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In his original work, Josephson predicted that a phase-dependent conductance should be present in
superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from
the usual nondissipative Josephson current. We propose a solution for this problem that consists of using
different superconducting materials to realize the two junctions of a superconducting interferometer.
According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical
currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at
half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to
study the phase-dependent conductance, an effect present in principle in all superconducting weak links.
From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible
applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-
consumption superconducting digital circuits.
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I. INTRODUCTION

The basic circuit element of superconducting electronics
is the Josephson junction (JJ), a tunnel barrier between two
superconductors [1,2], characterized by a nondissipative
current IS ¼ Ic sin γðtÞ (Josephson current), where Ic is the
critical current and γðtÞ is the gauge-invariant phase
difference between the order parameters of the two super-
conducting electrodes [3]. Alongside this term, Josephson
[1] predicted an additional phase-dependent dissipative
current IM ¼ GðγÞV, with V the voltage drop across the
junction [see Fig. 1(a)]. The phase-dependent conductance
(PDC) GðγÞ ∝ cos γ can be interpreted either as an inter-
ference effect between quasiparticle and Cooper pair
currents [1,3] or, alternatively, as a consequence of the
retarded phase-current response [4–7].
The measured value of the PDC in tunnel junctions [8,9],

point contacts [10,11], and weak links [12–14] cannot be
explained by BCS theory. Several effects that can account
for the discrepancy are discussed in Ref. [7], but little is
known about the role and/or use of this effect in actual
devices and the subject is still regarded as controversial.
Recently, the PDC has been discussed theoretically in
Refs. [15,16] and studied in an experiment on fluxonium
qubits [17] aimed at understanding quasiparticle-induced
decoherence in superconducting qubits [18–26], but an
easy way to isolate this term from the Josephson current has
not been suggested so far.
In this article, we propose to isolate the PDC from the

nondissipative current IS using a two-junction interferom-
eter as shown in Fig. 1(b), which can be tuned to have a

vanishing total critical current but a finite residual PDC
since the two junctions are made of different superconduct-
ing materials. Such a conductance-asymmetric supercon-
ducting quantum-interference device (CA SQUID) has
never been used so far to study the PDC.
A further motivation of our proposal is that a circuit

element defined by

IðtÞ ¼ G(ϕðtÞ)VðtÞ and
dϕðtÞ
dt

¼ VðtÞ; ð1Þ

with GðϕÞ > 0, is called an ideal memristor [27–29], a
dissipative element whose resistance is a function of an

(a) (b)

FIG. 1. (a) Equivalent circuit of a Josephson junction corre-
sponding to Eq. (10) with, in order, capacitance C, quasiparticle
dissipative current IR ¼ GV, phase-dependent dissipative current
IM ¼ εG cos γV, and Josephson current IS ¼ Ic sin γ. The phase-
dependent dissipative current is represented with the circuital
symbol of a memristor. (b) A conductance asymmetric two-
junction interferometer (CA SQUID) working as a memristor.
The two junctions have ideally the same critical currents
Ic;1 ¼ Ic;2, but unequal conductances G1 ≠ G2 since the electro-
des are made of different superconducting materials (denoted by
different colors). The magnetic flux Φ ¼ Φ0=2 suppresses the
total critical current of the interferometer [Φ0 ¼ h=ð2eÞ is the flux
quantum], but not the phase-dependent dissipative current due to
the conductance asymmetry.
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internal memory degree of freedom, the flux linkage
ϕ ¼ R

dtV in the case of Eq. (1). The research in the field
of memristive devices has been flourishing since the
unambiguous identification of memory behavior in TiO2

cross-point switches [30], which have promising applica-
tions [29,31]. In a specific regime to be discussed below,
a CA SQUID is described by Eq. (1) with ϕðtÞ ∝ γðtÞ and is
a new—superconducting—implementation of an ideal
memristor. The aim of our work is, then, to clarify the
conditions for a two-junction interferometer to be described
by Eq. (1) and to pinpoint novel manifestations of the PDC
inspired by the theory of memristive circuit elements and
ignored so far in the context of JJs.
The structure of this article is as follows. In Sec. II we

introduce the concept of PDC from the microscopic theory
as a phenomenon generally present in Josephson tunnel
junctions and we justify the JJ models used in the
remainder of the work. The idea to isolate the PDC of a
suitably engineered two-junction interferometer, thereby
realizing a superconducting memristor, is explained in
Sec. III A. In Sec. III B the conditions that need to be
satisfied in a realistic implementation are elucidated. The
subject of Sec. III C is pinched hysteresis loops in the I-V
plane, the most distinctive feature of memristors, that in
the present case have unique properties. In Sec. III D we
propose an alternative way to probe the PDC using single-
flux-quantum voltage pulses. It is shown how the internal
state of a superconducting memristor can be extracted
without changing its value. This nondestructive readout
protocol may be of interest for superconducting memories
compatible with rapid single-flux-quantum (RSFQ) super-
conducting circuits [32–34]. In Sec. III E we analyze the
form of the current noise for a superconducting memristor
and derive the corresponding drift-diffusion equation for
the probability distribution of the phase in the limit of high
damping. Finally, we summarize our results and discuss
possible future developments in Sec. IV.

II. PHASE-DEPENDENT CONDUCTANCE

Our idea for realizing an ideal memristor rests on the use
of the PDC of a JJ that, from a theoretical standpoint, is as
fundamental as the dc and ac Josephson effects, but has
received much less attention in the past, possibly due to its
intrinsically dissipative and ac character as opposed to the
nondissipative Josephson effect. In the following, we
provide a short introduction to this effect and at the same
time justify the simple JJ model that we use in the rest of
the work.
The dynamics of a generic low-transparency JJ are well

described by second-order perturbation theory in the tun-
neling matrix elements resulting in the tunnel-junction-
microscopic (TJM) model [35] where the total current I ¼
Ipair þ Iqp is the sumof the pair current Ipair and quasiparticle
current Iqp, given by

IqpðtÞ ¼
Z

t

−∞
dt0Iqðt − t0Þ sin

�
γðtÞ − γðt0Þ

2

�
; ð2Þ

IpairðtÞ ¼
Z

t

−∞
dt0Ipðt − t0Þ sin

�
γðtÞ þ γðt0Þ

2

�
: ð3Þ

A time-dependent phase corresponds to a finite voltage drop
across the junction [1]

dγðtÞ
dt

¼ 2e
ℏ
VðtÞ ¼ 2π

Φ0

VðtÞ; ð4Þ

with Φ0 ¼ h=ð2eÞ the flux quantum. For constant phase
γðtÞ ¼ γ0 Eq. (3) gives the Josephson current ∝ sin γ0 while
Eq. (2) is nonzero only for a time-dependent phase. The
temperature and thematerial properties of the superconduct-
ing electrodes and barrier layer enter only in the nonlinear
phase-current response functions IpðtÞ and IqðtÞ. We con-
sider for definiteness the result obtained from BCS theory at
zero temperature, which can be stated in closed form [6],
with an additional phenomenological exponential factor:

IpðtÞ ¼ − 2Ic
τg

J0

�
t
τg

�
Y0

�
t
τg

�
exp

�
− t
τr

�
; ð5Þ

IqðtÞ ¼
2Ic
τg

J1

�
t
τg

�
Y1

�
t
τg

�
exp

�
− t
τr

�
− ℏGN

e
δ0ðtÞ;

ð6Þ

where Jn; Yn are the Bessel functions of the first and second
kind, respectively, δ0ðtÞ is the derivative of the delta function,
and τg ¼ ℏ=Δ with Δ the superconducting gap of the
electrodes. Ic is the critical current and GN is the normal
junction conductance. The exponential factor expð−τ=τrÞ is
not a result of the BCS theory but accounts for the
experimentally observed broadening of the Riedel peak
[35] (see Fig. 2) and introduces a finite retardation time τr for
the otherwise slowly decaying functions JnðtÞYnðtÞ ∼
t−1 cos 2t in the t → þ∞ limit. The peak broadening is
well captured by κ ¼ 0.03–0.1, with κ ¼ τg=ð2τrÞ, in most
tunnel junctions [35]. The Fourier transforms of Eqs. (5) and
(6) are shown in Fig. 2 for two values of κ and correspond to
the various components of the current under a dc voltage
bias [35].
The considerations that follow are largely independent

of the specific form of the response functions Ip;qðtÞ which
are required only to decay sufficiently fast for t≳ τr, a
physically reasonable assumption. However, the expres-
sions provided in Eqs. (5) and (6) allow for a simple
analytic result (details are in the Appendix). We assume the
phase γ to be slowly varying j_γjτr ¼ 2ejVjτr=ℏ ≪ 1, thus
γðtÞ − γðt0Þ ≈ 2eV

ℏ ðt − t0Þ for jt − t0j ≲ τr. Using this
approximation and the identity
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sin
1

2
½γðtÞ þ γðt0Þ� ¼ sin γðtÞ cos 1

2
½γðtÞ − γðt0Þ�

− cos γðtÞ sin 1
2
½γðtÞ − γðt0Þ�; ð7Þ

in Eqs. (2) and (3), gives for the total junction current

IðtÞ ≈ −2IcA0;0ðκÞ sin γðtÞ
þ GN ½1þ πA1;1ðκÞ þ πA0;1ðκÞ cos γðtÞ�VðtÞ; ð8Þ

where the functions An;mðκÞ with n;m integer numbers are
defined by

An;mðκÞ ¼
Z þ∞

0

dxxmJnðxÞYnðxÞe−2κx; ð9Þ

and can be evaluated in terms of elliptic integrals (see the
Appendix). We neglect the correction to the critical current
provided by the factor −2A0;0ðκÞ ∼ 1 and define GLðκÞ ¼
GN ½1þ πA1;1ðκÞ� < GN as the leakage conductance, i.e.,
the conductance for V < Vg ¼ 2Δ=e, and the coefficient
εðκÞ ¼ πA0;1ðκÞ=½1þ πA1;1ðκÞ�, which satisfies the condi-
tion jεj < 1. Therefore, in the low-frequency (low-voltage)
regime—namely for V ≲ Vg since the retardation time τr is
of the same order of τg ¼ ℏ=Δ—the TJM model is well
approximated by the resistively shunted junction (RSJ)
model [35] whose equivalent circuit is shown in Fig. 1(a)
and reads

I ¼ C
dV
dt

þ GLð1þ ε cos γÞV þ Ic sin γ þ IFðtÞ: ð10Þ

In addition to the quasiparticle (2) and pair (3) currents, we
have added the displacement current C dV

dt and the current
fluctuations IFðtÞ. A finite capacitance C must be intro-
duced in order to account for the geometrical capacitance of

the electrodes and higher-order terms in the previous
expansion of Eqs. (2) and (3). The latter effect is small
and negligible with respect to the PDC. The fluctuating
current term IFðtÞ is discussed in Sec. III E.
The ratio ε between the PDC and the leakage conduct-

ance has been investigated in a number of experiments
on tunnel junctions [8,9], point contacts [10,11], and
weak links [12,13], finding consistently ε ∼ −1 at low
temperature, while BCS theory predicts ε > 0 [4,35]. As
shown in the Appendix, the exponential regularization
gives ε ≈ −1=3, with the sign in agreement with exper-
imental results.
We emphasize that a finite PDC is ultimately due to the

fact that the phase γðt0Þ at an earlier time t0 < t enters the
expression (2) for the pair current IpairðtÞ and it is not a
consequence of specific properties of the response func-
tions. Indeed a hand-waiving argument to deduce the
existence of the “cos γ” term is to include a retardation
directly in the first Josephson equation IS¼Icsinγðt−τrÞ≈
Ic½sinγðtÞ−2eVτr

ℏ cosγðtÞ�.

III. SUPERCONDUCTING MEMRISTOR

A. Ideal case

According to Eqs. (4) and (10), for an applied constant-
voltage bias, the phase-dependent dissipative current is
oscillating and has zero average, and its amplitude is
comparable to that of the Josephson current only at very
high frequencies (∼2Δ=ℏ ∼ 1011–1012 Hz), therefore its
detection is difficult. The usual approach [8–12] has been
the analysis of the damping of the plasma resonance [36]
that, according to the RSJ model (10), has frequency
ωpðγÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij cos γj=ðLcCÞ
p

[Lc ¼ ℏ=ð2eIcÞ] and quality
factor QðγÞ ¼ ωpðγÞC=½GLð1þ ε cos γÞ�, the latter provid-
ing information on the PDC. Using the plasma resonance
has the disadvantage that the resonance frequency itself is

FIG. 2. Fourier transforms ~IpðωÞ and ~IqðωÞ of the phase-current response functions IpðtÞ and IqðtÞ given by Eqs. (5) and (6).
Frequency is in units of the gap frequency ωg ¼ 2Δ=ℏ and the current in units of I0 ¼ GNVg ¼ GNð2Δ=eÞ. Increasing κ has the effect of
increasing the normal subgap current Im~IqðωJ=2Þ and the phase-dependent dissipative current Im~IpðωJ=2Þ cosωJt for ωJ=2 < ωg,
while their ratio ε does not vary much (ωJ ¼ 2eV0=ℏ with V0 the constant bias voltage). Moreover, the peak in the Josephson current
Re~IpðωJ=2Þ sinðωJtÞ (Riedel peak) is smoothed out.
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phase dependent, which can change the dissipative envi-
ronment [16]. Moreover, the PDC is an intrinsically non-
linear effect, while experiments have probed the plasma
resonance with a small ac current compared to the critical
current—well in the linear response regime.
We suggest a different way to access the PDC based on

the use of a CA SQUID as shown in Fig 1(b). The two
junctions of the interferometer (indexed by i ¼ 1, 2) have
the same critical current Ic;1 ¼ Ic;2 ¼ Ic, but their electro-
des have different values of the superconducting gap
Δ1 ≠ Δ2, and thus different normal conductances GN;i
according to the Ambegaokar-Baratoff result GN;i ¼
2eIc=ðπΔiÞ [37]. We define the ratio r ¼ GL=GN between
the leakage conductance (the conductance for V < Vg) and
the normal conductance (V > Vg), which depends on the
specifics of the junction. For standard Nb=AlOx=Nb JJs
one has r≲ 0.1, but higher values can be attained by
increasing the critical current density [38] (see also the
discussion in Sec. IV). For simplicity, we assume both the
dimensionless quantities ε and r to be the same for the two
junctions, a reasonable but not crucial assumption for what
follows. Then the Ambegaokar-Baratoff relation implies
that GL;1=GL;2 ¼ Δ2=Δ1.
The difference between the gauge-invariant phases γi of

the two junctions is equal to the magnetic flux Φ [3]
through the loop

γ1 − γ2 ¼ 2π
Φ
Φ0

: ð11Þ

If the loop inductance L is small, namely 2πLIc=Φ0 ≪ 1
[35], the loop flux is equal to the external magnetic flux
Φ ¼ Φext. For Φ ¼ Φext ¼ Φ0=2 the Josephson currents in
the two arms of the loop interfere destructively and cancel
out. On the other hand, the PDC is finite

I ¼ G0
L½1þ ε0 cos γ�V; dγ

dt
¼ 2π

Φ0

V; ð12Þ

with G0
L ¼ GL;1 þ GL;2, γ ¼ γ1 ¼ γ2 þ π, and

ε0 ¼ ε
GL;1 −GL;2

GL;1 þGL;2
: ð13Þ

We use the convention that primed quantities refer to the
CA SQUID considered as a single lumped JJ. The effect of
capacitance and the fluctuations are ignored in Eqs. (12)
and will be addressed in the following. According to
Eq. (13) the PDC is necessarily zero, or very small, in
an interferometer with JJs made of the same material.
Equations (12) have the same form of Eq. (1) that defines
an ideal memristor [27–29]. Physically, the internal-
memory degree of freedom that controls the conductance
is the nondissipative current that flows in the loop, since
opposite currents with equal magnitude flow in the two
junctions. This loop current has no preferred values since
the critical currents of the junctions are strictly equal. On
the other hand, a critical current imbalance between the

junctions introduces a potential term −EJ cos γ in the
interferometer energy with EJ ¼ ℏjIc;1 − Ic;2j=ð2eÞ and
the zero-current state γ ¼ 0 is favored.

B. Realistic superconducting memristors

The main assumptions used in the derivation of the
defining equation (12) of a superconducting memristor are
the following.
(1) Nearly equal critical currents of the two junc-

tions Ic;1 ≈ Ic;2.
(2) Negligible capacitance, namely small Steward-

McCumber parameter βc ¼ 2eIcC=ðℏG2
NÞ≲ 1.

(3) Small loop inductance λ ¼ 2πLIc=Φ0 ≪ 1.
(4) External flux fixed at half-flux quantum Φext¼Φ0=2.
The frequency window where the phase-dependent

dissipative current (together with the quasiparticle current)
dominates other current components is provided by con-
ditions 1 and 2 and reads

2ejIc;1 − Ic;2j
jε0jrℏG0

N
¼ ic

jε0jrω
0
c < ω < jε0jrG

0
N

C0 ¼ jε0jrω
0
c

β0c
;

ð14Þ
with ic¼jIc;1−Ic;2Ic;1þIc;2

j the critical current suppression factor. We

used the total normal conductance G0
N ¼ GN;1 þ GN;2 and

total capacitance C0¼C1þC2 of the interferometer, while
ω0
c¼2eðIc;1þIc;2Þ=ðℏG0

NÞ and β0c¼2eðIc;1þIc;2ÞC0=ðℏG02
NÞ

are its characteristic frequency and Steward-McCumber
parameter. For nearly identical critical currents Ic;1 ≈ Ic;2
one can easily relate the primed quantities to the corre-
sponding (unprimed) ones for the two JJs, namely ω0

c¼
2ðω−1

c;1þω−1
c;2Þ−1 and β0c ¼ 2ðβc;1Δ2

2 þ βc;2Δ2
1Þ=ðΔ1 þ Δ2Þ2.

In the limit Δ1 ≪ Δ2 the above expressions reduce to
ω0
c ∼ 2ωc;1 and β0c ∼ 2βc;1. In fact, in this limit the properties

of the whole device, including the PDC, are essentially
those of the JJ with smaller superconducting gap, while the
JJ with larger gap serves only as a shunt of the Josephson
current IS. Therefore, in order to construct a supercon-
ducting memristor, it is not necessary to achieve the same
level of control on the parameters of both junctions, which is
usually hard when different superconducting materials are
employed.
The most important parameter is ic in Eq. (14) since the

lower the frequency the easier it is to measure directly the
PDC. With current junction-fabrication technology, ic is at
best ∼10−2, while using a balanced SQUID [39] it is
possible to obtain ic ¼ 10−3–10−4. The parameters jε0j and
r are already close to unity and cannot be controlled easily.
It follows that the lower frequency at which the PDC would
manifest itself is ω ∼ 108–109 Hz for values of ωc ∼
min½Δ1;Δ2�=ℏ typical of low-Tc superconductors, a sub-
stantial improvement. This sets also the scale for the
voltage V ∼ 1 μV since we will see below that the con-
dition 2eV=ðℏωÞ ∼ 1 must be satisfied in order to observe
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interesting effects. A further decrease of the frequency
would lead to an impractical low value of the voltage.
It is not necessary to have a very low β0c unless the device

is required to operate at high frequencies (see Fig. 4 below).
It is important to notice that in our case β0c cannot be
lowered with a shunt resistance, since jε0j would be
decreased as well. Low values of βc are routinely obtained
with unshunted Nb=AlOx=Nb junctions with critical cur-
rent density jc ≳ 100 kA=cm2 that are employed in the
fastest RSFQ circuits [40,41] (see also discussion in
Sec. IV). Niobium and aluminum are a suitable choice
for the superconducting material with smaller gap, since the
fabrication technology for this kind of JJs is well devel-
oped. Possible choices for the superconductor with a larger
gap are, e.g., NbN [38] and MgB2 [42,43].
The condition 3 on the loop inductance is routinely

realized in practical superconducting circuits, e.g., SQUID-
based magnetometers [35]. In order to enforce condition 4
on the flux bias, an alternative to an external magnetic field
is to use superconductor-ferromagnet-superconductor junc-
tions that induce a γ ¼ π phase drop across the electrodes in
their zero-current state (π junctions) [44,45], with the
advantage of reducing the loop inductance and the size
of the device, and mitigating the effect of magnetic noise.
The effect of a small deviation from each of the above

conditions will be considered in more detail in the follow-
ing section.

C. Pinched hysteresis loops

Our essential prediction is that in a CA SQUID in a
properly tuned magnetic field the gauge-invariant phase γ
affects the conductance even in the absence of a Josephson
current. This is revealed by hysteresis loops that pass
through the origin of the I-V plane under periodic driving.
These so-called pinched hysteresis loops are a fingerprint
of memristive systems [27–30,46,47]. The zero-crossing
property of hysteresis loops is equivalent to the property of
zero energy storage in the circuit element [47]. A pinched
hysteresis loop is a nonlinear effect that cannot be observed
in experiments performed in the linear response regime,
such as those that take advantage of the plasma resonance.
The current given by Eq. (12) when the phase has the

form γðtÞ ¼ γ0 þ 2eV0

ℏω sinωt is

IðtÞ
G0

LV0

¼
�
1þ ε0 cos

�
γ0 þ

2eV0

ℏω
sinωt

��
cosωt; ð15Þ

and it is shown against the voltage VðtÞ ¼ V0 cosωt in
Fig. 3 for different values of γ0, ε0, and 2eV0=ðℏωÞ. Several
pinched hysteresis loops are visible for 2eV0=ðℏωÞ ≳ 1. A
unique property of superconducting memristors is that the
conductance is a periodic and even function

GðγÞ ¼ Gð−γÞ ¼ Gðγ þ 2πÞ: ð16Þ

The definite parity implies that γ0 must be different from 0
or π for the loop to enclose a finite area, while the
periodicity manifests itself in the additional crossings of
the two branches of the loop [see Fig. 3(d)]. The constant
phase difference γ0 is not associated with a finite Josephson
current, but nevertheless it can be controlled externally as
usual, i.e., by inserting the superconducting memristor into
a superconducting loop whose threading flux is externally
tuned. In the same way, it is possible to produce a time-
dependent phase γðtÞ.
The conditions discussed previously are necessary and

sufficient for a superconducting memristor to show zero-
crossing pinched hysteresis loops. In the four panels of
Fig. 4, we investigate the effect of lifting each of the above
requirements one at time. Quite generally we note that, if
the deviations from the ideal values are small, the effect on
the hysteresis loop is a shift of the crossing away from the
origin. The property of single crossing as a topological
feature is remarkably robust and survives deviations from
the dimensionless ideal values up to 0.01 in all cases. Such
a tolerance is within the reach of experiments. Moreover,
we observed that the property of a single crossing or an
odd number of crossings in the I-V plane can be produced
only when the PDC dominates other contributions to the
current and is a characteristic feature thereof. For example,
increasing the parameter λ can lead to crossings that,
however, always appear in pairs [a hint of this effect is
visible in Fig. 4(d) where a cusp appears in the curve
for λ ¼ 0.02].

D. Nondestructive readout

A finite PDC is unambiguously revealed by pinched
hysteresis loops under a periodic driving. The periodicity
property (16) allows for another way to detect the PDC

(c)

(a) (b)

(d)

FIG. 3. Pinched hysteresis loops in the I-V plane for a super-
conducting memristor with phase of the form γðtÞ ¼ γ0 þ
2eV0

ℏω sinωt, voltage VðtÞ¼V0cosωt, and current given by
Eq. (15). The solid line refers to γ0 ¼ 0, dashed line γ0 ¼ π=4,
and dash-dotted line γ0 ¼ π=2. The hysteresis is well visible for
2eV0=ðℏωÞ ¼ 1.0 in panels (a) (ε0 ¼ −0.8) and (b) (ε0 ¼ 0.8). For
2eV0=ðℏωÞ¼0.1 [panel (c)] the hysteresis is suppressed. Addi-
tional crossings appear upon increasing 2eV0=ðℏωÞ [panel (d)].
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using single-flux-quantum voltage pulses. Single-flux-
quantum voltage pulses are defined by

R
dtVðtÞ ¼ Φ0

and in RSFQ logic are used to carry a unit of information
(bit). When such a pulse is applied to a device described by
Eq. (12) the total phase jump is asymptotically 2π, which
means that the internal state is unchanged.

However, different initial values γ0 of the phase affect the
output current in a measurable way. This is demonstrated in
Fig. 5 where we show the current through a superconduct-
ing memristor induced by two single-flux-quantum voltage
pulses with time scales ∼3τg;1 and ∼25τg;1, respectively
(τg;1 ¼ ℏ=Δ1), obtained using the TJM model [6,35] since
for time scales ∼τg;1 the RSJ model (10) is inaccurate.
While the quasiparticle component of the current Iqp is
independent of γ0, the maximum pair current Ipair is
different for the different initial states γ0 ¼ −π=2 (dashed
line in Fig. 5) and γ0 ¼ π=2 (dash-dotted line). The current
swing for different initial states γ0 ∈ ½0; 2π� in the limit of
wide voltage pulses [≳20τg;1 as in Fig. 5(b)] is given by the
parameter ε0 in Eq. (12)—the microscopic model and the
RSJ model give similar results in this case. In Fig. 5 we
used ε0 ≈ −0.22, a small value compared to experiments
[8,10–13].
We call this protocol nondestructive readout since the

phase γ0 is measured without changing it. This protocol
represents a possible working principle for the read
operation in a superconducting memory.

E. Fluctuations

We now explore the role of fluctuations on the behavior
of a CA SQUID. Although we reserve a thorough descrip-
tion of fluctuations for future work, here we consider a
model that captures their main features and confirms that
the superconducting memristor we suggest is quite robust
against fluctuations.
A description of a superconducting memristor that

includes fluctuations and a finite capacitance C0 is provided
by the system of Langevin equations

C0 dV
dt

þG0
Lð1þ ε0 cos γÞV þ IF ¼ I; ð17Þ

(a) (b) (c) (d)

FIG. 4. Impact on pinched hysteresis loops of deviations from the conditions discussed in Sec. III B. We considered in panel (a) a flux
Φext ¼ Φ0

ϕext
2π slightly different from Φ0=2; (b) a critical current imbalance Icj1;2 ¼ Icð1� ηÞ; (c) nonzero Steward-McCumber

parameters βc;1 ¼ βc;2 ≠ 0; (d) a finite loop inductance λ ¼ 2πLIc=Φ0 > 0. The CA SQUID is phase biased as in Fig. 3 and we use the
RSJ model (10) for the junctions. The voltage is measured in units of the characteristic frequency Vc;1 ¼ Ic;1G−1

N;1, time in units of
ω−1
c;1 ¼ ℏ=ð2eVc;1Þ, and the current in units of Ic. The parameters used in the simulations are r ¼ 0.17 [corresponding to κ ¼ 0.1 in

Eqs. (5) and (6)], ω=ωc;1 ¼ 1=50, γ0 ¼ π=2, 2eV0=ðℏωÞ ¼ 2.4, ε ¼ −0.56, GL;1=GL;2 ¼ Δ2=Δ1 ¼ 5.0, so according to Eq. (13)
ε0 ¼ 2

3
ε ¼ −0.37. For small-enough deviations the crossing of the hysteresis loop moves away from the origin. The single-crossing

property is, however, a relatively stable topological feature.

(a)

(b)

FIG. 5. Current pulse through a superconducting memristor
biased with a single-flux-quantum voltage pulse (shown in the
insets, Vg;1 ¼ 2Δ1=e) calculated using the TJM model (the
parameters used are Δ2=Δ1 ¼ GL;1=GL;2 ¼ 5 and ε0 ≈ −0.22).
Panel (a) refers to a fast pulse with width ∼3τg;1 while the same
pulse has been dilated in time by a factor of 8 in panel (b) while
preserving the area

R
dtV ¼ Φ0. The solid line is the quasiparticle

current Iqp which is independent of the initial phase, while the
dashed and the dash-dotted lines are the total current I ¼ Iqp þ
Ipair with initial state γð0Þ ¼ −π=2 and π=2, respectively.
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dγ
dt

¼ 2e
ℏ
V; ð18Þ

with hIFðtÞi ¼ 0 and the noise autocorrelation function
given by

hIFðtÞIFðt0Þi ¼ 2kBTG0
L½1þ ε0 cos γðt0Þ�δðt − t0Þ; ð19Þ

which can be derived from the microscopic theory in
the case of an arbitrary phase dynamics γðtÞ [35,48].
Equation (19) holds in the limit jt − t0j ≫ ℏ

kBT
∼ ℏ

Δ1
, which

is appropriate in this case since we are interested in the low-
frequency dynamics of the superconducting memristor.
Note that, in view of the dynamics of the superconducting
phase, unlike Ref. [49] where a time-averaged autocorre-
lation function was considered, in the present work we use
a nonaveraged one. If a time average of Eq. (19) is taken,
the cosine term vanishes in the case of a dc voltage bias.
A Fokker-Planck equation for the phase-space proba-

bility distribution σðγ; V; tÞ is then unambiguously asso-
ciated with Eqs. (17) and (18), namely

∂σ
∂t þ

2e
ℏ

∂
∂γ ðσVÞ þ

1

C0
∂
∂V ðσIÞ

¼ GL
0

C0 ð1þ ε0 cos γÞ ∂
∂V

��
V þ kBT

C0
∂
∂V

�
σ

�
: ð20Þ

We say unambiguously since the fluctuation term is non-
linear, i.e., it depends on the phase γðtÞ, which usually
creates an ambiguity in the interpretation of a stochastic
equation (the Itô-Stratonovich dilemma), but this is not
the case here. In fact, a system of first-order Langevin
equations in the variables yν with fluctuation term
CνðyÞLðtÞ [LðtÞ is white noise] is free of ambiguity if
the condition

P
μCμðyÞ CνðyÞ∂yμ ¼ 0 is satisfied and then a

unique Fokker-Planck equation is associated with it [50].
The previous condition is satisfied for Eqs. (17) and (18)
only with a finite capacitance C0.
It would be desirable to have an approximate equation

for the probability distribution of γ alone, namely σðγ; tÞ ¼R
dVσðγ; V; tÞ since we are interested in the limit of

overdamped junctions (C0 → 0). Taking this limit in the
Langevin system, Eqs. (17) and (18), leads to the problem
mentioned above. A more controlled procedure is to take
the limit of small capacitor discharge time scale τRC ¼
C0=GL

0 in the Fokker-Planck equation (20). This can be
calculated using the technique for the elimination of fast
(with time scale τRC) variables of Ref. [51]. The starting
point for the method detailed in Ref. [51] is to write
Eq. (20) in the general form

∂σ
∂t ¼

�
1

τRC
Lð0Þ þ Lð1Þ

�
σ; ð21Þ

where the differential operators LðiÞ are defined by

Lð0Þ ¼ ð1þ ε0 cos γÞ
� ∂
∂V V þ kBT

C0
∂2

∂V2

�
; ð22Þ

Lð1Þ ¼ − 2eV
ℏ

∂
∂γ −

I
C0

∂
∂V : ð23Þ

The case ε0 ¼ 0 is worked out step by step in Ref. [51] and
the same procedure can be applied for finite ε0 since the
prefactor ð1þ ε0 cos γÞ commutes with the partial deriva-
tive ∂=∂V. The final result at first order in τRC is a drift-
diffusion equation for the phase

∂σ
∂t ¼

2e
ℏG0

L

∂
∂γ

�
1

1þ ε0 cos γ

�
−I þ 2ekBT

ℏ
∂
∂γ

�
σ

�
: ð24Þ

The diffusion coefficient [∝ ð1þ ε0 cos γÞ−1] is phase
dependent for finite ε0 and the diffusion time scale is τdiff ¼
ℏ2G0

L=ð4e2kBTÞ ¼ 7.84 ns=ðR½Ω�T½K�Þ with R ¼ 1=G0
L.

For large values of the total subgap conductance G0
L (large

junction critical current) and small enough temperature,
τdiff is more than 3 orders of magnitude larger than the
typical time scale (picoseconds) of the phenomena dis-
cussed above. This justifies having neglected the effect of
noise previously. Higher-order corrections of Eq. (24) can
be computed if necessary. The first order is a good
approximation if τRC=τdiff ¼ 4e2kBTC0=ðℏ2G02

L Þ ≪ 1.
If the critical currents of the two junctions in Fig. 1(b) are

strictly equal, the phase γ can take any value at no energy
cost. Then thermal fluctuations [IFðtÞ in Eq. (10)] induce
the Brownian motion of the phase leading to the so-called
“stochastic catastrophe” [46], i.e., the value of γ is totally
randomized. This process is described by Eq. (24), which is
physically sound since at equilibrium the probability
distribution for the phase is uniform, as expected for zero
total critical current of the CA SQUID.

IV. DISCUSSION AND CONCLUSION

We have shown how the PDC in JJs can be probed
directly using a simple two-junction interferometer realized
using a combination of different superconducting materials
(CA SQUID). The conditions for realizing our proposal do
not rely on specific models since they are expressed in
terms of general properties of superconducting weak links
(see Sec. III B) and a good approximation thereof should be
within reach of present JJ fabrication technologies. This
allows the study of new manifestations of the PDC such as
pinched hysteresis loops and the nondestructive readout of
the initial phase with a single-flux-quantum voltage pulse.
The equations that govern the dynamics of a CA SQUID
with vanishing critical current [Eq. (12)] are an instance of
the general memristor equations [Eqs. (1)].
As we argue in Sec. II, the PDC is a general phenomenon

present in any kind of superconducting weak link, a
possible reason being that the response of the supercurrent
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to a variation of the phase is not instantaneous but retarded,
producing a phase-dependent dissipation. Indeed, experi-
ments on nontunnel junctions [10–14] show that the ratio ε
between PDC and leakage conductance is almost unity, the
largest allowed value. Therefore, it should be possible to
realize a superconducting memristor with junctions of the
nontunnel type which usually have higher transparency
than tunnel junctions.
Increasing the barrier transparencies of JJs is expected to

improve the performance of a superconducting memristor
for several reasons. First, the PDC is of the same order of
the leakage conductance which is increased by increasing
the transparency. According to Eq. (14) the window of
frequencies where the PDC dominates is widened with
increasing the ratio r ¼ GL=GN . Second, the critical
current density increases as well with the transparency,
and this is desirable since the nondissipative current
flowing in the CA SQUID loop is, in our proposal, the
physical memory degree of freedom of the memristor, and
the larger the current the less sensitive is the state of the
memristor to thermal fluctuations. Indeed, the phase-
diffusion time scale defined in Sec. III E is proportional
to the critical current of the junctions τdiff ∝ Ic. Third, the
capacitance of junctions with high transparency is generally
small and they are overdamped even without a shunting
resistor.
This is the same kind of trend that has occurred with

RSFQ technology. In this case, due to the development of
the fabrication technology of Nb=AlO=Nb JJs used in
RSFQ circuits, the barrier layer is so thin that transport is
already dominated by multiple Andreev reflections [32], a
regime of high transparency not captured by the TJM
model. The problem of the existence of a finite PDC for JJs
where transport is dominated by Andreev reflections is an
interesting question by itself. If a sizable PDC is present,
the use of this kind of junction could improve the specifics
of superconducting memristors.
A possible problem, though, is that in nontunnel junc-

tions the current-phase relation can be different from
sinusoidal, which is the case for JJs that are well described
by second-order perturbation theory on the tunneling
matrix elements, and this results in an imperfect cancella-
tion of the total critical current of the interferometer.
Moreover, a general dynamical theory as informative as
the TJM model, Eqs. (2) and (3), is not available for
nontunnel junctions.
Our proposal, besides being interesting from a funda-

mental point of view, may find practical applications as
well. It has been found recently that unconventional
nanoscale devices that combine electrical and ionic trans-
port are approximately governed by the defining equations
of a memristor [Eqs. (1)] [29,30]. This has stimulated the
exploration of neuromorphic massively parallel computing
architectures [31,52], whose speed and low-energy con-
sumption for specific tasks promise to be unmatched even

by the best available computers. Superconducting mem-
ristors offer new venues for neuromorphic computation
[52,53] and high-speed digital electronics since they can be
readily integrated with existing RSFQ circuits with clock
frequencies up to hundreds of gigahertz [40], combined
with 105 times lower power consumption than their semi-
conductor counterparts. The nondestructive readout proto-
col presented in Sec. III D may find applications in
superconducting memories, a subject which is becoming
increasingly actual [54].
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APPENDIX: SIGN AND MAGNITUDE OF THE
PDC WITHIN THE EXPONENTIAL

REGULARIZATION

The integrals in Eq. (9) can be evaluated in closed form
using the complete elliptic integrals of the first and second
kind, respectively

KðzÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zsin2θ

p ; ðA1Þ

EðzÞ ¼
Z

π=2

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − zsin2θ

p
: ðA2Þ

We provide only the first few that are relevant for our
problem:

A0;0ðκÞ ¼ −Kð−κ2Þ
π

; ðA3Þ

A0;1ðκÞ ¼
Eð−κ2Þ − ð1þ κ2ÞKð−κ2Þ

2πκð1þ κ2Þ ; ðA4Þ

A1;0ðκÞ ¼
2κ − 2Eð−κ2Þ þ Kð−κ2Þ

π
; ðA5Þ

A1;1ðκÞ ¼
ð1þ 2κ2ÞEð−κ2Þ − ð1þ κ2Þ½2κ þ Kð−κ2Þ�

2πκð1þ κ2Þ :

ðA6Þ

These formulas are useful to evaluate the ratio εðκÞ ¼
πA0;1ðκÞ=½1þ πA1;1ðκÞ� between the PDC and the leakage
conductance [see Eq. (10)]. Using KðzÞ ≈ π

2
ð1þ z

4
Þ and

EðzÞ ≈ π
2
ð1 − z

4
Þ for z → 0, one finds that limκ→0εðκÞ ¼

−1=3. This result is derived with a frequency-domain
approach in Ref. [7]. The plot in Fig. 6 shows in fact that
the function εðκÞ does not change significantly in the

SEBASTIANO PEOTTA AND MASSIMILIANO DI VENTRA PHYS. REV. APPLIED 2, 034011 (2014)

034011-8



relevant range 0 ≤ κ ≤ 1. Since the functions JnðtÞYnðtÞ
have the asymptotic behavior ∼t−1 cos 2t the integrals
An;1ð0Þ are ill defined. This means that the magnitude
and sign of the PDC strongly depend on the kind of
regularization used for the BCS result, which is given by
Eqs. (5) and (6) without the exponential factor. For
example, with a different regularization used in Ref. [7]
the result is ε ≈ −1. Therefore, microscopic details, that
provide such regularization and that are difficult to account
for quantitatively, can have a dramatic effect on the PDC.
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