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We propose a class of linear elastic three-dimensional metamaterials for which the effective parameters
bulk modulus and mass density can be adjusted independently over a large range—which is not possible for
ordinary materials. First, we systematically evaluate the static mechanical properties and the phonon
dispersion relations. We show that the two are quantitatively consistent in the long-wavelength limit. To
demonstrate the feasibility, corresponding fabricated polymer microstructures are presented. Finally, we
discuss calculations for laminates composed of alternating layers of two different metamaterials with equal
bulk modulus yet different mass density. This lamination leads to metamaterials with effectively anisotropic
uniaxial dynamic mass density tensors.

DOI: 10.1103/PhysRevApplied.2.054007

I. INTRODUCTION

The mechanical properties mass density ρ and bulk
modulus B (the inverse of the compressibility) are strongly
correlated for ordinary substances. For example, an ideal
gas held at temperature T follows the universal relation
B=ρ ¼ T × const [1,2]. There is no such strict relation for
solids, but one gets a rough general correlation between the
Young’s modulus and ρn (1 ≤ n ≤ 3) in the so-called
Ashby plot [3,4]. For a constant Poisson’s ratio, this
correlation translates to B=ρn ≈ const. Recently, ultralight-
weight three-dimensional mechanical microlattices have
been investigated by different groups [4–10]. Herein,
ideally, one aims at reasonably small compressibility,
i.e., at reasonably large B for small ρ. To another extreme,
one may also want materials with large ρ yet small B.
For example, in the context of coordinate-transformation

mechanics [11–18], the ability to independently adjust B
and ρ of a mechanical material at each point in space is
crucial. For general cloaking structures, one would even
like to tailor inhomogeneous anisotropies [19,20]. This
requirement is in analogy to transformation optics [21,22]
based on the Maxwell equations, where the inverse electric
permittivity ϵ−1 (tensor) is the counterpart of the bulk
modulus B (tensor) and the magnetic permeability μ
(tensor) is the counterpart of the mass density ρ (tensor)
in mechanics [12,23]. Here, we tacitly assume that the shear
modulus is zero or at least small. Otherwise, there is no
such simple correspondence between mechanics and
electromagnetism [11].

II. MODIFIED PENTAMODE METAMATERIALS

How can we obtain the aimed-at independent control
of B and ρ with an artificial crystal? We start from three-
dimensional pentamodemetamaterials [24–30], the counter-
part of bimodemetamaterials in two dimensions [31]. These
artificial materials have an effective shear modulus G that
is orders of magnitude smaller than their effective bulk
modulus; i.e., their effective Poisson’s ratio approaches 0.5
from below. This limit can be achieved [26,28] by a lattice
of needlelike objects, the conical tips of which touch each
other on a diamond lattice with corresponding face-
centered-cubic (fcc) lattice constant a [26]. The key aspect
for the present paper is the following: Upon exerting a
hydrostatic pressure onto the pentamode structure, the
stress field is essentially concentrated to the tip-touching
regions and their immediate surroundings; see Fig. 1 (the
underlying numerical calculations will be specified
below). The stress is negligible in the other parts, which
means that the other parts do not significantly influence the
elastic properties at all. We can thus add mass to these
other regions to independently tailor the mass density ρ
without affecting B. The volume-filling fraction f of
fabricated microscopic [26] and macroscopic [28] ordinary
pentamode metamaterials has been as small as a few
percent, and yet much smaller values of f are conceptually
possible. This starting point leaves plenty of room towards
the ultimate maximum of f ¼ 100%. Thus, the mass
density can be varied over an order of magnitude with
present fabrication technology and conceptually even
much more—while fixing the bulk modulus B. To be able
to efficiently fill the volume and keep the overall structure
simple at the same time, we choose the regions outside of
the conical touching tips to be conical in shape as well.*muamer.kadic@kit.edu
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Their large diameter is D2. Importantly, when changing
D2, the shape of the tips does not change at all, leading to a
decoupling of the tips from the rest (see Fig. 1). The tips
are illustrated in red, whereas the rest is highlighted in
blue—although both are made from the identical constitu-
ent material.
We have shown previously [26] that the isotropic bulk

modulus B of ordinary pentamode metamaterials is simply
proportional to the small diameter d1 of the touching region
(see Fig. 1), provided that d1=a ≪ 1 and D2=d1 > 1.

Varying the ratio d1=a, and hence B, while maintaining
the condition d1=a ≪ 1 for fixed a seems possible over an
order of magnitude with present technology. Again,
conceptually, yet larger ranges are possible. In the same
limit d1=a ≪ 1, the shear modulus G is negligible, i.e.,
G=B ≪ 1 [26].
In summary, for sufficiently small values of the small

connection diameter, i.e., for d1=a ≪ 1, the d1=a ratio
determines the ratio of the effective isotropic bulk modulus
and the isotropic constituent material bulk modulus, B=B0.
The big diameter with respect to the lattice constant, D2=a,
mainly determines the volume-filling fraction f ∈
½0%; 100%� and hence the effective static mass density ρ
via f ¼ ρ=ρ0, with the mass density of the constituent
material ρ0.
Figure 2 illustrates the properties of the considered

metamaterials in the Bρ plane. Two selected extreme unit
cells are shown for illustration. The red curves correspond
to different values of constant ratio d1=a, the blue curves to
different fixed ratios D2=a. We emphasize once again that
the decoupling becomes strict in the limit d1=a → 0 (in
which case the blue and red curves should all be horizontal
and vertical straight lines, respectively), but one can see

FIG. 1. (a) Illustration of the metamaterial structure. The red
and blue parts refer to the identical constituent material; they are
colored only for illustration. The parameters and especially the
important diameters d1 and D2 as well as the lattice constant a of
the fcc lattice are defined. Because of the diamond lattice of
connection points, the double-cone length h is given by
h ¼ a

ffiffiffi
3

p
=4. The ratio d1=a determines the effective bulk

modulus B=B0, and the ratio D2=a determines the effective
relative static mass density ρ=ρ0, which is equal to the volume-
filling fraction f. Throughout this paper, we fix the parameters
s=h ¼ 0.05, D1=a ¼ 0.12, and d2=a ¼ 0.04. (b) The decoupling
between B and ρ becomes possible due to the concentration of the
stress to the immediate tip regions. Thus, the other stress-free
regions are irrelevant for the bulk modulus. In turn, the tip regions
are irrelevant for the mass density. Two examples of von Mises
stress [32] fields are depicted on a normalized false-color scale.
The magnified views in the lowest row show the concentration of
the normalized von Mises stress in the connection regions. The
mesh used for the numerical calculations is overlaid.

FIG. 2. Calculated metamaterial properties in the Bρ plane. The
red lines connect points with constant ratio d1=a, the blue lines
points with constant D2=a. Obviously, a large range of bulk
moduli B=B0 and mass densities ρ=ρ0 ¼ f can be accessed. Here
the quantities with index “0” refer to the constituent bulk
material. The resulting effective sound velocities c ¼ B=ρ are
also given at the data points. They refer to a typical polymer as the
constituent material. All effective sound velocities c ¼ ffiffiffiffiffiffiffiffi

B=ρ
p

agree to within numerical accuracy (< 1%) with the respective

velocities c ¼ ω=j~kj derived from the phonon-band structures
(see Fig. 3).
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from Fig. 2 that the decoupling already works approx-
imately for ratios d1=a in the range of just a few percent.
The calculations for the effective bulk modulus B are
performed by numerically solving the continuum-
mechanics equations using the commercial software pack-
age COMSOL Multiphysics (MUMPS solver, 3 × 105 degrees
of freedom) and by applying a hydrostatic pressure from all
sides of a structure composed of one extended fcc unit
cell as in Ref. [33]. For the constituent material, we take
typical polymer parameters, i.e., a bulk modulus of
B0 ¼ 5 × 109 Pa, a mass density of ρ0 ¼ 1190 kgm−3,
and a Poisson’s ratio of ν0 ¼ 0.4. As discussed previously
[26], the latter is not important at all and the others can
easily be scaled (see below). The calculations for the
effective mass density ρ are simply based on the polymer
volume-filling fraction. Within the framework of con-
tinuum mechanics considering pentamode metamaterials
(i.e., negligible shear resistance), the phase velocity of
longitudinally polarized compression waves is given by
c ¼ ffiffiffiffiffiffiffiffi

B=ρ
p

(¼ sound velocity). The acoustic-wave imped-
ance is Z ¼ ffiffiffiffiffiffi

Bρ
p

.
To connect static continuum mechanics to elastic wave

propagation, we have also calculated the phonon-band
structures ωð~kÞ of the modified pentamode metamaterials
systematically as a function of the two design parameters
d1=a and D2=a. We consider the polymer structure in
vacuum and again use COMSOL Multiphysics (MUMPS

solver, Floquet-Bloch periodic boundary conditions
imposed onto the primitive unit cell, about 6 × 105 degrees
of freedom; compare Ref. [34]). To identify the polarization
character (longitudinal or transverse) of the bands, we
inspect the corresponding eigenmodes at various character-
istic points (not depicted). Examples are exhibited in Fig. 3.
We depict only wave vectors ~k along the ΓK direction,
because we have previously shown that the pentamode
dispersion relation is isotropic at small d1=a [34] although
the structure itself has only cubic symmetry. Obviously,
static continuum mechanics (red straight line) and dynamic
wave propagation (black points) are quantitatively consis-
tent in regard to the effective longitudinal phase velocities c
within the long-wavelength or effective-medium limit.
More derived phase velocities are presented as the numbers
at the data points in Fig. 2. For all combinations of d1=a
and D2=a, the longitudinal phase velocity derived from the

band structure, c ¼ ω=j~kj, and that derived from continuum
mechanics, c ¼ ffiffiffiffiffiffiffiffi

B=ρ
p

, agree to within less than 1%
relative difference. This agreement for all parameters
strongly suggests that, for the metamaterial, the effective
dynamic mass density is closely similar to the static mass
density and, likewise, the effective dynamic bulk modulus
is closely similar to the static bulk modulus. In general, the
dynamic mass density can be quite different from the static
mass density [35–38].
The slower transversely polarized shear modes con-

nected to soft shear springs as well as the flat “deaf”

bands, which correspond to localized vibrations of the
masses, are deemphasized in light gray. As expected, these
flat bands move downwards in frequency in the calcula-
tions with increasing mass (i.e., larger D2=a) and/or with a
decreasing spring constant (i.e., smaller d1=a). In an
intentionally inhomogeneous structure, one might couple
to these modes, though. This coupling could be avoided by
choosing operation frequencies outside of these flat bands.
In passing, we emphasize again the scalability of our

results: The dimensionless normalized frequencies a=λ on
the horizontal axes of Fig. 3 refer to a wavelength λ in
standard air (at 20 °C) with an air velocity of sound
cair ¼ 343 m=s. The absolute frequency ω=ð2πÞ in units
of hertz results from the dispersion relation ω=ð2πÞλ ¼ cair.
Comparing to air is meaningful, because one may even-
tually couple such structures to airborne sound. In any case,
it is simple to scale the wavelength to other media. For
example, for a lattice constant of a ¼ 40 μm and for the
above polymer constituent material parameters, a normal-
ized frequency of a=λ ¼ 0.5 corresponds to an absolute
frequency of 4.3 MHz. On the basis of the continuum-
mechanics equations, it is also straightforward to scale our
results to metamaterials made from other constituent
materials. For a constituent material bulk modulus ~B0

and mass density ~ρ0, instead of our above choices B0

and ρ0, one gets ω → ω ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~B0ρ0=B0 ~ρ0

q
.

FIG. 3. Calculated phonon-band structures ωð~kÞ for three
different parameter sets d1=a ¼ 1.34%: (a) D2=a ¼ 5.4%,
(b) D2=a ¼ 26.8%, and (c) D2=a ¼ 59.0%; all other parameters
are given in the main text. The longitudinal branch is plotted in
black; all other modes are deemphasized in light gray. Only the
ΓK [or (111) or along space diagonal] direction is depicted,
because the dispersion relation for the relevant longitudinal
branch is very nearly isotropic (the transversely polarized shear

modes are not isotropic, though). The velocities c ¼ ω=j~kj
computed for many other parameter combinations are given as
numbers in Fig. 2. The red straight line is the dispersion relation

corresponding to continuum mechanics with ω ¼ j~kj ffiffiffiffiffiffiffiffi
B=ρ

p
with

the values for B and ρ as shown in Fig. 2.
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III. FABRICATION

Are such complex modified pentamode metamaterials
with fine features at the connections and large masses in
between experimentally feasible with current technology?
Would the connections collapse under the large weight? To
address these questions, we have fabricated polymer-based
test samples with a lattice constant of a ¼ 40 μm by using
state-of-the-art three-dimensional dip-in galvo-scanner-
based optical laser lithography (Nanoscribe GmbH,
Photonic Professional GT). Details of this technology
can be found in Refs. [33,39]. Electron micrographs of
fabricated metamaterial samples are depicted in Fig. 4.
Obviously, the structures are self-supporting and of high
quality, and the necessary aspect ratios and extreme three-
dimensional motifs are possible. We have previously shown
that such small connections can sustain strains of a few

percent under mechanical loading for microscopic [33] as
well as macroscopic [28] regular pentamode metamaterials.
We note in passing that we have also performed

calculations regarding the occurrence of buckling. With
decreasing d1=a, buckling occurs earlier. For the smallest
d1=a investigated here, the critical hydrostatic pressure
is 5 MPa.
However, within the current state of the art, we can

fabricate only up to around 10 × 10 × 10 ¼ 103 extended
fcc unit cells [33] on a time scale of 10 h. Unambiguous
wave experiments on such small samples are demanding
[40]: To avoid edge effects, the sample size must at least be
ten wavelengths. To be within the effective-medium limit,
the wavelength should at least be 10 times larger than the
lattice constant. Altogether, these requirements lead to
around 100 × 100 × 100 ¼ 106 extended fcc unit cells or
more. These would require excessive writing times on the
scale of half a year. Such structures may come into reach,
though, in some years as three-dimensional microprinting
gets yet faster.

IV. MODIFIED-PENTAMODE LAMINATES

Next, as a conceptual application example, we consider
laminates made of two different modified pentamode
metamaterials to obtain effectively anisotropic dynamic
mass density tensors. It is well known that laminates
composed of alternating layers of locally isotropic materi-
als can lead to effectively anisotropic metamaterial behav-
ior [41]. A simple case is a stack of alternating good and
bad electrically conducting layers that leads to large
conductivity for currents flowing in the plane and small
conductivity normal to the plane [41,42]. We aim at a
similar anisotropic behavior for the phase velocity of
longitudinal waves propagating in the plane of the layers
and normal to them, respectively. Using the metamaterials
introduced above, we can now consider a special situation
in which all the layers have the same bulk modulus but
where the mass density is alternating between high
and low with a contrast of, e.g., about a factor of 10.
Correspondingly, we expect the wave propagation
anisotropy to be due to the mass density tensor anisotropy
only.
Figure 5 summarizes band-structure calculations ωð~kÞ

for laminates composed of bulk layers for reference
[Fig. 5(a)] and for the actual complex laminate metama-
terial structure [Fig. 5(b)], respectively. Here, each laminate
layer has a thickness of one extended fcc pentamode lattice
constant a, which leads to the complex heterostructure
illustrated in Fig. 4(b). Slow acoustic bands emerging from
the zone center corresponding to transverse waves con-
nected to the small shear modulus as well as bands
corresponding to modes with flat dispersion (roughly
related to optical phonons in ordinary crystals with a
two-atom basis) are again plotted in light gray to emphasize

FIG. 4. Electron micrographs of selected fabricated metama-
terial samples with fcc lattice constant a ¼ 40 μm. These
polymer structures have been made by three-dimensional dip-
in galvo-scanner-based laser lithography and demonstrate the
feasibility of the concept of modified pentamode metamaterials.
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in color the more-important longitudinal acoustic-compres-
sion waves connected to the bulk modulus. In the true long-

wavelength limit (j~kj < 0.01 × π=a), we find an isotropic

behavior for the phase velocity c ¼ ω=j~kj. This behavior is
expected for any type of structure, because all masses
oscillate in phase in the quasistatic limit [41,42]. For higher

frequencies corresponding to wave vectors j~kj ≈ 0.1 × π=a,
the bands for wave propagation in the plane of the laminate
layers and normal to them, respectively, separate (compare
red and green curves in the middle). These wave vectors are
well separated from the edge of the first Brillouin zone;
hence, the effective-medium description is meaningful. The
normal (z-direction) mode crosses the various rather flat
optical-phonon-like bands as a straight line, whereas the
mode propagating in the plane of the layers (xy plane)
bends over.
Intuitively, if the shear were actually zero, one would

get a fast compression mode in the low-mass-density
layer and an additional independent slower one in the

high-mass-density layer. However, as the shear is small but
not zero, the high-mass-density layer is pulled back by the
shear with respect to the low-mass-density layer (and vice
versa). This small shear force together with the large mass
of the high-mass-density layer leads to a mass-and-spring
system with low eigenfrequency. For excitation above this
resonance frequency, this mass reacts with a 180° phase
shift, which can be described as an effectively negative
mass density [41]. Altogether, one gets a different effective
dynamic mass density for propagation in the laminate layer
plane and perpendicular to it, respectively; i.e., the scalar
isotropic mass density of the metamaterial turns into an
anisotropic mass density tensor for the laminate. One
should be aware, though, that this anisotropy can be
exploited only over a fairly small frequency region. This
limitation holds true for any structure exhibiting a resonant
dynamic mass density (tensor), because the mass density of
an elastic solid always approaches the isotropic static case
ρstat ¼ fρ0 in the true long-wavelength limit (see the

FIG. 5. (a) Left: Illustration of a laminate metamaterial composed of alternating bulk layers with identical bulk modulus B1 ¼
B2 ¼ 5.9 × 106 Pa but different mass densities ρ1 ¼ 47.4 kgm−3 and ρ2 ¼ 588 kgm−3. Middle and right: Corresponding calculated
band structures for wave propagation normal to the laminate layers (red, z direction) and in the layer plane (green, in the xy plane),
respectively. The relevant longitudinal (“acoustic”) modes are highlighted in color. (b) The same, but for a metamaterial microstructure
as shown on the left-hand side. To obtain the same effective bulk modulus yet different mass densities for the two individual laminate
layers, we have not only variedD2 (which mainly determines ρ) but have also slightly adjusted d1 (which mainly determines B); i.e., we
have chosen d1=a ¼ 1.88% (d1=a ¼ 1.34%) and D2=a ¼ 13.4% (D2=a ¼ 53.6%) for layer 1 (2). All other parameters are fixed and as
quoted in Fig. 1.
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discussion above)—just like the magnetic permeability of
electromagnetic metamaterials approaches μ ¼ 1 in the
static limit [43].

V. CONCLUSION

In conclusion, we introduce modified pentamode meta-
materials and laminate heterostructures made thereof.
These structures provide enhanced flexibility for molding
the flow of longitudinal acoustic phonons in mechanics
similar to that for photons in magneto-dielectric metama-
terials in optics. Corresponding polymeric three-
dimensional unit cells can be fabricated with current
state-of-the-art optical laser lithography.
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