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We describe the coherent manipulation of harmonic oscillator and qubit modes using resonant trains
of single flux quantum pulses in place of microwaves. We show that coherent rotations are obtained for
pulse-to-pulse spacing equal to the period of the oscillator. We consider a protocol for preparing bright and
dark harmonic oscillator pointer states. Next, we analyze rotations of a two-state qubit system. We calculate
gate errors due to timing jitter of the single flux quantum pulses and due to weak anharmonicity of the
qubit. We show that gate fidelities in excess of 99.9% are achievable for sequence lengths of order 20 ns.
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I. INTRODUCTION

Josephson qubits are a leading candidate for scalable
quantum information processing in the solid state [1,2].
Gate and measurement fidelities are within reach of the
threshold for fault-tolerant quantum computing based on
topological surface codes [3,4], and there is interest in
scaling to larger multiqubit circuits. A superconducting
quantum computer that will outperform the best available
classical machines will require thousands if not millions of
physical qubits, and the wireup and control of a large-scale
quantum processor presents a formidable technical chal-
lenge. It is highly desirable to integrate as much of the
control and measurement circuitry as possible in the
multiqubit cryostat in order to reduce wiring heat load,
latency, power consumption, and the overall system foot-
print. An obvious candidate for the cold control system is
single flux quantum (SFQ) digital logic, in which classical
bits of information are stored in propagating fluxons,
voltage pulses whose time integral equals the supercon-
ducting flux quantum Φ0 ¼ h=2e [5,6]. There have been
experimental demonstrations of SFQ-based circuits for
qubit biasing [7–9], and fluxon-based schemes for qubit
measurement have been proposed [10] and recently real-
ized [11]. In addition, there has been a proposal to generate
microwave pulses for qubit control by appropriately filter-
ing SFQ pulse trains [12], although the required filter and
matching sections would be challenging to realize practi-
cally. Up to now, however, there has been no compelling
proposal for the realization of coherent quantum control of
superconducting qubit and linear cavity modes by direct
excitation via SFQ pulses.
In this article, we propose a scheme for the coherent

control of qubit and linear cavity modes using resonant
SFQ pulse trains. We demonstrate that SFQ-based gates are
robust against leakage errors and timing jitter of the pulses,
with achievable fidelities in excess of 99.9% in gate times

around 20 ns. In separate work, we have analyzed a circuit
quantum electrodynamics (cQED) measurement scheme
wherein the qubit state is mapped to the binary digital
output of a cryogenic microwave photon counter [13].
Taken together, these proposals point the direction for
integration of a multiqubit quantum processor with cold
SFQ-based classical digital circuitry for both control and
measurement.
This paper is organized as follows. In Sec. II, we describe

the coherent control of harmonic oscillator modes and
qubits with SFQ pulses, starting from a classical model
and moving to a quantum description of the coupling
Hamiltonian. This section includes our main numerical
results for SFQ gate fidelity in the presence of pulse timing
imperfections and higher energy levels of the qubit.
Section III includes a detailed treatment of gate error
due to finite SFQ pulse width, SFQ pulse timing jitter,
and weak qubit anharmonicity. In Sec. IV we present our
conclusions.

II. COHERENT CONTROL VIA SFQ PULSES

Control in superconducting qubits is typically accom-
plished via shaped microwave pulses that realize arbitrary
rotations over the Bloch sphere. Amplitude modulation
of a resonant carrier wave concentrates drive power at the
frequency of interest, and pulses are shaped to minimize
power at nearby transition frequencies to avoid excitation
out of the qubit manifold [14,15]. We can gain intuition for
the effectiveness of an arbitrary drive pulse at addressing
a desired transition (or avoiding an undesired one) by
considering a simple classical model of an LC resonator.
The drive waveform is coupled to the resonator from a
time-dependent voltage source VðtÞ through a coupling
capacitance Cc [see Fig. 1(a)]. We find that the energy
deposited in the resonator is given by

E ¼ ω2
0C

2
c

2C0 j ~Vðω0Þj2; ð1Þ*rfmcdermott@wisc.edu
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where C0 ¼ Cþ Cc, ω0 ¼ 1=
ffiffiffiffiffiffiffiffi
LC0p

, and where the tilde
represents the Fourier transform ~VðωÞ ¼ R

∞−∞ VðtÞe−iωtdt.
The energy coupled to the resonator is proportional to
the energy spectral density of the drive waveform at the
resonator frequency.
Here we are interested in the response of a microwave

resonator to an SFQ pulse. For state-of-the-art Nb-based
SFQ technology, characteristic pulse amplitudes are 2 mV
and pulse widths are around 1 ps. As the pulse widths
are much less than the period of the microwave resonator,
we can model the SFQ pulse as a Dirac delta function
VðtÞ ¼ Φ0δðtÞ. In this case, we find ~VðωÞ ¼ Φ0 and Eq. (1)
reduces to

E1 ¼
ω2
0C

2
cΦ2

0

2C0 ; ð2Þ

where the subscript 1 indicates that we are referring to
the response to a single pulse. Because the SFQ pulse width
is much smaller than the oscillator period, the energy
deposited is quite insensitive to the detailed shape of the
SFQ pulse and is determined rather by the time integral of
the pulse, which is precisely quantized to a single flux
quantum. For example, for a Gaussian SFQ pulse with
standard deviation τ, the above result is modified by the
prefactor e−ω2

0
τ2, which yields a correction of 0.02% for

τ ¼ 0.5 ps and ω0=2π ¼ 5 GHz.
A single SFQ pulse produces a broadband excitation.

For this reason, the single pulse is not useful for coherent
manipulation of quantum circuits, since it does not offer
the possibility to selectively excite individual transitions.

The picture changes, however, when we consider driving
the resonator with a train of SFQ pulses. The goal is to
coherently excite the resonator by using a pulse-to-pulse
separation that is matched to the resonator period. The
approach is analogous to pumping up a swing by giving a
short push once per cycle, as opposed to sinusoidally
forcing the swing throughout the entire period of oscil-
lation. We consider the driving voltage

VnðtÞ ¼ Φ0½δðtÞ þ δðt− TÞ þ � � � þ δ(t− ðn− 1ÞT)�; ð3Þ

where T is the separation between pulses, and n is the
number of pulses. We find that the pulse train couples an
energy to the resonator equal to

En ¼
ω2
0C

2
cΦ2

0

2C0
sin2ðnω0T=2Þ
sin2ðω0T=2Þ

: ð4Þ

It is worthwhile to consider the energy transferred by an
SFQ pulse train to a typical cavity mode in a super-
conducting cQED circuit. We take ω0=2π ¼ 5 GHz,
C ¼ 1 pF, and Cc ¼ 1 fF. We find that a single SFQ pulse
couples only 6 × 10−4 quanta to the cavity mode. However,
for a resonant pulse train with T equal to an integer multiple
of cavity periods, the pulses add coherently so that the total
energy deposited in the cavity goes as n2. Because of this
quadratic scaling, only 40 pulses are required to populate
the cavity with a single excitation, and this can be
accomplished in the time 40 × 2π=ω0 ¼ 8 ns.
A recent proposal for cQED measurement based on

microwave counting relies on the preparation of “bright”
and “dark” cavity pointer states using a coherent drive pulse
with length matched to the inverse detuning of the dressed
cavity frequencies [13]. This protocol is readily adapted
to SFQ excitation of the readout cavity. For a qubit-cavity
system with dressed cavity resonances at ω0 − χ (or
ω0 þ χ) corresponding to the qubit j0i (or j1i) states, an
SFQ pulse train with interval T ¼ 2π=ðω0 þ χÞ and total
number of pulses n ¼ ðω0 þ χÞ=2χ will coherently pop-
ulate the cavity if the qubit is in the j1i state, while
returning the cavity to the vacuum upon completion of the
sequence if the qubit is in the j0i state.
Next, we consider the response of the quantum oscillator

to SFQ excitation. The time-dependent circuit Hamiltonian
is written as

H ¼ ½Q̂ − CcVðtÞ�2
2C0 þ Φ̂2

2L
: ð5Þ

We decompose the Hamiltonian into the unperturbed
free Hamiltonian Hfree and a time-dependent excitation
Hamiltonian HSFQ:

v
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C
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t
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FIG. 1. (a) Excitation of a resonator mode via a train of SFQ
pulses. The pulses are coupled to the resonator through the
capacitance Cc. For Nb-based SFQ technology, pulse amplitudes
are of order 2 mVand pulse widths of order 1 ps. (b) Trajectory in
quadrature space for a cavity driven by a resonant SFQ pulse
train. (c) Trajectory on the Bloch sphere for a qubit driven with a
resonant SFQ pulse train.
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Hfree ¼
Q̂2

2C0 þ
Φ̂2

2L
;

HSFQ ¼ −Cc

C0 VðtÞQ̂: ð6Þ

In terms of the usual raising and lowering operators, we
have

Hfree ¼ ℏω0â†â;

HSFQ ¼ iCcVðtÞ
ffiffiffiffiffiffiffiffi
ℏω0

2C0

r
ðâ − â†Þ: ð7Þ

The effect of the SFQ pulse is to induce a coherent
displacement of the cavity state by amount

αSFQ ¼ −CcΦ0

ffiffiffiffiffiffiffiffiffiffi
ω0

2ℏC0

r
; ð8Þ

see Fig. 1(b). The energy deposited by the pulse matches
the classical expression (2). A sequence of n pulses
produces a coherent state with amplitude αn ¼
αSFQ

P
n−1
k¼0 expð−ikω0TÞ and mean energy En ¼

ℏω0jαnj2 consistent with the classical expression (4).
Next, we consider application of SFQ pulses to a two-

level qubit. The Hamiltonian of the system becomes

Hfree ¼
ℏω10

2
ð1 − σ̂zÞ;

HSFQ ¼ CcVðtÞ
ffiffiffiffiffiffiffiffiffiffi
ℏω10

2C

r
σ̂y; ð9Þ

where 1 is the identity matrix, and σ̂ are the usual Pauli
matrices. We will work in the limit of a short, intense SFQ
pulse that induces a discrete rotation of the state vector
about the y axis by angle

δθ ¼ CcΦ0

ffiffiffiffiffiffiffiffiffiffi
2ω10

ℏC

r
; ð10Þ

in between pulses, the qubit evolves under the influence of
Hfree. (In Sec. III, we consider the effect of finite SFQ pulse
width and show that, for typical cQED frequencies, free
evolution during the pulse can be safely neglected.) The
SFQ pulse train will induce coherent rotations when the
free-evolution periods are matched to the oscillation period
2π=ω10 of the qubit; see Fig. 1(c). For a qubit initially in
state j0i, the resonant pulse train yields a coherent rotation
in the xz plane. For a pulse interval that is slightly
mismatched from the oscillation period, the state vector
slowly drifts away from the xz plane, and in the limit of a
large timing mismatch, the state vector undergoes small
excursions about the north pole of the Bloch sphere.
As can be seen from Eq. (10), the angle of rotation

induced by the SFQ pulse depends on the strength of the
capacitive coupling to the qubit, which we take to be fixed.

While tunable inductive couplers have been demonstrated
[16], it is unclear that they could be engineered to perform
well on the picosecond time scales characteristic of the
SFQ pulse. For that reason, it might prove necessary to
work with a fixed rotation angle once the coupling to
the qubit is determined by the circuit design. For a small
rotation angle δθ ∼ 0.01, the resulting gate error is at most
δθ2=4. This error can be further reduced by appropriately
tailoring the timing delay between the SFQ pulses; how-
ever, discussion of such sequences is beyond the scope of
the current work.
Other potential sources of error in SFQ-based gates are

timing jitter of the pulses and weak anharmonicity of the
qubit. In Sec. III, we provide a detailed analysis of these
errors; here, we summarize the main results. In the
following, we take as input states the six eigenstates of
the Pauli operators, and we compute gate error as the state
error averaged over these input states; this approach is
equivalent to interleaved random benchmarking with sin-
gle-qubit Clifford gates [4,17,18].
The effect of a timing error δt in the SFQ pulse is to

induce a spurious rotation of the state vector by angle
ω10δt sin θ, where θ is the instantaneous polar angle of
the state vector. We assume that the arrival times of the
individual pulses are distributed normally with standard
deviation σ. To consider the effect of timing jitter on
rotations derived from SFQ pulse trains, we need to specify
the manner in which the SFQ circuit is clocked. If the pulse
train is derived from a stable external frequency source
(used, for example, to trigger a DC-SFQ converter [5]), the
timing jitter per pulse is independent of the length of the
pulse train. Timing errors associated with each pulse are
largely compensated by the following pulse, and error in
the final pulse dominates error in the sequence as a whole.
The pulse timing jitter leads to the average gate error

1 − Fext
avg ¼

ðω10σÞ2
6

�
Θ2

n
þ 1

�
; ð11Þ

where the superscript “ext” refers to the mode of clocking
the SFQ pulse train from a stable external source. For
practical purposes, this timing jitter will introduce negli-
gible gate error.
Next, we consider the more demanding case where pulse

timing errors accumulate incoherently so that the timing
jitter in the nth pulse is

ffiffiffi
n

p
larger than the timing jitter in

the initial pulse. This could be the situation, for example,
when the SFQ pulse train is generated internally from an
SFQ clock ring. In this case, the deviation of the state vector
from the desired trajectory grows as

ffiffiffi
n

p
, leading to a

degradation of gate fidelity that scales linearly with n. The
timing jitter results in an average gate error

1 − Fint
avg ¼

nðω10σÞ2
6

; ð12Þ
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where the superscript “int” refers to the internal clock used
to generate the pulse train.
In the thermal regime, the timing jitter of the SFQ pulse

scales as the square root of temperature [19], and an
average timing jitter per junction of 0.2 ps has been
measured in a large-scale SFQ circuit operated at 4.2 K
[20]. For an SFQ circuit operated at reduced temperature in
a dilution refrigerator, the timing jitter is expected to be
lower, although quantum fluctuations will lead to non-
negligible jitter even for circuits operated at millikelvin
temperatures. Moreover, if the SFQ pulse source is coupled
to the qubit sample via a long Josephson transmission line
consisting of N junctions, the qubit will see a

ffiffiffiffi
N

p
degradation of the timing jitter due to the sequential
switching of the junctions in the line.
We performMonte Carlo simulations of gate error due to

timing jitter for an SFQ ðπ=2Þy rotation realized from 100
pulses, in the case where timing errors of the pulse
generator accumulate incoherently, cf. Eq. (12). The results
are shown in Figs. 2(a) and 2(b). For the j0i-state input,
timing errors lead predominantly to y errors. Small z errors
accumulate coherently and lead to a systematic under-
rotation of the state vector. For the input ðj0i þ ij1iÞ= ffiffiffi

2
p

,

which ideally is unaffected by the ðπ=2Þy rotation, the
timing errors initially provide kicks in the x direction; once
x errors are allowed to accumulate, subsequent SFQ pulses
generate additional z errors. In Fig. 2(b), we show the
average gate error versus pulse timing jitter σ. For
σ ¼ 0.2 ps, we find an average gate error of 6.6 × 10−4.
A practical superconducting qubit is not an ideal two-

level system [21]. For a typical transmon qubit [22–24],
the anharmonicity ðω10 − ω21Þ=ω10 is of order 4%–5%. A
single strong SFQ pulse will induce a large spurious
population of the j2i state as a result of its broad bandwidth,
and leakage errors induced by fast SFQ control pulses have
been considered previously [25]. However, a resonant SFQ
pulse train tailored to perform a desired rotation in the 0-1
subspace in a larger number of steps n will show greatly
reduced spectral density at ω21, enabling high-fidelity SFQ-
based gates with acceptable leakage. We consider a three-
level system with unperturbed Hamiltonian

Hfree ¼

0
B@

0 0 0

0 ℏω10 0

0 0 ℏðω10 þ ω21Þ

1
CA: ð13Þ

The charge induced on the qubit capacitance by the SFQ
pulse leads to the Hamiltonian

HSFQ ¼ iCcVðtÞ
ffiffiffiffiffiffiffiffiffiffi
ℏω10

2C

r 0
B@

0 −1 0

1 0 − ffiffiffi
2

p

0
ffiffiffi
2

p
0

1
CA: ð14Þ

Here we consider the typical transmon parameters
ω10=2π ¼ 5 GHz and ω21=2π ¼ 4.8 GHz. We examine
gate fidelity and j2i-state errors for resonant SFQ pulse
trains designed to produce ðπ=2Þy and πy rotations for a
range of total numbers of pulses (and, hence, gate dura-

tions). In addition, we compute the j2i-state leakage Pjji
2 for

the ðπ=2Þy gate for initial qubit states jji ¼ j0i, j1i. The
results are shown in Fig. 3. The gate error is dominated by
leakage to the j2i state. Gate errors decrease as n−2; by
increasing the number of pulses and, thus, the total duration
of the sequence, one reduces the spectral weight of the
pulse sequence at the 1-2 transition. Moreover, the gate
error exhibits an oscillatory behavior, with minima corre-
sponding to points where there is destructive interference
at the leakage transition. For the ðπ=2Þy pulse, fidelity of
99.9% is achieved in 100 pulses, corresponding to a 20-ns
gate time for a 5-GHz qubit, while for a π pulse, 99.9%
fidelity is achieved in around 300 pulses.

III. ANALYSIS OF SFQ GATE ERROR

In this section, we present a detailed analytical treatment
of gate errors due to the following three sources: (A) finite
width of the SFQ pulses, (B) SFQ pulse timing jitter, and
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FIG. 2. SFQ gate error due to timing jitter. (a) Scatter plot of
polar θ and azimuthal ϕ angles of the Bloch vector following
an SFQ-based ðπ=2Þy rotation implemented in 100 pulses, for
timing jitter σ ¼ 0.2 ps. The initial states are j0i (left) and
ðj0i þ ij1iÞ= ffiffiffi

2
p

(right) corresponding to target states
ðj0i þ j1iÞ= ffiffiffi

2
p

and ðj0i þ ij1iÞ= ffiffiffi
2

p
, respectively. (b) SFQ gate

error versus timing jitter σ for an SFQ ðπ=2Þy rotation imple-
mented in 100 pulses. The points are the result of numerical
simulations, while the solid line is calculated from Eq. (12).
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(C) leakage to higher energy levels of the qubit. We
compare the ideal SFQ-based gate, where coherent rota-
tions are realized from δ-function pulses with no timing
error and where the qubit is treated as an ideal two-level
system, to the actual SFQ-based gate, where the pulses
have finite width and timing jitter and where weak
anharmonicity of the qubit is explicitly taken into account.
We compute the state-averaged overlap fidelity of a qubit
gate as follows [26]:

FavgðU id;UGÞ ¼
2þ jTrðU†

idUGÞj2
6

; ð15Þ

where U id is the unitary time evolution operator for the
ideal gate, and UG corresponds to the actual gate. We will
evaluate the fidelity of SFQ-based rotations by angle Θ
about the y axis, so we take

U id ¼ exp

�
iΘσ̂y
2

�
: ð16Þ

We compose this rotation from n smaller rotations by angle
δθ ¼ Θ=n about the y axis, interspersed with appropriate
free-precession intervals that are matched to the Larmor
period 2π=ω10 of the qubit. The unitary operator describing
the δ-function pulses is given as follows:

Uð1Þ
δ ¼ exp

�
iδθσ̂y
2

�
: ð17Þ

Similarly, free precession for interval t is described by
the unitary operator

UfðtÞ ¼ exp

�
iω10tσ̂z

2

�
: ð18Þ

The actual evolution operator UG is composed as a

product of single-pulse evolution operators Uð1Þ
G and free

evolutions between pulses. We assume that the SFQ pulse
vanishes outside the time interval ð−tc; tcÞ and that the
evolution during the pulse is defined by the differential
equation

iℏ
∂Uð1Þ

G ðtÞ
∂t ¼ HðtÞUð1Þ

G ðtÞ; ð19Þ

with the initial condition Uð1Þ
G ð−tcÞ ¼ 1. The evolution

operator at time tc thus defines the overall effect of a single

pulse on the qubit state: Uð1Þ
G ðδθÞ ¼ Uð1Þ

G ðtcÞ.
In the following, we consider the structure of the actual

evolution operators UGðΘÞ and calculate gate infidelity for
three sources of error.

A. Finite pulse width

Here we analyze the effect of the finite SFQ pulse width.
We begin by considering rectangular SFQ pulses with
width 2tc. The full Hamiltonian during the pulse is

H ¼ ℏω10

2
ð1 − σ̂zÞ − ℏδθ

4tc
σ̂y; ð20Þ

where δθ is the rotation angle induced by a single pulse.
The corresponding evolution operator during the pulse
represents precession in the field ð0; δθ=2tc;ω10Þ and has
the form

Uð1Þ
rect ¼ exp½ið2ω10tcσ̂z þ δθσ̂yÞ=2�: ð21Þ

In the δ-function approximation, the evolution during the
same time interval would be

Uð1Þ
id ¼ expðiω10tcσ̂z=2ÞUð1Þ

δ expðiω10tcσ̂z=2Þ: ð22Þ

Using Eq. (15), we obtain the overlap error 1 − F1;rect for a
single pulse up to fourth order in tc and δθ:

1 − F1;rect ¼
1

216

�
δθ4ω2

10t
2
c þ δθ2ω4

10t
4
c − δθ4ω4

10t
4
c

5

�
:

ð23Þ

This expression gives the important message that for short
pulses, to the lowest order in ω10tc, the error decreases as
δθ4 for decreasing δθ. However, for very small δθ ≲ ω10tc,
the error becomes quadratic in the rotation angle δθ. We
present the gate error due to rectangular pulses in Fig. 4 as
the dash-dotted trace.
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FIG. 3. Average gate error and j2i-state error P2 for SFQ pulse
trains versus number of pulses n. Blue (lower) curves are for the
SFQ implementation of the ðπ=2Þy gate and red (upper) curve is
for the πy gate. Here, ω10=2π ¼ 5 GHz, ω21=2π ¼ 4.8 GHz, and
gate error is computed as described in the main text.
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Next, we model the SFQ pulse by a Gaussian shape with
width τ:

VðtÞ ¼ Φ0ffiffiffiffiffiffi
2π

p
τ
e−t2=2τ2 : ð24Þ

The time-dependent Hamiltonian is given by

HðtÞ ¼ ℏω10

2
ð1 − σ̂zÞ þ

ℏδθ

2
ffiffiffiffiffiffi
2π

p
τ
e−ðt−tkÞ2=2τ2 σ̂y; ð25Þ

where tk is the arrival time of the SFQ pulse. We denote the
time evolution operator for the full Gaussian pulse as
Uð1Þ
Gauss, and we compute this operator over the interval

ð−tc; tcÞ, where we take tc ¼ 5τ. We assume that the SFQ
pulse vanishes outside of the time interval ð−tc; tcÞ and that
qubit evolution is described by the free-evolution operator
Ufð2π=ω10 − 2tcÞ during the time 2π=ω10 − 2tc. The gate
error for a single Gaussian SFQ pulse can be evaluated
according to Eq. (15), and the result is shown in Fig. 4 as the
dotted trace. The error for the Gaussian pulse closely follows
the result for rectangular pulses with proper choice of τ.
In addition, we analyze the fidelity of a gate composed

of a resonant train of n Gaussian SFQ pulses that is
designed to realize a rotation by angle Θ ¼ nδθ about
the y axis. The gate evolution operator is written as

UGðΘÞ ¼ ½Ufð2π=ω10 − tcÞUð1Þ
GaussðδθÞUfð−tcÞ�n: ð26Þ

Substituting this expression to Eq. (15), we obtain the gate
fidelity. In Fig. 4, we present the gate error as a function of

the number of pulses n for Θ ¼ π=2 and for Gaussian
pulses with width τ ¼ 4 ps. We observe that the average
gate error for a full rotation is n2 times larger than the error
of a single pulse, 1 − Favg ¼ n2ð1 − F1Þ. For larger values
of n, the single pulse error scales as 1=n2 [cf. Eq. (23)]
and the average gate error 1 − Favg ∝ ðω10τÞ4Θ2 becomes
independent of n, while remaining below 10−4 due to the
factor ðω10τÞ4. Note that in these simulations, we assume
very long pulse times compared to what is achieved in
practical SFQ circuits (where pulse widths τ < 1 ps are
readily accessible) in order to circumvent numerical errors
associated with finite machine precision; the scaling of gate
error with pulse duration can be understood from Eq. (23).
For practical SFQ pulses, error associated with finite pulse
duration is much smaller than the other two errors ana-
lyzed below.

B. Pulse timing jitter

Small variation in the arrival times of the SFQ pulses
presents another source of gate error. As mentioned in
Sec. II, the effect of timing jitter on SFQ gate fidelity
depends on the manner in which the SFQ timing generator
is triggered. We consider the following two cases:
(1) External clock. Here, the SFQ pulses are derived from
a stable external clock so that the timing error per pulse
does not grow with the length of the sequence. (2) Internal
clock. Here, there is fixed error in the pulse-to-pulse
spacing so that errors in the timing of individual pulses
accumulate incoherently as the length of the sequence
grows. The effect of these two different clocking modes on
pulse timing jitter is depicted schematically in Fig. 5. We
examine these two cases in detail below. For further
discussion, we utilize an alternative expression to evaluate
gate fidelity [27]:

Favg ¼
1

6

X
α

Fα; Fα ¼ TrfUGραU
†
GU idραU

†
idg; ð27Þ

where the average is performed over the Pauli eigenstates
ρα ¼ jαihαj aligned along directions α ¼ �x, �y, �z.

1. External clock

We first analyze the effect of timing jitter on pulse trains
derived from a stable external clock. We assume that the
pulse arrival times are distributed normally with respect to
the external clock with distribution width σ. For small jitter,
ω10σ ≪ 1, we can evaluate Fα using the following analysis.
The evolution of the qubit is characterized by a sequence of
discrete rotations, Eq. (17), interspersed with intervals of
free precession that are nominally matched to the qubit
period 2π=ω10. Because of the pulse timing jitter, the actual
free-precession interval between the ðk − 1Þth and kth
pulses becomes 2π=ω10 þ δtk − δtk−1, where δtk is the
timing error associated with the kth pulse. For a qubit state

FIG. 4. Dependence of gate error on the number of pulses n
used to realize a ðπ=2Þy rotation for SFQ pulses of finite width.
The error 1 − F1;rect for a single rectangular pulse with width
2tc ¼ 7 ps is calculated from Eq. (23) and is shown as the dash-
dotted trace. The error for a single Gaussian pulse with width
τ ¼ 4 ps is computed numerically and is shown as the dotted
trace. The error for the full π=2 rotation realized from n Gaussian
pulses is shown as the solid trace.
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vector that is initially aligned along the z axis, the timing
error causes the state to acquire a component δyk in the y
direction:

δyk ¼ ω10ðδtk − δtk−1Þ sinðkδθÞ: ð28Þ

Here, kδθ is the instantaneous polar angle of the qubit state
vector. During the gate operation, the qubit state vector
accumulates the error δY ¼ P

kδyk, and we find

Fz ¼ 1 − δY2=4;

δY2 ¼ ðω10σÞ2
�
sin2ðnδθÞ þ δθ2

Xn−1
k¼1

cos2ðkδθÞ
�
; ð29Þ

where the overbar represents an average over pulse jitter
times δtk. Assuming that δθ ¼ Θ=n is small, we can replace
the summation by integration in the last expression and
we find

Fz ¼ 1 − ðω10σÞ2
�
Θ2

8n

�
1þ sin 2Θ

2Θ

�
þ sin2Θ

4

�
ð30Þ

for a qubit state initially aligned along the z direction.
For a qubit state initially aligned along the x axis, the

analysis is the same with the replacement of sinðkδθÞ by
cosðkδθÞ in Eq. (28). In this case, we find

Fx ¼ 1 −
�
Θ2

8n

�
1 − sin 2Θ

2Θ

�
þ cos2Θ

4

�
ðω10σÞ2: ð31Þ

In the above expressions for Fx and Fz, we disregard a
small error along the z direction, which is higher order
in ω10σ.
In case of a qubit state vector initially aligned along

the y axis, the state vector remains close to the y axis, and
after each free precession acquires an error in the x
direction δxk ≃ ω10ðδtk − δtk−1Þ. This error is then rotated
by the remaining n − k pulses in the xz plane, resulting
in the accumulation of total gate error along the
x and z directions δX ¼ P

kδxk cosðΘ − kδθÞ and
δZ ¼ P

kδxk sinðΘ − kδθÞ. For a qubit state initially
aligned along the y axis, we find a gate fidelity

Fy ¼ 1 − δX2

4
− δZ2

4
: ð32Þ

Evaluating the summations for δX and δZ under the
assumption of uncorrelated δtk, we obtain

Fy ¼ 1 − ðω10σÞ2
4

�
Θ2

n
þ 1

�
: ð33Þ

The average gate error is computed from Eq. (27), and
we find

Favg ¼ 1 − ðω10σÞ2
6

�
Θ2

n
þ 1

�
: ð34Þ

2. Internal clock

Next, we evaluate gate fidelity for a system where
the SFQ pulses are clocked internally in such a way that
the time interval between pulses fluctuates independently
so that error in the arrival times of the individual pulses
accumulates incoherently. The free evolution is determined
by the time interval 2π=ω10 þ δtk, where δtk is normally
distributed and uncorrelated from pulse to pulse. Because
of the timing error, a qubit state vector initially aligned
along the z direction acquires a spurious component
δyk ¼ δtk sinðkδθÞ along the y axis. We thus find

δY2 ¼ ðω10σÞ2
P

ksin
2ðkδθÞ. Following the same pro-

cedure described in the previous section, we obtain a gate
fidelity

Fz ¼ 1 − nðω10σÞ2
8

�
1 − sin 2Θ

2Θ

�
: ð35Þ

For a pure state initially aligned along the x axis, we find

t2t1

t1 t2

t

t

(a)

(b)

2 3 4

2 10

2 10

FIG. 5. SFQ pulse timing jitter for two different clocking
modes. Ideal pulses (dashed lines) are separated by an interval
2π=ω10. Arrival times of the actual pulses (solid lines) fluctuate
due to timing jitter of the SFQ pulse generator. (a) For SFQ pulses
triggered from a stable external clock, the timing jitter per pulse is
constant. Pulse arrival times are normally distributed about the
ideal pulse times with a constant width σ. (b) For SFQ pulses
generated internally from a clock ring, timing errors accumulate
incoherently, leading to a

ffiffiffi
k

p
degradation of timing jitter for the

kth pulse.
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Fx ¼ 1 − nðω10σÞ2
8

�
1þ sin 2Θ

2Θ

�
: ð36Þ

For states initially aligned along the y axis, error
accumulates along both the x and z directions, as discussed
in the previous section. Evaluating the corresponding gate

errors δX2 and δZ2, we find

Fy ¼ 1 − X2

4
− Z2

4
≃ 1 − nðω10σÞ2

4
: ð37Þ

The gate fidelity averaged over all qubit states is given by

Favg ¼ 1 − nðω10σÞ2
6

: ð38Þ

We numerically evaluate SFQ gate error in the presence of
timing jitter as a function of rotation angle Θ for pure initial
states aligned along directions α¼fx;y;zg. Here we take
σ ¼ 0.2 ps and n ¼ 100. For a given realization of timing
jitter fδtkg, we calculate the overlap of the final qubit state
with the corresponding state obtained by the ideal gate,
Eq. (16), and then we average the overlap over 104

realizations of fδtkg. The results are shown in the upper
and lower panels of Fig. 6 for external and internal gating of
the SFQ pulses, respectively. The simulation results are

plotted as points, and the lines represent the analytical
expressions derived above.

C. Leakage to higher energy levels of the qubit

Finally, we analyze the effect of weak qubit anharmo-
nicity on SFQ gate fidelity. We treat the qubit as a three-
level system with anharmonicity η ¼ ðω10 − ω21Þ=ω10.
The Hamiltonian is given by Eqs. (13) and (14). The
corresponding time evolution operator is a three-
dimensional unitary matrix, and the definition for the
average fidelity has to be modified accordingly.
However, since we are interested in averaging over the
two-level qubit subspace of the system Hilbert space, the
average fidelity reduces to [26]

FavgðU id;UGÞ ¼
TrfU†

GPUGPg þ jTrfPU†
idUGgj2

6
; ð39Þ

where P is the projection operator on the qubit subspace.
This expression for fidelity is consistent with Eq. (27),
provided we use the following modified three-dimensional
unitary operator to describe evolution under the ideal gate:

U id ¼

0
B@

cosðΘ=2Þ sinðΘ=2Þ 0

− sinðΘ=2Þ cosðΘ=2Þ 0

0 0 1

1
CA: ð40Þ

We evaluate the error of a Θy gate due to the presence of
the second excited state by summing the spurious ampli-

tude of the j2i state induced by pulse k as δψ jji
2;k ¼

exp½2πiηðn − kÞ�ðδθ= ffiffiffi
2

p Þψ jji
1;k−1, where ψ

jji
1;k−1 is the prob-

ability amplitude of the qubit being in the first excited state
at the time of pulse k if it was initially in state jji, with
j ¼ 0, 1. Here the factor exp½2πiηðn − kÞ� represents the
phase acquired by the second excited state over the
remainder of the sequence following the kth pulse.
Performing summation over n SFQ pulses, we obtain
the probability of excitation to the second excited state as

Pjji
2 ¼ Θ2

8n2

���� 1 − einð2πηþδθ=2Þ

1 − eið2πηþδθ=2Þ − ð−1Þj 1 − einð2πη−δθ=2Þ

1 − eið2πη−δθ=2Þ

����
2

:

ð41Þ

Here we assume that the j1i-state amplitudes ψ j0i
1;k ¼

sinðkδθ=2Þ and ψ j1i
1;k ¼ cosðkδθ=2Þ are not significantly

modified by the small amount of leakage to the second
excited state, and we disregard direct j0i → j2i transitions.
The numerically evaluated curves for P2 in Fig. 3 are well
described by Eq. (41) for n ≳ 10. In particular, the fidelity
decreases as n−2 for large n, in addition to displaying an
oscillating component that is more pronounced for smaller
gate rotation angle Θ. In Fig. 7, we present average gate

FIG. 6. Dependence of gate error due to pulse timing jitter on
rotation angle Θ for SFQ pulses generated by an external clock
(top panel) and an internal clock (bottom panel). Here
the rotation is realized from n ¼ 100 pulses, and the standard
deviation of the pulse timing jitter is σ ¼ 0.2 ps. Solid lines
represent the analytical expressions for Fα, while the points are
obtained from numerical simulations of 104 realizations of pulse
timing jitter.
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error as a function of anharmonicity η for ðπ=2Þy and πy
gates realized using n ¼ 100 SFQ pulses. The infidelity
drastically decreases for η≳ 1=n and then exhibits a slower
decrease with a minimum at η ¼ 1=2. The oscillations of
1 − Favg have the periodΔη ∼ 1=n and nearly disappear for
a πy rotation. In this figure, we also plot the j2i-state
occupation Pjji

2 following the ðπ=2Þy rotation for the qubit
initially in state jji. Comparison of our numerical calcu-

lations of Pjji
2 with Eq. (41) shows that the two agree well

for jηj≳ 1=n.

IV. CONCLUSION

Our simulations thus indicate that errors due to SFQ
timing jitter and weak qubit anharmonicity are roughly
of the same order of about 10−3 for SFQ pulse trains
consisting of around 100 pulses, corresponding to 20 ns for
a π=2 rotation of a 5-GHz qubit. While these errors are non-
negligible, they are nevertheless small enough to enable
robust qubit control with fast gates at error levels below the
threshold for a fault-tolerant superconducting surface code
[3]. Gate errors could be suppressed further by efforts to
improve the timing stability of the SFQ circuit or by simple
circuit redesign to increase qubit anharmonicity. Here we
attempt to analyze only the simplest SFQ pulse trains.
State-of-the-art SFQ timing generators should allow the
realization of robust sequences with arbitrary interpulse
delays. We anticipate that optimal control tools of the sort

used to optimize microwave-based single-qubit gates [14]
and fast two-qubit gates [15] could also be employed to
engineer SFQ sequences with interpulse delays designed
to suppress j2i-state errors and increase gate speed and/or
fidelity over the naive gate sequences considered here.
Because of the technical complexities of transmitting

SFQ pulses from chip to chip, the practical realization of
SFQ-based qubit gates will require the on-chip integration
of the qubit circuit with at least a handful of SFQ elements.
While in the past the high static dissipation of SFQ circuits
has presented an obstacle to millikelvin-temperature
operation, the recent development of low-power biasing
schemes for reciprocal quantum logic [28] and energy-
efficient SFQ logic [29] opens the door to the integration
of SFQ and qubit circuits on the same chip. Care must be
taken to isolate the qubit circuit from nonequilibrium
quasiparticles generated in the SFQ control circuit; how-
ever, quasiparticle poisoning of the qubit circuit can be
mitigated by avoiding direct galvanic connection between
the signal and ground traces of the SFQ and qubit circuits.
The ability to generate fluxons in close proximity to the
qubit circuit will provide a high degree of robustness to
the SFQ-based rotations, due to the quantization of flux
associated with the SFQ pulses.
In conclusion, we describe a method for the high-fidelity

coherent manipulation of superconducting qubit and linear
cavity modes using resonant trains of SFQ pulses. The SFQ
pulse trains can be generated locally in the qubit cryostat
without the need for an external microwave generator.
Taken together with a recent proposal to map the quantum
information in a cQED circuit to a binary digital output
using a Josephson microwave photon counter [13], this
work points a direction toward the integration of large-scale
superconducting quantum circuits with cold control and
measurement circuitry based on SFQ digital logic.

ACKNOWLEDGMENTS

We thank B. L. T. Plourde for helpful discussions.

[1] J. Clarke and F. K. Wilhelm, Superconducting quantum bits,
Nature (London) 453, 1031 (2008).

[2] M. H. Devoret and R. J. Schoelkopf, Superconducting
circuits for quantum information: An outlook, Science
339, 1169 (2013).

[3] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.
Cleland, Surface codes: Towards practical large-scale quan-
tum computation, Phys. Rev. A 86, 032324 (2012).

[4] R. Barends et al., Superconducting quantum circuits at the
surface code threshold for fault tolerance, Nature (London)
508, 500 (2014).

[5] K. K. Likharev and V. K. Semenov, RSFQ logic/memory
family: A new Josephson-junction technology for sub-
terahertz-clock-frequency digital systems, IEEE Trans.
Appl. Supercond. 1, 3 (1991).

FIG. 7. Dependence of gate error on qubit anharmonicity
η for ðπ=2Þy (solid line) and πy (dash-double-dot line) rotations.
For comparison, the occupation probability of the j2i state is
shown for initial ground Pj0i

2 and excited Pj1i
2 qubit states in the

case of the ðπ=2Þy rotation. The average error always exceeds
the smallest of Pj0i

2 and Pj1i
2 . The number of pulses to perform the

rotation is n ¼ 100. The presented curves Pj0i
2 and Pj1i

2 are
obtained by numerically solving the evolution of the initial
ground and excited states under the SFQ pulse train, but these
curves are nearly indistinguishable from those obtained from
analytical expression (41) for η≳ 0.01 (not shown).

ACCURATE QUBIT CONTROL WITH SINGLE FLUX … PHYS. REV. APPLIED 2, 014007 (2014)

014007-9

http://dx.doi.org/10.1038/nature07128
http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1126/science.1231930
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1038/nature13171
http://dx.doi.org/10.1109/77.80745
http://dx.doi.org/10.1109/77.80745


[6] P. Bunyk, K. Likharev, and D. Zinoviev, RSFQ technology:
Physics and devices, Int. J. High Speed Electron. Syst. 11,
257 (2001).

[7] T. Ohki, M. Wulf, and M. F. Bocko, Picosecond on-chip
qubit control circuitry, IEEE Trans. Appl. Supercond. 15,
837 (2005).

[8] J. Hassel, P. Helistö, H. Seppä, J. Kunert, L. Fritzsch, and
H.-G. Meyer, Rapid single flux quantum devices with
selective dissipation for quantum information processing,
Appl. Phys. Lett. 89, 182514 (2006).

[9] M. G. Castellano, F. Chiarello, R. Leoni, G. Torrioli, P.
Carelli, C. Cosmelli, M. Khabipov, A. B. Zorin, and D.
Balashov, Rapid single-flux quantum control of the energy
potential in a double SQUID qubit circuit, Supercond. Sci.
Technol. 20, 500 (2007).

[10] A. Fedorov, A. Shnirman, G. Schön, and A. Kidiyarova-
Shevchenko, Reading out the state of a flux qubit by
Josephson transmission line solitons, Phys. Rev. B 75,
224504 (2007).

[11] K. G.Fedorov,A. V.Shcherbakova,M. J.Wolf,D.Beckmann,
andA. V. Ustinov, Fluxon readout of a superconducting qubit,
Phys. Rev. Lett. 112, 160502 (2014).

[12] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa,
On-chip RSFQ microwave pulse generator using a multi-
flux-quantum driver for controlling superconducting qubits,
Physica (Amsterdam) 470C, 1550 (2010).

[13] L. C. G. Govia, E. J. Pritchett, C. Xu, B. L. T. Plourde, M. G.
Vavilov, F. K. Wilhelm, and R. McDermott, High-fidelity
qubit measurement with a microwave photon counter (to be
published).

[14] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K.
Wilhelm, Simple pulses for elimination of leakage in weakly
nonlinear qubits, Phys. Rev. Lett. 103, 110501 (2009).

[15] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K. Wilhelm,
Optimal control methods for rapidly time-varying Hamil-
tonians, Phys. Rev. A 84, 022307 (2011).

[16] R. C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander,
E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, H. Wang,
M. Weides, J. Wenner, T. Yamamoto, A. N. Cleland, and
J. M. Martinis, Fast tunable coupler for superconducting
qubits, Phys. Rev. Lett. 106, 060501 (2011).

[17] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad,
J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J.

Wineland, Randomized benchmarking of quantum gates,
Phys. Rev. A 77, 012307 (2008).

[18] J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S.
Bishop, A. A. Houck, B. R. Johnson, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, Randomized benchmarking
and process tomography for gate errors in a solid-state qubit,
Phys. Rev. Lett. 102, 090502 (2009).

[19] A. V. Rylyakov and K. K. Likharev, Pulse jitter and timing
errors in RSFQ circuits, IEEE Trans. Appl. Supercond. 9,
3539 (1999).

[20] P. Bunyk and D. Zinoviev, Experimental characterization of
bit error rate and pulse jitter in RSFQ circuits, IEEE Trans.
Appl. Supercond. 11, 529 (2001).

[21] M. Steffen, J. M. Martinis, and I. L. Chuang, Accurate
control of Josephson phase qubits, Phys. Rev. B 68,
224518 (2003).

[22] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from
the Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[23] J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R.
Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Sup-
pressing charge noise decoherence in superconducting
charge qubits, Phys. Rev. B 77, 180502(R) (2008).

[24] R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y.
Chen, Y. Yin, B. Chiaro, J. Mutus, C. Neill, P. O’Malley, P.
Roushan, J. Wenner, T. C. White, A. N. Cleland, and J. M.
Martinis, Coherent Josephson qubit suitable for scalable
quantum integrated circuits, Phys. Rev. Lett. 111, 080502
(2013).

[25] T. Ohki, M. Wulf, and M. J. Feldman, Low-Jc rapid single
flux quantum (RSFQ) qubit control circuit, IEEE Trans.
Appl. Supercond. 17, 154 (2007).

[26] L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of
quantum operations, Phys. Lett. A 367, 47 (2007).

[27] M. D. Bowdrey, D. K. L. Oi, A. J. Short, K. Banaszek, and
J. A. Jones, Fidelity of single qubit maps, Phys. Lett. A 294,
258 (2002).

[28] Q. Herr, A. Herr, O. Oberg, and A. Ioannidis, Ultra-low-power
superconductor logic, J. Appl. Phys. 109, 103903 (2011).

[29] O. A. Mukhanov, Energy-efficient single flux quantum
technology, IEEE Trans. Appl. Supercond. 21, 760 (2011).

R. MCDERMOTT AND M. G. VAVILOV PHYS. REV. APPLIED 2, 014007 (2014)

014007-10

http://dx.doi.org/10.1142/S012915640100085X
http://dx.doi.org/10.1142/S012915640100085X
http://dx.doi.org/10.1109/TASC.2005.850076
http://dx.doi.org/10.1109/TASC.2005.850076
http://dx.doi.org/10.1063/1.2382733
http://dx.doi.org/10.1088/0953-2048/20/6/003
http://dx.doi.org/10.1088/0953-2048/20/6/003
http://dx.doi.org/10.1103/PhysRevB.75.224504
http://dx.doi.org/10.1103/PhysRevB.75.224504
http://dx.doi.org/10.1103/PhysRevLett.112.160502
http://dx.doi.org/10.1016/j.physc.2010.05.159
http://dx.doi.org/10.1103/PhysRevLett.103.110501
http://dx.doi.org/10.1103/PhysRevA.84.022307
http://dx.doi.org/10.1103/PhysRevLett.106.060501
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1103/PhysRevLett.102.090502
http://dx.doi.org/10.1109/77.783794
http://dx.doi.org/10.1109/77.783794
http://dx.doi.org/10.1109/77.919399
http://dx.doi.org/10.1109/77.919399
http://dx.doi.org/10.1103/PhysRevB.68.224518
http://dx.doi.org/10.1103/PhysRevB.68.224518
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevLett.111.080502
http://dx.doi.org/10.1103/PhysRevLett.111.080502
http://dx.doi.org/10.1109/TASC.2007.898701
http://dx.doi.org/10.1109/TASC.2007.898701
http://dx.doi.org/10.1016/j.physleta.2007.02.069
http://dx.doi.org/10.1016/S0375-9601(02)00069-5
http://dx.doi.org/10.1016/S0375-9601(02)00069-5
http://dx.doi.org/10.1063/1.3585849
http://dx.doi.org/10.1109/TASC.2010.2096792

