nontrivial classical mechanical system, that is a 1D
spring-mass chain. Using a combination of theoretical and
numerical methodologies, we show that in certain ranges
of the parameters the system resembles the electronic
Kitaev chain, hence giving rise to topological states that
are reminiscent of Majorana bound states.

We develop a mathematical description applicable to
classical mechanical systems that closely resembles the
second-quantization formalism in quantum mechanics and
that efficiently handles many-body problems. The second-
quantization formalism is extensively used in solid-state
physics to describe the behavior of electrons in crystals.
Despite its different physical foundation, the proposed
classical description shares a highly correlated mathemat-
ical structure that allows a deeper understanding of the
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classical system and of the parameters that contribute to
its global behavior. The proposed method does not apply
only to spring-mass systems but also to continuous sys-
tems such as networks of coupled acoustic resonators
or elastic phononic lattices. In addition to providing an
alternative tool for analyzing complex classical systems,
this approach also offers another way to synthesize and
correlate nontrivial classical systems to their quantum
mechanical counterparts. Under such a description, the
Hamiltonian function of the 1D mechanical chain is shown
to take a form analogueous to the Hamiltonian operator of
the 1D electronic superconducting Kitaev’s model (rather
than the semiconducting forms characteristic of either the
SSH or the Rice-Mele models) due to the emergence of
Cooper-pair-like terms.

Notwithstanding, the quantum and classical systems are
fundamentally different and follow distinct sets of govern-
ing equations, hence resulting in different system matrices.
Although the classical system does not possess a BdG-
Hamiltonian-like system matrix, physics analogueous to
those of systems with BdG-Hamiltonians can still be repli-
cated by introducing additional symmetries. We show that
when the mechanical chain is dimerized (with alternating
mass and spring constants within the equivalent particle
system), the synthetic particle-hole symmetry (a key ele-
ment for the emergence of Majorana-like zero modes) is
reformulated by involving the inversion and chiral (sub-
lattice) symmetry of the chain, and the squared eigen-
frequency spectrum exhibits symmetry about a reference
frequency level.

It is shown that, within certain ranges of parameters and
symmetry constraints, zero-frequency (about the reference
frequency level) bound states appear at either the terminals
of finite dimerized chains, or at the domain walls con-
necting distinct chains. The emergence of the local bound
states can be interpreted by unpaired terms in the Hamil-
tonian function, which well aligns with Kitaev’s model
of Majorana zero modes. We also note that, although
prior research based on a conventional dynamical matrix
approach has commonly referred to the classical dimerized
chain as a system analogue to the SSH chain, our results are
not in conflict with them. Indeed, our analysis provides a
more in-depth characterization of the system that uncovers
additional features of this classical mechanical analogue
system.

To further confirm the topological origin of these
localized bound states, we carry out a topological band-
structure analysis by transforming the system matrix into k
space. The sign change in the Pfaffian of the system matrix
at k = π , as the band gap closes and reopens, indicated the
topological phase transition. On the other hand, the inte-
gral representation, namely, the Zak phase and the winding
number approaches also confirm the same transition. The
topological invariant ν = 0, 1 identified the distinct topo-
logical phases for the dimerized chains consistently with

the topological protection of the bound states observed in
real space.

The classical mechanical chain considered in this study
belongs to the BDI symmetry class [71], and the Majorana-
like bound states do not possess anyonic characteristics,
which implies that non-Abelian braiding of these bound
states may not be possible. Nonetheless, the 0D topo-
logical bound states at the terminals of our topologically
nontrivial chain do serve as robust locally resonant states.
These states effectively trap mechanical energy at selected
spatial locations and at prescribed frequencies and could
prove effective for those applications relying on energy
extraction, such has vibration control or energy harvest-
ing. Indeed the ability to avoid backscattering at the energy
extraction location could result in almost ideal levels (i.e.,
close to 100 %) of energy extraction. These states can
also be replicated in microfabricated quasi-1D piezoelec-
tric surface acoustic wave devices or stacked film bulk
acoustic wave devices, hence making them suitable for
building acoustic filters for telecommunication. The reso-
nant frequency of the topological bound state is determined
by the unpaired terminal oscillators, and can be easily
adjusted by altering the effective mass and stiffness. It
is also possible to envision that, by measuring frequency
changes, these systems could be utilized in sensing appli-
cations to identify and locate fluctuations in the surround-
ing environment, such as temperature, pressure, or mass
loading.
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APPENDIX A: PROOF OF CANONICAL
SECOND-QUANTIZED COORDINATES

This section shows that the alternative set of coordinates
according to Eq. (13),

A′ ≡ (
a+

1 , b+
1 , . . . , a+

N , b+
N ; a−

1 , b−
1 , . . . , a−

N , b−
N

)ᵀ

is canonical. For simplicity, we use this notation before
introducing the sublattice degree of freedom,

A ≡ (
a+

1 , . . . , a+
2N ; a−

1 , . . . , a−
2N

)ᵀ .

It results only in a different nomenclature and will not affect
the results,
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a+
1

a+
2

a+
3
...

a−
1

a−
2

a−
3
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a+
1

b+
1

a+
2
...

a−
1

b−
1

a−
2
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

The coordinates A are canonical if and only if Hamil-
ton’s equations remain the same in A, as they do in X. That
is,

Ȧ = E
∂H
∂A

. (A2)

Substitute A = JX, where Jij = ∂aj /∂Xj is the Jacobian
matrix, then

Ȧ = ∂

∂t
(JX) = JẊ = JE

∂H
∂X

= JEJᵀ ∂H
∂A

. (A3)

Comparing the right-hand sides of the above two equa-
tions, Hamilton’s equations hold if and only if JEJᵀ = E.
Based on Eq. (13), the 4N × 4N Jacobian matrix J reads

J = 1√
iω0

1√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

� �

m
− 1

2
0 −i

√
2κ0

� �

� �

m
− 1

2
0 i

√
2κ0

� �

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A4)

and

JEJᵀ

= 1
2iω0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�

0 −2i
(

2κ0
m0

) 1
2

�

�

2i
(

2κ0
m0

) 1
2 0

�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

0 −1
1 0

)
= E. (A5)

So the coordinate system A is canonical and Hamilton’s
equations hold, and the scaling factor 1/

√
iω0 is necessary.

APPENDIX B: PROPERTIES OF CLASSICAL
ANALOGUE SECOND-QUANTIZED VARIABLES

This section summarizes the properties of both the quan-
tum and the proposed classical second-quantized variables.

Let b̂ and ĉ be the bosonic and fermionic annihilation
operators,

[
b̂j , b̂l

]
=

[
b̂†

j , b̂†
l

]
= 0, (B1a)

[
b̂j , b̂†

l

]
= δjl, (B1b)

{
ĉj , ĉl

} =
{

ĉ†
j , ĉ†

l

}
= 0, (B1c)

{
ĉj , ĉ†

l

}
= δjl. (B1d)

where
[
α̂, β̂

]
≡ α̂β̂ − β̂α̂ (commutator), (B2a)

{
α̂, β̂

}
≡ α̂β̂ + β̂α̂ (anticommutator). (B2b)

On the other hand, the variables of the classical mechan-
ical chain, a±

j (b±
j ), are complex scalars rather than opera-

tors, and they always commute in multiplication,

[a+
j , a−

l ] ≡ a+
j a−

l −a−
l a+

j =0, (B3a)

[a+
j , a+

l ] = [a−
j , a−

l ] = 0. (B3b)

The commensurate relations reminiscent of those fermionic
anticommutation relations are the fundamental Poisson
brackets applied to the coordinate variables themselves.
Recall the definition of the Poisson brackets of two func-
tions F and G of the canonical coordinates (a+; a−),

{F , G}Poisson ≡
∑

j

(
∂F
∂a−

j

∂G
∂a+

j
− ∂F
∂a+

j

∂G
∂a−

j

)
, (B4)

then we have

{a+
j , a−

l }Poisson = −{a−
l , a+

j }Poisson = δjl, (B5a)

{a+
j , a+

l }Poisson = {a−
j , a−

l }Poisson = 0. (B5b)

APPENDIX C: DISPERSION OF THE 1D
DIMERIZED MECHANICAL LATTICE

The ω-k dispersion of the dimerized chain can be
obtained by either following the classical dynamical
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matrix approach or the proposed second-quantized for-
malism. Here, we calculate the dispersion using the for-
mer approach, which is identical to the results shown in
Sec. II D.

Contemporary textbooks on solid-state physics [72,73]
usually employ a diatomic mechanical lattice as the first
toy model to introduce the concepts of band gap and
reciprocal space. These diatomic lattices can either exhibit
alternating (different) masses for two particles [72] or
alternating spring constants [73], but not both simultane-
ously. Here, we demonstrate a diatomic lattice with particle
masses (m1,2) and spring constants (κ1,2), both allowed to
change and repeat every other unit as shown in Fig. 3.

Given two particles in a unit cell, let the displacement
of the first and second particles of the j th cell be xj and yj ,
respectively. The equations of motion are obtained as,

{
m1ẍj = κ1(yj − xj )+ κ2(vn−1 − xj )

m2ÿj = κ1(xj − yj )+ κ2(un+1 − yj )
, j ∈ Z. (C1)

We let a be the lattice constant, and substitute the following
ansatz into Eq. (C1),

{
xj = Aei(ωt−kja)

yj = Bei(ωt−kja) , A, B ∈ C. (C2)

Upon simplification, yj −1 and xj +1 are eliminated, and we
obtain two equations with variables xj and yj only. Written
in matrix form, we get

(
κ1 + κ2 −κ1 − κ2eika

−κ1 − κ2e−ika κ1 + κ2

)(
A
B

)

= ω2
(

m1 0
0 m2

)(
A
B

)
, (C3)

which forms a generalized eigenvalue problem
(
K − ω2M

)

u = 0. Solving the characteristic equation yields the eigen-
frequencies ω in terms of a given wave number k,

ω =
√
(m1 + m2)(κ1 + κ2)±

√
8κ1κ2m1m2(cos ka − 1)+ (κ1 + κ2)2(m1 + m2)2

2m1m2
(C4a)

= ω0

√
1 ±

√
1 + (1 − r2)(1 − ε2)(cos ka − 1)/2, (C4b)

where Eqs. (8), (9), (10) are used to obtain the second
equality.

APPENDIX D: NUMERICAL EXAMPLES OF
SPECTRA AND MODE SHAPES OF FINITE

DIMERIZED CHAINS

1. Duality between spring and mass dimerization

Figure 12 shows the spectrum and the mode shapes
(i.e., the eigenvalues and the eigenstates) of the diatomic
chain with an odd number of particles (assumed as 35,
which correspond to N = 17.5 unit cells) and free ends.
ε is fixed at 0, with r varying from −1 to 1. When r > 0,
topological zero bound states appear at both ends of the
chain. Together with Fig. 5, they show the duality between
staggered spring constants and particle masses.

2. Single Majorana-like zero modes in the diatomic
chain

It is possible to construct a mechanical chain that sup-
ports a single Majorana-like zero mode at only one of its
terminals. First, we let either r = 0 or ε = 0 and obtain a

bulk lattice with inversion symmetry, having the bulk spec-
trum in agreement with the Kitaev chain. A finite chain can
lose inversion symmetry due to boundary conditions. For
example, a chain with an odd number of particles, spring-
spring terminals and r = 0, reading |−• = • − • =|, does
not have inversion symmetry (the two ends appear to be
distinct viewed from each side) despite its periodic exten-
sion does. Figure 13 plots the ω2 spectrum and mode
shapes with varying ε. For positive and negative ε values,
one zero mode appears at either the left or the right ends,
respectively. It has a constant zero frequency (ω̃2 = 0)
with respect to the reference level, and a symmetric spec-
trum. Given that there is an odd number of branches in
the spectrum, one would then ask: what is the synthetic-
particle-hole-exchanged state for this unpaired zero mode?
The answer can be found in Eq. (38), which shows how for
such an odd, spring-spring chain, the synthetic PH coun-
terparts of the eigenmodes exist in a different chain with
opposite dimerization parameters; this latter chain is the
space-inverted image of the original chain. In the spectrum
shown in Fig. 13, they correspond to modes in the opposite
quadrant (with the opposite signs of ε and ω̃2) of the spec-
trum. Three pairs of markers in Fig. 13 label the synthetic
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FIG. 12. (a) Spectrum and (b)–(d) mode shapes of the diatomic chain with 35 (odd) particles (17.5 cells), both ends free, ε = 0, and
varying r values. When r > 0, Majorana-like bound states with ω = ω0 appear at the open ends of the mechanical chain. Symbolic
representations of the chains for r < 0: • − ◦ − · · · − ◦ − •, and for r > 0: ◦ − • − · · · − • − ◦.

PH pairs in the spectrum, for the zero modes and the bulk
modes.

APPENDIX E: FOURIER TRANSFORM OF THE
CLASSICAL SECOND-QUANTIZED VARIABLES

Consider the Fourier transform relations,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a±
k = 1√

N

N∑

j =1

e−ikj a±
j ,

a±
j = 1√

N

N∑

q=1

e+ikj a±
k ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b±
k = 1√

N

N∑

j =1

e−ikj b±
j ,

b±
j = 1√

N

N∑

q=1

e+ikj b±
k ,

(E1)

where

k = 2π
l

N
, l = 1, 2, . . . , N , (E2)

are the N discrete wave numbers allowed in a finite chain
with N concatenated cells. The resolution in k space
increases as the chain gets longer, as �k = 2π/N . The
maximum allowed k = π/a is limited by the lattice con-
stant a (spatial sampling period). Here, we use a discrete
formulation with j being the cell number, hence it is equiv-
alent to a = 1, and ka = k ∈ (0, 2π ]. This is in agreement

with the fact that k (or ka) acts as the phase difference
across a unit cell, i.e., k shows in the imaginary exponent
eik×j , where j is an integer. Hence, replacing k by k ± 2nπ
makes no difference. It is a common convention to move
the subdomain k ∈ (π , 2π ] to k ∈ (−π , 0] and make the
k-space symmetric, k ∈ (−π ,π ], also known as the first
Brillouin zone of a 1D lattice. This is equivalent to take, in
Eq. (E2),

⎧
⎪⎨

⎪⎩

l = −N − 2
2

, . . . , 0, . . . , +N
2

, N ∈ even integers,

l = −N − 1
2

, . . . , 0, . . . , +N − 1
2

, N ∈ odd integers.

(E3)

Note that in a monoatomic (uniform) chain, the highest-
spatial-frequency wave is limited by the maximum allowed
wave number π/a corresponding to a wavelength of twice
the lattice constant (at least two particles are needed to
show a nonconstant waveform). In a diatomic chain (or
in chains with multiple-atom unit cells, or even in contin-
uous periodic structures), there can be waves with higher
spatial frequencies (wavelengths smaller than twice the lat-
tice constant). Given that inside a unit cell the mechanical
properties are not uniform (e.g., particle spacing from A
to B and B to the next A), it is not possible to precisely
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FIG. 13. (a) Spectrum and (b)–(d) mode shapes of the diatomic chain with 35 (odd) particles (17.5 cells), spring-terminated ends,
r = 0, and varying ε values. Symbolic representations of the chains for ε < 0: |−• = • · · · • −• =|, and ε > 0: |= • − • · · · • = •−|.
Pairs of identical markers in (a) label the counterparts of Podd operation.

define the wave number above π/a. Instead, we adopt the
Bloch wave number that always lies within ka ∈ (−π ,π ],
obtained by the phase shift −π < φ < π divided by a,
measured from one point at x to another at x + a. Those
higher-frequency waves appearing in this range can be
understood as aliased, or higher-order, modes of the same
Bloch wave number.

Some caution should be taken with the notation. Recall
that the real-space quantities a+

j and a−
j form a com-

plex conjugate pair,
(

a+
j

)∗
= a−

j and vice versa. However,

this is not the case for the k-space counterparts,
(
a+

k

)∗ �=
a−

k . Given the Fourier transform defined in Eq. (43), the
wave number k should also switch signs under complex
conjugation,

(
a±

k

)∗ = 1√
N

N∑

j =1

e+ikj a∓
j =a∓

−k, (E4a)

(
b±

k

)∗ = 1√
N

N∑

j =1

e+ikj b∓
j =b∓

−k. (E4b)

We should not confuse our notation with slightly different
conventions typically used in quantum mechanics. While
they also start with the real-space Hermitian conjugate

pairs ĉj and ĉ†
j in k space, only ĉk is obtained as the Fourier

transform of ĉj , and ĉ†
k is the Hermitian conjugate of ĉk.

The Fourier-transform relations shown in Eq. (43) are
linear transforms, so they can be expressed in matrix form
as ak = Ja, with J = ∂ak/∂a, or,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a+
k1

b+
k1
...

a−
k1

b−
k1
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎝

FT for a+
j , b+

j 0

0 F.T. for a−
j , b−

j

⎞

⎟⎟⎟⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a+
1

b+
1
...

a−
1

b−
1
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E5)
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Apparently, the matrix J contains two identical blocks of
2N × 2N matrices (let us call them F), that can be written
as J = 1 ⊗ F. Below we derive the explicit expression
for F.

The k-space coordinates in real space are sinusoidal
functions for some wave number k. For brevity, define the
corresponding column vector

|k〉 = 1√
N

N∑

j =1

eikj |j 〉 , (E6)

or |k〉 = 1/
√

N
(
eik×1, eik×2, . . . , eikN

)ᵀ. Note that k can
take different values, kl = 2π × l/N , so explicitly,

|kl〉 = 1√
N

(
ei2π l×1/N , ei2π l×2/N , . . . ,������1

ei2π l×N/N

)ᵀ

.

If we need only to transform a+
j to a+

kl
, the Fourier

transform matrix will simply be given by stacking these
column vectors from |k1〉 to |kN 〉, i.e., a+

kl
= F ′

lj a+
j , with

F ′
lj = 1/(

√
N )ei2π l×j /N , or

⎛

⎜⎜⎜⎜⎝

a+
k1
...
...

a+
kN

⎞

⎟⎟⎟⎟⎠
= 1√

N

⎛

⎜⎜⎜⎝

ei2π×1/N ei2π2×1/N . . . 1
ei2π×2/N ei2π2×2/N . . . 1

...
...

. . .
...

1 1 . . . 1

⎞

⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎜⎝

a+
1
...
...

a+
N

⎞

⎟⎟⎟⎟⎠
. (E7)

However, our basis is composed of interlaced a+
j and b+

j
quantities. So the transform matrix becomes F = F′

N×N ⊗
1, having twice the dimensions and reading

1√
N

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei2π×1/N 0 ei2π2×1/N 0 . . . 1 0
0 ei2π×1/N 0 ei2π2×1/N . . . 0 1

ei2π×2/N 0 ei2π2×2/N 0 . . . 1 0
0 ei2π×2/N 0 ei2π2×2/N . . . 0 1
...

...
...

...
. . .

...
...

1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(E8)

We arrive at J = 1 ⊗ F′ ⊗ 1, with F ′
lj = 1/(

√
N )ei2π l×j /N .

Given that F′ is unitary (F′†F′ = 1N×N , as a result of the
orthogonality of the sinusoidal functions), J is also unitary,
J−1 = J† (J is not Hermitian).

The equations of motion in k space can then be obtained
as follows:

H̃2X = ω̃2X

⇒JH̃2X = ω̃2JX

⇒JH̃2J†JX = ω̃2JX

⇒H̃2
kXk = ω̃2Xk,

(E9)

where H̃2
k = JH̃2J† is the k-space system matrix and Xk =

JX is the k-space eigenvector, both under (a+
k1

, b+
k1

, . . . ; a−
k1

,
b−

k1
, . . . )-basis representation.
Getting the equations of motion in k space is the first

step. In order to obtain the band structure of a chain, that
is, to find the eigenfrequency and eigenmode for a given
k, we must ensure that any two equations involving dif-
ferent k’s are fully decoupled. In other words, each of the
four 2N × 2N blocks in matrix H̃2

k should be 2 × 2 block
diagonalized. However, given any finite chain with two ter-
minals, this is not possible. In other terms, the eigenmodes
in a finite chain are composed of mixed sinusoidal func-
tions of wave numbers kl. The left-hand side of Fig. 14
visualizes the real-space system matrix H̃2 (top), and the
k-space system matrix H̃2

k (bottom), of a five-cell (ten-
particle), spring-spring chain with r = ε = 0.5. Nonzero
elements appear everywhere in the matrix H̃2

k .
Remember that a circulant matrix can always be diago-

nalized by discrete Fourier transform (in ordinary cases it
would be by the F′ matrix). In our case, the Fourier trans-
form is performed with J, and the above statement can
be adapted as follows. Each of the four 2N × 2N blocks
in H̃2 can be diagonalized by J if those 2N × 2N blocks
are circulant with a step of two elements (and rows and
columns). The matrix H̃2 of a finite chain is almost circu-
lant with a step of two elements except for the first and
the last columns and rows. This is due to the fact that the
periodic dimerization pattern stops at the terminals. The
matrix can be made two-element-circulant by connecting
the two terminals, which turns the chain into a ring. The
corresponding circulant H̃2 is shown in the upper right
of Fig. 14. The only differences from the original matrix
are the (1, 2N ) and (2N , 1) elements of the four 2N × 2N
blocks, which are now nonzero, as the extension of the
original tridiagonal pattern penetrates the block boundary
and appears on the other side. The lower-right shows the k-
space matrix, H̃2

k , and each of the four block is 2 × 2 block
diagonalized, meaning all wave numbers kl are decoupled
in the equations.

We can now select any kl and pick the corresponding
2 × 2 blocks from the four 2N × 2N blocks, assemble
them and get the 4 × 4 matrix equation for the particular
kl. Furthermore, as N → ∞, kl = 2π l/N , l = 1, 2, . . . , N
becomes continuous. For all k ∈ (0, 2π ], the equations
read
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FIG. 14. Left: system matrices of a finite diatomic chain in real space (top) and in k space (bottom), which are not block diagonalized.
Right: system matrices of a ring of diatomic chain in real space (top) and in k space (bottom). The real-space matrix is circulant and
the k-space matrix is block diagonalized by discrete Fourier transform.

H̃2
k(k)

⎛

⎜⎜⎝

a+
k

b+
k

a−
k

b−
k

⎞

⎟⎟⎠ = ω̃2
kl

⎛

⎜⎜⎝

a+
k

b+
k

a−
k

b−
k

⎞

⎟⎟⎠ , (E10)

in which the system matrix reads

H̃2
k(k)

=

⎛

⎜⎜⎜⎜⎜⎝

r − 1
2

(
e−ik(1 − ε)+ ε + 1

)
0 1

2 r
(
e−ik(1 − ε)+ ε + 1

)

− 1
2

(
eik(1 − ε)+ ε + 1

) −r − 1
2 r

(
eik(1 − ε)+ ε + 1

)
0

0 1
2 r

(
e−ik(1 − ε)+ ε + 1

)
r − 1

2

(
e−ik(1 − ε)+ ε + 1

)

− 1
2 r

(
eik(1 − ε)+ ε + 1

)
0 − 1

2

(
eik(1 − ε)+ ε + 1

) −r

⎞

⎟⎟⎟⎟⎟⎠
.

(E11)

APPENDIX F: TOPOLOGICAL INVARIANT,
INTEGRAL REPRESENTATION

It is shown that the Z2 invariant obtained based on the
Pfaffian of the system matrix is equivalent to the invariant
represented by the quantized Zak-Berry phase [74]. Below
we provide the calculation for the diatomic chain.

The Berry phase in a 1D domain is also known as the
Zak phase. In 1D k space, the Zak phase is the integral
of the Berry connection in the domain k ∈ (−π ,π ], or

equivalently, k ∈ (0, 2π ],

φZ =
∫ 2π

0
A(k)∂k, (F1)

where

A(k) = −i 〈X | ∂k |X 〉 = −iX(k)†·
(
∂

∂k
X(k)

)
(F2)
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is the Berry connection measuring the differential phase
change in the eigenvector as it evolves along k. The inte-
gral in Eq. (F1) can be considered as a loop integral but,
differently from the Berry phase in 2D manifolds, the inte-
gral cannot be converted into a surface integral (of Berry
curvature). The Zak phase of the chain is gauge invariant
[unchanged under a smooth gauge transformation X′(k) =
eiχ(k)X(k)] and is quantized to an integer multiple of π . In
the following, we use the chain with r = 0 as the example
to calculate the Zak phase.

The system matrix for the r = 0 chain can be obtained
from Eq. (45) as

H̃2
k |r=0(k) = 1 ⊗ A, (F3)

A = −1
2

(
0 e−ik(1 − ε)+ 1 + ε

eik(1 − ε)+ 1 + ε 0

)
,

(F4)

which is in block-diagonal form of identical blocks A, and A is reminiscent of the 2 × 2 Hamiltonian of the SSH model.
The eigenvalues and normalized eigenvectors are calculated and shown below.

Eigenvalues Eigenvectors

ω̃2
1 = −

√
(1 − ε2) cos k + (1 + ε2)√

2

X1+ =
(

+ 1√
2
, eik(1−ε)+(1+ε)

2
√
(1−ε2) cos k+(1+ε2)

, 0, 0
)ᵀ

X1− =
(

0, 0, + 1√
2
, eik(1−ε)+(1+ε)

2
√
(1−ε2) cos k+(1+ε2)

)ᵀ

ω̃2
2 = +

√
(1 − ε2) cos k + (1 + ε2)√

2

X2+ =
(

− 1√
2
, eik(1−ε)+(1+ε)

2
√
(1−ε2) cos k+(1+ε2)

, 0, 0
)ᵀ

X2− =
(

0, 0, − 1√
2
, eik(1−ε)+(1+ε)

2
√
(1−ε2) cos k+(1+ε2)

)ᵀ

(F5)

Note that given (a+
k , b+

k ) and (a−
k , b−

k ) are decoupled,
the two eigenvectors of a degenerate eigenvalue can be
separated accordingly. They are composed of identical
expressions only at different components, therefore result-
ing in the same Berry connection. The Berry connection
for the lower bands are found to be

A1±(k) = −i 〈X1±| ∂k |X1±〉

= 1 − ε

4
(1 + ε) cos k + (1 − ε)

(1 − ε2) cos k + (1 + ε2)
, (F6)

the Zak phase φZ is the definite integral of A(k) over the
interval k ∈ [0, 2π ],

φZ =
∫ 2π

0
A1±(k)∂k = φ(2π)− φ(0), (F7a)

φ(k) = 1
4

[
k − 2 tan−1

(
ε tan

k
2

)]
. (F7b)

φ(k) is the antiderivative (indefinite integral) function of
A(k), which contains the arctangent function of multiple
branches. The Zak phase integral [Eq. (F7a)] should fol-
low a continuous path that may connect different branches.
Figure 15(a) shows two neighboring branches of φ(k, ε)
(staking one above the other), and the blue and magenta

curves show ε = −0.5 and ε = +0.5 sections, respec-
tively. The center curves are continuous for k ∈ [0,π ]. It
can be concluded that,

φZ =
{

0, ε > 0
π , ε < 0

. (F8)

Another approach to obtain the Zak phase is through the
winding number, which avoids complicated integrals. The
matrix A is first decomposed into Pauli matrices A = h ·
σ = hiσi, and the Zak-Berry phase can be obtained as half
of the solid angle enclosed by the loop h(k), k ∈ [0, 2π ],
viewed from the origin in h space (where the degener-
acy locates). Particularly A has no σ3 component, h3 = 0,
so the loop of h(k) is coplanar with the degenerate point
and the Zak-Berry phase can only be 0 or π , depending
on whether the origin is encircled by the path. In other
words, let ν = 0, 1 be the winding number of the path h(k)
rounding the origin, then the Zak phase is φZ = νπ . For
the matrix A, we have

h1 = (1 − ε) cos k + (1 + ε), (F9a)

h2 = (1 − ε) sin k, (F9b)

h3 = 0, (F9c)
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FIG. 15. (a) Surfaces of multiple branches of the antiderivative of the Berry connection. Magenta and blue curves show ε = +0.5
and ε = −0.5 section curves, respectively. For the former (later), the Zak phase integral returns zero (π ), indicating a trivial (topolog-
ical) phase. (b) Loci of (h1, h2) components of the system matrix for k ∈ [0.2π ], for ε = +0.5 (magenta), 0 (gray), and +0.5 (blue),
respectively. Winding numbers 0 and 1 indicate trivial and topological phases, respectively.

which is a counter-clockwise circular path on h1h2 plane,
with a radius (1 − ε) and centered at the point (1 + ε, 0).
Figure 15(b) shows three paths with ε = −0.5 (blue), 0
(gray), and +0.5 (magenta). Clearly for ε > 0, the winding
number (and therefore the Zak phase) is 0, corresponding
to the trivial state. For ε < 0, the winding number is 1
and the Zak phase becomes π , representing the topolog-
ical state. For ε = 0, the winding number, the Zak phase,
and the topological state are indeterminate.

All the above analysis based on topological band the-
ory in k space confirms the existence of the topological
bound states appearing at the terminals of nontrivial chains
and the domain walls connecting two distinct chains, are
indeed topologically protected.
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