PHYSICAL REVIEW APPLIED 19, 064081 (2023)

Quantum Computing is Scalable on a Planar Array of Qubits with Fabrication
Defects

Armands Strikis®,"-" Simon C. Benjamin®,"? and Benjamin J. Brown

3,4

lDepartment of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
? Quantum Motion, Pearl House, 5 Market Road, London N7 9PL, United Kingdom
* Centre for Engineered Quantum Systems, School of Physics, University of Sydney, New South Wales 2006,
Australia

* Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, University of Copenhagen, Copenhagen
2100, Denmark

® (Received 29 November 2021; revised 23 May 2023; accepted 2 June 2023; published 29 June 2023)

To successfully execute large-scale algorithms, a quantum computer will need to perform its elementary
operations near perfectly. This is a fundamental challenge since all physical qubits suffer a considerable
level of noise. Moreover, real systems are likely to have a finite yield, i.e., some nonzero proportion of
the components in a complex device may be irredeemably broken at the fabrication stage. We present a
threshold theorem showing that an arbitrarily large quantum computation can be completed with a vanish-
ing probability of failure using a two-dimensional array of noisy qubits with a finite density of fabrication
defects. To complete our proof we introduce a robust protocol to measure high-weight stabilizers to com-
pensate for large regions of inactive qubits. We obtain our result using a surface-code architecture. Our
approach is therefore readily compatible with ongoing experimental efforts to build a large-scale quantum

computer.

DOI: 10.1103/PhysRevApplied.19.064081

I. INTRODUCTION

Full-scale quantum information processing will require
a large number of physical qubits, to facilitate error-
correction protocols that will overcome errors experienced
by the machine [1]. An approach adopted by multiple
research teams across various platforms is to fabricate
a two-dimensional device with a large array of inter-
acting qubits realized on its surface [2—4]. However, as
we aim to produce larger devices with more physical
qubits, we are likely to find that some nonzero fraction
of the components we rely upon to realize qubits will
be highly imperfect, or will not function at all. We must
therefore find error-correction protocols that enable fault-
tolerant quantum computing using these flawed devices.
Such a method might even provide solutions to two closely
aligned problems: First, there is the challenge that even
when all components function nominally at the start of a

“armands.strikis@mansfield.ox.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOL

2331-7019/23/19(6)/064081(18)

064081-1

calculation, there may be mid-calculation events that lead
to long-lasting (if not permanent) defects in the system.
Examples include cosmic ray impacts within supercon-
ducting or silicon devices, or rare leakage or loss events
in ion trap or neutral atom arrays [5—10]. Second, in a
given platform it may be problematic to realize an unbro-
ken homogeneous two-dimensional plane of interlinked
qubits over very large scales; instead it may be desirable
to introduce void spaces through which control or power
line bundles, cooling channels, or other infrastructure can
pass. In effect, one would be deliberately engineering in
rare but large “defects” in the sense explored in this paper.

Quantum error correction can proceed by repeatedly
performing stabilizer measurements, specified by some
code, that identify the errors occurring over time [11-17].
These measurements produce a syndrome pattern that we
use to determine how to prevent errors at the logical level.
Provided the physical errors act locally and at a sufficiently
low rate, we can make the failure rate of a quantum compu-
tation arbitrarily small by increasing the size of the codes
we use. However, introducing a fixed architecture with a
finite density of fabrication defects would compromise our
ability to measure all of the stabilizers of the code. We
then require suitably adapted strategies to collect enough
syndrome information to recover the output of a quantum
computation reliably.

Published by the American Physical Society

https://orcid.org/0000-0003-4264-2995
https://orcid.org/0000-0002-7766-5348
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.19.064081&domain=pdf&date_stamp=2023-06-29
http://dx.doi.org/10.1103/PhysRevApplied.19.064081
https://creativecommons.org/licenses/by/4.0/

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

In this work we show how to perform quantum com-
putation with an arbitrarily small logical error rate using
a two-dimensional array of qubits and a finite density of
fabrication defects. We specifically consider error correc-
tion with the surface code [13,16], a code that is now
under intensive experimental development [18—20]. Effec-
tively, fabrication defects introduce punctures to the qubit
array, some of which may be very large, where we assume
we have no control over qubits within each puncture. An
essential component to obtain our result is the design of
a protocol to collect syndrome data reliably near to where
fabrication defects lie. Given this component, we show that
we can successfully complete a computation running on
the remaining intact qubits on the lattice with high proba-
bility, assuming these qubits experience errors at a suitably
low rate. Our result is proved assuming a phenomeno-
logical noise model capturing the key features of a noisy
quantum circuit where qubits experience local errors at a
low rate, and where measurements can give incorrect out-
comes if errors occur on the circuit elements used in their
readout circuits.

Earlier work has shown that single-shot quantum error-
correcting codes are intrinsically robust to fabrication
defects, or more generally, time-correlated errors [21].
However, known single-shot codes are realized in no fewer
than three dimensions. As such, their manufacture will
present technological challenges compared with their two-
dimensional counterparts. For small two-dimensional sys-
tems suffering fabrication defects, numerical results have
shown that the logical failure rate can be suppressed by
increasing the code distance [22—24]. However, it remains
to be shown whether these solutions scale to give an
arbitrarily low logical failure rate in the presence of a
finite density of fabrication defects. Indeed, it is com-
mented that some of these results may only demonstrate
a pseudothreshold [23]. This observation is consistent with
recent work that argues that a two-dimensional code with
a high density of static punctures, arranged in a frac-
tal pattern, will not demonstrate a finite threshold error
rate [25]. In the present paper we use analytical methods
together with a dynamic protocol to reliably learn the val-
ues of high-weight stabilizers. We thus build upon earlier
proposals [22—24] to obtain a threshold theorem for two-
dimensional systems suffering a finite rate of fabrication
defects.

The paper is structured as follows. In Sec. I we describe
error correction with fabrication defects and introduce a
protocol to measure syndrome data near to fabrication
defects. In Sec. I1I we introduce the technical tools we need
to prove a threshold theorem. In Sec. IV we argue that our
results are general to arbitrary quantum computations with
the surface-code model. We discuss the applicability of our
protocol to cosmic ray and other time-correlated errors in
Sec. V. In Sec. VI we conclude with a discussion on future
work.

II. ERROR CORRECTION WITH FABRICATION
DEFECTS

We begin by giving a brief overview of error cor-
rection with the surface code before explaining how we
adapt the system to compensate for fabrication defects.
We advise the reader looking for more details about the
review material on surface-code error correction to see
Refs. [13—15]. We define the surface code with a qubit
on each of the edges of a square lattice. It is a stabilizer
code with two types of stabilizer generators; star opera-
tors A, = [[,,5, Xe at vertices v and plaquette operators
By, = [1,cs, Ze at faces w where X, and Z, denote the stan-
dard Pauli matrices acting on qubit e, de denote the set of
vertices v on the boundary of edge ¢ and dw denote the set
of edges e on the boundary of face w. We can also define
two types of boundary, rough and smooth, that, respec-
tively, have modified weight-three Pauli-Z and Pauli-X
stabilizers where the lattice terminates [14,26]. The stabi-
lizers specify a code subspace spanned by state vectors |y)
satisfying A, |Y) = By, |v) = (+1)|¥). The distance of the
code d is the weight of the least weight nontrivial, i.e.,
nonidentity, Pauli logical operator where logical operators
commute with all of the stabilizer operators, but are not
themselves members of the Abelian group generated by
the stabilizers 4,, B,, € S. The weight of a Pauli operator
is the number of qubits in its nontrivial support.

Fault-tolerant error correction with the surface code
[14-16,27] is described by a (2 + 1)-dimensional space-
time lattice where the time axis runs in a direction orthogo-
nal to the two-dimensional planar qubit array that supports
the surface code. Stabilizer generators of the qubit array are
measured repeatedly over time to identify errors. We say
that we detect an error event when the outcome of a given
stabilizer differs over two consecutive measurements; thus
the location of the detection event, or just “event” for short,
is defined both in space and time. We call the configuration
of all the detection events on the space-time lattice the error
syndrome.

Errors on the surface code can be regarded as strings
in the space-time lattice that produce detection events at
their endpoints. Bit-flip and phase-flip errors that occur on
the qubit array over time produce strings that run paral-
lel to the surface code in space time. Measurement errors,
i.e., errors that cause a stabilizer measurement to return
the incorrect outcome, can be regarded as string segments
that run parallel with the temporal axis. In general, indi-
vidual errors compound to make longer strings. We correct
errors using the space-time picture by collecting a large
history of syndrome data. We look for a correction that
matches together pairs of nearby detection events, such
that the error, together with its correction, acts trivially
with the encoded information. This is done with a classical
software called a decoder. The minimum-weight perfect-
matching (MWPM) decoder [14—16,27] is one such tool

064081-2

QUANTUM COMPUTING IS SCALABLE...

PHYS. REV. APPLIED 19, 064081 (2023)

that operates by matching pairs of detection events with
error strings in a way that minimizes the total weight of
these strings. We consider this decoder in our proof for a
threshold. Of note, it has the capability of finding a cor-
rection that corresponds to the least-weight error that may
have caused a given syndrome.

A. Fabrication defects and superstabilizers

We introduce shells in the space-time lattice to detect
error events near to fabrication defects. Before we describe
shells, here, we first explain how fabrication defects man-
ifest themselves in the qubit array. We also describe
our protocol to measure high-weight superstabilizers that
enclose the punctures created by fabrication defects. In the
following subsection we explain how our robust method
for measuring superstabilizers in the qubit array will give
rise to shells in the space-time lattice.

We coarse grain the qubit array in terms of unit cells,
see Fig. 1(a). The unit cell consists of four elements; two
data qubits, one star operator, and one plaquette opera-
tor. This enables us to define our model for fabrication
defects: we say that a unit cell supports a fabrication defect
unless all of its components are intact. That is, its qubits,
and the circuitry and ancilla qubits used to measure sta-
bilizers all function correctly. However if even one of
the elements is not intact then, for the purposes of the
present paper, we assume that the entire set of four ele-
ments cannot be used. We also assume that we can use the
circuitry of intact unit cells to measure stabilizers with a
reduced support near to a fabrication defect. Specifically,

@ ®

[EXpliats]
C 3
_E@ 3

fr-ud S

FIG. 1. Dealing with fabrication defects. (a) A basic unit cell
of the lattice that consists of two qubits together with a single
star operator, shown in green, and a plaquette operator, blue,
enclosed in the dashed line. (b) We measure two high-weight
super stabilizers Ap and Bp to detect errors near to the punc-
ture P associated to the cluster of fabrication defects. Boundary
qubits e € 9P are marked by green spots and boundary plaque-
ttes w € 9P are shown in blue. The super stabilizer Ap can
be inferred from the product of Pauli-X measurements e € 9P,
and the other, Bp, is the product of Pauli-Z operators on the
qubits marked with a thick black line. We can infer the value
of Bp with the product of plaquettes w € 3P by the relationship

BP = HWEBP BW'

we make weight-three measurements near to fabrication
defects, where these measurements are contained in the
support of weight-four stabilizer measurements of an ideal
qubit array.

Effectively, fabrication defects give rise to punctures on
the lattice where the standard local stabilizer generators
of the ideal code cannot be measured. Nevertheless, it is
still useful to identify events at the endpoints of string-
like errors at the locations of these punctures. We therefore
need to use alternative strategies to determine the loca-
tions of events on areas of the lattice where fabrication
defects exist. Our protocol makes use of superstabiliz-
ers that enclose fabrication defects, as proposed in Refs.
[22—24]. Superstabilizers are supported on the boundary of
fabrication defects, and identify events inside the puncture.

To correct the surface code reliably, we need to mea-
sure the values of two high-weight stabilizer operators that
enclose each puncture P on the lattice; one star operator
and one plaquette operator. We construct a square bound-
ary of linear size that completely encloses the fabrication
defects, see Fig. 1(b). We denote the qubits and stabilizers
associated to the boundary with the set dP. We show the
boundary qubits of dP with green spots and its boundary
plaquettes in blue in Fig. 1(b). We minimize » such that
all of the qubits and plaquettes on the boundary dP are
intact and assume the small cluster of fabrication defects
that give rise to P is well separated from all other fabrica-
tion defects. The two boundary stabilizers about puncture
P are Ap; the product of Pauli-X operators on the qubits
marked by green spots and Bp, which is the product of
Pauli-Z terms supported on the thick black line in Fig. 1(b).

We adopt the method used in Refs. [22—24] to mea-
sure superstabilizers. It is shown that these complicated
measurements can be decomposed into several low-weight
noncommuting “gauge” measurements to read out these
stabilizers in a practical way. We infer the value of Ap =
[l.cop Xe by measuring all of the qubits e € 9P in the
Pauli-X basis. Similarly, we can infer the value of Bp with
low-weight gauge operators. We have that Bp = [[,,c,p B
where now dP is the set of plaquettes at the boundary of
the puncture shown in blue in Fig. 1(b). We can therefore
infer the value of Bp by measuring the plaquette operators
in 0P.

We must regularly measure both of these high-weight
stabilizer operators accurately to identify errors that occur
over time. However, we cannot learn the values of all of the
gauge checks simultaneously since they do not commute.
Furthermore, in practice, error-detecting parity measure-
ments may be unreliable and return incorrect outcomes. To
deal with these issues we divide the gauge measurements
into two commuting subsets associated to each of the two
different stabilizer measurements about each puncture. The
first of these subsets are Pauli-X measurements X, for
e € 0P and the other are plaquette measurements B,, for
all w € 0P. Note all of these measurements commute with

064081-3

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

the standard stabilizers on the lattice and therefore either
subset can be measured simultaneously with the other sta-
bilizers of the code. Likewise, superstabilizers Ap and Bp
both commute with all the gauge measurements.

Measuring one subset of gauge measurements followed
by the other, and so on, acts like a code deformation of the
stabilizer group near to the puncture where we transform a
rough boundary into a smooth boundary, and vice versa.
Let us look at these deformations in detail, and explain
how different types of errors are identified as we deform
the code. We find that all types of individual errors create
detection events in pairs, thereby allowing us to employ
standard minimum-weight perfect matching to decode the
error syndrome in space time.

Let us begin by looking at how we detect an error with
the superstabilizer Bp, see Fig. 2(top). The code defor-
mation changes the boundary around the puncture from
smooth to rough, whereby after the deformation we are in
a known eigenstate of all the stabilizers corresponding to
the lattice shown at time ¢+ 1. At time ¢ we measure the
stabilizers of the surface code where the puncture has a
smooth boundary, and at the same time we initialize all of
the qubits e € dP, shown by green spots in Fig. 2(b), in
the |+) state. This choice for initialization means that we
begin in a known eigenstate of the weight-four star opera-
tors at the rough boundary shown at time 7+ 1 as well as
the operator Ap.

We assume a Pauli-X error occurs at the smooth bound-
ary at time ¢ or earlier, see Fig. 2(a). This is detected by the
weight-four plaquette stabilizer, also shown at Fig. 2(a),
where the event is detected at the time the error occurs.
We also obtain a second detection event inside the punc-
ture that we measure during the code deformation. At
time z+ 1 all of the boundary plaquettes, B,, for w € 9P
are measured, thereby projecting the lattice into a known
eigenstate of the weight-three plaquette operators, shown
in Fig. 2(c), assuming for now that all of the measurements
are reliable. This deformation also reveals the value of Bp
using that Bp = [[,,.op Bw. We therefore identify a sec-
ond event that can be regarded as lying inside the puncture
since Bp anticommutes with the Pauli-X error.

We also detect an event when we measure Bp if a
B,, operator for some w € dP experiences a measurement
error. We identify a second event in the space-time lattice
for one such measurement error by repeating the stabilizer
measurements of the code with the rough boundary punc-
ture we have just produced. We compare the measurement
results for the B,, operators at time ¢+ 2 with the mea-
surement outcomes collected at time ¢+ 1 to identify a
measurement error that occurred at time ¢+ 1 where we
project the boundary of the puncture onto a rough bound-
ary. Unlike when the code deformation is initially per-
formed, after measuring the B,, operators at time ¢ 4 1 the
system is projected into an eigenstate of all B, operators at
the boundary dP. Upon a second round of measurements

(Top) t t+ 1
L[L]
B - [oinininio]
— ®)e — R R =1
lujujyi
R R
(Bottom) t t+ 1

N P - (e)o —

®
Jo. . -

FIG. 2. Measuring superstabilizers that enclose fabrication
defects. (Top) A code deformation from a smooth boundary to
a rough boundary. A Pauli-X error is detected by a plaquette,
(a). The code deformation is carried out by initializing the green
qubits in the |+) state, (b). The Pauli-X error is detected by the
superstabilizer after the code deformation where we measure the
boundary plaquette operators, (c). (Bottom) A code deformation
from a rough boundary to a smooth boundary. (d) A Pauli-Z error
at the rough boundary is detected by a weight-four star operator.
(e) The Pauli-Z error is also detected by the superstabilizer. (f)
A Pauli-Z error that occurs just before the deformation is identi-
fied by the weight-four check that is inferred from a single-qubit
measurement and a weight-three stabilizer measurement of the
smooth boundary.

then, we can identify events produced by individual mea-
surement errors that occurred for measurements performed
at time ¢ + 1 by comparing the measurements at the two
concurrent times.

In Fig. 2(bottom) we deform a rough boundary enclos-
ing the fabrication error, shown at time #, onto a smooth
boundary. To make this deformation we measure all of
the qubits e € dP in the Pauli-X basis at time ¢+ 1. We
consider a Pauli-Z error on a qubit e € dP before the defor-
mation, see Fig. 2(d). This error creates a detection event
at the weight-four star operator 4, shown at Fig. 2(d).
A second event is also created in the puncture that is
detected when we measure Ap. Ap is given by the product
of single-qubit measurements during the deformation. We
note that at time 7 4+ 1 we also begin measuring the weight-
three star operators associated to the smooth boundary at
the puncture we have just created. We infer the value of this
weight-three operator using the value of the single-qubit

064081-4

QUANTUM COMPUTING IS SCALABLE...

PHYS. REV. APPLIED 19, 064081 (2023)

measurement and the weight-four star operator before the
code deformation.

Let us finally consider the situation where an error
occurs immediately before the code deformation takes
place, where a Pauli-Z error occurs after time ¢ but before
time 7+ 1 when the deformation is performed. This error
is detected by the inferred measurement the weight-four
star operator at the rough boundary. However, once the
code deformation takes place, we identify the bulk detec-
tion event by inferring the value of the weight-four star
operator. We infer its value by taking the product of the
weight-one measurement and the weight-three operator of
the smooth boundary shown in the circle in Fig. 2(f). This
measurement will reveal a second event that can be paired
to the detection event identified by the super stabilizer Ap.

One should also consider the measurement errors that
occur when we perform this deformation. A measurement
error on the weight-three gauge measurement will create a
detection event at this space-time location of the stabilizer
shown in Fig. 2(d). In the case of this measurement error on
the weight-three-check, a second event will be identified
when the weight-three measurement is repeated, assuming
we do not perform any gauge measurements that do not
commute with the weight-three operator in the interim. A
measurement error on one of the single-qubit Pauli-X mea-
surements is indistinguishable from the Pauli-Z error on a
boundary qubit e € 9P that occurs immediately before the
deformation is performed.

B. Shells

We have described two operations to deform a boundary
around a puncture from rough to smooth and vice versa.
Furthermore, we have discussed how measurement errors
can affect the outcome of the measurement of supersta-
bilizers, and we require a strategy to learn their values
reliably. We find that we can demonstrate a threshold by
repeating the stabilizer measurements of each boundary
type over a time that scales with the size of the puncture
before transforming the puncture to the other type. Specif-
ically, given a puncture of size r, we measure the boundary
stabilizers of a given boundary type over O(r) rounds of
stabilizer readout measurements before transforming the
boundary into its opposite type. In this subsection we
describe the objects that are obtained in the space-time lat-
tice with our strategy for repeating gauge measurements
at the boundary of the punctures created by fabrication
defects. Our strategy gives rise to objects in the space-time
lattice that we call shells. We define shells in more detail
below. We use the properties of shells that we outline here
to present a threshold theorem in the following section.

Other approaches for identifying events near to punc-
tures have been tested numerically in Refs. [22—24] where,
in contrast to our approach, the boundary type is changed
at every round of stabilizer readout independent of the size

of the puncture. It remains to be shown if these strate-
gies demonstrate a threshold as the system size diverges
[23]. However, in the limit where the code distance is
small and we have only small fabrication defects, these
numerical studies are consistent with our strategy for error
correction on a defected lattice. We also remark on com-
plementary work [28] where the alternative gauges of a
subsystem code are fixed with an irregular frequency to
concentrate low-weight error-correction measurements on
detecting dominant types of errors in a biased noise model.

In the space-time picture, punctures in the qubit array are
projected along columns, see Fig. 3. We show the columns
in alternating colors, where the green blocks indicate peri-
ods where we measure the stabilizers of a rough boundary
and blue blocks indicate periods where we measure smooth
boundary stabilizers. We refer to a single block as a shell.
The height of each shell is proportional to its width, show-
ing that we measure the stabilizers of a given boundary
type for a number of rounds approximately equal to its
width, approximately 7. Our code deformations are such
that we can identify a single detection event at any given
shell.

Strings of Pauli-X errors can terminate at smooth
boundaries that are colored blue in Fig. 3. To calculate the
value of a blue shell, we compare the product of the pla-
quette operator measurements dP at the moment the code
deformation takes place, Fig. 2(top), to the round of mea-
surements we perform before we deform the puncture onto
a smooth boundary, as in Fig. 2(bottom); see also Fig. 3(b).
The product of all of these measurements should give even
parity if no error strings terminate at the shell. However,
the parity of this measurement will change if any Pauli-X
strings terminate at the given blue shell, or if any of the
plaquette measurements experience a measurement error.
In the case that we find odd parity, we mark a syndrome
event at the shell that can be paired with another event.

Likewise, Pauli-Z strings can terminate on a rough
boundary, which correspond to green shells. The product
of the single-qubit Pauli-X measurements used to deform
the rough boundary onto a smooth boundary, shown in
Fig. 2(bottom), give us the value of each green shell.
Specifically, it detects the parity of Pauli-Z strings that
have terminated at the shell, together with any measure-
ment errors that occur on the single-qubit Pauli-X mea-
surements, as well as any errors that occur intializing the
qubits in the |+) state when we deform the smooth bound-
ary onto the rough boundary, as shown in Fig. 2(middle).

We cannot necessarily measure the value of a shell when
the system is initialized. For instance, at the first moment
we deform a smooth boundary onto a rough boundary, we
cannot compare the value of Bp to an earlier measurement
of the same operator, because we have not initialized the
system into an eigenstate of Bp yet. At these locations, we
have to regard the shell as an extension of the boundary
in the space-time lattice where the system is initialized.

064081-5

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

| m mm

L e o
5 f
R %L i (::

FIG. 3.

(b) P
(a)

AV)
\\\E\\

ANEANANAWANAN

ANANEANANAY

AN AN

ANV AN

(c) 1

AV WA WA WA

Space-time lattice with superstabilizers forming shells around the fabrication defect clusters. We measure two different

superstabilizers Ap and Bp in the space-time lattice about each puncture P, shown by columns that align along the temporal direction.
We alternate between measurements of Ap and Bp over time for each puncture, where we depict the measurement of either Ap or Bp
when each column is colored either green or blue, respectively. The choice of superstabilizer alternates less frequently for larger clusters
of fabrication defects, so as to deal with the increased number of errors that can occur while measuring a higher-weight superstabilizer.
The red strings show a specific error configuration, with stars indicating the shells that detect an event at the terminal point of an error
string. The right panels describe common circumstances; (a) a typical shell with few gauge-operator measurement errors and a bit-flip
error string (with light green and dark green squares representing +1 and —1 gauge-operator outcomes, respectively), (b) the value of
superstabilizers before and after a shell determines that a bit-flip error string has terminated at the smooth shell between them and (c)
a collection of errors that results in an error string across the shell; these errors are detected by comparing the values of the previous

and next shell of the same boundary (d in the left panel).

Similarly, if the fabrication errors are too close to one of
the physical boundaries of the qubit array, we might not
have enough space to fully enclose them in a shell. In this
case the collection of fabrication defects are regarded as
the extension of the spatial boundary by walling them off
with the respective boundary. This strategy for handling
fabrication errors near boundaries was employed in Ref.
[23] where details can be found.

The repetition of stabilizer measurements for a given
mode of boundary is a key feature of our protocol; it
enables us to reliably identify the locations of all types of
errors near fabrication defects. In turn we are able prove a
threshold theorem. Of note, assuming the punctures on the
qubit array are well separated, then the repetition means
that two shells of the same type are also well separated in
the temporal direction of the space-time lattice. In Fig. 3
we show an error configuration that creates syndrome
detection events on shells that terminate an odd parity of
error strings.

III. THRESHOLD THEOREM

In this section we develop the tools we need to prove
a theorem for fault-tolerant quantum computation on a

planar qubit array with a finite density of fabrication
defects undergoing a phenomenological noise model. Here
we show explicitly how our tools are applied to prove the
surface code undergoing an identity operation is robust.
In the following section, Sec. IV, we show how the same
tools are applied to prove the theorem for a complete gate
set. We begin by describing the distribution of fabrica-
tion defects and the phenomenological error model before
proving our main result.

A. Defect and error models

We start by describing the key features of the distribu-
tion of fabrication defects acting on the qubit array. We
draw on the work of Ref. [29] to characterize the indepen-
dent and identically distributed configuration of fabrication
defects, see Proposition 7 in Appendix B of Ref. [29] for
details. Here we briefly summarize their results. Specifi-
cally, it is shown that we can decompose a configuration
of defects into connected components of unit cells, that
we call clusters. Clusters are characterized by different
length scales, or levels, that are indexed by integers 0 <
j < m such that a level j component has a linear length
of at most (¥, and is separated from all other clusters of

064081-6

QUANTUM COMPUTING IS SCALABLE...

PHYS. REV. APPLIED 19, 064081 (2023)

level k > j by distance at least Q' *!/3 where Q > 6 is
an integer constant that we can choose. We find that our
qubit array demonstrates a threshold for quantum com-
puting given that the array is operable in the following
sense.

Definition 1. —(Operable qubit array). We say that the
qubit array is operable if its highest cluster level m satisfies
o" <d/5-3.

Indeed, given a low enough fabrication defect rate, Ref.
[29] demonstrates the probability of finding a cluster of lin-
ear size larger than d/4 — 1 is exponentially suppressed.
Specifically, given a qubit array of volume V ~ d?, the
probability of the occurrence of a level m cluster with
Q™ > d/4 — 1 is upper bounded by pgi = exp(—Q2(d?))
where o ~ 1/log O as long as the fabrication defect rate
f on any given unit cell is smaller than fy = (30) ™. See
Ref. [29] for proof.

As we assume that we can test a qubit array for the
locations of fabrication defects offline, we can discard any
devices that have clusters of fabrication defects larger than
d/2 — 1, but as we explain, given a sufficiently small fab-
rication defect rate, the likelihood of discarding any given
device is vanishingly small.

To deal with a level j cluster of fabrication defects, we
quarantine all of the qubits within the smallest square that
contains the cluster. Hence, this square of inactive qubits
has a linear size at most (. We then use the intact unit
cells at the boundary of the square to measure the super-
stabilizers around the perimeter of the cell; these give
rise to the shells introduced in Sec. II. Due to the addi-
tional space required to construct the gauge operators,
the superstabilizers have a linear size at most ¢ + 2 (cf.
Fig. 1).

As we propose, we alternate between the two types
of superstabilizer with a frequency that is inversely
proportional to the size of the fabrication defect clus-
ter. For simplicity, we choose to alternate the type of
superstabilizer every ¢ rounds for a cluster of level
j. This results in shells of level j with a spatial side
length at most ¢/ +2 (given as the linear size of a
superstabilizer) and the temporal side length of O (see
Fig. 4). We define the diagonal width of the shell to
be the Manhattan distance between two corners of the
shell with the largest separation. Therefore, the diago-
nal width of a level j shell is at most 2(Q +2) + Q' =
30 +4.

In the rest of the subsection, we use these results to
prove the following bounds. First, we bound the number
of error string termination points for individual shells, sec-
ond, we bound the distance between the same type shells.
Both temporal and spatial directions need to be considered
in each case. These results allow us to upper bound the
number of error configurations and lower bound the weight
of error strings that span shells across the space-time
lattice.

(a)

(b)

FIG. 4. A smooth shell of level j. (a) An example temporal
error that terminates at the shell due to an erroneous Z gauge
measurement. (b) An example bit-flip spatial error string that
terminates at the shell.

<Q’

<Q/+2

Lemma 1.—For a smooth or rough shell of level j, there
are at most 400Q% points where respective error strings may
terminate on that shell.

Proof—It is enough to examine the largest size smooth
shell of level j as any rough shell of the same level is
strictly smaller by construction and, hence, has less termi-
nation points. The spatial and temporal length of a smooth
shell of level j is bounded by ¢/ +2 and @', respec-
tively, therefore the four sides of the shell has at most
4Q +2)(Q + 1) =40% + 120 + 8 points where bit-
flip errors may terminate without signature. Finally, we
account for temporal errors due to the erroneous initial
and final measurements of the other gauge. There are at
most 4(Q’ + 1) such termination points at both the top
and bottom of the shell. See Fig. 4 for a visual guide.
Adding all of the contributions together we upper bound
the number of termination points of any shell of level j as
40% + 200 + 16. For simplicity of later calculations we
further upper bound this number by 400% , where we use
thatj > 0 and Q is a strictly positive integer.]

In addition, our choice of gauge alternation frequency
allows us to prove the following lemma about the shell
separation on a space-time lattice.

Lemma 2—Let Q > 9, then any shell S; of level j is
separated from any other shell of level £ of the same type,
Sk, as

D(S;, Sy) > Qmink/), (1)

where distance D is defined on the space-time lattice of
unit cells and corresponds to the infinity norm.

Proof—To prove this lemma we bound the spatial and
temporal separations of the shells independently. First, we
bound the spatial separation of shells that belong to dif-
ferent clusters. Then, we bound the temporal separation
of shells that belong to the same cluster. Combining these
results we arrive at our result.

We start by considering the spatial separation D; of
shells belonging to different clusters. Recall that a cluster

064081-7

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

of level j with linear size at most ¢ is separated from
any other cluster of level k > j by spatial distance at least
O'+1/3. Since the shells are centered around clusters and
have a spatial size at most (/ + 2, any shell S; is spatially
separated from any other shell Sy with k£ > j and belonging
to a different cluster by Dy(S;,Sy) > O ™/3 — 2. Using
that 0 > 9 and j > 0 we find Dy(S;,S) =90 /3 -2 =
30 —2 > (. The same calculation applies for the case
when j > k but with j interchanged with k. Therefore,
Dy(S;,Sk) > O™in®/) jrrespective of the relative sizes of k
and ;.

Now, consider the temporal separation D, of shells
belonging to the same cluster. Recall, that we alternate
between smooth and rough type shells every ¢ time steps
around a cluster of level j. Therefore, any two same type
shells S; and SJ’ around the same cluster (hence the shell
level j for both) have a temporal separation Dt(Sj,SI’-) >
0.

Given that we use the infinity norm, the total separation
D(S;, Sx) is the maximum between spatial and temporal
separations. For the shells belonging to different clus-
ters we lower bound D(S;,Sr) > D,(S;, Sx) while for the
shells belonging to the same cluster we use D(S;, Si—;) =
D,(S;,S;). By combining these results we have proven the
lemma. |

While in general this is a loose lower bound, it allows
us to consider separations across space and time in a
homogeneous way.

With this characterization of the defect error model, it
remains to determine if the functional qubits of the qubit
array can successfully deal with generic random errors,
namely bit-flip, phase-flip, and stabilizer readout errors.
We assume that the intact cells are subject to a standard
phenomenological noise model where their qubits suffer an
independent and identically bit-flip or phase-flip error with
probability €, and a stabilizer or a gauge operator returns
an incorrect measurement outcome with probability ¢ = €.
We concentrate on a single type of error, namely, bit-flip
errors and measurement errors on Pauli-Z type measure-
ments, as we can deal with Pauli-X and Pauli-Z errors
separately with the surface code [14]. Likewise, we con-
sider only shells with smooth boundaries, as these shells
detect error strings of Pauli-X operators. An equivalent
proof will hold for the conjugate type of error, with only
small changes to the microscopic details of the argument.
We expect that the generalization of our results to a circuit
noise model is straightforward with only small changes to
the constant factors in our proof] see, e.g., Refs. [16,30].

B. A threshold theorem for phenomenological noise

In this subsection we prove that the construction of
shells on a planar surface-code architecture gives rise to
a scalable quantum memory under the phenomenological
noise model as long as the qubit array is operable.

Theorem 1.—Suppose a space-time lattice that is gener-
ated from an operable qubit array of linear size d and code
deformations as presented above. Then, there exists a phe-
nomenological error rate threshold ¢y such that for inde-
pendent and random errors with rate € < € the probability
of the logical failure is at most

P = exp(—Q(d")) 2)

for some constant > 0.
The logical failure rate is expressed as follows:

P = Zp(E), 3)

EecF

where F denotes the set of errors that lead to a logical
failure, and p(E) denotes the probability that the error
E is drawn from the error model. We prove the theorem
by showing that P rapidly vanishes as the code distance
diverges for a suitably low but constant error rate.

To upper bound the logical failure probability we must
characterize the set of errors JF. For our proof we adopt
the tools from the threshold theorem of Dennis et al. [14]
and therefore we will presume the availability of a decoder
that can find a least-weight correction. This correction can
be obtained efficiently using the minimum-weight perfect-
matching algorithm [22].

The decoder fails when its correction error chain Epn,
together with E traverse some nontrivial path £ such that
E + Eqin 1s a logical operator, and thereby has some min-
imal length £ > L. It is argued in Ref. [14] that the weight
of the error |E| must be at least £/2, where we use £ to
denote the weight of a path ¢. Otherwise the decoder will
either successfully correct the error, as the error itself will
be a lower-weight correction, or create an alternative path
for which the same condition applies. With this character-
ization of error configurations that lead to a logical failure,
we can regard errors £ € JF in terms of error configurations
lying along nontrivial paths £. This enables us to upper
bound P as follows:

P<) NOI, (4)

{>L

where we sum over all nontrivial paths of length at least L
and N (£) denotes the number of error configurations that
lead the decoder to give rise to a nontrivial path of length £.
The associated weighting I1, is bounded by the worst-case
probability that an error configuration of weight at least
£/2 occurs

I, < €2 (5)

In the original work of Dennis et al. [14], the authors upper
bound N (£) by recognizing that the number of nontriv-
ial paths £ is upper bounded by the number of random

064081-8

QUANTUM COMPUTING IS SCALABLE...

PHYS. REV. APPLIED 19, 064081 (2023)

walks of the same length, approximately V'v*, where v is
the valency of the lattice and V' is the number of starting
points for the walk. The number V' is upper bounded by
the volume of the space-time lattice, which is polynomial
in the code distance d. They obtain N (£) < 2¢Vv* where
2¢ upper bounds the number of ways to distribute £/2 or
more errors along a path of length £. In the ideal case, the
minimum length of any nontrivial path is determined by
the code distance £ > L = d.

We generalize this expression to find an upper bound
on the logical failure rate for surface-code error correction
realized using a qubit array with fabrication defects. In this
case the number of random walks changes when we con-
sider a space-time lattice with shells. Additionally, shells
compromise the distance of the code, hence, we must also
obtain a lower bound on the length L of nontrivial paths
over the lattice. In the remainder of this section we prove
our theorem by upper bounding N (¢) and lower bound-
ing L for the case of a space-time lattice with shells. We
note that we consider paths traveling in the spatial and tem-
poral directions because, in the generality of fault-tolerant
logical operations, logical errors may occur due to paths
traversing the temporal direction. We note that formulation
of our technical tools are agnostic of these details such that
the space- and timelike directions of the space-time lattice
are isotropic.

Let us first formalize the definitions and introduce the
rest of the terminology required. We characterize errors in
F in terms of walks of a given length that contain some
requisite number of errors in their support. We denote
the length of a walk by ¢ where the walk can make
progress with steps along the spatial or temporal direc-
tions of the space-time lattice. A spatial step of the walk
is to move from one cell to any other cell that shares
an edge with it (a qubit error) at some time ¢, while a
temporal step of the walk is to stay on the same cell
from time ¢ until time 7+ 1 (a measurement error, either
a stabilizer or a gauge operator). We say that a walk is
nontrivial if it starts at one boundary of the space-time
lattice and ends at the respective other boundary. These
boundaries should not be confused with the boundaries of
shells.

A walk encounters a shell if the error string along
the walk terminates at the shell. For example, a walk of
bit-flip errors may encounter a shell with smooth bound-
aries. After encountering a shell, the walk can continue
from any other point of the same shell. As in Ref. [14]
we explicitly consider only self~avoiding walks for which
every site, including shells, is visited at most once. This
is justified because walks that cross any given site, or
shell, more than once has an equivalent action on the
code space as an error configuration that contains a self-
avoiding walk. Moreover, walks that are not self-avoiding
are implicitly accounted for by our weighting function
I1,.

We are now ready to prove the following lemma, which
is helpful to obtain bounds on N (£) and L.

Lemma 3—Let Q > 9 and assume an operable qubit
array. Then on the space-time lattice any self-avoiding
nontrivial walk £ may encounter at most

n <2x 15/—6 (6)
g

shells with smooth boundaries of level j. Moreover, as a
consequence, the length of an augmented walk, i.e., a walk
that contains shells of all sizes up to %, stretches over a
length

¢, < 151y, (7)

Proof—Consider a long walk in our space-time lattice.
It may encounter multiple shells, and the diagonal width of
these shells will contribute to the effective walk length.

We wish to bound the number of shells that the walk
may encounter. To do so, we start from a shell-free walk,
and insert shells systematically at the highest possible
density. We then make a considerable simplification: we
simply regard our augmented walk as a shell-free walk of
a greater length. We then go on to repeat the same shell
insertion now with shells one level greater in size. This will
lead to an overcounting of the number of shells encoun-
tered, but it will permit us to reach an analytic expression.
The approach is illustrated in Fig. 5.

We prove the lemma by induction. Given that Q > 9,
Lemma 2 shows that at most ng = £/Q° + 1 shells of
level j = 0 can be encountered by a walk since any two
shells are at least Q° separated. The +1 term arises from
considering shells at both ends of the walk. We may fur-
ther simplify the analysis by upper bounding ny < 2¢/0°,
where we use the fact that any nontrivial walk has a length
£ > Q" on an operable qubit array. Moreover, the length
of the walk ¢ together with the diagonal width of all
level 0 shells, 30° + 4, have a combined effective length
at most £y =ng(30° +4) +€ <ny7Q° + € < 140 + £ =
15¢£. This concludes the base case forj = 0.

Next, we assume the lemma holds for j = £ to show
that it holds for j = k+ 1 < m. Consider an alternative
shell-free walk with length ¢ instead, this allows us to
overcount the number of k£ + 1 shells encountered by our
original walk of length ¢. There can be at most n;y; =
0 /O +1 <2 x 15F1¢/0" ! shells of level k + 1 that
can be encountered by such a walk since any two shells
of this level are at least QF*! separated. Here again we
simplify the analysis by converting the +1 term to a mul-
tiplicative factor of 2. We justify this simplification due
to the fact that every nontrivial walk on the space-time
lattice will be long enough such that their respective aug-
mented walk must have length ¢, > O for k <m — 1
given that the operability condition is satisfied. A more

064081-9

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

< t >
) Step (a)
1o°
o O
) Step (b)
_ 15¢ -
) Iterate
. Ql
02 o
FIG. 5. Diagram showing the first steps of the proof of Lemma

3. We start with a self-avoiding walk of length £ at the top. Step
(a) inserts the maximum number of level j = 0 shells that a walk
can encounter. Step (b) then replaces this augmented walk with
a shell-free walk of the same length. We repeat the same steps
until the largest level m shells have been accounted for.

general proof can be found in Sec. IV A. Now the walk
£;, which already accounts for all shells up to level £,
together with all level k£ + 1 shells has a combined effec-
tive length at most £, , = m GO +4) + 15571 <
nk+17Qk+1 + 15k+1€ < 15k+2£.

We repeat the inductive steps until the largest shells of
level m have been accounted for.]

With Lemma 3 in hand we can obtain a bound for Eq.
(4). Specifically, we can now find an upper bound for
N (£), the number of error configurations lying on a path of
length ¢, and a lower bound for the length of the shortest
nontrivial path, L.

We recall that the key technical step to finding an
upper bound for N(€) < V x W(£) x C(£) is to count the
set of self-avoiding nontrivial walks of length ¢, denoted
V' x W(£). This upper bound is justified because the set of
random walks of length £ must contain all of the nontrivial
paths over the space-time lattice of the same length.

We multiply V' x W(£) by the number of error config-
urations of at least £/2 errors that can lie on a path of
length ¢. We denote this number C(£). It is straightfor-
ward to check that C(¢) < 2¢. Moreover, the volume of
the lattice is V' = d° gives us an upper bound on the possi-
ble start locations of a walk. As such we proceed to obtain
the number of random walks from a fixed starting point,
W(£) where the walks may proceed through some number
of shells that we have upper bounded using Lemma 3.

The first step of the walk may be made in v = 6 direc-
tions in the space-time lattice with v the valency of the
lattice, any subsequent step can then proceed in at most
in v — 1 = 5 directions in order for the walk to be self-
avoiding. We perform ¢ — 1 such steps. This bounds the
number of walks with different step configurations as
(6/5) x 5¢.

To upper bound W(£) we must account for the shells that
the random walk may encounter. We have upper bounded
the number of such encounters using Lemma 3. We have
that

w(0) < 6 x 51 [Ja0g¥) 1942, ()
j=0

where 400% is an upper bound of termination points of a
level-j shell (Lemma 1) that accounts for the number of
distinct steps along which a walk can recommence after
an encounter, and the exponent n; <2 x 15¢/(Q' is the
upper bound on the number of times a walk of length ¢
will encounter distinct level-j shells. We take the product
over shells of all levels that appear on an operable qubit
array j < m.

Let us rearrange Eq. (8) to obtain a clearer expression
for the logical failure rate. We first express the product in
Eq. (8) as a summation in the exponent. We also take each
summation up to infinity to give an upper bound for its
value. We find

1_[(40Q2j)2x15/z/Qi < 402 PR 15 0/
j=0

% Q4lzj"i0j15//Qf. 9)

Finally, using standard geometric series expressions with
O > 15 such that x = 15/0Q < 1, namely

i 1 i X
= d "= — 10
gx Y an gnx TSk (10)

we obtain
W(E) < 6 x 5= x 4024Q/©=19) y OSOLO/©@=157 (11)
We can therefore upper bound N ({) as

N©@) < VW(E)CE) < cd’pt, (12)

where ¢ = 6/5 and p = 2 x 5 x 4020/(0=15 0600/(0-15)
are constants.

The lower bound L is also readily obtained from Lemma
3. Let d be the linear size of the space-time lattice, then any
nontrivial augmented walk must have an effective length

064081-10

QUANTUM COMPUTING IS SCALABLE...

PHYS. REV. APPLIED 19, 064081 (2023)

¢, > d. Using Eq. (7) we have that the maximum effective
length that a walk of length ¢ can achieve is ¢, < 15"*+1¢
when m < log,(d/2 — 1) in the case of an operable qubit
array. Therefore, any nontrivial walk must be at least of
length

L=15"mtg — 157ty (13)

We can now combine the equations we obtain to complete
our proof. Substituting our expression for N(£) given in
Eq. (12) into Eq. (4) together with Eq. (5) enables us to
bound the logical failure rate as follows:

P<cd) p'e? =kd’ (pe'?)" = kd® exp(—O(L)),
=L

(14)

with k=c/(1 — pe'/?) a positive constant term for
pel/? < 1.

Substituting Eq. (13) into Eq. (14) reveals the exponen-
tial decay in the logical failure rate. We have that

P < kd® exp(—O (157" D)) < kd® exp(—O(d")), (15)

where 7 =1 —1log,(15). By observation we obtain an
exponential decay in logical failure rate provided Q >
15 and pe'/? < 1. A lower bound for the threshold for
phenomenological noise is therefore €y = 1/p?, thereby
completing the proof of our main theorem.

IV. UNIVERSAL QUANTUM COMPUTATION

Universal quantum computation can be performed with
the surface code using code deformation [14,16,31-34].
Indeed, the computational techniques we develop in the
previous section are readily used to demonstrate a vanish-
ing logical failure rate for fault-tolerant logic gates using a
surface-code architecture with fabrication defects.

Let us show that universal fault-tolerant quantum com-
putation is possible with a planar array of qubits with
fabrication defects. For this proof we choose a minimal
set of universal gates but remark that, in principle, our
arguments can be adapted for an arbitrary choice of code
deformations with the surface code [34,35]. We take a
Hadamard gate as presented in Ref. [14] and we per-
form entangling operations with lattice surgery [33]. Given
these fault-tolerant gates, we can complete a universal gate
set by distilling magic states [36] and Pauli-Y eigenstates
[16,31]. We conclude this section by showing that the log-
ical error rate of magic state injection is bounded on a
defective lattice.

A. Hadamard gate

In Ref. [14] the authors propose performing a Hadamard
gate by rotating the corners of the planar code about its

(a) - (b)
|
d 5
O
R
a O
i
i |
tt — — = /
| |
3 ClE
E
o i
g a ol
a —1
4
|

FIG. 6. (a) Implementation of a Hadamard gate in the space-
time picture. We show a possible path of errors (b) that lead to a
logical failure during the switch of the boundaries at time ¢.

boundary [34] before performing a transversal Hadamard
operation followed by a swap operation. See also Ref.
[16]. The latter unitary operation maps only between the
two different types of error strings through a plane in
the space-time lattice, so let us concentrate on the physi-
cal transformation to the lattice boundaries. We show this
operation of the space-time lattice with shells in Fig. 6.

The transformation of the surface-code boundaries must
be done in a way that preserves the code distance. As one
can see in Fig. 6(b), during the switch of the boundaries, we
may have purely diagonal paths of errors that lead to a logi-
cal error compared to the static quantum memory case. For
the threshold theorem to hold, we need only to reconsider
the proof of Lemma 3 by taking into account such diago-
nal paths. Lemma 3 already captures the diagonal extent of
the shells, however, for it to hold, one needs to show that
every non-trivial walk will be still long enough such that
their respective augmented walk has length ¢, > O**! for
k < m — 1. We prove it formally.

Proof—Consider a single largest shell of level m along
a nontrivial walk. Then given an operable qubit array
(Q" <d/5 —3), the diagonal width of such a shell is
at most 30" +4 < 3/5d — 5, where d is the distance of
the code. Since d is preserved during the transformation
of boundaries, the respective augmented walk of a non-
trivial walk with all shells of level <m — 1 has to be
at least £/, >d— (3/5d—5)=2/5d+5>d/5—-3 >
Q", where we subtract the maximum diagonal width of a
single level m shell. If there are more than one shell of level
m along the nontrivial walk, then by Lemma 2, their mutual
separation is at least 9" and the result holds trivially.

Moreover, having this result hold for the biggest shells
of level m implies that it holds for all shells of level < m.
We show it by induction, where we have already proven
that ¢; > O/ *! for the base casej = m — 1.

064081-11

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

Now, we show that if the result holds for the j = k case
then it also holds for the j = k£ — 1 case. Consider a single
shell of level k£ along a nontrivial walk. It has a diago-
nal width of 3Q% + 4. Given that 0 > O *! holds from
the j = k case, the respective augmented walk of a non-
trivial walk with all shells of level < £ — 1 has to be at
least ¢, > O — 30" + 4) > OF. Similar to the previ-
ous argument, if there are more than one shell of level &
along the nontrivial walk, then by Lemma 2, their separa-
tion to any shell of level & or greater is at least O and the
result holds trivially.

We may repeat the inductive steps until we have proven
that ¢, > O"*! forany 0 < k <m — 1. [|

This proof ensures that Lemma 3 holds. The rest of the
proof of the threshold follows from the memory case.

B. Lattice surgery

Lattice surgery [33] was introduced to perform entan-
gling operations between surface codes by parity mea-
surements. In its simplest form, two adjacent surface-code
patches are merged using a routing space. The parity
measurement is made using low-weight stabilizer mea-
surements of the merged code, as the logical parity mea-
surement is a member of the stabilizer group of the merged
code. Once we repeat the stabilizer measurements of the
merged codes over a long time; O(d) rounds of stabilizer
measurements, we separate the two codes to complete the
parity measurement by collapsing the routing space with a
product state measurement.

One should check that we can obtain the value of
the logical parity measurement if the routing space con-
tains a fabrication defect. Naturally, our shell construction
can be used to reliably evaluate the value of the neces-
sary superstabilizers needed to complete the logical parity
measurement near to the punctures.

It is readily checked that the logical failure rate of
lattice-surgery operations is suppressed using a qubit array
with fabrication defects. Broadly speaking, assuming an
operable qubit array, the logical failure rate is governed by
two factors. The dominant factor is the exponential sup-
pression of a nontrivial path being introduced to the space-
time volume. This factor overwhelms the other factor of
the polynomial volume of the space-time lattice.

We restate this in a more formal sense. Unlike the case
of a quantum memory that we already consider, logical
errors during lattice surgery operations can also occur if
stringlike errors extend along the temporal direction of the
routing space while the codes are merged. In Lemma 3 we
already consider paths that traverse the temporal direction.
As such, the only quantitative change from the memory
case proof is the factor V' denoting the starting points of
a walk. Considering that the volume of an efficient lattice
surgery operation, which includes the volume of the two

codes as well as that of the routing space, is also poly-
nomial, approximately d°, the number of logical string
starting points is of order ¥ = O(d?). The exact number
depends on the size of the routing space. Therefore, we
can rewrite the Eq. (15) as

P < kO(d) exp(—O(d")), (16)

where the exponential suppression of the logical error
probability with respect to the code distance is apparent.

We finally remark that, given a qubit array that is large
enough to perform a lattice-surgery operation, it is expo-
nentially likely with respect to the code distance that we
will obtain an operable qubit array, assuming the fabrica-
tion error rate is sufficiently low. This is again due to the
fact that the width of the array needs only to be of order
o(d).

C. § and T gates

Given the aforementioned logical gates, we can com-
plete a universal gate set with distillation circuits. We
complete the Clifford gate set with a distillation circuit
for an eigenstate of the Pauli-Y operator [16,31]. This
is done using noisy state preparation, together with the
Hadamard gates and lattice surgery operations that we
already discuss. Then, given the ability to perform all of
the Clifford gates and inject noisy ancilla states, we can
use magic state distillation to perform universal quantum
computation [36].

It remains to discuss state injection [37,38] on a two-
dimensional array with the independent and identically
distributed fabrication defect model we assume through-
out this work. In the ideal case, we initialize noisy ancilla
states by preparing the qubit array with some qubits in the
|+) state and others in the |0) state, together with a sin-
gle qubit prepared in the input state |ir). We then begin
measuring the stabilizers of the surface code to encode
the input state. We show a suitable input configuration
in Fig. 7(a), where blue (green) qubits are initialized in
the |+)(]0)) basis, respectively, and the central qubit is
prepared in the state).

Provided we can argue that our shell construction does
not limit our ability to prepare an input state with a
bounded with a logical error rate, we can fault tolerantly
implement both of the proposed gates by distillation. Here
we show that we can initialize a state with a finite log-
ical error rate that does not diverge with the distance of
the code below some threshold rate of phenomenological
noise. Our argument assumes that we can find a good injec-
tion point, as we define below. Once we argue that we
can inject a state with bounded probability using one such
injection point, we also argue that we can find a good injec-
tion point on a region of an operable qubit array with high
probability.

064081-12

QUANTUM COMPUTING IS SCALABLE...

PHYS. REV. APPLIED 19, 064081 (2023)

(a) (b)

(c)

P, EPI

/"

/
N\

FIG. 7.

(a) State injection scheme, where the injection qubit is denoted with an orange cross and blue (green) qubits are initialized in

the |+)(]0)) basis. Error strings in space time (red) may form from one boundary to the respective other boundary and cause a logical
failure. (b) Fabrication defects increase the noise acting on the logical input state. Panels P; are defined in the main text whereby no
level-j shell is supported on panel P;. The orange cross marks a good injection point. (c) In general, a good injection point may be

found off center.

It is possible to initialize an ancilla state given a good
injection point, i.e., a region of the lattice that is distant
from fabrication defects. We regard any unit cell v as a
good injection point if

D(v,u;) > 20 42 (17

is satisfied, where u; describes a unit cell contained within
a level-j shell. This means that a good injection point is
further away from larger clusters of fabrication defects
compared to the smaller ones.

It is now our goal to show that the logical error rate of an
input ancilla state is bounded given a good injection point.
The main technical step we use to obtain an expression for
the logical failure rate is to count the number of ways in
which a logical error can occur. Again, we find this value
in terms of random walks. We upper bound the number
of error configurations by counting the number of shells a
walk can encounter in the vicinity of a good injection point.
We also require a lower bound on the length of a walk from
a given starting location to obtain an upper bound on the
error rate for the input ancilla state.

To begin, assuming a good injection point, we can use
the result from Lemma 3 to upper bound the number of
shells that a nontrivial walk may encounter. It is justified
to use Lemma 3 because any nontrivial self-avoiding walk
that encounters a level-j shell has ¢, | > O where 3}71
is the augmented walk excluding level j shells or larger.
This justification is depicted geometrically in Fig. 7(b) and
follows from proof in Sec. IV A. By letting O > 9, we
can therefore say that any nontrivial self-avoiding walk
of length ¢ from one boundary to the respective other
15L

boundary encounters at most 2 x shells of level ;.

We next count the number of starting points from which
a random walk can begin. To simplify the following cal-
culation we discretize the qubit array in disjoint panels

around the injection point as shown in Fig. 7(b). The lat-
tice is discretized such that panel P; has edges that are a
distance of 20 + 2 away from the good injection point.
This enables us to upper bound the number of starting
points s; of any walk origination from within panel P; as
sp < (40 + 4)2.

Given the arguments we present we can upper bound the
number of error configurations that give rise to a nontrivial
path of length £ originating from panel P; as

(18)

where ¢ =6/5 and p =2 x 5 x 4029/(9*'5)Q6°Q/(Q*15)2
are constants as before.

Next we need to find a lower bound on the minimal
walk length to obtain the logical error rate. Any nontrivial
walk starting from within a panel P; must have an effective
length £ > 20/ ~!. Due to Eq. (17) no shell of level j may
be found within the panel P;. This implies that the mini-
mum length of any nontrivial walk originating from panel
P; must satisfy L; > 157 ¢ > 157 (20/~"). We note that
this expression accounts for the case where the injection
point is found close to the boundary of the surface code,
see Fig. 7(c).

Taking the expressions we obtain for N; (¢) and L; for
each panel P; and recalling Eqgs. (4) and (5) we bound the
logical failure rate

Py, < Z PRVIGEE

j=0 £z

N;(0) < c(4Q + 420",

n

<Y 5) pleP=k) s (peH < 0()
0

j= >L; j=0

(19)

as long as pe'/? < 1, which is satisfied for ¢ < 1/p? = ¢,
where k = ¢/(1 — pe'/?) and n > m + 1 denotes the total

064081-13

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

number of panels. Consequently, there must exist a phe-
nomenological error rate independent of the system size
below which Py, is low enough for the encoded qubit to be
used in the distillation protocol.

Finally, we show that a good injection point can be
found with exponentially high probability for a fabrication
defect rate below some threshold. We argue that this is the
case as long as O > 33 and the biggest cluster of level m
has size Q" < d/5 — 3. As can be seen in Ref. [29] this
condition is satisfied with exponentially large probability
with respect to the qubit array size below the fabrication
defect rate fo = (30)~*.

From the properties of cluster decomposition (cf. Sec.
I A) any cluster of level j is separated from all other
clusters of level k > by distance ¢/*!/3. Hence, for
O > 33 any two shells of the same level j > 1 are sep-
arated by distance at least 3(2Q’' + 2). This allows us to
find a region of linear size 20 + 2 between these shells
such that the cells within this region are separated by dis-
tance at least 2/ + 2 from all shells of level j. Now, this
region may contain a shell of level j — 1. We can use the
same argument to find an even smaller region in which all
cells are separated from all level j — 1 shells by distance
at least 20/ ~! + 2. We can continue to iterate to smaller
and smaller regions until level 0. The region found at level
0 corresponds to the set of good injection points. Note that
we require Q" < d/5 — 3 to ensure that for all m the region
of good injection points is found within the boundaries of
the surface code.

We find that given a good injection point we may encode
a qubit in an arbitrary state with a finite rate of logical fail-
ure. Furthermore, we show that such a good injection point
can be found with exponential probability with respect to
the system size below some fabrication defect rate. There-
fore, together with fault-tolerant implementation of lattice
surgery and Hadamard gates we find that we may perform
state-distillation protocols for both S and T logical gates
fault tolerantly.

V. COSMIC RAYS AND OTHER
TIME-CORRELATED ERRORS

There are a number of events that can lead to errors that
compromise a two-dimensional qubit architecture over a
long time. Our technical results assume we can determine
the locations of permanent time-correlated offline before
we perform a quantum computation. However, there are
time-correlated errors that we might expect our architec-
ture to experience while our computation is online. Let
us discuss here how we begin measuring a shell once a
time-correlated error is detected, and how we might detect
a time-correlated error.

One example are the errors introduced by cosmic rays,
where the qubit array absorbs a large amount of energy
that significantly increases the error rate of the qubits in a

t; i
— [—
J—
7S
b
4
to r* I -
—_—

FIG. 8. A cosmic ray event. A cosmic ray hits our qubit array
at time ¢;. We use the time between ¢; and #, to detect the event
before isolating the affected qubits with shells. Stabilizer mea-
surements before the cosmic ray hits (e.g., at #y) can be used to
infer the base value of the shells. We wait until the energy due
to the cosmic ray dissipates before initializing all affected qubits
back into the error-correcting system at time .

region. We can expect the qubits to return to their oper-
ational state as the energy dissipates. However, this may
take a long time, and it may be worthwhile isolating the
qubits from the error-correcting system using our shell pro-
tocol while the energy dissipates. Leaving qubits that are
above the threshold error rate within the system will be
particularly problematic during computations, as it will be
very difficult to learn the value of logical parity measure-
ments reliably in operations such as, for instance, lattice
surgery. Let us discuss how we might generalize our pro-
tocol to deal with more general time-correlated errors. We
show the idea in Fig. 8.

Upon the discovery of a time-correlated error that occurs
at time ¢, in Fig. 8, we must begin the measurement of
superstabilizers as discussed in Sec. II to isolate the inop-
erable parts of the qubit array from the code. We begin
by performing the single-qubit Pauli-X measurements at
time #, to infer the value of Ap where P is a puncture that
completely encloses the time-correlated error. For now we
assume we can rapidly determine a time-correlated error
has occurred within time A =, — #;. Thereon we con-
tinue to perform our shell protocol as normal where we
alternate between measuring the stabilizers corresponding

064081-14

QUANTUM COMPUTING IS SCALABLE...

PHYS. REV. APPLIED 19, 064081 (2023)

to a rough and a smooth boundary about P where we alter-
nate with a frequency that is proportional to the radius
of P.

We can also measure shells that identify the parity of
error in a space-time region that encloses the moment the
time-correlated error began, 7. Assuming the code is ini-
tialized much earlier on, we obtain the value of both super-
stabilizers reliably, that is, up to measurement errors that
we can identify, at some time 7y < #; before the moment
the time-correlated error began. Indeed, these superstabi-
lizer operators are members of the stabilizer group before
the time-correlated error occurred, and we can learn their
values by taking the product of the star and plaquette oper-
ators before the time-correlated error began, see Fig. 8. We
can compare the values of these stabilizers to the first mea-
surements of the superstabilizers in the shell protocol to
identify strings that enter into the region that contains the
genesis of the time-correlated error to obtain the values of
the first shells associated to this puncture that is projected
in the space-time lattice.

We might also consider the discovery of a time-
correlated error that occurs very soon after the sur-
face code is initialized where there may not have
been enough time to learn the value of the supersta-
bilizer. In which case, as discussed in Sec. II, we can
begin the shell protocol around the alternative time-
correlated error to initialize the superstabilizers in a known
eigenstate.

It may be that we can repair the qubits that experience a
time-correlated error while the system is online. Likewise,
qubits that have been impacted by, say, a cosmic ray, will
become functional again once the energy from the radia-
tion dissipates. In which case we can reinitialize the qubits
in the surface code by measuring the stabilizers of the
unpunctured code once again in the region P. This occurs
at time #; in Fig. 8. These measurements give a final read-
ing of the superstabilizers to complete the measurement of
the last shells that are measured about a given puncture.
We simply compare these superstabilizer readings to the
last measurements of Ap and Bp that are inferred by the
shell protocol. Irreparable qubits can remain isolated until
the end of a computation.

We thus far explain how we can prepare shells around
a time-correlated error that appears while the qubit array
is online running a computation. However, it remains
to explain how we can identify the occurrence of time-
correlated errors. We argue that we can identify a time-
correlated error by monitoring the frequency that stabilizer
detection events appear in time. To be clear, we are inter-
ested in a practical setting where error rates are, say, at least
a factor of 10 below the threshold error rate of the code and
some time-correlated error occurs that increases the phys-
ical error rate above threshold. In which case, to leading
order, the occurrence of stabilizer events will also increase
by a factor of 10 near to the initial event that caused the

time-correlated error. We expect to be able to notice this
change on a region of the lattice within a short time of
its occurrence and isolate the qubits with the shell pro-
tocol very quickly. Experimental results [7] have shown
that cosmic rays can be identified very rapidly, i.e., on the
timescale of a single round of stabilizer measurements. It
is therefore reasonable to assume that A = #, — #; can be
very small.

More generally, other work has already considered
identifying drifts in noise parameters by measuring the
frequency of the occurrence of the stabilizer detection
event to improve the performance of quantum error-
correcting systems by updating the prior information
given to decoding algorithms [39—41], or experimental
control parameters [42]. It may even be advantageous
to use the shell protocol to isolate regions of the lat-
tice where the error rate increases dramatically, even if
the error rate of the respective qubits remains below
threshold.

The spatial locations of time-correlated errors may drift
over time. This more general case was considered in Ref.
[21]. We can monitor the statistics of the occurrence of sta-
bilizer events near to punctures to detect drifts. Given that
we can identify such a drift by monitoring the statistics of
the occurrence of detection events near to a time-correlated
error, we can change the size and shape of our shells over
time to isolate a mobile time-correlated error from the
qubit array.

One other type of time-correlated error is where a sta-
bilizer measurement device becomes unresponsive and
always reports the no-event outcome, independent of the
state of the qubit array. This was called a “silent-stabilizer
error” in Ref. [43]. We can propose a straightforward
method to identify such errors and thereafter treat them as
time-correlated errors as discussed above. Indeed, we can
continually test the responsiveness of our stabilizer read-
out circuits by manually applying Pauli rotations to our
qubits in known locations such that, assuming no other
errors occur, the state of a stabilizer degree of freedom is
changed with probability one.

Let us elaborate on this proposal such that we can also
identify the standard physical errors the code is designed
to detect. One can find a Pauli operator that rotates every
stabilizer degree of freedom in between each round of
stabilizer measurements. Now, we continue to measure sta-
bilizers as normal with this additional step in the periodic
readout circuit. However, instead of looking for detec-
tion events by looking for odd parity between two time-
adjacent stabilizer measurements, we look for even parity
between two measurements to detect an event. This cir-
cuit will identify silent-stabilizer errors very quickly, as
they will produce events at every single time step. We
can therefore quickly identify the unresponsive stabilizer
and isolate it from the system as a typical fabrication
defect.

064081-15

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

VI. DISCUSSION

We show that we can perform an arbitrarily large quan-
tum computation with a vanishing logical failure rate using
a planar array of noisy qubits that has a finite density
of fabrication defects. We obtain our result construc-
tively, by proposing a syndrome readout protocol for two-
dimensional architectures that are now under experimental
development. This represents a substantial improvement
upon existing proposals to deal with time-correlated errors
that make use of single-shot error correction, as known
single-shot codes require three-dimensional architectures
that may be more difficult to manufacture.

To employ our protocol it is necessary to establish the
locations of fabrication defects or other anomalies such
as cosmic ray events. This can be achieved either offline,
or during the execution of computations by studying the
frequency with which the qubit array produces detection
events. In contrast, single-shot codes remain functional
even if they operate unaware of information about the loca-
tions of time-correlated errors [21]. It will be interesting
to find the best ways of inferring the locations of time-
correlated errors in two-dimensional systems to improve
their performance [39—41,44-46], as well as to compare
their performance in terms of resource overhead to that of
three-dimensional single-shot protocols [47,48] for dealing
with time-correlated errors.

Further afield, it will be interesting to consider the chal-
lenges that a finite rate of fabrication defects presents for
the task of algorithm compilation [35,49]. We typically
assume that all of the logical qubits and fault-tolerant gates
involved in the compiled form of an algorithm will per-
form uniformly well. However, in practice, local regions
of the qubit array that happen to have a larger density of
fabrication defects will lead to lower-grade logical qubits
for a given number of physical qubits. We would there-
fore wish our compiler to be hardware aware and capable
of adapting to such inhomogeneities. It might, for exam-
ple, allocate a larger area of the qubit array to produce
better logical qubits with a higher code distance in lower-
grade regions. The discrepancy in code distance would
then have consequences for the implementation of logical
gates, potently giving rise to inefficiencies due to the fact
that logical qubits that occupy differently sized or shaped
regions of the qubit array may not tessellate. Alternatively,
we might consider allocating the lower-grade regions of
the array to heralded operations that can be performed
offline. This will mean that the subroutines that are per-
formed by more fault-prone logical qubits can be isolated
from the larger calculation until they have been thoroughly
tested for errors. Indeed, the compilation of topological
circuits with an inhomogeneous qubit array remains an
unexplored area of study.

We demonstrate a threshold using a protocol with
a number of conservative simplifications to find an

analytical expression for the logical failure rate. However,
we can expect variations of our protocol that forego the
simplifications or adapted variations of previously sug-
gested methods [23] to perform better in practice when
we take the system architecture in consideration. It will
be valuable to compare them numerically to optimize the
performance of a qubit array. Indeed, recently, two numer-
ical studies based on our shell protocol have appeared,
which report highly encouraging performance with respect
to realistic defect rates [50,51].

A further route for future research would be to mod-
ify our proposal for other topological codes. Our protocol
adapts readily to other variations of the surface code with
an equivalent boundary theory [28,52-54], but we may
also find that generalizations of our protocol using gen-
eral topological codes [13,55-57] with richer boundary
theories [58—63] can outperform our surface-code proto-
col. This future work will determine how best to nullify
the harmful effects of fabrication defects in modern qubit
architectures.

ACKNOWLEDGMENTS

We thank R. Babbush, H. Bombin, N. Bronn, J. Chavez-
Garcia, A. Doherty, S. Flammia, A. Fowler, C. Gidney,
C. Jones, M. Kjaergaard, J. Martinis, M. Newman, B.
Vlastakis, and A. Zalcman for conversations about fab-
rication defects and cosmic rays. B.J.B. is supported by
the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sktodowska-Curie Grant
Agreement No. 897158, and also received support from
the Australian Research Council via the Centre of Excel-
lence in Engineered Quantum Systems (EQUS) Project
No. CE170100009. S.C.B. acknowledges support from
the EPSRC QCS Hub EP/T001062/1, from U.S. Army
Research Office Grant No. W911NF-16-1-0070 (LOGIQ),
and from EU H2020-FETFLAG-03-2018 under the Grant
Agreement No. 820495 (AQTION). This research was
funded in part by the UKRI Grant No. EP/R513295/1.

[1] P. Shor, in Proceedings of 37th Conference on Foundations
of Computer Science (1996), p. 56.

[2] H.-L. Huang, D. Wu, D. Fan, and X. Zhu, Superconduct-
ing quantum computing: A review, Sci. Chin. Inf. Sci. 63,
180501 (2020).

[3] X. Zhang, H.-O. Li, G. Cao, M. Xiao, G.-C. Guo, and G.-P.
Guo, Semiconductor quantum computation, Natl. Sci. Rev.
6,32 (2018).

[4] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J.
M. Sage, Trapped-ion quantum computing: Progress and
challenges, Appl. Phys. Rev. 6, 021314 (2019).

[5] J. M. Martinis, Saving superconducting quantum proces-
sors from decay and correlated errors generated by gamma
and cosmic rays, npj Quantum Inf. 7, 90 (2021).

064081-16

https://doi.org/10.1007/s11432-020-2881-9
https://doi.org/10.1093/nsr/nwy153
https://doi.org/10.1063/1.5088164
https://doi.org/10.1038/s41534-021-00431-0

QUANTUM COMPUTING IS SCALABLE...

PHYS. REV. APPLIED 19, 064081 (2023)

[6] C. D. Wilen, S. Abdullah, N. A. Kurinsky, C. Stanford, L.
Cardani, G. D’Imperio, C. Tomei, L. Faoro, L. B. Ioffe,
C. H. Liu, A. Opremcak, B. G. Christensen, J. L. DuBois,
and R. McDermott, Correlated charge noise and relaxation
errors in superconducting qubits, Nature 594, 369 (2021).

[71 M. McEwen, et al., Resolving catastrophic error bursts
from cosmic rays in large arrays of superconducting qubits
(2021), ArXiv:2104.05219.

[8] J. Vala, K. B. Whaley, and D. S. Weiss, Quantum error
correction of a qubit loss in an addressable atomic system,
Phys. Rev. A 72, 052318 (2005).

[9] A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V.
Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C.
Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt,
S. Benjamin, and M. Miiller, Assessing the Progress of
Trapped-lon Processors Towards Fault-Tolerant Quantum
Computation, Phys. Rev. X 7, 041061 (2017).

[10] I. Cong, S.-T. Wang, H. Levine, A. Keesling, and
M. D. Lukin, Hardware-efficient, fault-tolerant quan-
tum computation with Rydberg atoms, (2021), Preprint
ArXiv:2105.13501.

[11] D. Gottesman, Stabilizer codes and quantum error correc-
tion (1997), ArXiv:quant-ph/9705052.

[12] A.Y. Kitaev, Quantum computations: Algorithms and error
correction, Russ. Math. Surv. 52, 1191 (1997).

[13] A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (N. Y) 303, 2 (2003).

[14] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topolog-
ical quantum memory, J. Math. Phys. 43, 4452 (2002).

[15] C. Wang, J. Harrington, and J. Preskill, Confinement-Higgs
transition in a disordered gauge theory and the accuracy
threshold for quantum memory, Ann. Phys. (N. Y) 303, 31
(2003).

[16] A.G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cle-
land, Surface codes: Towards practical large-scale quantum
computation, Phys. Rev. A 86, 032324 (2012).

[17] D. A. Lidar and T. A. Brun, Quantum Error Correction
(Cambridge university press, Cambridge, 2013).

[18] M. Takita, A. W. Cross, A. D. Corcoles, J. M. Chow,
and J. M. Gambetta, Experimental Demonstration of Fault-
Tolerant State Preparation with Superconducting Qubits,
Phys. Rev. Lett. 119, 180501 (2017).

[19] Z. Chen and et al., Exponential suppression of bit or phase
errors with cyclic error correction, Nature 2021 595:7867
595, 383 (2021),.

[20] C.K. Andersen, A. Remm, S. Lazar, S. Krinner, N. Lacroix,
G. J. Norris, M. Gabureac, C. Eichler, and A. Wallraff,
Repeated quantum error detection in a surface code, Nature
Physics 2020 16:8 16, 875 (2020),.

[21] H. Bombin, Resilience to Time-Correlated Noise in Quan-
tum Computation, Phys. Rev. X 6, 041034 (2016).

[22] T. M. Stace, S. D. Barrett, and A. C. Doherty, Thresholds
for Topological Codes in the Presence of Loss, Phys. Rev.
Lett. 102, 200501 (2009).

[23] J. M. Auger, H. Anwar, M. Gimeno-Segovia, T. M. Stace,
and D. E. Browne, Fault-tolerance thresholds for the sur-
face code with fabrication errors, Phys. Rev. A 96, 042316
(2017).

[24] S. Nagayama, A. G. Fowler, D. Horsman, S. J. Devitt, and
R. V. Meter, Surface code error correction on a defective
lattice, New J. Phys. 19, 023050 (2017).

[25] G. Zhu, T. Jochym-O’Connor, and A. Dua, Topological
order, quantum codes and quantum computation on fractal
geometries (2021), ArXiv:2108.00018.

[26] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice
with boundary (1998), ArXiv:quant-ph/9811052.

[27] R. Raussendorf, S. Bravyi, and J. Harrington, Long-range
quantum entanglement in noisy cluster states, Phys. Rev. A
71, 062313 (2005).

[28] O. Higgott and N. P. Breuckmann, Subsystem Codes with
High Thresholds by Gauge Fixing and Reduced Qubit
Overhead, Phys. Rev. X 11, 031039 (2021).

[29] S. Bravyi and J. Haah, Analytic and numerical demonstra-
tion of quantum self-correction in the 3D cubic code (2011),
ArXiv:1112.3252.

[30] Y. Tomita and K. M. Svore, Low-distance surface codes
under realistic quantum noise, Phys. Rev. A 90, 062320
(2014).

[31] R. Raussendorf, J. Harrington, and K. Goyal, A fault-
tolerant one-way quantum computer, Ann. Phys. (N. Y)
321, 2242 (2006).

[32] H. Bombin and M. A. Martin-Delgado, Quantum measure-
ments and gates by code deformation, J. Phys. A: Math.
Theor. 42, 095302 (2009).

[33] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Sur-
face code quantum computing by lattice surgery, New J.
Phys. 14, 123011 (2012).

[34] B. J. Brown, K. Laubscher, M. S. Kesselring, and J. R.
Wootton, Poking Holes and Cutting Corners to Achieve
Clifford Gates with the Surface Code, Phys. Rev. X 7,
021029 (2017).

[35] D. Litinski, Magic state distillation: Not as costly as you
think, Quantum 3, 205 (2019).

[36] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal Clifford gates and noisy ancillas, Phys. Rev. A
71, 022316 (2005).

[37] Y. Li, A magic state’s fidelity can be superior to the
operations that created it, New J. Phys. 17, 023037 (2015).

[38] J. Lodyga, P. Mazurek, A. Grudka, and M. Horodecki, Sim-
ple scheme for encoding and decoding a qubit in unknown
state for various topological codes, Sci. Rep. 5, 1 (2015).

[39] M.-X. Huo and Y. Li, Learning time-dependent noise to
reduce logical errors: Real time error rate estimation in
quantum error correction, New J. Phys. 19, 123032 (2017).

[40] S. T. Spitz, B. Tarasinski, C. W. J. Beenakker, and T. E.
O’Brien, Adaptive weight estimator for quantum error cor-
rection in a time-dependent environment, Adv. Quantum
Technol. 1, 1800012 (2018).

[41] N. H. Nickerson and B. J. Brown, Analysing correlated
noise on the surface code using adaptive decoding algo-
rithms, Quantum 3, 131 (2019).

[42] J. Kelly, et al., Scalable in situ qubit calibration dur-
ing repetitive error detection, Phys. Rev. A 94, 032321
(2016).

[43] X. Waintal, What determines the ultimate precision of a
quantum computer, Phys. Rev. A 99, 042318 (2019).

[44] S. T. Flammia and J. J. Wallman, Efficient estimation of
Pauli channels, ACM Trans. Quantum Comput. 1, 1 (2020).

[45] R. Harper, S. T. Flammia, and J. J. Wallman, Efficient
learning of quantum noise, Nat. Phys. 16, 1184 (2020).

[46] T. Wagner, H. Kampermann, D. Bruf}, and M. Kliesch,
Pauli channels can be estimated from syndrome

064081-17

https://doi.org/10.1038/s41586-021-03557-5
https://arxiv.org/abs/2104.05219
https://doi.org/10.1103/PhysRevA.72.052318
https://doi.org/10.1103/PhysRevX.7.041061
https://arxiv.org/abs/2105.13501
https://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1070/RM1997v052n06ABEH002155
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1016/S0003-4916(02)00019-2
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevLett.119.180501
https://doi.org/10.1038/s41586-021-03588-y
https://doi.org/10.1038/s41567-020-0920-y
https://doi.org/10.1103/PhysRevX.6.041034
https://doi.org/10.1103/PhysRevLett.102.200501
https://doi.org/10.1103/PhysRevA.96.042316
https://doi.org/10.1088/1367-2630/AA5918
https://arxiv.org/abs/2108.00018
https://arxiv.org/abs/quant-ph/9811052
https://doi.org/10.1103/PhysRevA.71.062313
https://doi.org/10.1103/PhysRevX.11.031039
https://arxiv.org/abs/1112.3252
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1016/j.aop.2006.01.012
https://doi.org/10.1088/1751-8113/42/9/095302
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/PhysRevX.7.021029
https://doi.org/10.22331/q-2019-12-02-205
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1088/1367-2630/17/2/023037
https://doi.org/10.1038/srep08975
https://doi.org/10.1088/1367-2630/aa916e
https://doi.org/10.1002/QUTE.201800012
https://doi.org/10.22331/q-2019-04-08-131
https://doi.org/10.1103/PhysRevA.94.032321
https://doi.org/10.1103/PhysRevA.99.042318
https://doi.org/10.1145/3408039
https://doi.org/10.1038/s41567-020-0992-8

STRIKIS, BENJAMIN, and BROWN

PHYS. REV. APPLIED 19, 064081 (2023)

measurements in quantum error correction (2021), ArXiv:
2107.14252.

[47] H. Bombin, Single-Shot Fault-Tolerant Quantum Error
Correction, Phys. Rev. X 5, 031043 (2015).

[48] A. Kubica and M. Vasmer, Single-shot quantum error cor-
rection with the three-dimensional subsystem toric code
(2021), ArXiv:2106.02621.

[49] C. Gidney and A. G. Fowler, Efficient magic state factories
with a catalyzed |CCZ) to 2|T) transformation, Quantum 3,
135 (2019).

[50] A. Siegel, A. Strikis, T. Flatters, and S. Benjamin,
Adaptive surface code for quantum error correction in
the presence of temporary or permanent defects (2022),
ArXiv:2211.08468.

[51] S. F. Lin, J. Viszlai, K. N. Smith, G. S. Ravi, C. Yuan,
F. T. Chong, and B. J. Brown, Empirical overhead of the
adapted surface code on defective qubit arrays (2023),
ArXiv:2305.00138.

[52] S. Bravyi, G. Duclos-Cianci, D. Poulin, and M. Suchara,
Subsystem surface codes with three-qubit check operators
(2013), ArXiv:1207.1443.

[53] C. Chamberland, G. Zhu, T. J. Yoder, J. B. Hertzberg, and
A. W. Cross, Topological and Subsystem Codes on Low-
Degree Graphs with Flag Qubits, Phys. Rev. X 10, 011022
(2020).

[54] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.
Flammia, and B. J. Brown, The XZZX surface code, Nat.
Commun. 12, 2172 (2021).

[55] M. A. Levin and X.-G. Wen, String-net condensation: A
physical mechanism for topological phases, Phys. Rev. B
71, 045110 (2005).

[56] H. Bombin and M. A. Martin-Delgado, Topological Quan-
tum Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[57]1 M. B. Hastings and J. Haah, Dynamically generated logical
qubits, Quantum 5, 564 (2021).

[58] S. Beigi, P. W. Shor, and D. Whalen, The quantum dou-
ble model with boundary: Condensations and symmetries,
Commun. Math. Phys. 306, 663 (2011).

[59] A.Kitaev and L. Kong, Models for gapped boundaries and
domain walls, Commun. Math. Phys. 313, 351 (2012).

[60] M. Levin, Protected Edge Modes Without Symmetry, Phys.
Rev. X 3,021009 (2013).

[61] M. Barkeshli, C.-M. Jian, and X.-L. Qi, Theory of defects
in Abelian topological states, Phys. Rev. B 88, 235103
(2013).

[62] M. S. Kesselring, F. Pastawski, J. Eisert, and B. J. Brown,
The boundaries and twist defects of the color code and their
applications to topological quantum computation, Quantum
2,101 (2018).

[63] C. Vuillot, Planar Floquet codes (2021), ArXiv:2110.05348.

064081-18

https://arxiv.org/abs/2107.14252
https://doi.org/10.1103/PhysRevX.5.031043
https://arxiv.org/abs/2106.02621
https://doi.org/10.22331/q-2019-04-30-135
https://arxiv.org/abs/2211.08468
https://arxiv.org/abs/2305.00138
https://arxiv.org/abs/1207.1443
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1038/s41467-021-22274-1
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.22331/q-2021-10-19-564
https://doi.org/10.1007/s00220-011-1294-x
https://doi.org/10.1007/s00220-012-1500-5
https://doi.org/10.1103/PhysRevX.3.021009
https://doi.org/10.1103/PhysRevB.88.235103
https://doi.org/10.22331/q-2018-10-19-101
https://arxiv.org/abs/2110.05348

	I. INTRODUCTION
	II. ERROR CORRECTION WITH FABRICATION DEFECTS
	A. Fabrication defects and superstabilizers
	B. Shells

	III. THRESHOLD THEOREM
	A. Defect and error models
	B. A threshold theorem for phenomenological noise

	IV. UNIVERSAL QUANTUM COMPUTATION
	A. Hadamard gate
	B. Lattice surgery
	C. S and T gates

	V. COSMIC RAYS AND OTHER TIME-CORRELATED ERRORS
	VI. DISCUSSION
	ACKNOWLEDGMENTS
	. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

