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We address the tunneling current in a graphene/h-BN/graphene heterostructure as a function of the
twisting between the crystals. The twisting induces a modulation of the hopping amplitude between the
graphene layers that provides the extra momentum necessary to satisfy momentum and energy conservation
and to activate coherent tunneling between the graphene electrodes. Conservation rules limit the tunneling
to states with wave vectors lying at the conic curves defined by the intersection of two Dirac cones shifted
in momentum and energy. There is a critical voltage where the intersection is a straight line, and the joint
density of states presents a maximum. This peak in the number of states where both the wave vectors and
the energies are matched reflects in a peak in the tunneling current and in a negative differential
conductivity.
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I. INTRODUCTION

The same techniques used for obtaining graphene layers
[1] can also be applied to obtain two-dimensional (2D)
crystal structures of highly anisotropic materials such as
hexagonal boron nitride (h-BN) [2] or transition metal
dichalcogenides [3]. Once isolated, atomic layers of differ-
ent 2D crystals can be reassembled layer by layer to create
heterostructures with the designed electrical properties [4].
In this direction, recently, graphene/h-BN/graphene [5–7]
and graphene-WS2 [8] heterostructures have been realized
and proved as prototype graphene-based field-effect tun-
neling transistors. At high voltages, the graphene/h-BN/
graphene structure shows a negative differential conduct-
ance [7] that has potential applications for logic devices.
Conservation of energy and momentum prevents finite-

voltage coherent tunneling between 2D-electron gases with
circular symmetric dispersion. Coherent tunneling occurs
only when the Fermi surfaces of the electron gases are
closely aligned [9].
In this work, we show that, in graphene/h-BN/graphene

(G/BN/G) heterostructures, the lattice mismatch between
graphene and h-BN induces an unavoidable twisting and a
spatial modulation of the hopping amplitude between the
graphene electrodes. This result translates into a finite-bias
coherent-tunneling current between the graphene layers
and a negative differential conductivity. We find that, even
in the case of perfect crystal arrangement between the
graphene layers, the always-present misalignment between
graphene and h-BN makes possible coherent tunneling
between the graphene electrodes. The finite-bias sharp peak
and the subsequent negative differential conductivity that
occurs in the G/h-BN/G heterostructure suggests that these

systems, when integrated with a third capacitive terminal
gate, could have a large on-off switching ratio and therefore
a big potential for high-frequency operation.

II. GEOMETRY AND MODEL

We consider a trilayer structure consisting of top (T) and
bottom (B) graphene monolayers separated by L mono-
layers of h-BN. T and B graphene layers are rotated angles
θT and θB, respectively, with respect to the central h-BN
layers, and they have a lattice parameter mismatch δ ¼
1.8% with h-BN. We consider that both graphene layers are
incommensurate with the central h-BN and there are not
crystal deformations associated with the commensurate-
incommensurate transitions that could occur at extremely
small twisting angles [10–12]. For small twisting angles,
the tunneling amplitude between the layers varies over
distances much larger than the lattice constant, and elec-
tronic states in Dirac points K and K0 are effectively
decoupled. Therefore, we describe each valley separately.
Near the Dirac point K ¼ ðkD; 0Þ with kD ¼ 4π

3a, the
Hamiltonians for the T and B graphene layers are [13,14]

hTðBÞk ¼ ℏvF

�
0 keiðθk−θTðBÞÞ

ke−iðθk−θTðBÞÞ 0

�
; ð1Þ

where vF ≈ 106 m=s is the graphene Dirac velocity, k is
the momentum measured from the layer’s Dirac point, and
θk is the angle formed by the momentum with the x axis.

Hamiltonian hTðBÞk acts on the amplitude of the wave
function on the sublattices A and B of the graphene layer
T ðBÞ. The electronic structure of each h-BN monolayer is
described by a gapful Dirac-like Hamiltonian that acts on
the B and N atomic basis:*brey@icmm.csic.es
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hBNk ¼
�

Δ1 ℏvBNkeiθk

ℏvBNke−iθk −Δ2

�
; ð2Þ

where vBN describes the in-plane hopping amplitude
between B and N atoms, Δ1 þ Δ2 is the energy gap of
h-BN, and Δ1 is the band offset of the conduction band,
boronlike, of h-BN with respect to the graphene Dirac
point. The different h-BN layers are vertically ordered in an
eclipse (AA0) way, and the atoms are coupled by a vertical
hopping γBN. This vertical order is a consequence of the
bond polarity in h-BN.
Top and bottom graphene layers are coupled with the

first and last h-BN layers through the spatially modulated
hopping matrices VðθT; δÞ and VðθB; δÞ, respectively,
that in the low twisting-angle limit (θ < 10°) have the
form [15–17]

Vðθ; δÞ ¼ t̂
3

X
i¼1;3

Tie−iqiðθ;δÞ⋅r; ð3Þ

with T1 ¼ ð1
1

1
1
Þ, T2 ¼ ðη�η 1

η�Þ, T3 ¼ ð ηη� 1
ηÞ, t̂ ¼ ðtCB

0
0
tCN
Þ, and

η ¼ eið2π=3Þ, tCB and tCN being the C to B and C to N
hopping amplitudes, respectively. The hopping matrices Ti
do not depend on geometrical factors. All the information
on δ and θ is in the qi’s:

q1ðθ; δÞ ¼ kDðδ;−θÞ;

q2ðθ; δÞ ¼ kD

�
−

ffiffiffi
3

p

2
θ þ 1

2
δ;−

1

2
θ −

ffiffiffi
3

p

2
δ

�
;

q3ðθ; δÞ ¼ kD

� ffiffiffi
3

p

2
θ þ 1

2
δ;−

1

2
θ þ

ffiffiffi
3

p

2
δ

�
: ð4Þ

The three wave vectors qi have the same modulus and
define a periodic hexagonal modulation of the hopping
amplitude. This periodicity describes the spatial distribu-
tion of the stacking of the graphene C atoms with the B and
N atoms of h-BN.

III. EFFECTIVE HAMILTONIAN

We obtain an effective bilayer graphene Hamiltonian
by integrating out the orbital degree of freedom in the h-BN
layer:

Ĥk ¼
�
hT 0

0 hB

�
þ
�

0 V̂

V̂† 0

�
; ð5Þ

where

V̂ ¼ t̂VðθT; δÞðHBN
k Þ−1Vð−θB;−δÞt̂ ð6Þ

and HBN
k is the Hamiltonian of the L-layer h-BN slab. For

wave vectors k, of the order of the separation between

the Dirac points of the T and B graphene layers, jqij, the
diagonal terms Δ1 and Δ2 are the leading contributions in
the h-BN Hamiltonian hBNk . For those momenta it is a very
good approximation to set vBN ¼ 0 in hBNk , resulting in the
following T to B graphene tunneling modulation:

V̂ ¼ 1

9

X
i;j¼1;3

T i;jeiGi;jðθT ;θBÞ⋅r ð7Þ

with

Gi;jðθT; θBÞ ¼ qiðθT; δÞ þ qjð−θB;−δÞ ð8Þ

and

T i;j ¼
γL−1BN

ðΔ1Δ2ÞL
t̂Ti

�ΔL
2 0

0 ΔL
1

�
Tjt̂: ð9Þ

The three tunneling processes linking T graphene with
h-BN combine with the three connecting h-BN with B
graphene. This results in nine Fourier components of the
tunneling modulation between T and B graphene layers.
The three diagonal wave vectors fGiig have a modulus
Gd ¼ kDjθT − θBj and vanish when T and B layers are
aligned. The six nondiagonal transfer momenta have
modulus Gnd ¼ kD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2T þ θ2B þ θTθB

p
. Therefore, even

when the two graphene layers are perfectly aligned, the
misalignment with the central h-BN layer makes possible
tunneling processes between the graphene electrodes. Note
that, because the T and B graphene layers have the same
lattice parameter, the wave vectors fGijg are independent
on the graphene/h-BN lattice mismatch δ.

IV. TUNNELING CURRENT IN G/h-BN/G
HETEROSTRUCTURE

In the presence of an applied voltage V, between the T
and B graphene electrodes, the tunneling current can be
obtained in the linear response theory with the tunneling
term treated as the perturbation [18]:

IðVÞ ¼ e
ℏ
gsgv

X
k;fi;jg
α;β

jtα;βðk;kþGijÞj2
Z þ∞

−∞

dω
2π

Aαðk;ℏωÞ

×AβðkþGij;ℏωþ eVÞ½nFðℏωÞ−nFðℏωþ eVÞ�;
ð10Þ

where gs ¼ 2 and gv ¼ 2 account for the spin and valley
degeneracy, respectively, α ¼ � is the band index,
nFðϵÞ ¼ fexp½ðϵ − EFÞ=kBT� þ 1g−1 is the Fermi factor,
Aαðk;ℏωÞ is the graphene spectral function for band α, and
tα;βðk;kþGijÞ is the tunneling matrix element between
states in the T and B unperturbed graphene layers:
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tα;βðk;kþGijÞ ¼ ϕ�
αðkÞT i;jϕβðkþGijÞ; ð11Þ

ϕαðkÞ ¼ 1ffiffi
2

p ð 1
αeiθkÞ being the Dirac Hamiltonian eigenfunc-

tion with momentum k and energy αℏvFk. In the previous
expressions, EF is the Fermi energy of the T and B
graphene layers that we consider equally doped. In the
one-electron picture, the spectral function should be pro-
portional to a δ function; in our calculations, Aα is
approximated by a Lorentzian function centered on the
band energy αℏvFk and with a half width at half maximum
ℏ=τ. In the calculation, we consider the graphene electrodes
to be at zero temperature. This temperature is appropriated
because, for typical graphene carrier densities, the Fermi
energy is much larger than room temperature.
The tunneling processes corresponding to different

transfer wave vectors Gi;j contribute independently to
the current, and, because of the circular symmetry of the
graphene band structure, their contribution to the current
depends only on their modulus jGi;jj. Therefore, the
relevant quantities or the tunneling current are the two
moduli Gd and Gnd.
Because we are considering small twisting angles, we do

not observe any features in the I-V curves associated with
commensurability, which may occur [19] between the
moiré superlattices that emerge in top [qiðθT; δÞ] and
bottom [qið−θB;−δÞ] graphene layers due to the coupling
with the h-BN central layer.
It is important to note that there is a current between the

two graphene layers, because they are rotated with respect
to the central h-BN layer. In systems with circular sym-
metric band structure, only the presence of the unavoidable
disorder or phonons makes possible the observation of
finite-voltage incoherent tunneling between two 2D-
electron gases separated by a barrier. On the contrary, in
the trilayer G/BN/G heterostructure, the spatial modulation
of the hopping amplitude between T and B layers provides
an extra wave vector that make possible the conservation of
momentum and energy in the coherent tunneling process.
It is possible to get some insight on the different

tunneling contributions by analyzing the momentum and
energy conservation, together with the Fermi occupation of
the T and B layers. In the linear regime, the conduction is
different from zero only if the relation ℏvFjGi;jj < EF is
satisfied. That implies finite conductance for twisting
angles inside the regions defined by the relations
ℏvFkDjθT þ θBj < EF or ℏvFkD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2T þ θ2B − θTθB

p
< EF.

In general, except for very small twist angles, it is appro-
priate to assume that both Gnd and Gd are smaller than kF,
and therefore in the linear regime the current is zero.
At finite voltage, energy and momentum conservation

defines a curve in reciprocal space for the initial tunneling
states in the top layer. In general, these curves are the conic
sections defined by the intersection of two Dirac cones
shifted a momentum Gi;j and an energy eV. At small
voltages, the tunneling connects conduction-band states,

and the permitted tunneling wave vectors define a hyperbola.
At larger voltages, electrons in the valence band of the top
layer can tunnel to the conduction-band states of the bottom
layer, and the allowed momentums form an ellipse. Both
hyperbola and ellipse lengths increase with the voltage, and
the current should increase continuously with voltage.
However, there is a critical voltage where the hyperbola
transforms to an ellipse adopting the form of a straight
segment, see Fig. 1. At this critical voltage Vc ¼ ℏvFjGi;jj,
the cones intersect along two parallel lines, and there is a
spike in the joint density of states that translates to a peak in
the tunneling current. This peak is the origin of the negative
differential conductivity in this heterostructure.
The states defined by these conic curves are further

limited by the Fermi occupation. That imposes a minimum
voltage Vmin ¼ ℏvFðjGi;jj − 2kFÞ for the existence of a
tunneling current. The Fermi occupation also constrains the
wave vectors of the states that tunnel at Vc to be in the
interval jGi;jj − kF < k < kF.

V. NUMERICAL RESULTS

A precise description of the tunneling current requires
the evaluation of the tunneling matrix elements, Eq. (11),
which depends on the numerical values of the tight-binding
parameters. We assume transferability of the tight-binding
parameters [20], and for the trilayer structure we use the
hopping parameters obtained recently for graphene/h-BN
from ab initio calculations by Jung et al. [21]:
Δ1 ¼ 3.33 eV, Δ2 ¼ 1.49 eV, tCB ¼ 0.432 eV, and

FIG. 1. Schematic representation of tunneling processes occur-
ring in the G/h-BN/G heterostructure. Blue and green regions
mark occupied and empty states, respectively. The arrows
indicate a tunneling event from the T layer (initial point) to
the B layer (end point). These points are shifted in energy by eV.
Energy and momentum conservation laws define permitted initial
curves in k space which are plotted in yellow. (a) At the minimum
voltage for tunneling, only a point in k space can tunnel. (b) By
increasing the voltage, the conservation curve is a hyperbola that
resides in the conduction band. (c) At a critical voltage, the
hyperbola collapses in a straight line, and a peak in the joint
density of states occurs. (d) At larger voltages, the straight line
becomes an ellipse, now residing in the valence band.
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tCN ¼ 0.29 eV. The separation between T and B graphene
layers is ≈0.6 nm, large enough to neglect direct hopping
between them. Note that the position of the peak is fixed by
the graphene Dirac velocity and the twisting angles and
does not depend on particular values of the tight-binding
parameters.
In Fig. 2, we plot the current for a G/h-BN/G hetero-

structure with different twisting angles. We obtain that, at
small angles, the tunneling processes associated with the
transfer of diagonal momentumsGi;i have a practically null
contribution to the current. The main tunneling current is
associated with the nondiagonal momentum, and therefore
we measure the bias voltages in units of ℏvFGnd.
In the inset in the upper part of Fig. 2, we show the

intraband contribution to the current. The interband con-
tribution is activated at voltage ℏvFðjGndj − 2kFÞ and is
zero for voltages larger than Vc ¼ ℏvFjGndj. For V > Vc

all the tunneling current has its origin in interband
processes. Both inter- and intraband tunneling show a
strong peak at this critical voltage. As discussed above, this
peak is related to a big increase of the joint density of states
occurring at this voltage.

At Vc the interband peak is much stronger than the
intraband one. This is because in the intraband tunneling
only states with wave vectors in a segment of length kF
contribute the current. However, for interband tunneling the
number of wave vectors contributing to tunneling is
proportional to Gnd − kF. Then, the strong peak in the
IðVÞ curve is due to valence-band-to-conduction-band
tunneling processes. In Fig. 2(a), we see that, as the
twisting angles become larger, the value of the momentum
transfer increases and with it the intensity of the negative
differential peak. Finally, the numerical results confirm that
the negative differential conductivity peak exists even when
both graphene layers are fully aligned (lower panel
in Fig. 2).

VI. IN-PLANE MAGNETIC FIELD

A magnetic field applied parallel to the graphene layers
affects differently the distinct Fourier components of the
interlayer tunneling. Then we expect that the magnetic field
splits the negative differential conductivity peak. The
experimental observation of this effect would be a defini-
tive indication of the coherent nature of the tunneling.
The magnetic field B∥ ¼ B∥ðcos β; sin β; 0Þ is described

in the Landau gauge: A ¼ B∥ðsin βz;− cos βz; 0Þ. For
isolated graphene layers, an in-plane magnetic field shifts
the position of the Brillouin zones, and its effect can be
canceled by distinct gauge transformation for the two
graphene sheets. Thus, in the absence of tunneling the
magnetic field has no physical relevance. When electrons
can hop between the graphene layers, the motion of the
carriers perpendicular to the magnetic field is affected by
B∥ [22–24], and the shift in the k space reflects in a shift in
the tunneling wave vectors:

Gi;j → Gi;j −
d
l2
∥
ðsin β;− cos βÞ; ð12Þ

l∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB∥

p
being the magnetic length and d the

separation between the graphene layers. The modulus of
the new wave vectors Gi;j depends both on the magnitude
of B∥ and on its in-plane orientation.
The position of the peak in the IðVÞ curve is determined

by the modulus of the transfer wave vector. For B∥ ¼ 0 the
six nondiagonal wave vectors have the same modulus Gnd,
and only a peak appears; see Fig. 2. The magnetic field
modifies the modulus of the transfer wave vectors, and the
peak in the IðVÞ curve broadens and splits in the presence
of B∥.
In Fig. 3, we plot the effect of B∥ on the IðVÞ peak, for a

particular G/h-BN/G heterostructure. The negative differ-
ential peak splits in three clear peaks, corresponding to
three different transfer wave vectors. The other three wave
vectors produce only small shoulders visible only in
derivates of the curve. The intensity and resolution of
the peaks depends on the tunneling amplitude, on the
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FIG. 2. Nonlinear current for G/h-BN/G. The barrier region
consists of a h-BN monolayer. The density of electrons in both
layers is n ¼ 5 × 1012 cm−2. In (a), we fix the top-layer twist
angle to θT ¼ 0.5° and plot the current for different rotation
angles of the bottom layer θB. Both angles are measured with
respect to the central h-BN layer. In the inset, we show the
conduction to conduction (α ¼ þ to β ¼ þ) contribution to the
current. In (b), both graphene layers are rotated the same angle
θT ¼ θB ¼ 3°. The peak in the IðVÞ indicates that coherent
tunneling and negative differential conductivity can occur even
when both graphene layers are fully aligned, provided there is a
twisting with the h-BN layer. In the calculation, we use a
quasiparticle lifetime value ℏ=τ ¼ 2.5 meV.
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strength of B∥, on the modulus of the transfer momentum,
and on the in-plane orientation of the magnetic field.
In order to observe the effect of the magnetic field, the

quantity dl−2 should be comparable to the value of the
modulus of the momentum transfer Gnd. This can be
achieved by increasing the number of h-BN layers or
using a very strong magnetic field. The results presented in
Fig. 3 correspond to just one h-BN layer, and the magnetic
field corresponding to dl−2

∥ a ¼ 5 is of the order of 80 T.
By increasing the number of h-BN layers, the separation
between graphene layers becomes larger, and the magnetic
field required for observing the splitting of the peak should
be more accessible.
We note that recent field effect tunneling [6] and negative

differential conductance [7] experiments in G/h-BN/G
heterostructures have been explained by assuming
disorder-induced momentum conservation relaxation and
therefore noncoherent tunneling. Also, recently, Feenstra
et al. [25,26] considered the tunneling between n- and
p-doped graphene layers separated by a dielectric barrier.
That work applied the transfer Hamiltonian formalism to
model the tunneling between misoriented graphene layers,
and the information on the dielectric crystal structure is
neglected.
In summary, we have studied the tunneling current

between two graphene layers separated by a h-BN layer.
The twisting of the layers induces a spatial modulation of
the hopping amplitude between the graphene electrodes
that provide extra wave vectors to the tunneling process.
These extra momenta make possible the conservation of
energy and momentum and activate coherent tunneling.
Because of the Dirac-like linear dispersion of graphene, the

wave vectors that conserve energy and momentum in the
tunneling process can be defined as the intersection of two
Dirac cones shifted in momentum and energy. At a critical
voltage, the intersection conic curves collapse in a straight
segment, and there is a strong peak in the joint density of
states and in the tunneling current.
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Note added.—We recently learned about the experimental
work of K. Novoselov et al., where possible signatures of
negative differential conductance and coherent tunneling in
G/h-BN/G heterostructures were reported [27].
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