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We theoretically investigate tunneling magnetoresistance (TMR) devices, which are probing the spin-
momentum coupled nature of surface states of the three-dimensional topological insulator Bi2Se3.
Theoretical calculations are performed based on a realistic tight-binding model for Bi2Se3. We study both
three-dimensional devices, which exploit the surface states of Bi2Se3, as well as two-dimensional devices,
which exploit the edge states of thin Bi2Se3 strips. We demonstrate that the material properties of Bi2Se3
allow a TMR ratio at room temperature of the order of 1000%. Analytical formulas are derived that allow a
quick estimate of the achievable TMR ratio in these devices. The devices can be used to measure the spin
polarization of the topological surface states as an alternative to spin ARPES. Unlike TMR devices based
on magnetic tunnel junctions the present devices avoid the use of a second ferromagnetic electrode whose
magnetization needs to be pinned.
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I. INTRODUCTION

Topological insulators (TI) are materials which possess an
insulating gap in the bulk but conducting states at the surface.
These surface states are protected by the topological proper-
ties of the material and are robust against time-reversal-
symmetric perturbations such as nonmagnetic impurities, for
example. After first being predicted theoretically [1,2],
subsequently several materials have been confirmed to be
topological insulators experimentally [3–9]. Because of spin-
orbit coupling the momentum of the surface states is locked
with the spin of the electrons, which means that electrons
with opposite spin propagate into the opposite direction
[9–12]. The robustness of the surface states against back-
scattering promises long spin-diffusion lengths. These fea-
tures make topological insulators particularly interesting
for applications in spintronics [13–24]. In addition, spin-
dependent tunneling into the surface states opens a way to
investigate their properties such as spin polarization.
In the present work we theoretically study different

arrangements to realize a tunneling magnetoresistance
(TMR) device using a ferromagnet coupled via a tunnel
barrier to a topological insulator. In contrast to conventional
TMR junctions such a device does not need a second
ferromagnetic layer, because the spin locking in the
topological insulator already provides an intrinsic magnetic
reference. Additionally, the device can be used to probe
the spin-locked surface states in the TI. We will show that
the material properties of the topological insulator deter-
mine the maximum TMR ratio that can be achieved.
Specifically, we will present calculations for the three-
dimensional topological insulator Bi2Se3, which has been
studied well in the past both theoretically and experimen-
tally [6,25–28]. This material is particularly interesting due

to its comparatively large band gap of about 0.3 eV. As we
will see, this property allows us to achieve large TMR ratios
already at room temperature.

II. MODEL

For our calculations we use a realistic tight-binding
model for Bi2Se3 that has been derived from band-structure
calculations by Liu et al. [28] based on k · p theory. The
Hamiltonian takes into account two orbitals at each lattice
site and reads
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X4
i¼1

miðkÞΓi þR1ðkÞΓ5 þR2ðkÞΓ3:

ð1Þ
Here,

ϵ0ðkÞ ¼ C0 þ 2C1ð1 − cos kzÞ

þ 4

3
C2

�
3 − 2 cos

1

2
kx cos

ffiffiffi
3

p

2
ky − cos kx

�
;

m1ðkÞ ¼ A0

2ffiffiffi
3

p cos
1

2
kx sin

ffiffiffi
3

p

2
ky;

m2ðkÞ ¼ −A0

2

3

�
sin

1

2
kx cos

ffiffiffi
3

p

2
ky þ sin kx

�
;

m3ðkÞ ¼ B0 sin kz;

m4ðkÞ ¼ M0 þ 2M1ð1 − cos kzÞ

þ 4

3
M2

�
3 − 2 cos

1

2
kx cos

ffiffiffi
3

p

2
ky − cos kx

�

are tight-binding parameters defined on a bilayer hexagonal
lattice following Hao and Lee [29]. The terms
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are third-order terms to lowest order in momentum k [28].
The Dirac Γ matrices are represented by Γ1;2;3;4;5 ¼ ðτ1 ⊗
σ1; τ1 ⊗ σ2; τ2 ⊗ I2×2; τ3 ⊗ I2×2; τ1 ⊗ σ3Þ, where τi and σi
are the Pauli matrices in the orbital and spin space,
respectively. The model parameters are derived from
Liu et al. [28] using the atomic distances a ¼ 4.14 Å
and c ¼ 28.64

15
Å (a and 15c are the lattice constants given

in Refs. [30–32]; a unit cell consists of 15 layers in the c
direction): A0¼ 0.804 eV, B0¼ 1.184 eV, C1¼ 1.575 eV,
C2 ¼ 1.774 eV, M0 ¼ −0.28 eV, M1 ¼ 1.882 eV, M2 ¼
2.596 eV, R1 ¼ 0.713 eV, and R2 ¼ −1.597 eV. C0 is
only a tiny energy shift and is chosen to be 0, which
corresponds to undoped Bi2Se3. Here and in the following
all energies are given with respect to the Fermi level of the
topological insulator.
In Fig. 1 a tight-binding model of a ferromagnet–

insulator–topological-insulator (F-I-TI) junction is shown.
The topological insulator is modeled by the Hamiltonian
equation (1), which we Fourier transform perpendicular to
the junction plane into real space onto its lattice. For the in-
plane directions we assume periodic boundary conditions,
allowing us to keep the in-plane momentum components
(e.g., kx and ky for a z surface) as good quantum numbers.
The ferromagnet (FM) is modeled as a metal with two
spin-split subbands. For that purpose we use the same
Hamiltonian equation (1) with parameters CF≡C1¼C2¼
0.25 eV and A0 ¼ B0 ¼ M0 ¼ M1 ¼ M2 ¼ R1 ¼ R2 ¼ 0
corresponding to a 3 eV bandwidth. Additionally, we add
an exchange field of strength W of the form

Hex ¼ −WI2×2 ⊗ ðn · ~σÞ; ð4Þ

with n ¼ ðsin θF cosφF; sin θF sinφF; cos θFÞ and ~σ ¼
ðσ1; σ2; σ3Þ, which can be polarized in arbitrary direction
n. Choosing W ¼ 0.5 eV, states with one spin orientation
reside at the Fermi surface, while those with opposite
orientation are shifted to higher energies. This choice
corresponds to a 100% spin polarization of the ferromag-
net. A reduced spin polarization of the ferromagnet is
handled by a superposition of two calculations with
opposite polarity of the exchange field, as discussed in
the Appendix. The insulating barrier is modeled by a
tunneling Hamiltonian of the form

HT ¼ −CB

X
kx;ky;α:σ

d†kx;ky;α:σckx;ky;α:σ þ H:c:; ð5Þ

where d†kx;ky;α:σ creates an electron in orbital αwith spin σ in

the top layer of the topological insulator and ckx;ky;α:σ
destroys an electron in the bottom layer of the ferromagnet.
Here, kx and ky are the momentum components
perpendicular to the junction plane. For the numerical
calculations we choose a small hopping matrix element of
CB ¼ 0.1 eV, however, the relative TMR values calculated
below do not depend on this choice.
Because of the structure of the Hamiltonian equation (1),

topological surface states appear on the topological-
insulator side of the junction. The dispersion of the surface
states forms a Dirac cone, which is hexagonally warped due
to the third-order terms, Eqs. (2) and (3) [33]. Note that the
position of the Dirac point and the shape of the Dirac cone
depends on the surface direction. The surface states are spin
polarized with the direction of the spin helically winding
around the Dirac cone. The spin-polarized tunneling
current through the barrier thus flows off into different
directions in the topological insulator depending on the
polarization of the ferromagnet. In particular, the direction
of the current in the topological insulator can be controlled
by rotation of the exchange field in the ferromagnet.
This effect can be used to construct a TMR device from
such a junction.
Possible setups for such devices are shown in Fig. 2. The

spin-polarized current that is injected via a ferromagnetic
electrode (denoted by FM in Fig. 2) into the topological
surface states can be extracted through metallic electrodes
(M) at opposite positions on the same surface. For a given
bias voltage the current through the two metallic electrodes
will differ in strength due to the spin-momentum locking of
the surface states. This difference leads to different resis-
tances with respect to the ferromagnetic electrode, because
the spin direction of the tunneling electrons will favor
current flow to one of the two metallic electrodes. The
resistances will vary with the direction of the exchange
field in the ferromagnet resulting in a directional depend-
ence of the resistance on the magnetization, i.e., a TMR
effect. Because of the anisotropy of Bi2Se3 we study six

FIG. 1. Tight-binding model of a ferromagnet–insulator–
topological-insulator (F-I-TI) junction with the ferromagnet on
the [001] surface of the topological insulator, corresponding to
setup A and B in Fig. 2.
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setups for a three-dimensional (3D) device (A–F) and two
for a two-dimensional (2D) device (G, H) as shown in
Fig. 2, which may yield different TMR ratios. These setups
differ in the crystallographic orientation of the topological
insulator relative to the junction plane. In the 3D cases we
investigate the three clean surfaces in the [001], [100], and
½1̄20� direction with two orthogonal arrangements of the
metallic electrodes each. The 2D case could be realized by
a thin film strip contacted at the edges, i.e., with an
experimentally more complex arrangement. For that pur-
pose, the film thickness should be less than 6 nm (6
quintuple layers) in order to ensure that the top and bottom
surface states become sufficiently hybridized [34]. On the
other hand, the film thickness should be at least 1.5 nm to
avoid having the material become topologically trivial [35].
Here, we consider a film thickness of 3 nm to stay within
these two limits. In this case, the parameterM0 needs to be
reduced to an effective 2D value of M0 ¼ −0.197 eV, as
has been discussed in Ref. [35]. In the 2D case we do not
consider thin films grown along the [100] or ½1̄20�
direction, as these are technically difficult to realize. In
the following, the Cartesian coordinates ðx; y; zÞ are tied to
the geometry of the devices, while the orientation of the
crystal in these devices is expressed by Miller indices, as
indicated in Fig. 2. Hence, kz is always the momentum
perpendicular to the surface plane and kx and ky are the in-
plane momenta with kx pointing from the junction towards
the metallic electrode. Note that this definition of the
Cartesian coordinates only in the case of setup A coincides
with that in Eqs. (1) and (4).
The tunneling current through the insulating barrier is

calculated using Fermi’s golden rule

Γmn ¼
2π

ℏ
δðEn − EmÞjhnjHT jmij2; ð6Þ

which gives the transition rate from an initial state jmi into
a final state jni. Here, HT is the tunneling Hamiltonian
equation (5) of the insulating barrier [36]. For a given bias
voltage U between the ferromagnetic electrode and the
topological insulator, the total tunneling current is given by
the expression [37]

IðUÞ ¼ 2πe
ℏ

X
m;n

½fðEm − eUÞ − fðEnÞ�jhnjHT jmij2

× δðEn − EmÞ: ð7Þ
Here, the sum runs over all eigenstates m and n of the
ferromagnet and the topological insulator. The Fermi function

fðEÞ ¼ 1

1þ eE=kBT
ð8Þ

takes into account the occupation of the eigenstates at finite
temperature. Differentiating I with respect to U leads to the
differential conductance

GðUÞ ¼ dI
dU

¼ πe2

2ℏkBT

X
m;n

1

cosh2 Em−eU
2kBT

jhnjHT jmij2

× δðEn − EmÞ; ð9Þ
which is used to define the TMR ratio

TMRðU; θF;φFÞ ¼
GmaxðUÞ −GðU; θF;φFÞ

GðU; θF;φFÞ
: ð10Þ

Here, θF and φF define the direction of the exchange field
equation (4), and GmaxðUÞ is the maximal differential
conductance with respect to one metallic electrode obtained
when the exchange field and the polarization of the surface
electrons with propagation direction perpendicular to that
electrode are parallel. The maximal TMR ratio can then be
obtained by rotating the exchange field by π into the
antiparallel orientation or, because of the spin-momentum
locking of the TI surface states, by comparing the differential
conductances with respect to both metallic electrodes (see
Fig. 2). To calculate the differential conductance with respect
to the different metallic electrodes, we sum only over those
eigenstates of the TI with a positive group-velocity compo-
nent vx ¼ 1

ℏ
∂E
∂kx in the direction of the electrodes for one

electrode and over those with a negative group-velocity
component for the opposite electrode.

III. RESULTS

In this section we present our results for the TMR ratio in
Bi2Se3 based on numerical calculations as well as an
analytical approximation. The analytical approximation
is derived in the Appendix. It assumes isotropic helical

FIG. 2. Setups for TMR devices studied in this work. Different
orientations of the crystal axes of the TI relative to the electrodes
are given by the coordinate systems A–H, (a) for a three-
dimensional TI and (b) for a two-dimensional TI. In (c) the
crystallographic directions of the TI are shown.
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surface states and neglects the influence of bulk states. This
should be a good approximation for bias voltages chosen
within the bulk gap of the material in the vicinity of the
Dirac point. While the numerical calculations give an exact
solution based on the Hamiltonian equation (1) including
the influence of the bulk states, the analytical approxima-
tion gives a formula depending on the spin polarization p of
the topological surface states. Here, 0 ≤ p ≤ 1 is the
average magnitude of the spin-expectation value in the
vicinity of the Dirac point. The analytical formula is useful,
as it provides a quick estimate of the TMR ratio and can be
used for different materials once the spin polarization p of
the surface states is known. Depending on the dimension-
ality of the device the formulas for the TMR ratio are
slightly different, but independent of temperature and bias
voltage (see the Appendix):

TMR3Dðp; q;φFÞ ¼
1þ sinφF
π

2pq − sinφF
; ð11Þ

TMR2Dðp; q;φFÞ ¼
1þ sinφF
1
pq − sinφF

: ð12Þ

Here, 0 ≤ q ≤ 1 is the spin polarization of the ferromagnet.
The angle φF is the in-plane polarization angle of the
exchange field. The maximal TMR ratio is reached
after a π rotation of the exchange field (φF ¼ π

2
) and is

shown as a function of pq in Fig. 3. It is limited to

TMR3Dð1; 1; π2Þ ≈ 3.5 for a 3D device while it diverges in
the 2D case for pq → 1. The factor π=2 in the denominator
of Eq. (11) as compared with Eq. (12) comes from the fact
that the two-dimensional manifold of surface states on the
3D devices possesses in-plane spin polarizations of all
directions, as shown in the Appendix. Even for surface
states with p ¼ 1 a finite amount of electrons can thus
tunnel into surface states with a velocity component into
the opposite direction, reducing the TMR ratio. In the 2D
devices such a situation can be avoided.
For the numerical TMR ratios we calculate the eigen-

states and eigenenergies of the TI by an exact diagonaliza-
tion of the Fourier-transformed Hamiltonian on a lattice of
size 50 × 400 × 400 for setups A and B, 100 × 400 × 400

for C–F, and 200 × 800 for G and H, where the first number
is always for the direction perpendicular to the surface
plane. Because of the periodic boundary conditions within
the surface plane this can be done separately for all discrete
in-plane momenta ~k. To obtain the sign of the group-
velocity component vx, we compare the eigenenergies with
those we get after a small variation of kx. Assuming the FM
to be large, the spatial dependence of the FM states
perpendicular to the surface is given by sin zkz, where z
is the lattice position and the perpendicular momentum kz is
a continuous function of the in-plane momentum ~k and the
TI eigenenergies, satisfying energy and in-plane momen-
tum conservation (see the Appendix). To obtain GmaxðUÞ
the direction of the magnetization of the ferromagnet is
chosen such that the differential conductance is maximized.
This maximum occurs when the magnetization direction
fits the expectation value of the spin operators Σi ¼ I2×2 ⊗
σi [38] of those TI surface states that propagate towards a
metallic electrode. The TMR ratio is then calculated
using Eq. (10), where the maximal and minimal
differential conductances are calculated by summing
only over those states with positive or negative group-
velocity component vx in Eq. (9), i.e., by looking at
opposite metallic electrodes.
In Fig. 4 the results of these calculations at room

temperature are shown (solid lines) in comparison with
the corresponding expectation from the analytical approxi-
mation (horizontal dashed lines with the same color). The
FM is chosen to be ideal for these calculations, i.e., fully
polarized (q ¼ 1). To make an appropriate comparison of
our numerical results with the analytical approximation, we
determine the polarization p of the TI surface states from
the numerical calculation in the following way: we deter-
mine p from the absolute value of the spin-expectation
value for a surface state having a momentum in the
direction of the metallic electrode close to the Dirac point.
As the magnetization of the ferromagnet is aligned to the
spin of this state, the analytical formula gives the best
approximation for this value of p, because the main
contribution to the differential conductance comes from
electrons with similar spin direction. Note that the value of

FIG. 3. Maximal TMR ratio as a function of the product
of the surface state polarization p and the polarization q
of the ferromagnet within the analytical approximations,
Eqs. (11) and (12).
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p depends on the crystallographic orientation of the surface
leading to different values for the different setups.
Since the surface states only exist inside the bulk gap and

the bulk states are unpolarized, the TMR ratio drops towards
the edges of the gap (shown by the vertical black lines). This
influence of the bulk states increases with increasing
temperature and may reduce the maximal TMR ratio in
systemswith small gaps. Taking a closer look at the different
setups, setups A and B show nearly no difference and are in
very good agreement with the analytical approximation
TMR3D ≈ 3.5 for p ¼ 1. There is only a tiny deviation for
larger ~k, where the numerical TMR ratio decreases due to a
small, albeit increasing, out-of-plane polarization of the
surface states caused by hexagonal warping.
Because of the anisotropy of the [100] and ½1̄20�

surfaces, the analytical approximation gives only a rough
estimate for the TMR ratio of setups C–F. The anisotropy
changes the shape of the Dirac cone and with it the spin
orientation from circular to a more elliptical form (see
Fig. 5). This anisotropy creates an imbalance in the
tunneling probabilities of electrons with different spin
orientations. For setups C and F the TMR ratio at the
Dirac point is slightly larger than the estimated 3.5 and rises

up to approximately 4.9 for setup C and approximately 4.6
for setup F near the lower edge of the bulk gap. As the TMR
ratio increases away from the Dirac point, it is limited by
the size of the bulk gap and the position of the Dirac point
inside the gap. The fact that setup C reaches a larger value
than setup F indicates that for equally polarized surfaces it
is beneficial to choose the surface parallel to a crystal axis.
In contrast to setups C and F, the anisotropy reduces the

TMR ratio for setups D and E, which is already smaller
because the surface states have a reduced spin polarization
of p ≈ 0.86 and p ≈ 0.77 near the Dirac point, respectively.
The TMR ratio is further reduced by a change in the
polarization orientation and strength as a function of energy
away from the Dirac point.
In the case of a 2D device (setups G and H), the TMR

ratio reaches much larger values than in the 3D case, as
there are basically only two spin orientations flipping at
~k ¼ 0. Near the Dirac point, the TMR ratio now falls
somewhat below the analytical approximation and

FIG. 4. TMR ratio based on numerical calculations for the
different setups A–G in Fig. 2. The horizontal dashed lines
represent the analytical approximation for the spin polarization
p of the surface states close to the Dirac point. The energy
position of the Dirac point is shown by the vertical red dash-
dotted line for the [001] surface (234 meV) and the vertical blue
dash-dotted line for the [100] and ½1̄20� surfaces (191 meV in the
3D case and 135 meV in the 2D case). The vertical black dashed
lines denote the positions of the gap edges.

FIG. 5. Spin-expectation values of the lower Dirac cone on the
side surface in the ½1̄20� direction. The declaration of the
momentum components corresponds to setup D. In the upper
figure the in-plane spin is shown by the arrows while the out-of-
plane spin component is indicated by the color. The lines are
constant energy contours. The lower figure shows the absolute
value of the spin-expectation value.
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decreases rapidly towards the edges of the gap. On one
hand this decrease is due to the higher sensitivity of the
larger TMR ratios resulting in a more important influence
of the bulk states. On the other hand, similar as for setups D
and E, there is a change in the orientation and strength of
the spin polarization as a function of energy, further
reducing the TMR ratio away from the Dirac point. Still
we get a maximal TMR ratio of approximately 5.4 for setup
G (p ≈ 0.73) and approximately 10.7 for setup H
(p ≈ 0.85) at room temperature.
In Fig. 6 we show the temperature dependence of the

TMR ratio for setup H and bias voltage chosen at the Dirac
point. Here, it is seen that the value of the analytical
approximation is reached at low temperatures. This result
demonstrates that the finite-temperature occupation of the
bulk states somewhat mitigates the TMR ratio already at
room temperature in the 2D devices.
The 2D devices (setups G and H) reach much larger

TMR values than the 3D ones. However, they are techni-
cally more challenging to realize as the tunneling barrier
has to be attached to the edge states of a thin TI film. In
Fig. 7 we propose an alternative 3D device, which is easier
to realize than the 2D devices, but which approaches the
same large TMR values. In this device one of the two
metallic electrodes is U shaped and is supposed to capture
most electrons that do not propagate in a positive x
direction from the ferromagnetic to the other, smaller
metallic electrode. As a result, the electrons that reach
the smaller metallic electrode preferentially possess only a
single spin orientation. Thus, the transport between the
ferromagnetic and the smaller metallic electrode
approaches a one-dimensional transport, similarly as in
the edge states of the 2D devices. We apply our analytical
approximation to this geometry (for more details see
the Appendix), corresponding to a [001] surface, i.e., the
crystallographic orientation of setup A. In Fig. 8 the TMR
ratio of this U-shaped device is shown as a function of the
ratio d=h, where d is the distance between the ferromag-
netic and the smaller metallic electrode, and h is the height

of the electrodes as shown in Fig. 7. In this calculation we
assumed that the ferromagnetic and the smaller metallic
electrode are square shaped, i.e., l ¼ h. For illustration, we
assumed that the product pq of the polarizations of the
ferromagnet and the topological insulator is 0.8. As Fig. 8
shows, the U-shaped 3D device yields much larger TMR
values than the 3D devices. For d=h ≫ 1 the TMR ratio of
the U-shaped device approaches the TMR ratio of the 2D
device, which is clear as with increasing distance d the
angular range of topological surface states that can reach
the metallic electrode is gradually reduced and focused.
The calculations we report here are done with parameters

appropriate for undoped Bi2Se3, as pointed out above.
However, in practice these materials often appear to be
intrinsically doped [6,7], which shifts the Fermi level with
respect to the surface Dirac cone. For Bi2Se3 a Fermi-level
shift of 200 meV is reported [6]. We want to point out that
the functionality of the devices proposed here is not
affected by such intrinsic doping. The Fermi-level shift
will shift the energies En of the topological surface states

FIG. 6. Temperature dependence of the TMR ratio for the 2D
setup H at the Dirac point (solid line). The dashed line shows the
TMR ratio within the analytical approximation, which is reached
by the numerical results at low temperature.

FIG. 7. Alternative device on the surface of a 3D TI which
allows us to approach the large TMR ratios of a 2D device. The
U-shaped metallic electrode captures nearly all electrons moving
in other directions than the positive x direction. The ferromag-
netic electrode and the smaller metallic one possess length l and
height h. The distance between them is d.

FIG. 8. TMR ratio near the Dirac point for the device shown in
Fig. 7 as a function of d=h for l ¼ h and pq ¼ 0.8. A higher ratio
l=h further increases the TMR ratio. The dashed lines show the
results of the 2D and 3D devices discussed above.

GÖTTE et al. PHYS. REV. APPLIED 2, 054010 (2014)

054010-6



with respect to the ones of the ferromagnet. This energy
shift can be fully compensated for by a shift of the bias
voltage U in Eq. (9) leading to a bias voltage shift of our
results in Fig. 4. Thus, the high TMR ratios will be robust
against intrinsic doping, but just appear at a shifted bias
voltage.
While our calculations find a full spin polarization for the

[001] surface, consistent with recent spin- and angle-
resolved photoemission spectroscopy (SARPES) measure-
ments of Pan et al. [39], the spin polarization in Bi2Se3 is
still controversial. The reported spin polarization ranges
from 50%–65% in first-principle calculations [40–42] to
75%–80% or more in SARPES measurements [12,43]. If
we consider these values, according to Fig. 3 the TMR ratio
could be reduced to approximately 0.9–2 in the 3D devices
and approximately 2–8 in the 2D devices, which is still
large, though.
As our analytical formulas for the TMR ratio Eqs. (11)

and (12) depend only on the spin polarization and not on
the exact parametrization, they are universally valid for all
materials in the limit of an isotropic surface. In contrast, the
TMR ratio for an anisotropic surface strongly depends on
the model parameters and the deviation from the isotropic
solution may therefore be different for other materials.
In the present work, we focus on Bi2Se3, which has been

studied well in the past. Considering other materials,
TlBiSe2 could also be a good candidate for TMR devices
as discussed here, because it has an in-plane spin polari-
zation of approximately 80%, a negligible out-of-plane
polarization, and a large bulk gap of approximately
0.35 eV [44–46]. The high spin polarization of 80%–
90% of Sb2Te3 promises a high TMR ratio, too.
However, at room temperature it will probably be reduced
because of the small bulk gap of only approximately 0.2 eV
[47]. Bi2Te3 and PbðBi; SbÞ2Te4 seem to be less attractive
since they have in-plane spin polarizations of only 45%–
60% [40,45,48,49] and 50% [50] and small bulk gaps of
only about 0.08–0.165 eV [5,40] and 0.2–0.23 eV [8,51],
respectively. They also possess a significant out-of-plane
polarization due to the hexagonal deformation of the Fermi
surface [40,45,48,50].
An attractive feature of the devices proposed here is the

topological protection of the spin-locked surface states,
which makes them particularly robust against perturba-
tions. In usual TMR junctions defects close to the interface
can substantially suppress the TMR ratio, in particular at
high temperature [52,53]. For the present devices we have
to distinguish nonmagnetic and magnetic scattering mech-
anisms. Nonmagnetic scattering processes, such as disorder
or faceting of the barrier, which scatter the momentum of an
electron during the transfer from the ferromagnet to the
topological insulator, but keep its spin conserved, are only
weakly affecting our TMR results, because the TMR ratio
is predominantly dictated by the helical spin structure of the
surface states, which is topologically protected. As long as

the spin is conserved, momentum scattering does not
change our results, as the total current already consists
of contributions from all momentum directions. Magnetic
scattering mechanisms, on the other hand, do reduce the
TMR ratio. This is obvious, as a spin-flip process during
tunneling will change the direction of flow in the topo-
logical surface state. Such processes could be modeled by a
reduced apparent polarization q of the ferromagnet seen by
the topological insulator. An experimental realization of
our devices should thus take care to avoid magnetic
scattering in the barrier. These are the same quality
requirements as for conventional TMR devices based on
magnetic tunnel junctions and have been successfully dealt
with in the past, however.
The distance chosen between the electrodes should be

sufficiently small such that electrons traveling from the
ferromagnetic electrode to one metallic electrode are not
backscattered to the opposite metallic electrode in between.
As the surface states are topologically protected by
time-reversal symmetry, such backscattering is strongly
suppressed and can only occur when time-reversal sym-
metry-breaking scattering impurities or imperfections exist
in the topological insulator. Thus, the distance between the
electrodes should be smaller than the spin-flip mean free
path of the surface states. Values of the order of 2 μm are
reported [54,55]. It has been demonstrated in the past that
magnetic tunnel junctions can be structured down to a 50
nanometer scale [56].
In conventional semiconductor Rashba devices TMR

ratios of up to 50% are reached at room temperature
[57,58]. For TMR devices based on magnetic tunnel junc-
tions with two ferromagnetic electrodes reported TMR ratios
range between 180% and 600% [52,53,59–62]. The TMR
values calculated here are comparable to or larger than these
values.

IV. SUMMARY AND CONCLUSIONS

In the present work we propose specific setups to build
TMR devices exploiting the topological-insulator material
Bi2Se3. Using a realistic tight-binding model we calculate
the achievable TMR ratios as a function of bias voltage and
temperature. If the bias voltage is chosen properly, we find
that room temperature TMR ratios of 490% can be achieved
in the 3D devices and 1070% in the 2D devices. We suggest
a U-shaped 3D device, which is experimentally easier to
realize than the 2D devices, but reaches correspondingly
high TMR values. We derive simple analytical formulas for
the devices, which provide a quick approximate figure of
merit once the surface-state polarization of a given topo-
logical insulator is known. For the 3D devices we show that
on an anisotropic surface the TMR ratio may become larger
than the one estimated from the analytical formula. In
contrast to conventional TMR devices the devices proposed
here do not need a second ferromagnetic layer, as an
intrinsic magnetic reference direction is already provided
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by the topological insulator. In addition, the present devices
provide a means to experimentally probe the surface-state
polarization of a given topological insulator.

APPENDIX: ANALYTICAL TMR RATIO

In this Appendix we derive an analytical approximation
for the TMR ratio. We base this derivation on an analytical
approximation of the surface states only and neglect the
effects of bulk states. Considering the large bulk gap of
Bi2Se3, this should be a good approximation even at room
temperature.
To find an analytical approximation of the surface states

for a surface at z ¼ 0, we expand Hamiltonian equation (1)
up to second order in kz. As a starting point, we first neglect
all kx- and ky-dependent terms by setting kx ¼ ky ¼ 0. If
we assume the TI to be half infinite with its boundary at
z ¼ 0, we have to replace kz with the momentum operator
−i∂z and search for nontrivial solutions that vanish both at
z ¼ 0 and for z → ∞. There exist two degenerate eigen-
states with energy E ¼ − C1M0

M1
satisfying both conditions:

ψ1ðzÞ ¼
1

N

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffi
M1−C1

2M1

q
0ffiffiffiffiffiffiffiffiffiffiffi

M1þC1

2M1

q
0

1
CCCCCAðe−α1z − e−α2zÞ; ðA1Þ

ψ2ðzÞ ¼
1

N

0
BBBBB@

0ffiffiffiffiffiffiffiffiffiffiffi
M1−C1

2M1

q
0ffiffiffiffiffiffiffiffiffiffiffi

M1þC1

2M1

q

1
CCCCCAðe−α1z − e−α2zÞ; ðA2Þ

with α1 ≠ α2, Reα1=2 > 0 and some normalization constant
N for the z-dependent part. Next, we treat the neglected
kx- and ky-dependent terms as a perturbation using degen-
erate perturbation theory and get the new surface states

ψ�ðkx; ky; zÞ ¼ u1ψ1 þ u2ψ2; ðA3Þ

with

u1ðkx; kyÞ ¼ −
ðm1 − im2ÞsgnðR1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þR2

1

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þm2

2 þ ðR1 ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þR2

1

p
Þ2

q ;

ðA4Þ

u2ðkx; kyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þR2

1

p
Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þ ðR1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 þR2

1

p
Þ2

q :

ðA5Þ

The perturbed eigenenergies are

E� ¼ −C1M0

M1

þ ϵ00 − C1

M1

m0
4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 þm2
2 þR2

1Þ
�
1 − C2

1

M2
1

�s
: ðA6Þ

Here, ϵ00 ¼ 4
3
C2ð3 − 2 cos 1

2
kx cos

ffiffi
3

p
2
ky − cos kxÞ andm0

4 ¼
4
3
M2ð3 − 2 cos 1

2
kx cos

ffiffi
3

p
2
ky − cos kxÞ and � is for the

upper and lower Dirac cone, respectively. If we expand
u1, u2, and E� up to second order in kx and ky, the solutions
become isotropic in the kx-ky plane and we can write ψ�
solely as a function of z and the in-plane polar angle φ. The
energies E� then become

E�¼−C1M0

M1

þ
�
C2−C1

M1

M2

�
k2�A0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−C2

1

M2
1

s
k; ðA7Þ

and thus only depend on the magnitude k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
.

This expression agrees with the one derived previously
in Ref. [27].
Calculation of the expectation values of the spin oper-

ators Σi ¼ I2×2 ⊗ σi [38] shows that the spin of these
surface states is always perpendicular to the in-plane
momentum and lies within the surface plane. As the
direction of the spin is the same for both orbitals, this
model yields surface states which are fully polarized, at
least at the [001] surface. Here, we allow for a finite spin
polarization 0 ≤ p ≤ 1 and thus rewrite the surface-state
wave functions as a function of polarization p

ψ�ðp;φÞ ¼
1

2

0
BBB@

� ffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

p
e−i½φ−ðπ=2Þ�ffiffiffiffiffiffiffiffiffiffiffiffi

1þ p
p

∓ ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
e−i½φ−ðπ=2Þ�ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p

1
CCCA: ðA8Þ

As all constant prefactors cancel in the TMR ratio, we
neglect these as well as the spatial dependence, because in
the calculation of the tunneling current only the lattice
position next to the barrier plays a role. The spatial
dependence of the FM states perpendicular to the surface
is a superposition of an incoming plane wave eizkz with the
reflected one e−izkz having a node inside the barrier (at
z ¼ 0) and is thus given by sin zkz. Note that this is an exact
solution of the tight-binding model for a thick FMwith zero
transmission probability through the barrier. Here, the
momentum kz is a continuous function of the in-plane
momentum k and the TI eigenenergies E�, satisfying
energy and in-plane momentum conservation:

kzðkÞ ¼ arccos
CFð2þ k2Þ �W − E�

2CF
: ðA9Þ
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Since the spin of the surface states lies within the surface
plane it is sufficient to write the states of the FM as a
function of the in-plane polar angle φF

ψFðk;φFÞ ¼
1

2
sin kzðkÞðe−iφF ; 1; e−iφF ; 1Þ: ðA10Þ

The transfer matrix elements

jhψFjHT jψ�ij2 ¼C2
B sin

2 kzðkÞ½1∓ psinðφF −φÞ� ðA11Þ

can then be inserted into Eq. (9).
In the calculation of the differential conductance the

geometry of the device can be accounted for by an
additional angular-dependent factor fðφÞ. This factor
describes the probability that an electron starting its
propagation in the TI at an angle φ below the FM electrode
ends up at the metallic electrode at x > 0 averaged over the
spatial extend of the two electrodes. Under the assumption
that fðφÞ ¼ fð−φÞ, which holds for a device which is
mirror symmetric with respect to the x-z plane and valid for
all devices considered in this work, the φ integral can be
separated from the rest of the differential conductance

GðT;U;φFÞ ¼
const
T

Z
k0

0

dkk
Z

π

−π
dφ

�
fðφÞ jhψFjHT jψþij2

cosh2ðEþ−eU
2kBT

Þ

þ fðφ− πÞ jhψFjHT jψ−ij2
cosh2ðE−−eU

2kBT
Þ

�

¼
Z

π

−π
dφfðφÞð1−p sinφF cosφÞG0ðT;UÞ;

ðA12Þ

with the function

G0ðT;UÞ¼ const
T

Z
k0

0

dkk

�
sin2kzðkÞ

cosh2ðEþ−eU
2kBT

Þþ
sin2kzðkÞ

cosh2ðE−−eU
2kBT

Þ

�
;

ðA13Þ

which is independent of φF.
Up to this point we considered an ideal FM, i.e., fully

polarized. To account for a finite polarization q ¼ nþ − n−
of the FM we have to replace GðT;U;φFÞ by

G00ðT;U;φFÞ ¼ nþGðT;U;φFÞ þ n−GðT;U;−φFÞ

¼
Z

π

−π
dφfðφÞð1−pq sinφF cosφÞG0ðT;UÞ:

ðA14Þ

Here, 0 ≤ n� ≤ 1 with nþ þ n− ¼ 1 is the relative density
of states of electrons in the FM with spin projection parallel
(þ) or antiparallel (−) to the polarization angle φF.
Defining

γ ¼
R
π−π dφfðφÞR

π−π dφfðφÞ cosφ
; ðA15Þ

the TMR ratio

TMRðp; q;φFÞ ¼
1þ sinφF
γ
pq − sinφF

ðA16Þ

depends only on p, q, and φF. In particular, it does not
depend on temperature, because the temperature depend-
ence of the differential conductanceG0ðT;UÞ is the same in
all directions due to the in-plane rotational symmetry
of the surface states and thus drops out in the TMR ratio.
This temperature independence is lost, of course, if the
contribution of the bulk states is included. The geometry of
the device appears only via the single parameter γ. This
parameter can now be calculated for different geometries of
the devices. For setups A–H we assume that all electrons
initially moving in the positive x direction end up at the
electrode at x > 0 and all others at the counterelectrode.
For the 3D devices A–F the function fðφÞ is then simply
given by

fðφÞ ¼
�
1 ifφ ∈ ½− π

2
; π
2
�

0 else;
ðA17Þ

which yields γ ¼ π
2
. For the 2D devices G and H we have

fðφÞ ¼ δðφÞ; ðA18Þ

giving γ ¼ 1. For the device shown in Fig. 7 we can derive
fðφÞ from the sketch shown in Fig. 9. Considering an
electron starting from the FM at an angle φ on a vertical line
with distance x from a vertical line in the metallic electrode
(M), it can reach that line only if it comes from the fraction
h0 ¼ h − x tanφ, i.e., the mean probability to reach the line
is h0

h ¼ ð1 − x
h tan jφjÞ if jφj ≤ φm ¼ arctan h

x and otherwise
zero. Averaging over the length l of the FM and the metallic
electrode results in

FIG. 9. Sketch of the electrodes in the device from
Fig. 7, illustrating the calculation of the angular probability
distribution fðφÞ.
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fðφÞ ¼
Z

dþ2l

d
dx

l − jx − d − lj
l2

×

�
1 − x

h
tan jφj

�
Θ
�
arctan

h
x
− jφj

�
; ðA19Þ

where Θ is the Heaviside step function. γ can then be
calculated numerically for specific values of d, l, and h. In
Fig. 10 this function fðφÞ is shown for l ¼ h and d ¼ h as
well as d ¼ 4h, showing that for the larger value of d the
angular dependence becomes more strongly focused
near φ ¼ 0.
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