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Kinetic Monte Carlo (KMC) simulations have been previously used to model and understand a wide
range of behaviors in bulk heterojunction (BHJ) organic photovoltaic devices, from fundamental
mechanisms to full device performance. One particularly unique and valuable aspect of this type of
modeling technique is the ability to explicitly implement models for the bicontinuous nanostructured
morphology present in these devices. For this purpose, an Ising-based method for creating model BHJ
morphologies has become prevalent. However, this technique can be computationally expensive, and a
detailed characterization of this method has not yet been published. Here, we perform a thorough
characterization of this method and describe how to efficiently generate controlled model BHJ
morphologies. We show how the interaction energy affects the tortuosity of the interconnected domains
and the resulting charge-transport behavior in KMC simulations. We also demonstrate how to dramatically
reduce calculation time by several orders of magnitude without detrimentally affecting the resulting
morphologies. In the end, we propose standard conditions for generating model morphologies and
introduce an open-source software tool. These developments to the Ising method provide a strong
foundation for future simulation and modeling of BHJ organic photovoltaic devices that will lead to a more
detailed understanding of the important link between morphological features and device performance.
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I. INTRODUCTION

Organic photovoltaics (OPVs) have received a great deal
of attention over the last decade. In this time, research
efforts covering a wide range of challenges have pushed the
power-conversion efficiency of these devices from approx-
imately 3% to approximately 11% [1]. Among these
efforts, modeling and simulation have been important for
testing our understanding of the fundamental physics of
device operation and directing experimental efforts towards
new and improved devices. Within the wide range of
methods available, kinetic Monte Carlo (KMC) simulations
are unique in their ability to incorporate nanoscale details
while maintaining the ability to simulate a complete
device. The complex nanoscale morphologies present in
bulk heterojunction (BHJ) solar cells have been repeatedly
shown to have a significant impact on device performance
for a number of different donor-acceptor combinations,
including polymer-fullerene blends [2], polymer-polymer
blends [3], and small-molecule blends [4]. As a result,
retaining nanoscale detail in KMC simulations is particu-
larly critical for incorporating morphological features that

can be used to help understand how morphology affects
device performance in greater detail.
In an attempt to generate model morphologies for small-

molecule blends, Peumans et al. [5] introduced a method
that utilizes the Kawasaki spin-exchange Ising model [6],
which had previously been used to simulate phase sepa-
ration in binary alloys [7,8]. This concept was then later
simplified and applied to KMC simulations by Watkins
et al. [9]. Since these pioneering studies, Ising-based
morphologies have been used in KMC simulations to
study a wide range of important OPV topics, from detailed
studies on exciton diffusion and dissociation [3,10,11],
charge separation and geminate recombination [12–15],
bimolecular recombination [16], surface recombination
[17], and charge injection [18,19], to broader studies on
overall photocurrent generation [20–22] and complete
current-voltage curve modeling [19,23–26]. Ising-based
morphologies have also been used in master equation
device modeling [27].
Several additional morphology models have also been

used in KMC simulations, including a chain reptation
model [28,29] and a Cahn-Hilliard model [30–32]. In
addition, the Ising model has been adapted to produce
morphologies similar to those measured by neutron reflec-
tivity and neutron-scattering experiments [33]. While the
Ising model may not accurately capture all morphological
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features in all donor-acceptor blends used in OPVs,
qualitatively, it produces a nanoscale bicontinuous mor-
phology typical of many blends. As a result, this model has
served as a reasonable approximation of BHJ morphologies
and has become the dominant morphology model in
the field.
Nonetheless, a rigorous characterization of this morphol-

ogy generation technique has not been published.
Understanding the details of this method, developing
standard procedures, and making the technique openly
available will ensure that accurate benchmarks and mean-
ingful comparisons are being made. In the Ising model, the
main parameter that can be used to control the phase
separation process is the interaction energy. However, it is
still unclear exactly how changing this parameter impacts
the morphologies generated and the resulting simulated
device performance.
In addition, making this technique more computationally

efficient has the potential to significantly reduce calculation
time and make the method widely accessible. Currently,
the main computational challenge is that creating domain
sizes typical of optimized devices (> 10 nm) while retain-
ing a high resolution (1 nm) can take a considerable amount
of calculation time, especially when a large lattice size is
needed. This challenge has, so far, greatly limited the
ability to systematically study the effects of morphological
features on OPV device simulations. To address these
issues, we present a thorough characterization of the
morphologies generated using the Ising method, introduce
methods to dramatically reduce the calculation time, and
show how these changes impact KMC device simulations.

II. METHODS

A. Ising phase separation algorithm

When generating a morphology using the Ising model,
a three-dimensional lattice is created, and the sites are
randomly assigned as either donor or acceptor sites. Here, a
50∶50 blend is implemented, and each site is defined to
represent 1 nm3. Periodic boundary conditions are used in
the x and y directions, and hard boundaries are used in the z
direction to represent a thin film. Next, a simulated phase
separation process is executed in which the total energy of
the system is allowed to relax over a series of iterations by
allowing adjacent sites to be swapped.
To execute the phase separation process, a pair of adjacent

sites with differing types is randomly selected from the
lattice. Then, the total change in energy of the system that
will result from swapping them Δϵ is calculated and used
to determine the probability of the swapping event,

PðΔϵÞ ¼ exp½−Δϵ=ðkTÞ�
1þ exp½−Δϵ=ðkTÞ� : ð1Þ

Traditionally, the change in energy is calculated by first
determining the energy of each site using the Ising

Hamiltonian [9]. However, here we develop a mathemati-
cally equivalent description that results in a much more
computationally efficient algorithm that we name the bond
formation algorithm. In this algorithm, the swapping
process is thought of as the breaking of the bonds present
in the initial state and the formation of new bonds in the
final state. In this framework, the change in energy caused
by swapping two sites is the difference between the total
energy of the initial bonds and the total energy of the final
bonds. To calculate this difference, all that needs to be
known is the change in the number of each type of bond
between the initial and final states. Since the method
implemented by Watkins et al. includes only interactions
between the first and second nearest neighbors, the total
change in energy is calculated

Δϵ ¼ −ΔN1J − ΔN2

J
ffiffiffi

2
p ; ð2Þ

where J is the interaction energy, ΔN1 is the change in the
number of first-nearest-neighbor bonds, and ΔN2 is the
change in the number of second-nearest-neighbor bonds. A
more detailed description of the bond formation algorithm
and a comparison to the algorithm based on the traditional
energy calculation method is presented in Sec. I of the
Supplemental Material [34].
Once the probability of the swapping event is calculated,

a random number generator is used to determine whether
the sites are swapped or not. To continue the phase
separation, another suitable pair of sites is randomly
chosen, and the process is repeated. Whether the sites
are swapped or not, each iteration is counted, and the
evolution of the system is measured by counting the
number of Monte Carlo (MC) steps that have occurred.
The number of MC steps is defined as the total number
of iterations divided by the total number of sites in the
lattice [9]. This allows the evolution of the phase separation
process to be characterized with a parameter that is
independent of the lattice size.

B. Smoothing algorithm

To modify the morphology, we also implement a
smoothing algorithm that removes island sites and smooths
rough domain interfaces. During smoothing, the lattice is
scanned one site at a time, and for each site, a roughness
factor is calculated. The roughness factor of a site is
calculated by determining the fraction of the 26 total first,
second, and third nearest neighbors that are not the same
type as the target site. Island sites and sites at rough domain
interfaces are surrounded by mostly sites of the opposite
type and will have a large roughness factor. To smooth the
domains, any site that has a roughness factor above a given
threshold is switched to the opposite type. The lattice is
continually scanned until all sites are found to have a
roughness factor that is below the threshold.
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We find that a smoothing threshold of 0.52 performs best
by reducing the interfacial area without significantly
affecting the domain size. With a 50∶50 blend, this
smoothing process has an equal probability of smoothing
out donor or acceptor sites, and as a result, the blend
concentration is not affected. However, if uneven blend
ratios are used, this algorithm does slightly reduce the
concentration of the minority component. A more detailed
analysis of the smoothing threshold is presented in Sec. II
of the Supplemental Material [34].

C. Morphology characterization

Once a morphology is generated, to characterize the
average size of the domains, the pair-pair correlation
method previously described by Lyons et al. is used
[32]. The pair-pair correlation function is calculated for
each donor site and each acceptor site. Then, two averages
are calculated, one for all donor sites and one for all
acceptor sites. In our pair-pair correlation function algo-
rithm, a resolution of 0.5 nm is implemented. As a result,
the distance between sites is rounded to the nearest 0.5 nm.
The average domain size is determined by calculating when
the correlation function first crosses over the bulk concen-
tration (0.5). To calculate the crossover point, a linear
interpolation process is used between the two points on
either side of the crossover point.
We note here, that in numerous previous studies, the

domain size has been estimated using the relationship,
d ¼ 3V

A , where V is the volume and A is the interfacial area
[10,12,13,16,18,20,23,35]. This relationship is only strictly
valid when the domains are spherical, and since the Ising
model produces highly nonspherical domains, this approxi-
mation severely overestimates the domain size. We estimate
that these studies have likely overestimated the domain size
present in their morphologies by about 75%. A more
detailed comparison between these methods in presented
in Sec. III of the Supplemental Material [34].
To characterize the shape and connectivity of the

domains, the interfacial-area-to-volume ratio and tortuosity
is calculated. The interfacial-area-to-volume ratio is calcu-
lated by counting the number of cubic site faces between a
donor and an acceptor site and then dividing the total count
by the total number of sites in the lattice. The tortuosity is
defined for an individual site as the length of the shortest
available path from the given site through the same domain
type to the collecting electrode divided by the length of the
corresponding shortest straight path [36]. To calculate this,
a three-dimensional, breadth-first search, graph traversal
method is used to determine the shortest path from all
donor and acceptor sites to their respective collecting
electrode. The tortuosity is then calculated for all donor
sites at the cathode interface and all acceptor sites at the
anode interface to give a data set that is representative of
the charge-transport paths through the entire thickness
of the film. Since a 50∶50 blend is studied here, the donor

and acceptor paths should be statistically equal and are
averaged together.
To determine how the morphological changes impact

simulated device performance, two simple KMC simula-
tion benchmarks are used. A detailed description of our
KMC simulation methods can be found in our previous
work [37]. In all KMC simulations, an uncorrelated
Gaussian density of states is implemented with a standard
deviation of 75 meV, and a temperature of 300 K is used.
First, an exciton-quenching efficiency test is performed by
generating excitons with a diffusion length of 10 nm and a
lifetime of 500 ps [38]. In this test, all excitons that reach
the donor-acceptor interface within their lifetime are dis-
sociated, and those that do not reach the interface relax to
the ground state. The interaction distance for exciton
dissociation is set to 2 nm, in accordance with our previous
studies [11]. Exciton-quenching tests are performed for
1000 excitons on nine different energetic disorder configu-
rations for each morphology. Second, the effect of the
morphology on charge transport is probed using a simu-
lated thin film time-of-flight (TOF) experiment. In this test,
a hole is created at a randomly selected donor site at one
surface of the lattice and allowed to undergo standard
hopping behavior under an applied electric field. When it
reaches the opposite surface, it is removed from the lattice,
the transit time is recorded, and the entire process is
repeated. With an applied field of 107 V=m, TOF simu-
lations are performed for 1000 carriers on nine different
energetic disorder configurations for each morphology.
Additional computational details and calculation time

benchmarks for the morphology sets are provided in
Sec. IVof the Supplemental Material [34]. An open-source
software package for supercomputer use and a more simple
Web-based morphology generation tool to create morphol-
ogies using the methods described here are available
online [39,40].

III. RESULTS AND DISCUSSION

A. Effect of the interaction energy

The first and most important behavior to understand is
the effect of the interaction energy J on the generated
morphologies. Previous studies have often used an inter-
action energy of 1kT [9,10,17,23,25] or have neglected to
specify the interaction energy used without discussing the
effect of changing the interaction energy. Our preliminary
tests indicated that domain growth is much faster when
using smaller interaction energies [11]. This finding
prompts an investigation as to whether or not a smaller
interaction energy can be used to more efficiently generate
model morphologies with large domain sizes. To character-
ize the effect of the interaction energy in greater detail, 24
independent morphologies are generated on a 50 by 50 by
50 lattice for J ¼ 0.4, 0.6, 0.8, and 1.0 kT, varying the
number of iterations (MC steps) to create domain sizes in
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the range of 5 to 10 nm. The domain size, interfacial-area-
to-volume ratio, and tortuosity are calculated for each
morphology. In the following sections, the data points in
the figures indicate the mean of each data set, and the error
bars represent one standard deviation.
Figure 1(a) shows how the domain size grows during

the simulated phase separation process as a function of the
number of MC steps for different magnitudes of interaction
energy. In all cases, the domain growth is fast initially and
then slows down over time. This slowing of domain growth
over time is particularly pronounced at higher interaction
energies, as described previously by Binder and Stauffer
[41]. However, the number of MC steps required to reach a
specific domain size varies dramatically, with about 1.5
orders of magnitude difference between interaction ener-
gies of 0.4 and 1.0 kT. Most significantly, this leads to

much longer computational time. This behavior can be
explained by considering the effective mobility of the sites
in the lattice. When the interaction energy is large, it is
much less likely for sites to go through the energetically
unfavorable intermediate states that are required for site
rearrangement and eventual domain growth.
In addition, the variability of the domain size obtained

for a specific number of MC steps increases as the domains
grow in size. This general trend is present for all interaction
energies tested but appears to be reduced slightly when
using a smaller interaction energy. However, with an
interaction energy of 0.8kT, the domain sizes appear highly
varied once an average domain size of 9 nm is reached. This
suggests that the lower interaction energies produce mor-
phologies with domains that are more uniform in size.
To compare the generated morphologies in more detail,

the interfacial-area-to-volume ratio is calculated and is
shown in Fig. 1(b). If the domains are shaped differently,
the interfacial-area-to-volume ratio should be affected. For
example, if the domains tend to be more spherical in shape,
the interfacial-area-to-volume ratio will be lower than if
the domains tend to be more cylindrical. It is very clear that
the morphologies generated with an interaction energy of
0.4kT have a much larger interfacial-area-to-volume ratio.
To visualize this difference, Fig. 2(a) shows a cross-
sectional image of a morphology generated with an
interaction energy of 0.4kT. It is clear that this morphology
has quite a few island sites and very rough interfaces that
contribute to the large interfacial-area-to-volume ratio.
However, it is still unclear if the underlying domain shape
is significantly different.
In an attempt to investigate the potential domain shape

differences apart from the effects of island sites and rough
domain interfaces, the smoothing algorithm described in
Sec. II is applied. Figure 2 shows how the smoothing
algorithm modifies the morphology when using an inter-
action energy of 0.4kT. From these cross-sectional images,
it is clear that the smoothing algorithm successfully
removes all island sites and smooths rough domain
interfaces without significantly changing the size or shape
of the domains.
To analyze and characterize the effect of smoothing,

all previously generated morphology sets are smoothed,
and the domain size, interfacial-area-to-volume ratio, and
tortuosity are recalculated. The resulting data shown in
Fig. 3(a) indicate that once smoothing is applied, the high
interfacial-area-to-volume ratio of morphologies generated
with low interaction energies is greatly reduced, approach-
ing the values originally attained with higher interaction
energies. The smoothing process has very little impact on
the morphologies generated with J ¼ 1.0kT. After smooth-
ing, there is much less difference in the interfacial-area-to-
volume ratio between the morphologies generated with
different interaction energies at any given domain size.
However, significant differences do start to arise when the
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FIG. 1. The effect of the interaction energy J on morphology
generation. (a) Growth of domains with increasing MC steps and
(b) resulting interfacial-area-to-volume ratio for J ¼ 0.4kT (blue
circles), J ¼ 0.6kT (red squares), J ¼ 0.8kT (green triangles),
and J ¼ 1.0kT (black inverted triangles).
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domains reach about 8 nm or larger. In this regime,
interaction energies of 0.8 and 1.0 kT produce domains
with a significantly smaller interfacial-area-to-volume ratio
than both 0.6 and 0.4 kT.
Figure 3(b) shows the tortuosity for the smoothed

morphologies. Similar to the trend observed with the
interfacial-area-to-volume ratio, the tortuosity obtained
with each interaction energy is initially very similar but
deviates as the domains grow in size. In particular, different
trends are observed for each interaction energy. For 0.8 and
1.0 kT, the tortuosity decreases as the domains grow in
size. For 0.6kT, the tortuosity remains almost constant as
the domains grow in size, and for 0.4kT, the tortuosity
increases as the domains grow in size. As a result, each
interaction energy produces morphologies that have dis-
tinct differences and will be expected to produce different
KMC simulation results. These potential effects on KMC
simulations are tested and discussed in Sec. III C.
From these tests, it appears that using an interaction

energy of 0.6kT is best for generating controlled model

BHJ morphologies. The domains grow much faster than
with higher interaction energies, which reduces computa-
tional time, and the domains are also more uniform in size.
In addition, the tortuosity of the morphology is fairly
constant as the domains grow in size, which allows one to
look at the impact of the domain size independent from the
tortuosity. We will also show in the next subsection that this
constant tortuosity works especially well with the lattice
rescaling method used to efficiently create morphologies
with larger domain sizes. As a result, the subsequent
section focuses only on morphologies generated using
an interaction energy of 0.6kT.

B. Simplifications for computational efficiency

Regardless of the magnitude of the interaction energy,
there are several methods for significantly reducing the

FIG. 2. The effect of smoothing on the generated morphologies.
Cross-sectional images for J ¼ 0.4kT (7.0-nm domains after 750
MC steps) (a) without smoothing and (b) after smoothing.
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FIG. 3. The effect of the interaction energy J on final smoothed
morphologies. (a) Interfacial-area-to-volume ratio and (b) tortuos-
ity as a function of domain size after smoothing for J ¼ 0.4kT
(blue circles), J¼0.6kT (red squares), J¼0.8kT (green triangles),
and J ¼ 1.0kT (black inverted triangles).
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computation time required to generate a particular model
morphology. The first method is to reduce the lateral
dimensions of the lattice. Because periodic boundary
conditions are used in the plane of the film, the choice
of lateral dimensions is somewhat arbitrary. However,
the number of sites in the lattice will affect the calculation
time per MC step. As a result, it is common to use lateral
dimensions that are smaller than the thickness dimension.
Reducing two of the dimensions of the lattice can signifi-
cantly reduce the total number of sites. For all previous
tests, a 50 by 50 by 50 site lattice is used, but equivalent
morphologies can be generated using a smaller lattice.
However, at some point, it is also expected that too small of
a lattice may introduce confinement effects that change the
domain size and/or domain shape.
To probe this behavior, morphologies are created with

domain sizes ranging from 5 to 9 nm on lattices where the
length and width (lateral dimensions) are varied but always
equal using lattice heights of 50, 75, and 100 nm. Twenty
independent morphologies are created for each combina-
tion of domain size and lattice size, and after executing the
swapping and smoothing algorithms, the final domain size
is calculated and recorded for each morphology. Figure 4(a)
shows how the domain size is affected by decreasing the
lateral lattice dimensions when using a lattice height of
50 nm. When the lateral lattice dimensions are very large,
the domain size obtained does not depend on the lattice
dimensions as expected. However, as the lateral dimensions
become smaller, changes to the domain size eventually start
to be observed due to lattice confinement effects. The onset
of confinement effects occurs at larger lateral dimensions
when creating larger domains, and this same trend was
observed for lattice heights of 75 and 100 nm (not
pictured).
To characterize this relationship in more detail, for each

target domain size and lattice height tested, the lateral
dimensions at which the domain size start to be noticeably
affected is recorded. We define this transition point as the
minimum lateral dimensions. Figure 4(b) shows how the
minimum dimensions change as a function of the target
domain size for each lattice height tested. We find that the
onset of lattice confinement effects is not dependent on
the lattice height, and that as a general rule, as long as the
lateral dimensions are greater than or equal to 4.5 times the
target domain size, lattice confinement does not signifi-
cantly impact the final morphology. As a result, the
calculation time can be reduced by using smaller lateral
dimensions, but the lattice size can only be safely reduced
down to 4.5 times the desired domain size. We observe
a similar limit when using other interaction energies, but
do not perform a detailed characterization of these addi-
tional cases.
The methods described so far work well for creating

relatively small domains, but as the domains continue to
grow in size, the rate of domain growth also decreases, as

discussed previously. The final way to reduce the calcu-
lation time is to utilize a lattice rescaling method, as used by
McNeill et al. [3]. This method essentially stretches the
lattice equally in all three dimensions, making both the
lattice and the domains larger without altering the shape
and connectivity of the domains. For creating domains that
are larger than 10 nm, which is more typical of many BHJ
blend materials, a lattice rescaling method can dramatically
reduce the calculation time. As an example, to create a
morphology that is representative of a 100-nm film with
16-nm domains, an 80 by 80 by 100 lattice is needed.
Even when using a lower interaction energy, without the
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rescaling method, this calculation takes several days to
create a single morphology on one processor. With the
rescaling method, a morphology with 8-nm domains can be
created on a much smaller 40 by 40 by 50 lattice and then
rescaled by a factor of 2 to obtain the final desired
morphology in about 2 h. Additionally, a rescaling factor
of 3 can be used on the same initial morphology to create
24-nm domains with only slightly more calculation time.
However, it is also a concern if the rescaling method

introduces major changes to the tortuosity. To characterize
this, 24 independent morphologies are created with an
interaction energy of 0.6kT on a lattice with a 100-nm
height for a range of domain sizes using both the normal
method and the rescaling method. Lateral lattice dimen-
sions are set to 4.5 times the target domain size, and
smoothing is applied before and after rescaling. Figure 5
shows that without rescaling, both the interfacial-area-to-
volume ratio and the tortuosity begin to decrease for
domain sizes over 10 nm. However, with the rescaling
method, when initial domain sizes are created in the range
of 5 to 9 nm, this does not occur and the tortuosity remains
constant. If the rescaling method is used with interaction

energies or domain size ranges where the tortuosity is not
constant, the tortuosity will fluctuate when switching
between the normal method and each rescaling factor.
However, with an interaction energy of 0.6kT and initial
domain sizes in the range of 5 to 9 nm, the rescaling method
can be safely used to efficiently create morphologies with a
wide range of domain sizes.

C. Impacts on KMC device simulations

In Sec. III A, we show how the interaction energy can
impact the simulated phase separation process, yielding
morphologies with different domain shapes characterized
by differences in the interfacial-area-to-volume ratio and
tortuosity. To determine how these differences will impact
device simulations, we generate morphology sets similar to
typical OPV devices and perform two benchmark KMC
simulations. Interaction energies of 0.4, 0.6, and 0.8 kT are
used to create morphology sets with domain sizes of
approximately 15, 18, and 21 nm on lattices representing
a film thickness of 102 nm. A total of nine morphology sets
with 24 morphologies each are generated. Domain smooth-
ing, minimum lateral dimensions, and lattice rescaling are
used, as described previously, to quickly generate the final
morphologies. Instead of taking several days to generate
each morphology, each morphology is created on one
processor in only 1–2 h. Additional characterization of
these morphology sets is shown in Sec. V of the
Supplemental Material [34].
First, the simulated exciton-quenching efficiency is

shown in Fig. 6(a), and we find that while the exciton-
quenching efficiency is dependent on the domain size as
expected, the interaction energy used to generate the
morphology has almost no impact. As a result, for studies
focused on modeling exciton diffusion and dissociation at
the donor-acceptor interface in BHJ devices, the choice of
interaction energy is not very significant as long as domain
smoothing is applied to remove the island sites that will act
as exciton-quenching sites.
However, the situation is significantly different for

charge-transport simulations. The transit time distributions
resulting from time-of-flight charge-transport simulations
are shown in Fig. 6(b). It is clear that for all three domain
sizes tested, a smaller interaction energy results in longer
transit times and a more dispersive distribution. Looking
back at Fig. 3(b), we observe noticeable differences in
tortuosity for each of these interaction energies. In general,
the tortuosity increases when decreasing the interaction
energy. This same trend persists for the larger domain sizes
generated here and is shown in Sec. Vof the Supplemental
Material [34]. This increase in tortuosity appears to
significantly slow down the charge transport and increase
the dispersion. We expect this effect to be enhanced when
simulating thicker films or when the electric field is weaker.
As a result, for simulation and modeling studies in which
charge transport is an important factor, the choice of
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interaction energy will have a significant impact. For
example, in a full device simulation, slower transport
should lead to reduced charge collection efficiency and
increased charge recombination.

IV. CONCLUSIONS

Overall, we provide a detailed characterization of the
Ising method for generating model BHJ morphologies.
We investigate the effect of the interaction energy and
demonstrate several methods for reducing the computation
time required to generate model morphologies. We first
introduce an algorithm called the bond formation algo-
rithm for calculating the site-swapping probabilities,
which gives rise to a major increase in calculation speed.

We then demonstrate how a smaller interaction energy of
0.6kT, when used with a smoothing algorithm, produces
pure domains with faster domain growth than previous
work and a tortuosity that is almost independent of the
domain size. Next, we probe the limits of using small
lateral lattice dimensions with periodic boundary condi-
tions to reduce the calculation time. Finally, we character-
ize the performance of a lattice rescaling method to be
used when creating large domains (> 10 nm) and identify
the conditions that allow for the creation of a wide
range of domain sizes. In total, these developments reduce
the morphology generation time by several orders of
magnitude.
Combining all methods discussed here, morphologies

with domain sizes and thicknesses typical of optimized
BHJ OPVs are able to be efficiently generated for KMC
simulations. We show how changes in domain size and
tortuosity can significantly impact charge transport, which
can have a broad impact on charge recombination and
ultimately the power-conversion efficiency. With this in
mind, it is imperative that future modeling studies are
precise and forthcoming regarding the methods used for
morphological modeling. In particular, studies should pay
close attention to how the domain size is determined, how
the tortuosity changes with increasing domain size, and
how the lattice size is chosen.
Including detailed morphological features into device

models continues to be an important step towards the
ability to accurately analyze, simulate, and ultimately
predict device performance. The advancements described
here have been implemented and published in an open-
source software code for supercomputer use [39] and in a
user-friendly Web-based software tool [40]. With the
methods and morphology generation tools freely available,
other researchers can now easily generate model BHJ
morphologies in a computationally efficient manner and
apply them to novel systematic device modeling efforts.
These developments will allow KMC simulations to be
readily performed on large sets of morphologies created
with a wide range of parameters, leading to increased
understanding of the link between morphology and device
performance.
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