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Liquid-crystal elastomers are rubbers with liquid-crystal order. They contract along their nematic
director when heated or illuminated. The shape changes are large and occur in a relatively narrow
temperature interval or at low illumination around the nematic-isotropic transition. We present a conceptual
design of a mechanical, turbine-based engine using photoactive liquid-crystal elastomers to extract
mechanical work from light. Its efficiency is estimated to be 40%.

DOI: 10.1103/PhysRevApplied.2.044017

I. INTRODUCTION

We propose a mechanical turbine-based engine to har-
ness the contractions of soft, photoresponsive solids with a
large stroke. We thus take photoactive nematic liquid-
crystal elastomers (LCEs) as our working material. Related
engines have been proposed before, for instance, based on
the bend response of strips of nematic photoglasses con-
necting two wheels [1,2]. In contrast, we proposed a two-
wheel stretch engine [3] using a nematic photo LCE. The
engine had analogies to that of Steinberg et al. who studied
chemical-to-mechanical energy conversion [4]. Here, we
extend the two-wheel approach of Ref. [3] to mechanical
turbine-based engines (see Fig. 1) in order to get a much
higher conversion of light to mechanical work than in that
paper. There is a similarity to a turbine that converted
chemical to mechanical energy [5]. Here we analyze the
mechanics and losses involved in such turbines. Modeling
the geometrical and material parameters of this turbine-
based engine, along with the known photoresponse of
typical LCEs, suggests that its efficiency can be as high
as 40%.
The basis of these two-wheel and turbine engines is that

a nematic rubber strip passes, respectively, once around
two wheels or multiply around spindles turning at the same
rate. The strip reduces its natural length on heating or
illumination during its transition around one wheel; since
its length while on the wheel is fixed, the tension rises. On
leaving the wheel, it physically contracts to its new
equilibrium length, and, in thereby eliminating the tension
that has arisen, does work on the wheels or spindles that are
turning underneath it. A net work is done because the
wheels are of different diameters or the spindles are
tapered. This paper is about the mechanics, work cycle,
and efficiency if spindles are used rather than wheels. With
many passes around the spindles, the work cycle comes to
resemble that of a turbine.

Classical elastomers are cross-linked polymer melts
exhibiting liquid characteristics locally but are solidlike
on a macroscopic scale. Incorporating molecular rods into
the polymers of a simple elastomer leads to networks that
combine orientational liquid-crystal order with the extreme
stretchiness of rubber, that is, LCEs [6,7]. The shape of a
monodomain LCE is very sensitive to the change of the
nematic order parameter Q; network polymers are elon-
gated by the directional order and mechanical shape change
ensues. The order decreases on increasing the temperature,
which manifests as a uniaxial contraction by a factor λm
(< 1) of the elastomer along the nematic director [7]. The
contraction is especially rapid in the vicinity of the
transition temperature to the isotropic state. Analogous
shape changes occur in photoelastomers in which photo-
isomerizable dye molecules, rodlike in their trans ground
state, are connected to the LCE structure [8,9]. Here,
illumination causes the creation of bent-shaped cis isomers
of the dye which act as impurities that reduce the nematic
order, in turn, leading to a contraction of the photoelas-
tomer. The presence of cis isomers raises the effective

FIG. 1. Schematic of an optomechanical turbine.*mk684@cam.ac.uk
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temperature of the photoelastomer from T to a pseudo-
temperature ~T > T which depends on the cis concentration
and mimics the disorder as if it were induced thermally
[8,10]. It is important to note that mechanical deformations
of elastomers are reversible; that is, on removal of heat or
light, recovery elongations by a factor of 1=λm occur. These
elongations can be huge, up to 400% [11].

II. OPERATING PRINCIPLE

The optothermal cycle of our engine is shown in Fig. 2.
For a nematic elastomer of shear modulus μ, the free energy
per length of unstretched band F and the tension f depend
on the stretch ratio (deformation gradient) λ [7]:

Fðλ; TÞ ¼ 1
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where A0 is the cross-sectional area of the unstretched
elastomer, and ~f ¼ f=ðμA0Þ is the tension reduced by the
natural force scale in the problem. The modulus μ is
temperature dependent. A simple, freely jointed rod
(FJR) model quite accurately describes a wide range of
LCEs [7,12] and, in particular, the development of photo-
force [10]. In this model, the coefficients P∥ ¼ l∥= ~l∥ and

P⊥ ¼ l⊥= ~l⊥ are the ratios of the effective step lengths of
the network polymers at the reference temperature T and
the current temperature ~T, respectively, parallel and
perpendicular to the director. Before heating or illumina-
tion, the temperature is T; the extension factors λ are

measured from the lengths in this initial state. The step
lengths depend directly on the aspect ratio of the units of
the polymer, but these cancel in the ratios P. These ratios
depend on the nematic order parameters QðTÞ and ~Q ¼
Qð ~TÞ in a simple way in the FJR model:

P∥ ¼ ð1þ 2QÞ=ð1þ 2 ~QÞ and P⊥ ¼ ð1 −QÞ=ð1 − ~QÞ:
ð3Þ

Note that the aspect ratio of the polymer units also
contributes to the order Q. Along A → B, the current
temperature is actually ~T ¼ T (nothing has changed) and
P∥ ¼ 1 and P⊥ ¼ 1 trivially since ~Q ¼ Q. The illuminated
state C → D, with an elevated ~T > T, is isotropic with
~Q ≈ 0 and the parameters are P∥ ¼ ð1þ 2QÞ > 1

and P⊥ ¼ ð1 −QÞ < 1.
A free elastomer has ~f ¼ 0 in either the force-free state

D with temperature ~T or A with temperature T. Changing
from the reference temperature T to ~T and setting ~f ¼ 0

in Eq. (2) then gives a contraction λm ¼ ðP⊥=P∥Þ1=3
of its natural length along its director [7]. Thus,
λm ¼ ½ð1 −QÞ=ð1þ 2QÞ�1=3. The large change between
λ ¼ λm and λ ¼ 1 is what makes LCEs promising working
materials. We henceforth describe optical response, thermal
response being entirely analogous. To realize a continu-
ously operating engine, we subject the elastomer to a
cyclical process through states A-B-C-D-A by changing the
force and illumination.
It is easy to see from Fig. 2 that the net work delivered by

the engine, per unit length of its LCE working material in
its initial but unstretched state at T, as it is taken around the
cycle, is

W ¼ WCD −WAB

¼ μA0

�Z
λh

λm

~fðλ; ~TÞdλ −
Z

λh

1

~fðλ;TÞdλ
�

≡ μA0ðI1 − I2Þ

¼ Fðλh; ~TÞ − Fðλh; TÞ þ
3

2
μA0ð1 − ðP∥P2⊥Þ1=3Þ; ð4Þ

where the
R
~fðλ;TÞdλ are reduced force integrals. W is

similar in form to the work done in the various gaseous
p-V cycles. We assume the moduli are comparable,
μðTÞ ≈ μð ~TÞ. Notice that the work W delivered is greater
than the difference established in the free energies per
length of band in its unstretched state at C and B by a
(positive) term 3

2
μA0½1 − ðP∥P2⊥Þ1=3� that arises during the

cycle due to heat absorption.
One already sees from Fig. 2 that the prestretch λh

imposed before illumination enhances work output con-
siderably, just as a higher compression ratio improves

a

s

FIG. 2. The optothermal cycle of the turbine-based engine.
Reduced force ~f against stretch λ. Upper curve, pseudotemper-
ature ~T (illuminated, isotropic state); bottom, lower T (nematic
state). The grayed area represents the work done by the turbine-
based engine having a finite number of extension and contraction
steps (to be discussed in Sec. III). Dashed lines, two-wheel
motor [3].
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conventional engines. Further, taking a turbine allows one
to extend the cycle to zero force (at a contraction equal to
the natural illuminated length, λm), which is impossible in
two-wheel stretch engines [3]; see cycle a-B-C-s-a in Fig. 2.
However, for a soft solid, formidable problems exist in
realizing the above W. These include sliding and the
consequential frictional losses when finite tension
differences in soft solids exist across the engine. The
remainder of this paper is concerned with overcoming
these problems to get close to the above W by using the
turbine of Fig. 1. We will need to generalize the classical
pulley result of Euler [13] to highly extensible belts.
The energy input per unit length of unstretched elastomer

in the illumination process B-C is εndyeA0, with ε the
appropriate photon energy and ndye the number density of
dye molecules. For our model of an isotropic elastomer, the
internal energy is a function of temperature only and is
unchanging along an isotherm [14]. Thus, the heat input per
unit length of unstretched elastomer during the isothermal
process C-D equals the work done WCD. The efficiency is
the ratio of the work done to the optical energy plus heat
invested per cycle:

η ¼ WCD −WAB

WCD þ εndyeA0

¼
�
1 −

I2
I1

�
=

�
1þ εndye

μ

1

I1

�
; ð5Þ

where I1 and I2 are the reduced force integrals in Eq. (4)
and depend on the order along the isotherms T and ~T. From
Eq. (2), they are clearly just the free-energy changes per
length of band in its unstretched state (reduced by μA0)
between the relevant λ’s, and involve the Q and ~Q through
the explicit expressions (3) for the PðQÞ’s.
Since I1 > I2, the efficiency is always 0 < η < 1. The

ratio of material constants has been estimated as εndye=
μ ≈ 2 [3,15]. Thus, the efficiency is determined by the value
of the order parameter Q and the value of the prestretch λh.
As an example, we take a modest value for the dark-state
order Q ¼ 0.5, which would yield λm ¼ 0.63 or, equiv-
alently, an elongation 1=λm ¼ 1.58 on recovering the
nematic state from the isotropic, illuminated state. In fact,
much greater elongations of approximately 4 are known.
With Q ¼ 0.5 and λh ¼ 3λm, one obtains η ≈ 40%. We
discuss dynamics and the influence on η at the end.
We now follow the mechanical-thermal cycle in detail.

A closed band of photo LCE is wound around the pair of
spindles of Fig. 1, the tops of which are rigidly coupled by a
loop of inextensible wire, thus, ensuring they have equal
angular velocities. The spindles have slightly tilted axes
which enable the elastomer to spontaneously follow a
helical path down the spindles as they rotate. The horizontal
cross section of the spindles can be approximated by
circles, the radii of which grow from the top to attain a
largest value (r) at the middle section of the spindle, after
which they then decrease.

Initially, a free elastomer belt in the nematic reference
state A at temperature T comes onto the upper part of the
spindles with λ ¼ 1 and, hence, f ¼ 0. Isothermally, it
passes helically from smaller to larger spindle radii,
extending at each pass by a fraction equal to the ratio of
the radii which material conservation requires as discussed
later. It suffers multiple-step extension during the process
A-B in Fig. 2. State B achieved when the belt enters the
cylindrical section of the spindle with the largest radius r
(Fig. 1) has the highest (pre)stretch λ ¼ λh and has force
f ¼ fB. When in this region of radius r, the elastomer is
illuminated and assumed to reach ~T before it leaves the
region; the extent of this region of the spindle is determined
in part by dynamics since light absorption should proceed
long enough to give sufficient dye conversion to attain the
isotropic state before the band starts the contraction part of
the cycle. Along the B-C path, the process is isometric
(λ ¼ λh, an assumption of no slip along the B-C path). At
the point C, the force takes the highest value in the cycle
fC, and the elastomer is in the isotropic state. After passing
the region of maximum radius r, the elastomer spirals down
the lower part of the spindles, C → D. It moves now
repeatedly from larger to smaller radii, contracting at each
pass by the ratio of the radii. It releases its elastic energy as
work done on the spindles; in the final state D, the stretch
reaches the minimum value λ ¼ λm, the natural length of
elastomer at ~T. To remain with ~T along the C-D path,
because of cis → trans backreaction one must continue
some level of illumination. Equally, to remain isothermal,
one needs external heat since entropy rises in a contracting
elastomer. (In practice, much of this heat input can come
directly or indirectly from the optical source: Photons have
energy in the range 2 eV, which is equivalent to 80kBT for
T ∼ 300 K; that is, large energies per absorption are
available from quantum efficiencies of less than 100% in
the trans to cis transition. Equally, cis to trans back-
reactions yield energies per dye molecule that are large on
the thermal energy scale and are spread over the network
molecules.) Finally, on removal of illumination, at zero
force the elastomer gradually recovers and elongates from
λm and ~T to λ ¼ 1 and T (D-A of the cycle). The engine
converts into mechanical work part of the optical energy
elevating the elastomer to the effective temperature ~T. Work
is extracted by turning one spindle (the left in Fig. 1)
against the external torque, Gext.

III. FRICTIONAL LOSSES

The useful work done per cycle is less than that of Eq. (4)
because of sliding friction. We analyze each pass of the
elastomer around a spindle, considering differences in the
tensions f1 and f2 of the incoming and outgoing sections;
see Fig. 3(a).
Classically [13], there is an exponential increase of

tension along a belt passing around a wheel [see Fig. 3(a)
where tension increases from f1 to f2 over parts of x ¼ 0
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to x ¼ πR]. Since the surface is curved, there is an inward
force per unit length on the spindle from the belt of f=R; see
Fig. 3(b). If the surface is rough, the normal force gives a
frictional shear force (per unit length on the circumference)
of γ ∝ f=R. The net shear force γdx on an element dx
balances the difference in tangential forces fðxþdxÞ−
fðxÞ¼ðdf=dxÞdx across the element. Clearly, df

dx ¼ γ ∝
f=R gives an exponential increase in fðxÞ. There is an
obvious limitation to the classical analysis that is important
in soft solids where substantial stretch λ must accompany
increasing f: The belt has to slide on the spindle to extend so
that f increases with x. It cannot translate with the circum-
ferential speed v ¼ ωR for all its contact length with the
spindle but rather travel faster. Changing strain implies
changing stored elastic energy. Sliding implies frictional
losses during the transmission of power.
Figure 3(a) assigns a λðxÞ corresponding to an fðxÞ. In

particular λ ¼ λ1 for the belt incoming onto the spindle, and
λ ¼ λ2 when it emerges with f2. Let the temperature be
constant along the belt in contact with the spindle; then an
increase of tension f2 > f1 implies λ2 > λ1. Soft solids are
essentially incompressible under extension; hence, material
conservation dictates volume conservation. The sectional
area A ¼ A0=λ must diminish as the belt extends by λ. The
volume flux of the belt onto the spindle is v1A ¼ v1A0=λ1
and must be matched by vðxÞA0=λðxÞ at a general point.
Dividing through by A0 gives

v1=λ1 ¼ vðxÞ=λðxÞ ¼ v2=λ2; ð6Þ

which is the length of band per unit time passing, were it to
be in its unstretched state. This flux of the length of the
band is equivalent to ωR=λ1 when the band is not sliding.
Since the final stretch is greater than the initial λ2 > λ1, it
follows v2 > v1; the belt starts going faster than the
spindle. There is sliding friction. Neglecting inertia [16],
we get

df
dx

¼ μk
f
R
; ð7Þ

where μk is the coefficient of kinetic (sliding) friction
giving γ ¼ μkf=R. Since f2 > f1, friction inhibits sliding
in the þx direction. Solving Eq. (7) gives

fðxÞ ¼ f2 exp

�
μk
R
ðx − πRÞ

�
; ð8Þ

which differs from the classical result in its use of kinetic
friction coefficient μk, and the passage of energy to friction
and to elastic potential. The tension varies from f ¼ f2 at
x ¼ πR down to f ¼ f1 at an x ¼ x1 given by

x1 ¼ R

�
π −

1

μk
ln

�
f2
f1

��
: ð9Þ

In the initial section ð0; x1Þ, the tension retains its incoming
value f ¼ f1. It is gradients df=dx that transfer force
(torque) to the spindle in the region ðx1; πRÞ. There is a
region ð0; x1Þ without torque if x1 > 0, that is, if
f2 < f1eμkπ .
The power delivered to the spindle in one step of the A-B

path of Fig. 2 with f2 > f1 and the spindle turning
clockwise [see Fig. 3(a)] is the speed of its surface v1
times the force exerted on it:

Pw ¼ v1

Z
πR

x1

dxμk
fðxÞ
R

¼ v1

Z
πR

x1

dx
df
dx

¼ v1ðf2 − f1Þ:

ð10Þ
The term −v1f1 is the power given by the spindle to the
incoming band. The power v1f2 is the portion of the power
v2f2 delivered by the more tense band that actually finds its
way to the spindle. Thus, all the useful power is delivered
via the region that is slipping. When the band slips as soon
as it makes contact with the wheel, slip is complete and
x1 ¼ 0 in Eq. (9); then f2 ¼ f1eμkπ takes its maximal value,
as does Pw in Eq. (10); Pw ¼ v1f1ðeμkπ − 1Þ.
The power lost to friction in a step of the A-B path is

from the forces ðdf=dxÞdx acting on elements dx moving
at speeds vðxÞ − v1 relative to the elements:

Pf ¼
Z

πR

x1

dx
df
dx

½vðxÞ − v1�; ð11Þ

with x1 given by Eq. (9). The v1 part is trivially
−v1ðf2 − f1Þ, Eq. (10). The first term integrates by parts
to ðf2v2 − f1v1Þ −

R
πR
x1

dxfðxÞdvðxÞ=dx. The latter part
has dv=dx ¼ ðv1=λ1Þðdλ=dxÞ and becomes

−
v1
λ1

Z
πR

x1

dxfðxÞ dλ
dx

¼ −
v1
λ1

Z
λ2

λ1

dλfðλÞ

¼ −
v1
λ1

½Fðλ2; TÞ − Fðλ1; TÞ�; ð12Þ

FIG. 3. (a) A spindle with a belt around it with a tension varying
with position x around its circumference. (b) An expanded view
of a short section of belt at ðx; xþ dxÞ with a radial force and a
frictional shear force acting on the belt.
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where we used Eq. (2) with P∥ ¼ P⊥ ¼ 1, since the
elastomer is at T. Overall, the power lost to friction is

Pf ¼ f2ðv2 − v1Þ −
v1
λ1

½Fðλ2; TÞ − Fðλ1; TÞ�; ð13Þ

and does not involve the friction coefficient μk unless
slippage is complete (x1 ¼ 0). In the process A-B of the
engine, λ2 > λ1 is realized by moving the elastomer belt in
each pass from a spindle surface of a smaller radius r1 to a
surface of a larger radius r2. The velocities are v1 ¼ ωr1
and v2 ¼ ωr2. Then using Eq. (6), one gets λ2=λ1 ¼
r2=r1 > 1, as required.
In process C-D, in each turn around a spindle the

isotropic elastomer with ~T goes from a larger to a smaller
radius, r1 > r2 leading to v1 > v2 and λ1 > λ2 since
λ2=λ1 ¼ r2=r1 < 1. Hence, the band goes from a higher
to lower force, f1 > f2; see Fig. 3(a). Note that the
spindle’s direction of turn is fixed in the clockwise direction
by the engine operation as a whole, independent of the
relative size of the forces. As before, there is an x1 with no
slip for x < x1, while slippage occurs for x in the range
ðx1; πRÞ. Repeating the above, the power delivered and the
frictional power lost are

Pw ¼ v1ðf2 − f1Þ < 0; ð14Þ

Pf ¼ f2ðv2 − v1Þ þ
v1
λ1

½Fðλ1; ~TÞ − Fðλ2; ~TÞ�: ð15Þ

It remains for us to analyze the elastomer belt going
around surfaces of radius r in the process B-C. Now the
elastomer at force fB and temperature T comes on the
spindle where the illumination begins; see Fig. 1. In
Fig. 3(a), we now have f1 ¼ fB and λ1 ¼ λh. We assume
that the change T to ~T occurs without slippage and is
complete before the elastomer reaches the point C in Fig. 1,
possibly after several passes around the central section.
[Force rising from fB to fC without slippage assumes
df=dx < μsf=r where μs is the static friction coefficient.
Elongation is fixed at λ ¼ λh, and the variation of f with x
is from the changing P⊥ and P∥ factors in expression (2) for
f.] After x1, slippage then occurs and the force drops from
fC to fS [in Fig. 3(a) f2 ¼ fS, λ2 ¼ λS]. The state S is
marked in Figs. 1 and 2. The net power delivered to the
spindles on transit of the cylindrical section with radius r is

Pw ¼ ωrðfS − fBÞ: ð16Þ

For the frictional losses, expression (15) with the appro-
priate values of stretches, velocities, and forces is still
applicable since process C-S is part of C-D.
Excluding the middle spindle section of radius r, the

power delivered to the spindle in each extension step of the
A-B path is given by expressions of the form (10) and is
clearly positive as one expects if f2 > f1. However, the

total power delivered in the A-B path is actually negative
(see Fig. 2) since the band emerges stretched from A-B.
This is due to the fact that one must add the highly negative
contribution −ωrfB of Eq. (16) to the set of positive
contributions of the form (10). Similarly, in the C-D path,
the highly positive term ωrfS of Eq. (16) is added to
negative contributions (14), making the total power deliv-
ered in the C-D path positive since the elastomer contracts.
We now calculate the total power Pnk delivered to the

spindles by the elastomer for an n-stage contraction process
C-D and k-stage extension process A-B. When the engine
runs at a constant velocity ω, the net torque acting on each
of the spindles is zero. For simplicity, we shall neglect
frictional forces at the bearings. Then one can express the
balance of torques on the each spindle separately. Beside
the torques produced by the elastomer, one should take into
account the torques due to the inextensible wire which
couples the spindles, and the external torque Gext acting on
the left spindle (see Fig. 1). In such a way, one obtains a
pair of equations which enable one to determine Gext and,
thus, the useful power Pnk ¼ ωGext:

Pnk ¼ ω
Xn
i¼1

fiþ1ðri − riþ1Þ − ω
Xk
j¼1

f0jþ1ðr0jþ1 − r0jÞ:

ð17Þ

Here, fiþ1 and f0jþ1 are the forces in the ith step of the C-D
process and in the jth step of the A-B process, respectively,
while ri and r0j are the corresponding spindle radii. In
particular, f2 ≡ fS and r1 ≡ r (force f1 would be f1 ≡ fC).
Clearly, since ri > riþ1 for all i, the first sum on the right-
hand side of Eq. (17) Pn ¼ ω

P
n
i¼1 fiþ1ðri − riþ1Þ is

positive. Similarly, we have f0kþ1 ≡ fB and r0kþ1 ≡ r
(force f10 would be zero). On the other hand, Pk ¼
−ω

P
k
j¼1 f

0
jþ1ðr0jþ1 − r0jÞ is negative since r0jþ1 > r0j.

Using relations (13) and (15), the useful power is

Pnk ¼
ωr
λh

Xn
i¼1

½Fðλi; ~TÞ − Fðλiþ1; ~TÞ� −
Xn
i¼1

Pf;i

−
ωr
λh

Xk
j¼1

½Fðλ0jþ1; TÞ − Fðλ0j; TÞ� −
Xk
j¼1

P0
f;j

¼ ωr
λh

W −
Xn
i¼1

Pf;i −
Xk
j¼1

P0
f;j; ð18Þ

where λi and λ0j are the stretches, and Pf;i and P0
f;j are the

frictional power losses in the contraction and extension
steps, respectively. We now sketch a geometrical interpre-
tation of Eq. (18). The first term of the last line is the
maximum useful mechanical power P ¼ Wωr=λh, with
ωr=λh being the flux of unstretched length (6). The
maximum mechanical work W done per unit length of
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unstretched elastomer in one cycle is given by the area in
the solid line A-B-C-D-A in Fig. 2. The useful work done
per unit length of unstretched elastomer in one cycleWnk ¼
Pnk=ðωr=λhÞ is the gray shaded area enclosed in Fig. 2
(where for simplicity the change in radii in each contraction
and extension step is taken to be the same; see comments
below). Thus, the work done in one cycle to overcome
friction during the contraction process is equal to the area of
the white regions between the solid curve C-D and the gray
shaded area (the corresponding frictional power losses areP

n
i¼1 Pf;i). Similarly, the area of regions between the gray

shaded area and the solid curve A-B corresponds to the
term

P
k
j¼1 P

0
f;j of Eq. (18).

By contrast, the two-wheel cycle a-B-C-s-a dashed in
Fig. 2 has larger frictional losses: the areas between the
isotherms a-B and C-s and the horizontal dashed lines,
respectively, above and below them are much larger relative
to the enclosed area a-B-C-s-a (the maximum theoretical
work). The inaccessibility of an ~f ¼ 0 state means the
enclosed area is smaller than the turbine’s area, even though
the same optical energy input to go from B to C is required,
further underscoring the superior efficiency of a turbine.
Notice that the more steps n and k, the more useful work

per cycle is done. We shall compare the power P corre-
sponding to an infinite number of extension and contraction
steps, with the power Pnk given by expression (17), and
determine how many steps n and k one needs to achieve,
say, Pnk=P ¼ 0.9.
As an illustration, we take the change of radii in the

contraction process C-D to be the same for each step and
equal to Δr ¼ ðr − rnþ1Þ=n, where rnþ1 is the final radius
in the contraction process. Similarly, for the extension
process A-B, we take Δr0 ¼ ðr − r01Þ=k, where r01 is the
initial radius in the extension process. From relations (6), it
follows: r=λh ¼ ri=λi ¼ rnþ1=λm and r01=1 ¼ r0j=λj ¼
r=λh. Here we used the facts that the stretch that corre-
sponds to the radius rnþ1 is actually the natural stretch
λm ¼ ðP⊥=P∥Þ1=3, and that the stretch corresponding to
radius r01 is λ ¼ 1. The stretch steps in the contraction and
extension processes are then Δλ ¼ Δrλh=r ¼ ðλh − λmÞ=n
and Δλ0 ¼ Δr0λh=r ¼ ðλh − 1Þ=k, respectively. The choice
Δλ ¼ Δλ0 was made in Fig. 2 and cones taken in Fig. 1, but
these restrictions are not necessary.
The powers Pnk and P can be expressed as

Pnk ¼ μA0

ωr
λh

�
Δλ

Xn
i¼1

�
P∥ðλh − iΔλÞ − P⊥

ðλh − iΔλÞ2
�

− Δλ0
Xk
j¼1

�
1þ jΔλ0 −

1

ð1þ jΔλ0Þ2
��

;

P ¼ μA0

ωr
λh

�Z
λh

λm

dλ

�
P∥λ −

P⊥
λ2

�
−
Z

λh

1

dλ

�
λ −

1

λ2

��
:

ð19Þ

Taking Q ¼ 0.5 and λh ¼ 3λm, one finds Pnk=P ¼ 0.9 for
n ¼ 15, k ¼ 15.
The maximum mechanical work done per unit length of

unstretched elastomer in one cycle W ¼ P=ðωr=λhÞ is
given in Eq. (4). The simple integrals above at constant
temperatures return us to the free energies in Eq. (2).

IV. CONCLUSIONS

In summary, the optical contraction of photo LCEs can
be used to harness optical energy to generate mechanical
energy. Our mechanical turbine-based engine utilizes
more effectively the optothermal cycle than the two-wheel
engine [3]. Soft, extensible photosolids deliver large
amounts of work, but their extensions and contractions
lead to sliding and, hence, concomitant frictional losses.
We analyze such losses and calculate the fraction of work
lost due to them.
That our proposed photoconversion method has moving

parts gives it a disadvantage over conventional photo-
voltaics, though rubber is highly durable and tough—for
instance, car tires survive long use in harsh, abrasive
conditions. Another difficulty that could perhaps be solved
by chemical design, is degradation from the effect of UV
light. The role of dynamics when attempting to attain the
above efficiencies also remains a question. As we note, the
residence time in the isometric state B-C needs to be long
enough that light penetrates deeply to convert the whole
thickness of the band to the isotropic state. For intense
beams, this requires a nonlinear bleaching wave (of light-
induced dye conversion) to traverse the thickness [10] just
as that part of the band leaves the section of the spindle with
maximal radius r. Longer residence simply gives time for
backreaction without mechanical work being delivered.
Light energy is wasted, and the efficiency drops from the
values emerging from the above analysis. Thus, light
intensity, band thickness, residence in the isometric state,
and rotational rate are all related aspects of the dynamics
and need optimization by future studies.
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