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Characterizing Low-Frequency Qubit Noise
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Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scal-
able quantum computers. Of particular importance are fluctuations with a correlation time that exceeds
the decoherence time due to decay and dephasing by fast processes. The statistics of the fluctuations can
be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measure-
ments. We describe qubit dynamics during repeated measurements and evaluate the two-time correlator
for noise from two-level systems and two- and three-time correlators for Gaussian noise. The explicit
expressions for the correlators are compared with simulations. We find that, even though the three-time
correlators for noise from two-level systems and for Gaussian noise are generally significantly different,
already ten two-level systems can mimic Gaussian noise provided they are symmetric. This is not the case
for asymmetric systems.
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I. INTRODUCTION

Decoherence, and in particular qubit phase fluctuations
due to the qubit frequency noise, are one of the major
obstacles faced by quantum computing. This makes it
important to understand the mechanism of the frequency
noise. To this end, much work has focused on the analy-
sis of the noise spectra; cf. Refs. [1–20] and the references
therein. For condensed-matter-based qubits, the analysis is
frequently based on the assumption that the noise is Gaus-
sian, as it comes from many independent sources, each of
which is weakly coupled to a qubit. This assumption does
not necessarily apply, particularly for low-frequency noise
[21–24]. The latter is often thought to result from random
hopping between the states of two-level systems (TLSs)
coupled to a qubit. However, TLS-induced frequency noise
is generally non-Gaussian [25–31], reminiscent of the fluc-
tuations studied in nuclear magnetic resonance and leading
to the spectral diffusion; see Refs. [32,33].

To characterize the noise that causes qubit decoherence,
it is important to know not just the noise spectrum, but
also its statistics. The problem has attracted considerable
interest [20,34–39]. A natural approach is to characterize
higher-order spectral moments of the noise. For zero-mean
Gaussian noise, all moments are expressed in terms of the
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second moment. A deviation from the corresponding inter-
relation between the moments is a signature of the noise
being non-Gaussian.

For frequency noise in mesoscopic vibrational systems,
higher-order moments were studied in Refs. [40,41]. For
frequency noise in qubits, the possibility to measure the
third spectral moment (the bispectrum) was demonstrated
in Ref. [38] by building on the approach [36] of evalu-
ating noise polyspectra. The approach is based on using
a large number of distinct sequences of refocusing pulses
during Ramsey measurements. The data acquisition time
is therefore limited by the lifetime of a qubit. A similar
constraint also refers to the results on the three-time corre-
lator presented in Ref. [42] where projective measurements
were used instead of refocusing. Higher-order correlation
functions of a spin qubit in an optically active quantum
dot were studied using multiple interpulse intervals, with
the overall measurement duration also limited by the qubit
lifetime [43]. This latter work is directly related to the
field of optical spin noise spectroscopy, where higher-order
statistics of the noise plays an important role [34,44].

In the present paper we develop means for studying, in
a single series of repeated measurements, the statistics of
qubit noise with frequencies that are not limited by the
reciprocal qubit lifetime. This is a key distinction from
the previous work. The relevant low-frequency noise plays
a critical role in the operation of a quantum computer.
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In particular, it limits the time over which repeated gate
operations can be reliably performed on a qubit. The cor-
responding timescale and the noise mechanism depend on
the qubit implementation. For example, for the currently
used superconducting qubits, the timescale of interest is in
the range of 0.01–10 ms; one of the major sources of fluc-
tuations on this timescale is the coupling to TLSs. TLSs are
an important source of low-frequency noise in other types
of qubits as well.

Our approach is not limited to noise frequencies from
below. Even though the approach applies, the statistics of
very slow frequency noise can be analyzed directly from
the time dependence of the qubit frequency. Such time
dependence has been resolved in several experiments; cf.
Refs. [4,45,46]. Very slow noise can be caused by various
physical mechanisms; for example, for superconducting
qubits, those can be cosmic rays or high-energy photons
[47,48]. The analysis of such noise is beyond the scope of
the present paper.

Our goal is to develop an analytical theory of the effects
of the noise statistics. The theory should be sufficiently
general to account for different types of noise, including
both Gaussian and non-Gaussian noise, and for the qubit
dynamics involved in the measurements. We also aim at
performing numerical simulations, which can be compared
with the theory and in some cases can go beyond the range
where analytical results can be obtained or become too
cumbersome.

We study the first three correlators of the qubit fre-
quency noise. Knowing three correlators is sufficient for
distinguishing Gaussian from non-Gaussian noise. The
study can be conveniently done by periodically repeating
Ramsey measurements (cf. Ref. [5]), but going beyond
noise spectroscopy. The actual correlators directly acces-
sible to the experiment are the correlators of the measure-
ment outcomes, and these are the characteristics we study.
For the low-frequency noise, it is advantageous to analyze
the results primarily in the time rather than the frequency
domain, particularly where we are not limited to the effects
of the lowest order in the noise intensity.

The measurement periodicity, which underlies our
approach, is advantageous in that it allows one to
find multiple-time correlators from a single sequence of
repeated measurements. Indeed, the correlators of the out-
comes separated by given numbers of periods can be
obtained directly. The averaging is performed just by “slid-
ing” along the data array keeping given distances between
the data points.

One of the questions of general interest that we address
is to understand the conditions where the TLS noise mim-
ics Gaussian noise. An obvious answer is that it happens
where there are many independent TLSs weakly coupled
to the qubit, so as to meet the central limit theorem con-
dition. On the other hand, there is an argument that the
number of states of the TLS-induced noise scales with the

number of TLSs NTLS as 2NTLS , so that the actual number
of TLSs does not necessarily have to be large. Compar-
ing the correlators of the measurement outcomes should
allow one to find how close the TLS noise comes to being
Gaussian depending on the coupling and the parameters of
TLSs.

Identifying the mechanism of classical non-Gaussian
qubit noise based on its correlators is a hard problem,
generally. Such noise is often a result of “processing” of
Gaussian noise by nonlinear systems coupled to a qubit.
The telegraph noise from TLSs is a familiar example.
Indeed, in the standard model of TLSs [49–51] it results
from interstate switching of a strongly nonlinear (two-
state) system due to its coupling to a bosonic reservoir,
with this reservoir itself being a source of Gaussian noise.
Therefore, it is helpful to have a “map” of the outcomes of
the measurements depending on the noise correlation and
statistics for different types of noise sources.

A. The structure of the paper

We aim at studying the correlators of measurement out-
comes for TLSs, analytically and via simulations. We also
study correlation functions for three important types of
Gaussian noise with a large correlation time: exponentially
correlated noise, noise with a “profound color,” i.e., with
a comparatively narrow peak at nonzero frequency in the
power spectrum, and 1/f -type noise.

The analytical calculations are fairly cumbersome.
Therefore we separate the paper into three parts. The first
part presents the results of the calculations and describes
the simulations and the comparison of the theory and
the simulations. The second part describes the theoretical
approach that we develop. The details of the calcula-
tions and of the simulation algorithm are presented in the
appendices.

The first part comprises Secs. II–VI. It presents, without
a derivation, explicit general expressions for the correla-
tors of the measurement outcomes. It also provides sim-
plified versions of these expressions in various limiting
cases. In Sec. II we describe the scheme of periodically
repeated Ramsey measurements and define the two- and
three-time correlation functions of the measurement out-
comes. Section III summarizes the analytical results on the
effect of coupling to TLSs. It gives the explicit expression
for the two-time correlator and discusses the limiting cases
of (i) weak coupling to the TLSs (in frequency units) com-
pared to the TLS switching rates, (ii) short interval between
the Ramsey pulses compared to the reciprocal coupling and
switching rates, and (iii) strong coupling compared to the
TLS switching rates.

Section IV provides explicit expressions for the two-
and three-time correlators in the case of Gaussian noise. It
shows how to do the measurements in the optimal way in
order to distinguish Gaussian and non-Gaussian noise. The
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parameters in the general expressions are evaluated for (i)
exponentially correlated noise (with the Lorentzian power
spectrum centered at ω = 0), (ii) noise with “profound
color,” and (iii) 1/f -type noise.

In Sec. V we relate the discrete Fourier transform of
the measurement outcomes to the noise power spectrum
in the case where the noise is weak. In particular, we
show that, generally, there is no one-to-one correspon-
dence between the spectra. For completeness, we provide
the relation between the centered two-time correlator of the
measurement outcomes and the bispectrum often used in
the analysis of non-Gaussian noise.

Section VI presents the results of the simulations and
a detailed comparison of the theory and simulations for
different types of noise. In particular, we study the mani-
festations of Gaussianity and non-Gaussianity of the noise.
The results show the effects of (i) coupling to symmetric
TLSs, for different numbers of TLSs and different cou-
pling strengths, (ii) coupling to asymmetric TLSs, and (iii)
the effects of exponentially correlated Gaussian noise and
1/f -type Gaussian noise.

In Sec. VII we derive a master equation for a qubit cou-
pled to TLSs and driven by Gaussian noise and consider
the qubit dynamics during the Ramsey measurement and
the probability of the measurement outcome. In Sec. VIII
we develop a method that allows us to find the two-time
correlator of the outcomes for the TLS-induced noise. The
approach is further developed in Sec. IX to analyze the
effect of Gaussian noise on the one-, two-, and three-time
correlators. Section X provides a summary of the results.

In Appendix A we provide an alternative method that
makes it possible to find the correlator of the outcomes of
repeated Ramsey measurements in the presence of tele-
graph noise. In Appendix B we describe the simulation
algorithms. Other appendices provide some details of the
calculations and present more results on the noise spectra
and the correlators of the measurement outcomes.

II. THE CORRELATION FUNCTION OF
MEASUREMENT OUTCOMES

We associate the operators acting on the qubit states
with the Pauli operators σx,y,z and the unit operator Îq.
The ground and excited states of the qubit are the eigen-
states of σz. In the Bloch sphere representation they are
|0〉 ≡ |↑〉 and |1〉 ≡ |↓〉, respectively. We consider a peri-
odic sequence of Ramsey measurements sketched in Fig. 1
[4–6]. In the first Ramsey measurement the qubit, initially
in state |0〉, is rotated at time t = 0 by π/2 around the y axis
into state (|0〉 + |1〉)/√2. At tR it is rotated by π/2 around
the y axis again and the occupation of state |1〉 is measured.
After the measurement the qubit is reset to the ground
state. The Ramsey measurements are then repeated with
period tcyc, which we call the cycle period. For simplicity,
we disregard the duration of the gate operations and the

t
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FIG. 1. Schematics of the Ramsey measurements. In each
measurement qubit phase is accumulated over time tR. The mea-
surements are projective, P̂ = |1〉 〈1|. They are repeated with
period tcyc. After a measurement the qubit is reset to the ground
state. Studied are two- and three-time correlators of the measure-
ment outcomes. The jagged line at the bottom of the figure is a
sketch of the qubit frequency fluctuations.

measurement as well as the gate and measurement errors.
A similar sequence, but limited just to two measurements,
was used in Ref. [52]. A two-measurement sequence does
not allow studying the effects explored in this paper.

In a Ramsey measurement, the phase accumulated by
the qubit over time tR is compared with the phase accu-
mulated over this time by a reference resonant signal.
The accumulation of the phase difference θ is thus deter-
mined by fluctuations δωq(t) of the qubit frequency. These
fluctuations are described by the Hamiltonian

Hfl = − 1
2δωq(t)σz (� = 1). (1)

The random phase θ k accumulated over a kth cycle, i.e.,
over the time interval (ktcyc, ktcyc + tR), is

θk =
∫ ktcyc+tR

ktcyc

δωq(t)dt. (2)

As seen from Eq. (2), fluctuations δωq(t) with a typical
correlation time much shorter than tR are largely aver-
aged out. Periodic repetition of the Ramsey measurements
allows revealing fluctuations with correlation times not
only on the scale of tR, but also on the scale determined by
the cycle period tcyc. Of interest are zero-mean fluctuations,
〈δωq〉 = 0 (see, however, the discussion of the coupling to
TLSs).

We assume that the system, including noise, is sta-
tionary. Then measurement outcomes only depend on the
time interval between the measurements. We consider the
expectation values of the outcomes r1, r2(k), and r3(k, �)
of obtaining “1” in a single measurement, obtaining “1”
and “1” in two measurements separated by k cycles, and
obtaining three “1”s in three measurements in which two
measurements are separated from the first one by k and
l cycles, respectively; for concreteness, we assume that
l > k ≥ 1. These expectation values are time correlators
and are given by the correlation functions of the projection
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operator P̂ = (Îq − σz)/2 ≡ |1〉 〈1|,

r1 = Tr[P̂(t+R )ρ(0
−)],

r2(k) = Tr[P̂(ktcyc + t+R )P̂(t
+
R )ρ(0

−)],
(3)

and

r3(k, �) = Tr[P̂(�tcyc + t+R )P̂(ktcyc + t+R )

× P̂(t+R )ρ(0
−)], (4)

where ρ is the density matrix of the system; Îq is the
unit operator in the qubit space. Superscripts “+” and
“−” of the time arguments indicate that the operator is
respectively evaluated right after or right before the cor-
responding instant of time, i.e., right after or right before
the gate operation performed at this time, t± ≡ t ± ε with
ε → +0; in particular, 0− is the time right before the rota-
tion around the y axis at t = 0, whereas t+R is the time right
after the rotation at t = tR. Clearly, r1 is just the probability
of obtaining “1” in a Ramsey measurement.

The traces in Eqs. (3) and (4) are calculated over the
states of the qubit and the thermal reservoir coupled to the
qubit, including the states of the TLSs if the TLSs play a
role. The traces also imply averaging over the realizations
of noise in the case where noise is a classical random force
that modulates the qubit frequency.

The outcome of an nth Ramsey measurement xn takes
on value 1 or 0. Correlators r1,2,3 are determined by the
expectation values of these outcomes and their products,

r1 = E[xn], r2(k) = E[xn+kxn],

r3(k, �) = E[xn+�xn+kxn]
(5)

Somewhat conditionally, we use E[·] when referring to
the expectation values, whereas for the results of statisti-
cal averaging based on analytical expressions, we use 〈·〉.
For classical Gaussian noise, correlators r3(k, �) are fully
determined by r1 and r2(k). We find the corresponding
relations. If they do not hold, this indicates that the noise
is non-Gaussian.

An advantageous feature of periodically repeated mea-
surements is that the averaging is greatly simplified. Rather
than repeating measurements for each k or each pair (k, l),
one can use a single long series to find different correlators.
For example,

E[xn+kxn] ≈ M−1
M∑

n=1

xn+kxn.

Here M should be large; it should greatly exceed the corre-
lation length of the sequence (formally, M → ∞), but the
expression applies for an arbitrary k. In contrast to r2(k)

and r3(k, �), which give the time correlation functions for
times ktcyc and (ktcyc, �tcyc), respectively, r1 is independent
of tcyc and can be obtained just as M−1 ∑

n xn for large M .
Along with r2,3 we also consider centered correlators

r̃2(k) = E[(xn+k − r1)(xn − r1)],

r̃3(k, �) = E[(xn+� − r1)(xn+k − r1)(xn − r1)].
(6)

The discrete Fourier transforms of correlators r̃2,3 give
the spectrum and the bispectrum of the measurement
outcomes; see Sec. V

In what follows we analytically calculate correlators
r1,2,3 and compare them with the results of simulating
sequences xn for several types of fluctuations. We typically
simulate N = 105 cycles and average the results over 300
repetitions. This limits the noise correlation time we can
reliably simulate to � 104tcyc.

For a Ramsey measurement, the probability r1 depends
on the phase θ accumulated between the Ramsey pulses
due to noise. For a given θ , the probability of obtaining
“1” in a measurement is [53]

p(θ) = 1
2 [1 + e−tR/T2 cos(φR + θ)]. (7)

For a random θ , probability r1 is given by the mean value
of p(θ). In Eq. (7), T−1

2 is the qubit decoherence rate due
to fast, on a scale ∼ tR, decay and dephasing processes,
which can usually be well described as Markovian. Phase
φR mimics the phase accumulated due to the difference
between the qubit frequency ωq and the frequency of the
reference signal ωref,

φR = (ωq − ωref)tR. (8)

This phase can be (and frequently is) also added in a
controlled way by a gate operation; see Eq. (57) below.

A note is due on the difference between the effects of
TLSs on correlators of different orders. In the model of
noninteracting TLSs that we consider, TLSs contribute to
phase θ independently. The overall phase is a sum of these
contributions. From Eq. (7), the value of r1 is determined
by 〈exp(iθ)〉 and can be calculated by multiplying the
contributions of individual TLSs [25,26,28]. In contrast,
r2 and higher-order correlators should contain terms that
decay as individual TLSs, their pairs, triples, etc. There-
fore, these correlators may not be calculated as products of
the contributions of individual TLSs.

III. DISPERSIVE COUPLING TO TWO-LEVEL
SYSTEMS

We study two major mechanisms of qubit decoherence:
classical fluctuations of the qubit frequency and the effect
of coupling to TLSs. The level spacing of TLSs is assumed
to be smaller than the qubit level spacing. In this case
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there is no resonant energy exchange between the qubit
and TLSs. The major effect of TLSs is to modulate the
qubit frequency as TLSs switch between their states. The
analysis is involved. Therefore we first provide the results,
whereas their derivations are postponed until Secs. VII–IX.

A. Power spectrum of the qubit frequency noise

Qubit decoherence due to the dispersive qubit-to-TLS
coupling is described by the Hamiltonian

Hq−TLS = −1
2
σz

∑
n

V(n)τ̂ (n)z . (9)

Here n = 1, . . . , NTLS enumerates the TLSs, τ̂ (n)z is the
Pauli operator of the nth TLS, and V(n) is the coupling
parameter; the states of an nth TLS are |0〉(n) and |1〉(n), and
τ̂ (n)z |i〉(n) = (−1)i |i〉(n) with i = 0, 1. Hamiltonian Hq−TLS
has the same form as the Hamiltonian of the qubit fre-
quency fluctuations Hfl except that the fluctuations are
described by operators in the TLSs’ space. Such treatment
is advantageous in view of formulation (3), as the qubit
and TLSs are analyzed on an equal footing.

One needs to take into account the fact that the mean
populations of the states of a TLS are different, generally.
The difference is given by the expectation value 〈τ̂ (n)z 〉. It
leads to a change of the mean qubit frequency compared
to its value in the absence of the coupling to TLSs. How-
ever, it is the mean qubit frequency in the presence of the
coupling that is observed in the experiment. Therefore, the
operator of the qubit frequency noise can be defined as

δω̂q(t) =
∑

n

V(n)(τ̂ (n)z − 〈τ̂ (n)z 〉), (10)

in which case it has a zero-mean expectation value,
〈δω̂q(t)〉 = 0.

An important characteristic of the qubit frequency noise
is its power spectrum Sq(ω),

Sq(ω) =
∫ ∞

−∞
dteiωt〈δω̂q(t)δω̂q(0)〉. (11)

The expression for Sq(ω) follows from the dynamics of
an isolated TLS being described by the standard Bloch
equations if we disregard the backaction; see Sec. VII.
The relevant parameters are the rates W(n)

ij of the interstate
switching |i〉(n) → |j 〉(n), where i and j take on values 0
and 1. From the balance equation for the state populations
we have

〈τ̂ (n)z (t)τ̂ (n)z (0)〉 − 〈τ̂ (n)z 〉2 = w(n)2 exp(−W(n)t), (12)

where W(n) is the relaxation rate of the nth TLS. The
parameters in this expression have the form

W(n) = W(n)
01 + W(n)

10 , 〈τ̂ (n)z 〉 = �W(n)/W(n),

�W(n) = W(n)
10 − W(n)

01 , w(n) = 2(W(n)
01 W(n)

10 )
1/2/W(n).

(13)

From Eq. (12), the power spectrum of the qubit frequency
noise is

Sq(ω) = 2
NTLS∑
n=1

(w(n)V(n))2W(n)/(W(n)2 + ω2). (14)

This is the familiar form of the TLS-induced frequency
noise as a sum of Lorentzians.

In the standard way, in what follows we call TLSs with
equal switching rates W(n)

01 = W(n)
10 symmetric, whereas

those with unequal rates are called asymmetric. If the dif-
ference in the energy levels of a TLS exceeds kBT, such a
TLS is significantly asymmetric.

B. Explicit general expressions for the mean and
correlator of measurement outcomes r1 and r2(k)

The effect of TLSs on the qubit dynamics depends on
the relation between the couplings V(n) and W(n)

ij . Our anal-
ysis gives the explicit expressions for the probability r1 of
having “1” as an outcome of the Ramsey measurement and
for the pair correlation function r2(k), for an arbitrary ratio
V(n)/W(n)

ij . In particular, we find that

r1 = 1
2

+ 1
2

e−tR/T2Re
[

eiφ̃R
∏

n


(n)(tR)
]

, (15)

where


(n)(tR) =
[(

W(n)

2γ (n)
+ iV(n)

�W(n)

γ (n)W(n)

)
sinh γ (n)tR

+ cosh γ (n)tR

]
exp(−W(n)tR/2) (16)

and

φ̃R =
(
ωq − ωref −

∑
n

V(n)�W(n)/W(n)
)

tR. (17)

We emphasize that here ωq is the observable qubit fre-
quency as measured in the experiment. It refers to 〈δω̂q〉 =
0.

The effect of TLSs on probability r1 is described by
factor
(n). The expression for
(n) coincides with the pre-
viously obtained expression for the factor that describes
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the decay of 〈σ±(t)〉 due to the coupling to TLSs [25]. The
form of 
(n) is determined by parameter γ (n),

γ (n) = 1
2 [W(n)2 + 4iV(n)(�W(n) + iV(n))]1/2, (18)

which depends on the interrelation between V(n) and the
TLS relaxation rate W(n). It also depends on the TLS asym-
metry �W(n). Equation (15) shows that, as expected from
the qualitative arguments, the TLS-induced change of the
measurement probability is determined by the product of
the contributions from individual TLSs.

We note that the expression for 
(n)(tR) simplifies
in the limit where the switching rate from one of the
states of the nth TLS is zero, i.e., W(n)

01 W(n)
10 = 0 or,

equivalently, |�W(n)| = W(n). In this limit 
(n)(tR) =
exp[iV(n)tR sgn(�W(n))]. The corresponding TLS is not
fluctuating; it stays in state |0〉(n) or |1〉(n) for�W(n) > 0 or
�W(n) < 0, respectively. The coupling to such a TLS leads

just to a static shift of the qubit frequency. A special anal-
ysis is required in the case of very small W(n)

01 W(n)
10 /(W

(n))2,
as one has to compare the total duration of the measure-
ment sequence with the reciprocal minimal switching rate.
In the present paper we assume that the total duration of the
measurement sequence is much larger than max[(W(n)

ij )
−1].

The correlator of the measurement outcomes r2(k) due
to the coupling to TLSs is described by a more compli-
cated expression. As mentioned above, it should contain
contributions from the decay of groups of different num-
bers of TLSs. The expression below shows that r2(k) for
k > 0 is actually expressed in terms of a sum over such
groups. The number of TLSs in each group is given by
s, with NTLS ≥ s ≥ 1, where NTLS is the total number of
TLSs. A group with a given s includes all possible sub-
sets {m}s = m1, m2, . . . , ms, i.e., all possible combinations
of s TLSs (mi enumerates the TLSs within the group,
NTLS ≥ mi ≥ 1 for i = 1, . . . , s). The centered correlator
for k > 0 has the form

r̃2(k) = 1
4

e−2tR/T2

NTLS∑
s=1

∑
{m}s

{
Re

(
eiφ̃R

[ s∏
j =1

ξ
(mj )

k (tR)
][ ∏

n/∈{m}s


(n)(tR)
])}2

,

ξ
(n)
k (tR) = iw(n)(V(n)/γ (n))e−kW(n)tcyc/2 sinh γ (n)tR,

(19)

where 
(n)(tR) and the characteristic coupling parameter
γ (n) are given by Eqs. (16) and (18), respectively. The sum∑

{m}s
implies summation over all combinations of s TLSs,

i.e., over all m1, m2, . . . , ms. The values of m1, . . . , ms can
be arranged as NTLS ≥ m1 > m2 > · · · > ms ≥ 1. We note
that the number of terms is exponential in the number NTLS
of TLSs.

The derivations of the above results based on the mas-
ter equation for the coupled qubit and TLSs are given in
Secs. VII and VIII. In Appendix A we provide an alter-
native derivation where the effect of TLSs is modeled by
telegraph noise, i.e., δωq(t) in Eq. (1) is assumed to be
telegraph noise.

Equation (19) provides an explicit solution of the prob-
lem of the correlation function of the measurement out-
comes of a qubit coupled to TLSs r̃2(k). It holds for
arbitrary ratios of the coupling parameters |V(n)| and the
decay rates of TLSs W(n) and also for arbitrary ratios of
these parameters to the reciprocal duration of the Ram-
sey measurement t−1

R . The general expressions for r1 and
r̃2(k) simplify in the limiting cases of strong and weak
coupling, i.e., large and small |V(n)|/W(n) as well as in
the case of comparatively small tR. The corresponding
limiting cases are discussed in the following subsections.
For concreteness, we assume that V(n) > 0, as the change

in the sign of V(n) corresponds to swapping the TLS states
|0〉(n) and |1〉(n).

C. Weak coupling

The weak coupling case, where V(n) � W(n), is interest-
ing not only on its own, but also because it extends to
the case where noise of TLSs is Gaussian. The Gaussian
limit corresponds to V(n) ∝ N−1/2

TLS with the number of TLSs
NTLS � 1 (the central limit theorem), but we emphasize
that the expressions in this subsection are not based on the
assumption of Gaussianity. We start with a formal expan-
sion of the general expressions for r1 and r2(k) and then
provide a physical insight into the results.

Formally, for V(n) � W(n), we can expand parameter
γ (n) in Eq. (18) to second order in V(n)/W(n). Substituting
the expansion into expression (15) for the probability r1
of having “1” as the Ramsey measurement outcome, we
obtain

r1 ≈ 1
2

+ 1
2

exp
(

− tR
T2

− 1
2
〈θ̂2〉

)
cosφR,

〈θ̂2〉 =
∑

n

2(w(n)V(n)/W(n))2(W(n)tR + e−W(n)tR − 1).

(20)
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Here φR is the control phase defined by Eq. (8). Equation
(20) applies for both symmetric and asymmetric TLSs.

The term 〈θ̂2〉 in Eq. (20) is the expectation value of the
variance of the random phase of the qubit

θ̂k =
NTLS∑
n=1

θ̂
(n)
k =

∫ ktcyc+tR

ktcyc

dt δω̂q(t) (21)

accumulated over time tR during the kth Ramsey measure-
ment. From Hamiltonian (9), contribution θ̂ (n)k of an nth
TLS to this phase is

θ̂
(n)
k = V(n)

∫ ktcyc+tR

ktcyc

dt[τ̂ (n)z (t)− 〈τ̂ (n)z 〉]. (22)

For independent TLSs, the variance of phase θ̂k is a sum of
the variances of the “partial” phases θ̂ (n)k . Clearly, 〈θ(n)k

2〉 is
independent of the cycle number k. Equation (20) follows
from the expression for 〈θ(n)2〉 obtained from Eq. (12).

For small W(n)tR, we have

〈θ̂2〉 ≈
∑

n

(w(n)V(n)tR)2, W(n)tR � 1. (23)

It is seen from Eq. (20) that in this case r1 − 1/2 displays a
Gaussian decay with tR, i.e., log(r1 − 1/2) ∝ −t2R for tR �
T2; no assumption about the TLS spectrum is needed. On
the other hand, for longer Ramsey times or faster switching
TLSs, W(n)tR > 1, the decay of r1 − 1/2 with increasing tR
is close to exponential.

In the weak-coupling limit, to leading order in V(n)/W(n),
Eq. (19) for the centered pair correlator r̃2(k) can be put in
the form that relates it to the correlator of the overall qubit
phase θ̂k,

r̃2(k) ≈ 1
4 e−2tR/T2−〈θ̂2〉 sin2 φR〈θ̂0θ̂k〉. (24)

Since the TLSs are uncorrelated, the correlator of phase
θ̂ is given by the sum of the correlators of the phases of
individual TLSs

〈θ̂0θ̂k〉 =
∑

n

〈θ̂ (n)0 θ̂
(n)
k 〉,

〈θ̂ (n)0 θ̂
(n)
k 〉 = (2V(n)w(n)/W(n))2

× exp(−kW(n)tcyc) sinh2(W(n)tR/2), k ≥ 1.
(25)

Equation (25) follows from Eqs. (22) and (12). Impor-
tantly, the correlator of phase θ̂ is directly expressed in
terms of the power spectrum Sq(ω) of the TLS-induced

frequency noise (11),

〈θ̂0θ̂k〉 = 1
π

∫
dωeikωtcycSq(ω)(1 − cosωtR)/ω2. (26)

We note that in this expression, along with the standard
factor (1 − cosωtR)/ω2, the spectrum Sq(ω) is weighted
with the factor exp(ikωtcyc). To find correlator 〈θ̂0θ̂k〉 for
large ktcyc/tR, one can often set (1 − cosωtR)/ω2 ≈ t2R/2;
see below.

Equation (24) gives the correlator of the measurement
outcomes r̃2(k) in a simple explicit form for weak cou-
pling, i.e., in the case where the partial contributions of
different TLSs to the random qubit phase 〈θ̂ (n)2〉 are small
on average. A partial contribution of an nth TLS to r̃2(k),
which is proportional to 〈θ̂ (n)0 θ̂

(n)
k 〉, is quadratic in the ratio

V(n)/W(n). Since each such contribution decays with k as
exp(−kW(n)tcyc), the overall decay of r̃2(k) with k is non-
exponential. It is important that the expression for r̃2(k)
contains the factor exp(−〈θ̂2〉) that describes the collective
effect of the system of TLSs on the contribution of an indi-
vidual TLS to the decay. Even though, for weak coupling,
〈θ̂ (n)2〉 � 1 for each TLS, 〈θ̂2〉 = ∑

n〈θ̂ (n)2〉 does not have
to be small, if the number of TLSs is large.

D. Short Ramsey accumulation time

The general expressions (15) and (19) for probability r1
and the centered pair correlator r̃2(k) are also simplified
in the case where the Ramsey wait (accumulation) time is
short or the coupling is weak and the switching rates are
small, so that V(n)tR, W(n)tR � 1. In this case functions
(n)

and ξ (n)k in Eqs. (15) and (19) take the form


(n)(tR) ≈ exp[i(�W(n)/W(n))V(n)tR − (w(n)V(n)tR)2/2],

ξ
(n)
k (tR) ≈ iw(n)V(n)tR exp(−kW(n)tcyc).

(27)

This gives, to leading order in the small parameters,

r1 ≈ 1
2

+ 1
2

exp
[
−tR/T2 −

∑
n

(w(n)V(n)tR)2/2
]

cosφR

(28)

and

r̃2(k) ≈ 1
4

e−2tR/T2
∑

n

sin2(φR − V(n)�W(n)tR/W(n))

× (w(n)V(n)tR)2e−kW(n)tcyc . (29)

Equations (28) and (29) hold for arbitrary ratios V(n)/W(n).
The considered limit is physically important. Indeed, TLSs
with W(n)tR � 1 do not contribute to the centered cor-
relators r̃2(k) and higher-order centered correlators: fast
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switching averages out their effect. Correlators r̃2(k) are
formed mainly by TLSs with switching rates smaller than
t−1
cyc < t−1

R , i.e., W(n)tR < 1.
The condition V(n)tR � 1 is another condition of an

effectively weak coupling. It is different from that dis-
cussed in Sec. III C. It shows that the coupling to an nth
TLS weakly affects the phase accumulated by the qubit
during the Ramsey measurement. The effect of this cou-
pling on r1 and r̃2(k) can thus be described by keeping
the lowest-order terms in V(n). This leads to simple explicit
expressions for r1 and r̃2(k), Eqs. (28) and (29). As in the
case of small |V(n)|/W(n), the decay of r̃2(k) is described by
the sum of exponential factors exp(−kW(n)tcyc) that come
from individual TLSs. However, now each of these factors
is weighted with the coefficient ∝ (V(n)tR)2.

Equations (28) and (29) deserve comments. From Eq.
(28), r1 as a function of φR is maximal for φR = 0. Since
φR is determined by the difference between the qubit fre-
quency and the frequency of the reference drive, it means
that the qubit frequency is equal to the reference frequency
when r1 is maximal even in the presence of coupling to
asymmetric TLSs.

From Eq. (29), correlator r̃2(k) goes to zero to second
order in V(n)tR for φR = 0. In fact, in region |φR| � |V(n)|tR
one has to allow for higher-order terms in V(n)tR in the
expression for r̃2(k). We give this expression for the case
of symmetric TLSs, where�W(n) = 0. Here, for NTLS ≥ 2,
for small |φR|, and to leading order in V(n)tR, W(n)tR, one
has to add an extra term δr̃2(k) to expression (29) for r̃2(k),

δr̃2(k) ≈ 1
4

e−2tR/T2

NTLS∑
m1=2

m1−1∑
m2=1

(V(m1)V(m2)t2R)
2

× exp[−k(W(m1) + W(m2))tcyc]. (30)

Equations (29) and (30) show that not only is r̃2(k) small
for small φR, but r̃2(k) falls off much faster with increasing
k for φR = 0 than for φR = O(1). This feature allows one
to identify the frequency noise as being due to the coupling
to TLSs.

E. Centered three-time correlator r̃3 for weak coupling

It follows from Eq. (7) [see also Eq. (37) below and
Sec. IX] that, to leading order in the coupling to TLSs,
the three-time correlator of the measurement outcomes is
expressed in terms of the three-time correlator of the qubit
phase,

r̃3(k, �) = 〈[p(θ0)− 〈p(θ)〉][p(θk)

− 〈p(θ)〉][p(θ�)− 〈p(θ)〉]〉
≈ − 1

8 e−3tR/T2〈θ̂0θ̂k θ̂�〉 sin3 φR. (31)

A straightforward calculation using the approach of Sec.
VII shows that

〈θ̂0θ̂k θ̂�〉 ≈ −
∑

n

(2V(n)/W(n))3w(n)2�W(n)tR

× exp(−�W(n)tcyc) sinh2(W(n)tR/2) (32)

for � > k > 0.
Equation (32) shows that, to leading order in the cou-

pling parameters V(n), only asymmetric TLSs, for which
�W(n) is nonzero, contribute to r̃3. It should be noted that
the value of r̃3 is maximal for φR = π/2. This will be
used in the analysis below. Somewhat unexpectedly, the
dependence of r̃3(k, �) on k and � is given by the sum
of the appropriately weighted factors exp(−�W(n)tcyc), i.e.,
r̃3(k, �) is independent of k. We note that, to higher order
in the coupling, r̃3 has contributions from symmetric TLSs
as well.

F. Strong coupling

In the limit of strong coupling to TLSs, V(n) � W(n), to
leading order

r1 ≈ 1
2

+ 1
2

e−tR/T2Re
{

eiφ̃R
∏

n

e−W(n)tR/2

× [cos V(n)tR + i(�W(n)/W(n)) sin V(n)tR]
}

(33)

(for brevity, this expression is provided for the case
�W(n)tR � 1).

The dependence of r1 on the duration of the Ram-
sey measurement tR is determined by the product of
the oscillating factors. For V(n)tR � 1, we have r1 −
1/2 ∝ exp(−∑

n V(n)2t2R/2). As the characteristic V(n)tR
increases, r1 − 1/2 quickly falls off for a large number of
TLSs if the values of V(n) are broadly distributed.

The behavior becomes more complicated in the range
where V(n)tR is not small and the values of V(n) for differ-
ent TLSs are close to each other. This is a consequence
of the oscillating factor in Eq. (33). For symmetric TLSs
(�W(n) = 0), we have r1 − 1/2 ∝ (cos V(n)tR)NTLS , which
is a sharp periodic function of V(n)tR for a large number of
TLSs. The nonmonotonic dependence of r1 − 1/2 on tR is
a specific effect that allows one to reveal the presence of
TLSs with close values of the coupling to a qubit.

Strong coupling to a qubit is most pronounced if
V(n)tR � 1, while at the same time tR � T2. It is plausible
that only one TLS meets this condition along with the con-
dition V � W, where V and W are the coupling parameter
and the switching rate of this TLS. In this case r1 oscil-
lates with tR with period 2π/V; cf. Ref. [54]. Importantly,
correlator r̃2(k) is oscillating with half of this period. For a
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symmetric TLS,

r̃2(k) ≈ 1
4 e−2tR/T2 sin2 φR sin2(VtR) exp(−kWtcyc). (34)

The combination of the oscillations of the expectation
value r1 with respect to tR with period 2π/V and of cor-
relator r̃2(k) with period π/V is a distinctive feature of a
strong dispersive coupling to a single TLS. It allows one to
fairly unambiguously identify the strong coupling to a sin-
gle TLS as the decoherence mechanism. We note that, in
superconductor-based systems of qubits, one of the qubits
can serve as a TLS that causes dephasing of another qubit.
One can also see from the comparison of Eq. (34) with Eq.
(38) below that the dependence of r̃2(k) on the angle φR is
different for a TLS and for Gaussian frequency noise, if the
coupling is not weak.

IV. GAUSSIAN FLUCTUATIONS OF THE QUBIT
FREQUENCY

An important cause of the qubit frequency fluctuations
is external classical noise with frequencies much lower
than the qubit transition frequency. The effect of such
noise is described by the term − 1

2δωq(t)σz in the qubit
Hamiltonian; cf. Eq. (1). We consider zero-mean stationary
Gaussian frequency fluctuations δωq(t). Such fluctuations
are fully characterized by their power spectrum

Sq(ω) =
∫ ∞

−∞
dteiωt〈δωq(t)δωq(0)〉. (35)

This expression has the same form as Eq. (11) for the
TLS-induced frequency noise, except that δωq(t) is not an
operator. For classical fluctuations, Sq(ω) = Sq(−ω). The
technique we develop can be extended to quantum noise as
well.

A. Explicit general expressions

Of relevance for the qubit is the accumulation of its
phase due to frequency fluctuations. For a classical noise
of the qubit frequency, the phase accumulated over the

time interval (ktcyc, ktcyc + tR), i.e., during the kth Ramsey
measurement, is θk = ∫ ktcyc+tR

ktcyc
δωq(t)dt; cf. Eq. (2). This

expression is the classical analog of operator θ̂k.
The correlation function fk of phases accumulated dur-

ing measurements separated by k cycles,

fk ≡ 〈θnθn+k〉, (36)

is related to the noise power spectrum Sq(ω) by Eq. (26).
Here we use the fact that, because of the stationarity of
noise δωq(t), correlator 〈θnθm〉 depends only on |n − m|.
The probability distribution of phases θn is Gaussian for the
Gaussian distribution of δωq(t). It is thus fully determined
by parameters fk. As seen from Eqs. (36) and (26), f0 > 0
and f0 ≥ |fk| for k �= 0. While fk = f−k, correlators fk can
be negative, in general.

The phase correlators are directly related to probability
r1 and correlators r2(k), r3(k, �) of the Ramsey measure-
ments. Intuitively, one can express these parameters in
terms of the probability p(θ), Eq. (7), of having “1” as an
outcome of the Ramsey measurement for a given θ ,

r1 = 〈p(θn)〉, r2(k) = 〈p(θn)p(θn+k)〉,
r3(k, �) = 〈p(θn)p(θn+k)p(θn+�)〉.

(37)

The averaging here is done over the distribution of phases
{θ}. For the stationary distribution, the result is indepen-
dent of n.

Equation (37) applies independent of the noise statistics.
It is substantiated by the analysis of Sec. IX, which is based
on solving the master equation for a qubit in the presence
of noise. For Gaussian noise, we have, for l > k > 0,

r1 = 1
2 [1 + e−tR/T2 exp(−f0/2) cosφR],

r̃2(k) = 1
8 e−2tR/T2 exp(−f0)[efk − 1 − cos(2φR)(1 − e−fk )],

(38)

and

r̃3(k, �) = 1
32

exp[−3(f0/2)− 3(tR/T2)]
{

cos 3φR

[
exp

(
−

∑
i

fi

)
+ 2 −

∑
i

exp(−fi)
]

+ cosφR

[∑
i

exp
(

−fi +
∑′

j

fj

)
+ 6 −

∑
i

(2efi + e−fi)

]}
. (39)

In Eq. (39) the sums over i, j run over i, j = k, l, l − k, and the prime over the sum means that j �= i.
For weak noise, fk � 1, the centered pair and triple correlators are

r̃2(k) ≈ 1
4 e−2tR/T2 exp(−f0)fk sin2 φR, r̃3(k, �) ≈ − 1

8 e−3tR/T2 exp(−3f0/2)(fkf� + fkf�−k + f�f�−k) cosφR sin2 φR. (40)
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We keep the term ∝ f0 in the exponent to account for the
case where parameters fn>0 are small because the period of
the measurements largely exceeds the correlation time of
the noise, tcyc � τcorr. Correlator r̃2(k) is of first order in fk
whereas correlator r̃3(k, �) is bilinear in fk, f�.

In the opposite limit of strong noise, where exp(−f0) �
1, r1 approaches 1/2. However, the pair correlator r2(k)
does not necessarily become small for not too large k,
if the noise is strongly correlated, τcorr � tcyc. Indeed,
in this case one may have f0 − fk � 1, so that r̃2(k) ≈
1
8 exp(fk − f0) for tR � T2. This is an interesting and unex-
pected feature of the noise with a long correlation time.
It enables revealing such characteristic noise correlations
through periodically repeated measurements. We note that,
in contrast to r̃2(k), quite generally, the triple correla-
tor becomes small, r̃3(k, �) ∝ (r1 − 1/2), which is another
characteristic feature of the noise.

B. Differentiating Gaussian from non-Gaussian noise

Not only does correlator r̃3(k, �) directly provide impor-
tant information about the qubit frequency noise, but it
also allows one to distinguish Gaussian and non-Gaussian
noise. Generally, as seen from Eq. (38), for Gaussian noise,
correlators fk can be found for all k by measuring r1 and
r̃2(k). They then define r̃3(k, �). Therefore, by measuring
r̃3(k, �) using the same data array, and by comparing with
what is expected from the measured r1 and r̃2(k) one can
tell whether the frequency noise is non-Gaussian.

There are also additional signs of Gaussianity versus
non-Gaussianity. In particular, for Gaussian noise, r1 >

1/2. By construction, matrix Fn n+k ≡ 〈θnθn+k〉 is symmet-
ric and positive definite, Fn n+k ≡ fk. It also follows from
Eq. (39) that, for Gaussian noise, the centered correlator
r̃3 goes to zero as φR approaches π/2. This is another
prerequisite of Gaussianity. At the same time, for weak
Gaussian noise, where fk � 1, we have, from Eq. (38),
r̃2(k) ∝ fk sin2 φR, which means that in this limit r̃2 → 0
for φR → 0. Therefore one may be interested in measuring
the pair and triple correlators for different values of φR and
comparing the results.

Overall, for Gaussian noise, the correlators display a
characteristic dependence on φR, as seen from the gen-
eral expressions (38) and (39). While r̃2(k) contains a term
that varies as cos(2φR), the expression for r̃3(k, �) contain
cosφR and cos(3φR). So, changing φR → π − φR does not
change r̃2(k), but changes the sign of r̃3(k, �) for Gaussian
noise. The above features provide a straightforward means
for establishing whether the low-frequency qubit noise is
Gaussian.

C. Exponentially correlated frequency noise

We now provide explicit expressions for correlators
fk = 〈θnθn+k〉 of phases accumulated during a Ramsey

measurement for three explicit types of Gaussian fre-
quency noise. The results for the two most frequently used
models are compared in Sec. VI C with simulations. The
effect of noise correlations comes into play if the charac-
teristic correlation time is comparable to tcyc. Otherwise,
one can think of frequency noise as white (δ correlated).
For 〈δωq(t)δωq(t′)〉 = Dwδ(t − t′), we have

fk = DwtRδk,0,

where Dw is white noise intensity. For such noise, the
centered measurement correlators r̃2(k), r̃3(k, �) should
vanish, as indeed seen from Eqs. (38) and (39).

An important type of correlated Gaussian noise is expo-
nentially correlated noise (the Ornstein-Uhlenbeck pro-
cess),

〈δωq(t)δωq(t′)〉 = 1
2 Dcorrτ

−1
corre

−|t−t′|/τcorr . (41)

The power spectrum of such noise is Lorentzian,

Sq(ω) ≡
∫ ∞

−∞
dteiωt〈δωq(t)δωq(0)〉

= Dcorr/(1 + ω2τ 2
cor). (42)

Quite often the expression “colored noise” is used for the
noise with spectrum (42). However, this is, of course, not
the only noise spectrum that differs from the flat spectrum
of white noise, and therefore we use the more specific term
“exponentially correlated noise.”

Exponentially correlated noise may come from a filtered
white Gaussian noise, a simple example being broadband
random voltage filtered by an RC circuit. Another example
is noise from dispersive coupling to thermal photons in a
multimode cavity with the mode decay times being close to
each other, so that these times can be approximated by τcorr.
Such noise was also used to model the effect of coupling
of an electron spin to a bath of nuclear spins [55]. In Eq.
(41) Dcorr characterizes noise intensity, whereas τcorr is the
noise correlation time.

Using Eq. (36), which expresses the phase correlators fk
in terms of the power spectrum Sq(ω), one obtains

f0 = Dcorr[tR − τcorr(1 − e−tR/τcorr)],

fk = Dcorrτcorr exp(−|k|tcyc/τcorr)

× [cosh(tR/τcorr)− 1], |k| > 0.

(43)

As seen from Eq. (43), correlators fk fall off exponentially
with increasing |k| for exponentially correlated noise. The
rate of the decay is determined by the relation between the
duration of cycle tcyc and the noise correlation time τcorr.

From Eq. (40), for weak noise, fn � 1, correlator
r̃2(k) falls off exponentially with increasing k. Correla-
tor r̃3(k, �), on the other hand, which is quadratic in fn,
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shows nonexponential decay even where the decay of r̃2(k)
is close to exponential. This is in agreement with the
simulations discussed in Sec. VI C.

It is important that, for stronger noise, the decay of
correlators r̃2(k), r̃3(k, �) becomes nonexponential, even
though fk exponentially falls off with increasing k.

D. Noise with “profound color”

To illustrate the possibility of a nonmonotonic behavior
of correlators fk as functions of k, we briefly describe the
effect of noise with “profound color,” that is, noise with a
spectrum Sq(ω) that has a pronounced peak at a nonzero
frequency. A simple example is Johnson-Nyquist noise fil-
tered by an RCL circuit. The power spectrum of such noise
is

Sq(ω) = Dclr[(ω2 − ω2
clr)

2 + 4�2
clrω

2]−1. (44)

This spectrum has a peak at (ω2
clr + 2�2

clr)
1/2. For ωclr �

�clr, this peak is Lorentzian with halfwidth �clr.
It is straightforward to see that, for

√
2�clrtR < ωclrtR �

1, we have

f0 = Dclrt2R/4ω
3
clr sinφclr,

fk = Dclrt2R
2ω3

clr sin(2φclr)
exp(−ktcycωclr sinφclr)

× cos(ktcycωclr cosφclr − φclr), k > 0,

(45)

where

φclr = 1
2

arctan
2�clr

√
ω2

clr − �2
clr

ω2
clr − 2�2

clr
.

From Eq. (45), correlators fk display exponentially decay-
ing oscillations as functions of k. For weak noise, such
oscillations will be immediately seen in correlators r̃2(k).
Other features of the effect of this noise will be discussed in
a separate paper; here our goal is just to indicate that such
noise may have an important effect on the qubit dynamics.

E. 1/f noise

Very often qubit decoherence is caused by 1/f fre-
quency noise, i.e., by noise with the power spectrum
Sq(ω) ∝ 1/ω ≡ 1/2π f ; cf. Refs. [5,14,29,39] and the ref-
erences therein. If such noise comes from a large number
of fluctuators, it becomes Gaussian, and the assumption
that 1/f noise is Gaussian is often made. Since the inte-
gral intensity of 1/f noise diverges, the spectrum has to
be cut both at low and high frequencies. A high-frequency
cutoff is irrelevant for the problem of the qubit frequency
noise that we consider, since the integration over interval
tR between the Ramsey pulses filters out high-frequency
noise components.

The low-frequency cutoff is model dependent. We
present results for a simple physically motivated model in
which the spectrum is smooth. This model is also related
to the model of noise from TLSs used in the simulations.
In contrast to the simulated TLS models, it corresponds to
coupling to a very large number of TLSs with the coupling
constant being the same for all TLSs (cf. Refs. [8,56]) and
with log-uniform distribution of the switching rates W(n);
the rates are assumed to be limited from below by ωmin.
From Eq. (12), the power spectrum of such noise has the
form

Sq(ω) = 2
π

Dfl

∫ ∞

ωmin

dW
W2 + ω2

= Dfl|ω|−1[1 − (2/π)arctan|ωmin/ω|]. (46)

In the range ω � ωmin we have Sq(ω) ≈ Dfl/ω, whereas
Sq(ω) ≈ 2Dfl/πωmin for |ω| � ωmin.

Calculating the integral in Eq. (36) by closing the con-
tour in the ω plane and using Eq. (46), one can write
the correlators of the qubit phase accumulated during
measurements separated by ktcyc as

fk = 2
π

Dfl

∫ ∞

ωmin

dW
W3 [cosh(WtR)− 1]

× exp(−kWtcyc), k > 0, (47)

whereas the mean square phase 〈θ2〉 acquired by the qubit
over time tR is

f0 = 2
π

Dfl

[
tR
ωmin

+
∫ ∞

ωmin

dW
W3 (e

−WtR − 1)
]

. (48)

For small ωmintR � 1, the leading-order terms in fk and f0
are logarithmic in ωmintR. The decay of correlators fk with
increasing k is nonexponential, in contrast to the case of
exponentially correlated Gaussian noise. However, it gets
close to exponential in the limit of large kωmintcyc � 1,

fk ≈ Dfl(t2R/πktcycωmin) exp(−kωmintcyc).

On the other hand, for ktcyc � tR but kωmintcyc � 1, a
reasonable numerical approximation is

fk ≈ Dfl(t2R/π)[−γE − log(kωmintcyc)], (49)

where γE ≈ 0.58 is the Euler constant.
The integrals in Eqs. (47) and (48) can be expressed

in terms of exponential integral and hyperbolic integral
functions. These expressions are given in Appendix C.

The explicit forms of correlators r̃2(k) and r̃3(k, �) for
1/f noise are discussed in Sec. VI C. The results show, in
particular, the sensitivity of these correlators to the low-
frequency threshold ωmin.
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V. POWER SPECTRUM FOR WEAK FREQUENCY
NOISE

In this section we study the relation between the power
spectrum of the qubit frequency noise and the spectrum
of the measurement outcomes. The power spectrum of N
measurement outcomes is given by the discrete Fourier
transform of the first N values of the pair correlator r̃2(k),

R(m) = 2Re
N−1∑
k=0

r̃2(k)e−2π imk/N . (50)

Here we defined, by continuity, r̃2(0) ≡ 〈(xn − 〈xn〉)2〉 =
r1(1 − r1).

One can similarly define a complex discrete bispectrum
of the measurement outcomes as

Rbispctr(m1, m2) =
N−1∑

k1,k2=0

r̃3(k1, k2)e−2π i(m1k1+m2k2)/N ,

where one sets r̃3(0, k) = r̃3(k, 0) = 〈(xn+k − r1)(xn −
r1)

2〉 and r̃3(k, k) = 〈(xn+k − r1)
2(xn − r1)〉 for k ≥ 0.

Spectrum R(m) is immediately related to the directly
evaluated discrete Fourier transform X (m) of the measure-
ment outcomes xn,

X (m) = N−1/2
N−1∑
n=0

xn exp(2π imn/N ), (51)

where xn takes on the value 0 or 1. Taking into account
the fact that, in the limit of large N , the centered correla-
tor r̃2(k) decays already for k � N , we obtain a standard
relation

E[|X (m)|2] = R(m)− r1(1 − r1)+ Nr2
1δm,0. (52)

This relation allows one to compare the analytical results
on R(m) that follow from the explicit expressions for r̃2(k)
with simulations of the spectrum.

Similarly, bispectrum Rbispectr(m1, m2) is related to
E[X (m1)X (m2)X ∗(m1 + m2)].

For a weak qubit frequency noise δωq(t), the expression
for the centered correlator r̃2(k), both for noise from TLSs
and for Gaussian noise, can be written as

r̃2(k) =
(

r1 − 1
2

)2

〈θ0θk〉 tan2 φR; (53)

cf. Eqs. (24) and (40). As noted above, in the case of noise
from TLSs one should use here 〈θ̂0θ̂k〉, i.e., the correlator
of the random part of the phase accumulation, 〈θ̂m〉 = 0.

Equations (50) and (53) allow one to relate spectrum
R(m), and thus E[|X (m)|2], to the power spectrum of

qubit frequency noise Sq(ω) for weak noise. As seen from
Eqs. (26) and (35), the dependence of 〈θ0θk〉 on k is
determined by factor exp(ikωtcyc) weighted with Sq(ω)

in the integral over ω. Therefore, summation over k in
Eq. (50) can be easily done for N → ∞. One then takes
into account the fact that, for a real α, sin(Nα)/[1 −
exp(iα)] → π

∑
� δ(α + 2π�) (of interest to us is α =

ωtcyc − 2πm/N ), whereas the integral of cos(Nωtcyc)

weighted with a smooth function of ω vanishes in the limit
N → ∞. This shows that, to leading order in the noise
intensity, R(m) ≈ R0(m), where

R0(m) = 1
2
(2r1 − 1)2t−1

cyc tan2 φR

∑
�

Sq[ω�(m)]

× 1 − cosω�(m)tR
ω�(m)2

+ RC,

ω�(m) = 2π(m + �N )
Ntcyc

,

(54)

with

RC = 2r1(1 − r1)− 1
4π
(2r1 − 1)2 tan2 φR

∫
dωSq(ω)

× 1 − cosωtR
ω2 . (55)

In Eq. (54), the sum runs over positive and negative
integer �.

Equations (52) and (54) show an important advanta-
geous feature of periodically repeated Ramsey measure-
ments: the discrete Fourier transform of the measurement
outcomes E[|X (m)|2] provides an insight into the power
spectrum of qubit frequency noise Sq(ω). One of the con-
ditions to be met is that the noise should be weak, which
can be inferred from the value of r1.

If Sq(ω) increases with decreasing ω, as in the case
of 1/f noise for example, for small m/N , a major con-
tribution to R0(m) comes from the term with � = 0 in
Eq. (54). In this case one can directly read off the fre-
quency noise spectrum from R0(m) and thus ultimately
from E[|X (m)|2]. However, generally, the situation is more
complicated; disregarding the terms with |�| > 0 has to be
taken with care.

VI. COMPARISON OF THE THEORY AND
SIMULATIONS

In this section we present the results of simulations of
periodically repeated Ramsey measurements and compare
them with the theoretical predictions. The results are aimed
at illustrating major qualitative aspects of the effect of
low-frequency fluctuations of the qubit frequency on the
measurements. We chose the ratio of the repetition period
tcyc to the accumulation time of the measurement tR (see
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Fig. 1) to be equal to tcyc/tR = 3. Most of the results refer
to φR = π/4, where all centered correlators are “visible.”
For φR = 0, we have r̃2 = 0 in the case of weak noise, as
seen from Eqs. (38) and (39). On the other hand, r̃3 = 0 for
φR = π/2 in the case of Gaussian noise. We use φR = π/2
for the noise from asymmetric TLSs to reveal the distinc-
tion from Gaussian noise. Also, we assume that tR is much
smaller than T2 and disregard corrections ∝ tR/T2.

We describe the centered correlators r̃2(k) and r̃3(k, �)
found in long simulations, with the duration Ntcyc much
longer than the noise correlation time (the ergodic limit).
Therefore, in terms of the results for TLSs, the initial dis-
tribution of TLSs has no effect: TLSs switch multiple times
during the simulations. We use N = 105 and repeat the
simulations 300 times to obtain good statistics.

In the subsections of this section we analyze the results
for different types of TLSs and for Gaussian noise with
different spectra. The simulation algorithms are outlined in
Appendix B.

A. Effect of the coupling to symmetric TLSs

We present results of the simulations in which the cou-
pling parameters are the same for all TLSs, V(n) = V. We
also assume that the switching rates W(n)

ij depend on n
exponentially. For symmetric TLSs, where W(n)

01 = W(n)
10 =

W(n)/2, we choose

V(n) = V, W(n)tR = exp[−α(n + n0)].

This leads to spectrum Sq(ω) being of the 1/f form in a
broad frequency range already for a comparatively small
number of TLSs. This range depends on the values of
n0 and α; it also depends on the number of TLSs; see
Appendix B. We study the parameter domain in which, for
all TLSs, the condition Ntcyc � W(n)tR for all n holds.

The goal of the simulations described in this section,
besides testing the theory, is to explore how (i) the num-
ber of TLSs and (ii) the strength of the coupling of TLSs
to the qubit affect correlators r̃2 and r̃3. Of special inter-
est is also to find where the effects of the coupling to
TLSs are mimicked by a Gaussian noise depending on the
TLS parameters. Formally, the noise from a few TLSs is
non-Gaussian. It becomes Gaussian in the limit where the
number of TLSs is NTLS � 1, whereas the qubit coupling
to an individual TLS is small, V(n) ∝ N−1/2

TLS . However, as
we find, the actual conditions may be much less restrictive.

In Fig. 2 we show results for a qubit dispersively cou-
pled to a set of ten symmetric TLSs. The left panel shows
the evolution of r̃2(k) with the varying coupling strength
V. The data and the theory are in excellent agreement. The
simulated and calculated values of r1 are also in excel-
lent agreement, with the relative error � 10−4. The results
show that the decay of r̃2(k) with increasing k is (i) non-
exponential and that (ii) it nonmonotonically depends on
V. This is a consequence of two factors. First, while the
contribution of an individual TLS to r̃2(k) decays with k
exponentially, as seen from Eq. (19), r̃2(k) is determined
by combinations of contributions from different TLSs, so
that the overall decay becomes nonexponential. Second,
for V(n) � W(n), functions ξ (n)k and 
(n) that determine
r̃2(k) are combinations of sin V(n)tR and cos V(n)tR. There-
fore, they oscillate with the varying coupling strength. The
inset demonstrates the oscillatory dependence of r̃2(k) on
V(n) = V for k = 1.

The central panel in Fig. 2 presents a comparison of
the fast Fourier transform (FFT) of the outcomes of the
Ramsey measurements |X (m)|2 with the discrete Fourier
transform R(m) of r̃2(k) calculated from Eq. (19). Here
|X (m)|2 is the value of |X (m)|2 averaged over 300

FIG. 2. Centered correlators of the measurement outcomes and the power spectrum for a qubit dispersively coupled to ten symmetric
TLSs, W(n)

01 = W(n)
10 . The coupling is the same for all TLSs, V(n) = V. The switching rates of the TLSs are W(n)tR = exp(−3n/4), n =

1, . . . , 10, and φR = π/4. Diamonds show the results of simulations. Left panel: r̃2(k) for different coupling strength. Solid lines show
the theory, Eq. (19). The inset shows r̃2(k) for k = 1 as a function of the coupling strengths. Central panel: power spectrum for
coupling VtR = 0.5. The solid line shows the calculated discrete Fourier transform R(m) of correlator r̃2, Eq. (50), as a function of
ω0(m) = 2πm/Ntcyc for N = 105. The jagged line shows the averaged fast Fourier transform |X (m)|2 [with added r1(1 − r1); cf. Eq.
(52)] obtained from simulations. The dashed line shows the weak-noise limit of R(m), Eq. (54). The inset shows the calculated power
spectrum of the TLSs Sq[ω0(m)]. Right panel: comparison of the centered correlator r̃3(k, k + 3) obtained from the simulated data with
the results obtained assuming that the noise has Gaussian statistics.
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simulations. The FFT and the theory are in excellent agree-
ment. They both display a characteristic shape, which is
reminiscent of the shape of the power spectrum of the
TLS-induced noise Sq(ω) shown in the inset. At the same
time, there are significant differences between the shape of
the FFT and Sq(ω). The dashed line shows that the weak-
noise approximation R0(m) is also noticeably different
from R(m) for the chosen coupling VtR = 0.5.

The data in the right panel of Fig. 2 are fairly unex-
pected. The plot for ten TLSs compares the directly sim-
ulated third correlator r̃3(k, l) with the results for r̃3(k, l)
“constructed” from the data on r1 and r̃2(k) by assuming
that the noise from the TLSs is Gaussian. The construc-
tion goes as follows: if the noise is Gaussian, from the
data on r1 and r̃2(k) one can unambiguously determine
the Gaussian noise correlators fk, Eq. (36). They fully
determine all properties of the Gaussian noise and, in par-
ticular, give r̃3(k, l); cf. Eq. (39). This is the case for an
arbitrary coupling. We call r̃3 found this way the “con-
structed Gaussian.” When applied to the noise from ten
TLSs, the constructed r̃3(k, l) is in good agreement with
the direct simulations. This is an indication that, already
for ten TLSs, the TLS-induced fluctuations mimic fluctu-
ations induced by Gaussian noise in a broad range of the
coupling strength.

A strong extra argument in favor of the Gaussianity
is provided by the data for φR = π/2. In the Gaussian
approximation one expects that r̃3 = 0 for φR = π/2. Our
simulations of this case for the set of ten TLSs with the
same parameters as above show that r̃3 is indeed exceed-
ingly small, |r̃3(k, k + 3)| < 10−4, whereas r1 and r̃2(k) are
in excellent agreement with the theory; see Appendix D.

Figure 3 presents the results of the analysis similar to
that in Fig. 2, but for one TLS. The results of the simu-
lations are again in excellent agreement with the theory.
The left panel shows that, for one TLS, the decay of
simulated r̃2(k) with the increasing k is perfectly expo-
nential, as expected from Eq. (19). For the chosen param-
eters, the ratio V/W is ≥ 50 for all values of VtR in
the main plot, so that the results are in good agreement

with the strong-coupling expression (34). The sinusoidal
dependence r̃2(k) ∝ sin2(VtR) as given by this expression
is in good agreement with the full expression (19) plotted
in the inset.

The central panel shows that, for one TLS and for the
considered coupling VtR = 0.5, the simulated FFT not only
agrees with the calculated discrete Fourier transform R(m),
but is fairly close to the result of the weak-coupling limit
R0(m), even though VtR is not that small. This is signifi-
cantly different from the case of ten TLSs shown in Fig. 2.
For a larger number of TLSs, the overall coupling to the
qubit is stronger than for one TLS even where the coupling
of each TLS to the qubit is the same.

The right panel shows that r̃3(k, k + 3) is very small
for one symmetric TLS. It is essentially within simulation
noise, |r̃3| � 10−4. Most importantly, if the TLS-induced
noise is assumed Gaussian and r̃3 is constructed based on
the values of r1 and r̃2(k), the result for r̃3(k, l) is strongly
different from the simulations. Moreover, it is impossi-
ble to perform such a construction for VtR = 2.5, since in
this case r1 < 0.5, which is incompatible with the assump-
tion that the noise is Gaussian; cf. Eq. (38). Therefore,
for one TLS, correlator r̃3 unambiguously shows that the
TLS-induced noise is non-Gaussian.

B. Asymmetric TLSs

The effect of asymmetry of TLSs on the qubit frequency
noise has not been carefully explored, to the best of our
knowledge. Meanwhile, if the energy difference between
states |0〉 and |1〉 of a TLS is comparable or exceeds kBT,
rates W01 and W10 are significantly different, thus making a
TLS asymmetric. Therefore, it is important to understand
the role of the asymmetry.

One of the central questions is whether the asymme-
try makes the noise more “non-Gaussian” even where the
number of TLSs is not small. One may expect this to be
the case based on the result of the perturbation theory in
Sec. III E. For weak zero-mean Gaussian noise, r̃3(k, l) is
of second order in the noise intensity [see Eq. (40)], i.e.,

FIG. 3. The same as in Fig. 2 but for the coupling to one symmetric TLS, WtR = 0.001. The inset in the right panel shows the
simulated values of r̃3(k, k + 3) for VtR = 0.2, 0.5, 1, and 2.5 (diamonds, circles, triangles, and squares, respectively). The data are
noisy at the level of 10−4.
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FIG. 4. Centered correlator r̃3(k, k + 3) for ten asymmet-
ric TLSs with W(n)

01 tR = exp[−3(n + 1)/4]/2 and W(n)
10 tR =

exp(−3n/4)/2, n = 1, . . . , 10. The coupling is assumed to be the
same for all TLSs, V(n) = V, and φR = π/2. For the weak cou-
pling, VtR = 0.2, we also show with the dashed line the weak
coupling approximation, Eq. (31). The inset presents the results
of simulations (diamonds) and the theory (solid lines) for the
centered correlator r̃2(k).

of fourth order in the coupling, whereas for asymmetric
TLSs, it becomes nonzero already at third order in the
coupling.

A direct way to reveal non-Gaussianity, as mentioned
earlier, is to study r̃3(k, l) for φR = π/2, as r̃3(k, l) = 0 for
Gaussian noise. In this subsection we present the results
of simulations of the effect of asymmetric TLSs for φR =
π/2.

In Fig. 4 we show the results for ten TLSs. It is seen
that, in contrast to the case of symmetric TLSs presented in
Appendix D, r̃3 is nonzero. It is a nonmonotonic function
of the coupling strength and even changes sign with vary-
ing VtR. The decay of r̃3(k, k + 3) is nonexponential, and
the decay rate strongly depends on the coupling strength
as well. Even for VtR = 0.2, there is a significant differ-
ence between the data and expression (31) for r̃3 in the
weak-coupling limit, which is shown by the dashed line.
This is because weak coupling of individual TLSs does not
translate into weak coupling of a few TLSs taken together.
The inset demonstrates excellent agreement between the
simulation results and the full theory for r̃2(k).

Figure 5 presents the data on the coupling to a single
asymmetric TLS. Such coupling also leads to a nonzero r̃3
for φR = π/2, as in the case of many TLSs. Interestingly,
r̃3(k, k + 3) decays with increasing k slowly, generally

FIG. 5. Centered correlator r̃3(k, k + 3) for one asymmetric
TLS with W10tR = 0.00075 and W01tR = 0.00025 for φR = π/2.
The data for VtR = 0.2 and VtR = 2.5 are overlapping on the cho-
sen scale. Inset: enlarged view of the weak coupling limit, where
the comparison with Eq. (31) is represented by the dashed line.

slower than in the case of ten TLSs. As seen from the inset,
for one TLS, the asymptotic expression (31) well describes
r̃3 for the comparatively weak coupling VtR = 0.2.

The results of this subsection demonstrate a significant
difference between the effects of the coupling to symmetric
and asymmetric TLSs. Studying the three-time correlator
r̃3 is a sensitive tool for revealing the asymmetry, in com-
bination with the studies of the lower-order correlators and
their decay.

C. Effect of Gaussian noise

For Gaussian noise, the values of the correlators of the
measurement outcomes r2(k) and r3(k, �), as well as the
higher-order correlators are determined by the single set
of parameters fk, which are simply expressed in terms of
the noise power spectrum; see Eqs. (26) and (36). The the-
ory is presented in Sec. IV. Here we present the results
of the simulations for exponentially correlated noise and
for noise with the 1/f -type power spectrum given by Eq.
(46). The exponentially correlated noise is characterized
by the correlation time τcorr, whereas the 1/f noise we
study is characterized by a soft-cutoff minimal frequency
ωmin. For both types of noise, the simulated values of the
probability r1 to have “1” as an outcome of the measure-
ments coincided with the theoretical values to an accuracy
� 10−4.

In Fig. 6 we show the results for the centered correla-
tors r̃2(k) and r̃3(k, k + 3) for the exponentially correlated
noise; its power spectrum is Sq(ω) = Dcorr/(1 + ω2τ 2

corr);
cf. Eq. (42). The plots refer to a comparatively weak cou-
pling. For such coupling, as expected from the theoretical
arguments, r̃2(k) falls off exponentially with k, i.e., the
two-time correlator decays exponentially with time ktcyc.
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FIG. 6. Two- and three-time centered correlators r̃2(k) (main
plot) and r̃3(k, k + 3) (inset) for exponentially correlated noise.
The solid lines show the theory, Eqs. (38), (39), and (43). The
crosses (red) and diamonds (green) show the simulations. The
noise intensity and the correlation time for the green and red data
are Dcorr = 6.51, τcorr/tR = 20 and Dcorr = 32.11, τcorr/tR = 100,
respectively. They are adjusted to give the same value of param-
eter f0, which characterizes the coupling strength and determines
probability r1, Eq. (38), f0 = 0.16.

The decay rate is determined by the decay rate of noise cor-
relations τ−1

corr. However, the three-time correlator decays
nonexponentially. This feature demonstrates the impor-
tance of studying a three-time correlator in order to identify
and characterize noise.

In Fig. 7 we show the centered correlators for model
(46) of 1/f noise. In contrast to the results for the expo-
nentially correlated noise in Fig. 6, r̃2(k) does not fall off
exponentially with increasing k for comparatively small k
even for weak noise. However, it approaches exponential
decay for large k, where kωmintcyc � 1, with the exponent
determined by the low-frequency cutoff ωmin. For small
ωmintcyc, this range is practically inaccessible, as r̃2(k)
becomes extremely small. The dependence of r̃2(k) on k
is close to logarithmic for tR � ktcyc � 1/ωmin. The corre-
sponding expression (49) is shown by the dashed lines. As
seen from the figure, approximation (49) actually requires
a more stringent condition, ωminktcyc � 0.1.

The centered three-time correlator r̃3(k, �) displays a
characteristic dependence on k and � for 1/f noise, which
can be inferred from the general expressions (39) and
(47). As seen from the comparison of Figs. 6 and 7, this
dependence is very different for Gaussian exponentially
correlated noise and 1/f noise.

The bottom panel of Fig. 7 shows the power spectrum
of the outcomes of the repeated Ramsey measurements
for 1/f -type noise. The data are in excellent agreement
with the theoretical discrete Fourier transform R(m) of
r̃2(k) and, for the studied noise intensity, are in reason-
able agreement with the weak-noise approximation R0(m).
The data also show that, even for the studied weak noise,

FIG. 7. Top panel: centered correlators r̃2(k) (main plot) and
r̃3(k, k + 3) (inset) for 1/f -type noise with spectrum (46); ωmin
is the smooth low-frequency cutoff. The solid lines show the the-
ory and the crosses and diamonds show the simulations. The
dashed lines show the intermediate-time approximation (49). The
noise intensities for the green (diamonds) and red (crosses) data
are Dfl = 0.0642 and 0.03158, respectively. They are adjusted so
that parameter f0, which characterizes the coupling strength, is
the same, f0 = 0.16. Bottom panel: power spectrum for ωmintR =
0.001 obtained as the FFT of the data (jagged line) averaged
over 300 realizations of 105 measurements. The solid line shows
the discrete Fourier transform R(m) of the analytical expression
(38) for r̃2(k), whereas R0(m) shows the weak coupling limit of
R(m), Eq. (54). The inset shows the power spectrum Sq(ω) of the
studied Gaussian noise.

the spectrum |X (m)|2 is noticeably different from the noise
spectrum except for a relatively narrow range, where both
fall off as 1/f . This is an important feature, in terms of
noise characterization. It comes about because the contri-
bution of the terms with |�| > 0 in Eq. (54) increases with
increasing frequency ω0(m).

VII. THE MASTER EQUATION

We now proceed with describing the method used to
derive the results for the correlators of the periodically
repeated Ramsey measurements presented in Secs. III
and IV.
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A. The Hamiltonian

We consider a qubit, which is coupled to TLSs, has a
fluctuating frequency, and is subjected to the control pulses
as shown in Fig. 1. The qubit Hamiltonian is H = Hq +
Hq−TLS. Here Hq−TLS is given by Eq. (9) and describes the
dispersive coupling to TLSs, whereas Hq has the form

Hq = −1
2
δωq(t)σz

+ π

4
σy

∑
k

[δ(t − ktcyc)+ δ(t − ktcyc − tR)]. (56)

The term ∝ σy in Eq. (56) describes the periodically
repeated pairs of Ramsey pulses for rotation about the y
axis, whereas δωq(t) describes the qubit frequency fluc-
tuations due to external classical noise. Here we some-
what conditionally distinguish such classical noise from
noise stemming from the coupling to TLSs; see however
Appendix A where the effect of TLSs is described by
modeling δωq(t) by a telegraph noise

As indicated before, we assume that 〈δωq(t)〉 = 0. If
〈δωq(t)〉 were nonzero, it would be incorporated into the
mean qubit frequency ωq measured in the experiment. The
detuning of δωq from frequency ωref of the reference sig-
nal used in the Ramsey measurements leads to a phase
accumulation φR during a measurement, as described by
Eq. (8). Phase φR can be controlled in the experiment
by varying ωref or, alternatively, can be implemented by
incorporating into Hq the term

HR = −1
2
φRσz

∑
k≥0

δ(t − ktcyc − t−R ). (57)

Here and below the superscript “+” or “−” after the time
argument has the following meaning:

t±≡t ± ε, ε → +0.

Hamiltonian HR describes rotations of the qubit around the
z axis prior to the second Ramsey pulse within a cycle, i.e.,
the pulse applied at time ktcyc + tR; see Eq. (56) and also
Fig. 1.

The operator of the qubit frequency shift due to the
coupling to TLSs

∑
n V(n)τ̂ (n)z has a nonzero expectation

value. Therefore we define the frequency noise operator
δω̂q by Eq. (10) so that 〈δω̂q〉 = 0. Equivalently, one could
consider the qubit-TLS coupling of the form

H ′
q−TLS = −1

2
σz

∑
n

V(n)(τ̂ (n)z − 〈τ̂ (n)z 〉), (58)

which does not lead to a renormalization of the mean qubit
frequency. In this sense it is more relevant from the view-
point of the experiment. If the coupling Hamiltonian is of

form (58), in Eq. (57) one should use φR rather than the
phase φ̃R defined by Eq. (17). However, in the calculations
we use the more conventional form of the coupling, which
is given by Eq. (9).

To analyze the dephasing due to the dispersive coupling
to TLSs, Eq. (9), we write the states of an nth TLS as

|0〉(n) ≡
(

1
0

)(n)
, |1〉(n) ≡

(
0
1

)(n)
,

and we use the Pauli operators τ̂ (n)
κ

to describe the TLS
dynamics. Here κ = 0, x, y, z, with τ̂ (n)0 ≡ Î (n)τ being the
identity operator.

B. Dynamics during a Ramsey measurement

We first consider the qubit dynamics during a Ramsey
measurement, i.e., in the time interval ktcyc < t < ktcyc +
tR; cf. Fig. 1. We assume that, in slow time compared to
1/ωref, relaxation of the qubit and TLSs is Markovian.
The kinetic equation for the density matrix then has the
standard form

∂tρ = i[ρ, Hq + Hq−TLS] + 2�D[σ+]ρ

+ 1
2
�φD[σz]ρ +

∑
n

L(n)TLSρ, (59)

where the last term describes the relaxation of TLSs,

L(n)TLSρ = W(n)
10 D[τ̂ (n)+ ]ρ + W(n)

01 D[τ̂ (n)− ]ρ

+ 1
2�

(n)
φTLSD[τ̂ (n)z ]ρ. (60)

We use the conventional notation D[F]ρ = FρF† −
(F†Fρ + ρF†F)/2 for the relaxation operator; σ± =
(σx ± iσy)/2, τ̂ (n)± = (τ̂ (n)x ± iτ̂ (n)y )/2.

Parameters � and �φ describe the qubit decay rate and
the rate of qubit dephasing due to fast dephasing processes.
They give the familiar parameters of the Bloch equation for
the qubit,

T1 = 1/2�, T2 = 1/(� + �φ).

Parameters W(n)
ij describe the rates of transitions |i〉(n) →

|j 〉(n) between the states of an nth TLS (i, j take on val-
ues 0, 1), whereas �(n)φTLS is the TLS dephasing rate. To
make the TLSs fully incoherent, this rate has to be much
larger than the switching rates. In this case the off-diagonal
matrix elements of ρ with respect to the TLS states,
(n)〈i| ρ |j 〉(n) with i �= j , will decay fast and can be disre-
garded. As seen from the analysis below, for the considered
dispersive qubit-to-TLS coupling, these matrix elements
do not affect the outcomes of qubit measurements. There-
fore, they will not be discussed, i.e., we consider only the
matrix elements (n)〈i| ρ |j 〉(n) with i = j .
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It is assumed in Eq. (60) that each TLS is coupled to
its individual thermal reservoir, that is, not only is there
no direct interaction between TLSs, but there is also no
interaction mediated by a common thermal reservoir. In
the case of phononic thermal reservoirs, this model goes
back to the original papers [49,50].

Another important assumption implicit in the model is
that the switching rates W(n)

ij are independent of the qubit
state. This is somewhat similar to the neglect of the effect
of the TLS-to-TLS coupling in Refs. [49,50]. Generally,
the dispersive coupling to a qubit shifts the TLS energy
levels, which may invalidate the approximation. However,
the effect of this shift on the switching rates is small in
many cases of interest. Familiar examples are the case
where the TLS dephasing rates exceed the shifts or the case
where the switching of TLSs is thermally activated and
the qubit-state-dependent shift is smaller than kBT. Disre-
garding the qubit-induced change of the switching rates is
essentially equivalent to disregarding the backaction from
the coupling to a qubit.

1. Solution of the master equation

We assume that at t = 0−, i.e., just before the first π/2
rotation about the y axis, the qubit is in the ground state |0〉
and the TLSs are in their stationary states. From Eq. (60),
the stationary density matrix of an nth TLS is

ρ
(n)
st = 1

2

[
Î (n) + �W(n)

W(n) τ̂
(n)
z

]
,

W(n) = W(n)
01 + W(n)

10 , �W(n) = W(n)
10 − W(n)

01 . (61)

The density matrix of the whole system, the qubit, and
TLSs, before the first rotation around the y axis is

ρ(t = 0−) = 1
2
(Îq + σz)

∏
n

ρ
(n)
st .

The rotation of the qubit at t = 0 is described by the term
∝ σy with k = 0 in Hamiltonian (56). TLSs are not affected
by unitary transformations on the qubit. The density matrix
after the transformation becomes

ρ(t = 0+) = 1
2
(Îq + σx)

∏
n

ρ
(n)
st . (62)

This equation provides the initial condition for the evolu-
tion of the density matrix during the first Ramsey measure-
ment, i.e., in the time interval 0 < t < tR. The solution of
Eq. (59) in this time interval can be sought in the form

ρ(t) = 1
2
(Îq + σz)ρI + 1

2
e−t/T1σzρz

+ 1
2

e−t/T2
∑
α=±

exp
[

iα
∫ t

0
dt′δωq(t′)

]
σαρα (63)

with operators ρλ defined as

ρλ =
∏

n

∑
κ=0,z

C(n)λκ
τ̂ (n)

κ
. (64)

Here λ = I , z, ± enumerates the components of the qubit-
dependent part of the density matrix, whereas κ = 0, z
enumerates the TLS operators τ̂ (n)0 ≡ Î (n) and τ̂ (n)z . Oper-
ators ρλ depend only on the TLS variables. Coefficients
C(n)λκ

≡ C(n)λκ
(t) describe the evolution of the density matrix

in time.
The components of the density matrix ρ that contain

τ̂
(n)
± are uncoupled from other components of ρ. They

do not get coupled by the coupling to the qubit and by
the gate operations on the qubit. They decay with rates
W(n) + �

(n)
φTLS and, as indicated earlier, will not be dis-

cussed. This explains why κ in Eq. (64) runs through 0
and z only.

The equations for C(n)λκ
are obtained by substituting Eq.

(63) into the full master equation (59), multiplying the left-
and right-hand sides in turn by Îq, Îq − σz, σ±, and taking a
trace over the qubit states. Because the TLSs’ decays are
independent of each other, the resulting equations for ρλ
separate into equations for individual TLSs (see Appendix
E). Equations (60) and (63) then reduce to the equation

∑
κ

Ċ(n)λκ
τ̂ (n)

κ
= L(n)TLS

∑
κ

C(n)λκ
τ̂ (n)

κ

+ i
∑
α=±

δλααV(n)(C(n)α0 τ̂
(n)
z + C(n)αz τ̂

(n)
0 ) (65)

with κ = 0, z. Multiplying this equation in turn by the TLS
operators Î (n) and τ̂ (n)z and taking a trace over the TLS
states, we obtain equations for each of the coefficients C(n)λκ

.
The last term in Eq. (65) describes the effect of the cou-

pling to the qubit on the TLS dynamics. This term comes
from the components of the density matrix ρ, which are
proportional to σ±. It determines the accumulation of the
phase of the qubit between the Ramsey pulses at t = 0 and
t = tR.

The initial conditions for C(n)λκ
follow from Eq. (62) and

are given by Eq. (E7) in Appendix E. Coefficients C(n)λκ
(t)

in terms of C(n)λκ
(0) are given by Eqs. (E4) and (E5). Using

the expressions for C(n)λκ
(t), we find that, by the end of the

interval between the Ramsey pulses, i.e., for t → t−R , we
have

C(n)I0 (tR) = 1
2 , C(n)+0(tR) = 1

2

(n)(tR), (66)

where function 
n(tR) is given in Eq. (16). This func-
tion describes the effect of the coupling to an nth TLS on
the probability of the Ramsey measurement outcome. It
depends on the interrelation between the strength of the
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TLS-to-qubit coupling V(n) and the TLS relaxation rate
W(n), that is, for a TLS to be effectively strongly coupled
to the qubit, it is necessary to have |V(n)| large compared to
the TLS relaxation rate W(n).

The explicit expressions for coefficients C(n)λκ
(tR) deter-

mine operators ρλ(tR), as seen from Eq. (64). They thus
describe the change of the density matrix ρ(t) over the
time after the qubit was prepared in state (|0〉 + |1〉)/√2
and before it is going to be measured.

C. The outcome probability of the first Ramsey
measurement

The above results allow us to find the probability r1
of obtaining “1” as an outcome of the Ramsey measure-
ment. In the Bloch sphere representation, the involved
steps include the rotation of the density matrix ρ(tR) about
the z axis by an angle φ̃R. The corresponding unitary trans-
formation is determined by Eq. (57), in which we replace
φR with φ̃R to allow for the shift of the average qubit
frequency due to the coupling to TLSs.

The rotation about the z axis is followed by the rota-
tion about the y axis by π/2, as prescribed by the term
(π/4)σyδ(t − tR) in Eq. (56). Finally, the transformed
density matrix right after this rotation ρ(t+R ) has to be
multiplied by the operator P̂ = (Îq − σz)/2 and the trace
over the states of the qubit and the TLSs has to be taken
along with the averaging over classical noise of the qubit
frequency δωq.

The aforementioned unitary transformations refer to the
operators σx,y,z in the density matrix ρ(t) in Eq. (63). Oper-
ators ρλ(tR) are operators in the space of TLSs; they are
not affected by the gate operations on the qubit at time
tR, i.e., ρλ(t−R ) = ρλ(t+R ) = ρλ(tR) (recall that λ takes on
values I , z, ±) . In terms of these operators

P̂ρ(t+R ) = R(t+R )+ m̂,

R(t) = 1
4
(Îq + σz)

[
ρI (t)+ 1

2
e−t/T2

∑
α

eiα(θ+φ̃R)ρα(t)
]

.

(67)

Here, m̂ is a sum of the terms proportional to σx, σy , and
σz; therefore, Tr m̂ = 0. The term θ = ∫ tR

0 δωq(t)dt is the
phase accumulated because of slow classical qubit fre-
quency noise. It does not include the contribution from
TLSs.

From Eqs. (66) and (67) we find that the probability of
obtaining “1” in a Ramsey measurement is given by Eq.
(15). To allow for a classical qubit frequency noise, one
has to replace the factor exp(iφ̃R) in Eq. (15),

exp(iφ̃R) → exp(iφ̃R)〈eiθ 〉, (68)

where 〈·〉 implies averaging over the classical frequency
noise. This noise does not affect the dynamics of TLSs and
therefore its effect is just described by an extra factor.

VIII. THE PAIR CORRELATION FUNCTION FOR
THE COUPLING TO TWO-LEVEL SYSTEMS

In this section we discuss the effect of TLSs on the pair
correlation function of the qubit measurements r2(k). To
simplify the notation, we disregard the classical noise, i.e.,
consider the qubit frequency modulation due to TLSs only.
We start with the correlator for neighboring cycles, i.e.,
r2(1), and, as we move on, we extend the analysis to r2(k)
for an arbitrary k.

It is clear from definition (3) that finding r2(1) involves
the following steps. After we find P̂ρ(t+R ), we have to find
how the density matrix of the qubit + TLSs, which at time
t+R is given by P̂ρ(t+R ), evolves in the time interval from t+R
to tcyc. In this time interval the qubit is reset to the ground
state |0〉. At tcyc the qubit is rotated to (|0〉 + |1〉)/√2. We
then have to consider the dynamics in the interval from t+cyc
to t+cyc + tR. At tcyc + tR the qubit is again rotated and the
evolved operator ρ(tcyc + t+R ) is multiplied by P̂. The value
of r2(1) is given by the trace of the result. We discuss each
of these steps separately.

A. Evolution during the reset, tR < t < tcyc

The dynamics of the system during the reset of the qubit
can be formally described by the master equation (59) with
initial condition P̂ρ(t+R ). In this equation one can assume
that the qubit decay rate � is large in this time range,
�(tcyc − tR) � 1. In this limit the part of ρ(t) that comes
from operator m̂ and is thus proportional to σx,y,z will decay
to zero. Therefore, only the evolution of operator R(t) in
Eq. (67) is of interest.

In operator R(t) the qubit-dependent factor Î + σz does
not change. However, the TLSs are not in their stationary
states at tR, and they keep evolving for t > tR, each with
its own rate. To describe this evolution, it is convenient to
first separate out the part Rst of R(t) that would describe
the system if the TLSs were in the stationary states, i.e.,
if they were described by the density matrices ρ(n)st . Using
the explicit expressions (66), (E8), and (E9) for operators
ρI , ρ±, we obtain

R(t) = r1Rst(t)+ Rcorr(t), t+R ≤t < tcyc,

Rst(tR) = 1
2
(Îq + σz)

∏
n

ρ
(n)
st ,

(69)
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and

Rcorr(tR) = 1
2
(Îq + σz)

×
NTLS∑
s≥1

∑
{m}s

K{m}s τ̂
(m1)
z · · · τ̂ (ms)

z

∏
n/∈{m}s

ρ
(n)
st .

(70)

Here we have introduced sets of TLSs {m}s. Their compo-
nents m1, m2, . . . , ms enumerate different TLSs. The values
of mi (i = 1, . . . , s) within each set run from 1 to NTLS. The
sum

∑
{m}s

is taken over all mi; for example, one can think
of it as ∑

{m}s

≡
∑

NTLS≥m1>m2>···>ms≥1

.

The parameters Kms are given in Appendix F.
The form of Rcorr can be understood by noting that,

to describe the evolution of R(t), we have to take into
account the decay of all possible combinations of TLSs.
The parameter s in Eq. (70) gives the number of TLSs
included in a combination, 1 ≤ s ≤ NTLS. Note that, by
construction, the trace over the TLS states of any term in
the sum over s is equal to zero. Operator Rst(t) describes
the qubit in its ground state and the TLSs in their stationary
states. It is not changed during reset, i.e.,

Rst(t−cyc) = Rst(t+R ).

In contrast, the TLS operators τ̂ (mi)
z in Rcorr exponen-

tially decay with rates W(mi) because of the transitions
between the states of the TLSs, as seen from Eq. (60).
Since the TLSs are independent, over the duration of
the reset tcyc − tR each τ̂ (mi)

z in Eq. (70) acquires a fac-
tor exp[−W(mi)(tcyc − tR)], so that at the end of the reset
period, i.e., at the end of the cycle, the expression for
Rcorr(t−cyc) is given by Eq. (70), in which one replaces

τ̂ (mi)
z → τ̂ (mi)

z exp[−W(mi)(tcyc − tR)] (71)

for all mi ∈ {m}s. Note that the terms ρ(n)st with n /∈ {m}s do
not change.

B. Subsequent Ramsey measurements

As mentioned above, we start with the analysis of the
second Ramsey measurement and then extend the results to
subsequent measurements. To find the dynamics of opera-
tor R(t) in the time interval tcyc < t ≤ tcyc + t+R , we should
take into account the fact that at time tcyc the qubit under-
goes a unitary transformation of rotation around the y
axis, as seen from Hamiltonian (56). As a result, in the
expression for R(t), operator Îq + σz is transformed into
Îq + σx.

1. The contribution of term Rst

The evolution of operator Rst(t) after the qubit rotation
at tcyc is described in exactly the same way as was done
in Sec. VII B for ρ(t). Indeed, Rst(t+cyc) has the same form
as the density matrix ρ(0+), Eq. (62), except that Rst has
an extra factor r1. Thus, the evolution of Rst(t) in the time
interval tcyc < t < tcyc + tR is given by Eqs. (63) and (64)
with the coefficients C(n)λκ

multiplied by r1.
It follows from the above argument that if, after the

next Ramsey rotation at tcyc + tR, the transformed Rst [i.e.,
Rst(tcyc + t+R )] is multiplied by P̂ and the trace is taken
over the qubit and TLSs, the result will be r2

1. This is the
contribution of Rst to r2(1).

a. Extending the result to r2(k) with k > 1. To find the
contribution of Rst to r2(k) with k > 1, we note that, by
applying the decomposition of the density matrix (63), one
can write Rst(tcyc + t+R ) as

Rst(tcyc + t+R ) = Rst(t+R )+ m̂′,

where m̂′ is a sum of the terms proportional to σx, σy , and
σz. Evaluating r2(k) involves resetting the qubit after each
k′tcyc + t+R with k′ < k. After the reset, m̂′ will go to zero.
Therefore, by the end of the second cycle, t → 2tcyc, we
have Rst(2t−cyc) = Rst(t−cyc) = Rst(t+R ). Operator Rst will
evolve in the same way during the following cycles. The
cycling does not change Rst, that is, Rst(ntcyc + t+R ) =
Rst(mt−cyc) for any m and n. Therefore, the contribution of
Rst to correlator r2(k) with k > 1 is the same as for k = 1.
It is equal to r2

1, independent of k.

2. The contribution of term Rcorr

Term Rcorr describes the effect of correlations in the TLS
dynamics on the outcome of the qubit measurements. To
analyze this effect, we again start with the second Ramsey
measurement, k = 1. We note first that the outcome of the
qubit rotation at t = tcyc can be written as

Îq + σz → Îq + σz +
∑
α=±

σα − σz. (72)

We saw above that, after the rotation at tcyc + tR, the last
term, σz, is transformed into the terms that decay on reset;
these terms also do not contribute to the trace over the qubit
states if multiplied by P̂. Therefore we do not consider the
contribution from the term ∝ σz in Rcorr(t+cyc).

As seen from the master equation (59), the terms
∝ (Îq + σz)τ̂

m1
z · · · τ̂ms

z in Rcorr(t+cyc) commute with the
Hamiltonian and therefore do not lead to mixing of the
qubit and TLS states. We denote this part of Rcorr(t+cyc)

as R′
corr(t

+
cyc). Over time tR, operator R′

corr(t
+
cyc) will decay

as exp(−∑
i W(mi)tR). With the account taken of Eq. (71),

after the Ramsey pulse at tcyc + tR, R′
corr(tcyc + t+R ) will
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have the form of Eq. (70) in which Îq + σz is replaced by
Îq + σx and the following replacement is also made:

τ̂ (mi)
z → τ̂ (mi)

z exp(−W(mi)tcyc), mi ∈ {m}s.

The trace of P̂R′
corr(tcyc + t+R ) over TLSs is zero; therefore,

this term will not contribute to r2(1).

a. Extending the result to r2(k) with k > 1. Even though
R′

corr(tcyc + t+R ) does not contribute to r2(1), this term
determines the values of r2(k) with k > 1. To see this, we
first note that, after the qubit reset at tcyc + t+R , by time 2tcyc,
operator Îq + σx in R′

corr will transform into Îq + σz and
there will emerge an extra factor exp[−∑

mi
W(mi)(tcyc −

tR)] in the sum over {m}s. Thus, R′
corr(2t−cyc) will have the

same structure as Rcorr(t−cyc). It is seen from Eq. (72) that
this structure will be reproduced from cycle to cycle, so
that

R′
corr(kt−cyc) = 1

2
(Îq + σz)

∑
s≥1

∑
{m}s

K{m}s τ̂
(m1)
z · · · τ̂ (ms)

z

× exp
[
−

∑
mi∈{m}s

W(mi)(ktcyc − tR)
] ∏

n/∈{m}s

ρ
(n)
st .

(73)

Moreover, it is easy to see that Rcorr(kt−cyc) = R′
corr(kt−cyc)

provided no measurements are done at ntcyc + t+R with 0 <
n < k. This is because the terms ∝ σ± in Rcorr vanish on
reset. Indeed, the rotation around the y axis at ntcyc + tR
transforms σ± into σx, σy , σz with different coefficients. All
these components of the density matrix decay on reset.

The accumulation of the decay of different TLSs
described by Eq. (73) ultimately determines the form of
correlator r2(k). The very values of r2(k) are determined by
the terms in Rcorr(kt+cyc), which are ∝ σ± and emerge after
transformation (72). They have to be studied separately
for each product of the TLS operators τ̂ (m1)

z , . . . , τ̂ (ms)
z in

Rcorr. The analysis is similar to that in Sec. VII B and is
described in Appendix F. The result is Eq. (19) for the
centered correlator r̃2(k).

The described method allows one to calculate higher-
order correlators as well. However, the expressions are
cumbersome and will not be provided here. In Appendix
A we describe an alternative approach to calculating prob-
ability r1 and correlator r2(k), which is based on the
properties of the telegraph noise that drives a qubit and
mimics the coupling to TLSs.

IX. CORRELATORS OF MEASUREMENT
OUTCOMES FOR GAUSSIAN FREQUENCY

NOISE

We now consider the effect of Gaussian fluctuations of
the qubit frequency δωq(t) on probability r1 of the Ram-
sey measurement outcomes and their two- and three-time
correlation functions r2(k), r3(k, �). We express these prob-
abilities in terms of the correlation functions fn of phases
θk accumulated by the qubit between the Ramsey pulses
applied at times ktcyc and ktcyc + tR with k = 0, 1, . . .,

θk =
∫ ktcyc+tR

ktcyc

δωq(t)dt, fk ≡ 〈θnθn+k〉;

cf. Eq. (2) (we use here the fact that, for a stationary
noise, the elements of matrix 〈θnθn+k〉 depend only on k).
Equation (36) relates correlators fk to the power spectrum
Sq(ω) of noise δωq(t). The probability distribution of the
phases has the form

P({θ}) = Z−1 exp
[

− 1
2

∑
m,n

(f̂ −1)n−mθnθm

]
,

∑
m

(f̂ −1)n−mfm−k = δn,k, fk ≡ fn n+k

(74)

where {θ} is the set of θn, while Z is the normalization
factor.

The effect of classical noise can be easily described
using the master equation approach. One does not have
to care about the evolution of the TLS-dependent part
of the density matrix, which significantly simplifies the
calculation.

A. The first Ramsey measurement

We begin with the first cycle that starts at t = 0. Before
the first Ramsey pulse is applied (the rotation around the
y axis by π/2), the qubit is in the ground state. Its density
matrix is

ρ(0−) = (Îq + σz)/2.

After the first Ramsey pulse at t = 0, we have ρ(0+) =
(Îq + σx)/2. The evolution of the system at 0 < t < tR is
described by Eq. (64), in which one replaces the TLS oper-
ators by the numbers determined by the form of ρ(0+), i.e.,
ρI → 1, ρz → −1, ρ± → 1.

After the Ramsey pulse at t = tR, we have, as seen from
Eq. (67),

P̂ρ(t+R ) = R0(t+R )+ m̂0,

R0(t+R ) = 1
2 (Îq + σz)p(θ0),

(75)

where the probability p(θ) is given by the standard expres-
sion (7) and m̂0 is a sum of terms proportional to operators
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σx,y,z. Taking a trace over the qubit states and averaging the
result over phases θ using Eq. (74) gives Eq. (38) for

r1 = 〈p(θ0)〉 ≡
∫

p(θ0)
∏

n

dθnP({θ})

(the integral goes over all θn for the correlated phases θn).

B. Repeated Ramsey measurements

If the averaging is not done after the first Ramsey mea-
surement and instead the qubit is reset, term m̂0 in Eq.
(75) will decay, whereas operator Îq + σz, and thus R0(t+R ),
will not change. Then, by the end of the first cycle, t →
tcyc, operator ρ(t−cyc) will become R0(t+R ) = R0(t−cyc) =
p(θ0)ρ(0−).

To describe the dynamics during the next cycle, we
again use Eq. (63). The analysis is identical to that for
the previous cycle, except that ρ(0−) is replaced with
p(θ0)ρ(0−). After the pair of Ramsey pulses applied at tcyc
and tcyc + tR, we have

R0(tcyc + t+R ) = R1(tcyc + t+R )+ m̂1,

R1(tcyc + t+R ) = 1
2 p(θ0)[Îq − σze−tR/T2 cos(φR + θ1)],

(76)

where m̂1 has terms proportional only to σx and σy . Note
that the random phase θ1 has been accumulated over the
time interval (tcyc, tcyc + tR), which is different from the
time interval (0, tR) over which θ0 was accumulated.

As a result of the reset during the time interval (tcyc +
t+R , 2tcyc), by the end of the second cycle we again have
R0(2t−cyc) = p(θ0)ρ(0−). The further evolution is just a
repetition of the previous steps. After k pairs of Ram-
sey pulses, the expression for R0(ktcyc + t+R ) will have the
same form as Eq. (76) except that θ1 will be replaced by
θk.

To find the pair correlator r2(k), one has to multiply
R0(ktcyc + t+R ) by the projection operator P̂, which gives,
as seen by extending Eq. (76) from tcyc + t+R to ktcyc + t+R ,

P̂R0(ktcyc + t+R ) = R2(ktcyc + t+R )+ m̂2,

R2(ktcyc + t+R ) = 1
2 Îqp(θ0)p(θk).

(77)

Here, again, m̂2 is a sum of the terms proportional to σx, σy ,
and σz. Taking a trace over the qubit variables and averag-
ing the result over the correlated phases θ0, θk gives Eq.
(38) for correlator r2(k) = 〈p(θ0)p(θk)〉.

To find the three-time correlator r3(k, �), we have to fol-
low the evolution of operator R2(ktcyc + t+R ) for the next
l − k cycles. There is no difference from the previous steps,
as after reset we again express this operator in terms of the

density matrix of the qubit in the ground state ρ(0−),

R2[(k + 1)t−cyc] = p(θ0)p(θk)ρ(0−)

(we note that, as a result of the reset, operator Îq in R2

goes into Îq + σz). After �− k cycles we have, similar to
Eq. (77),

P̂R2(�tcyc + t+R ) = R3(�tcyc + t+R )+ m̂3,

R3(�tcyc + t+R ) = 1
2 Îqp(θ0)p(θk)p(θ�).

(78)

This leads to the expression r3(k, �) = 〈p(θ0)p(θk)p(θ�)〉.
The explicit form of the centered correlator r̃3(k, �) in
terms of correlators fk for Gaussian noise is given in Eq.
(39).

X. CONCLUSIONS

This paper describes several features of slow qubit fre-
quency fluctuations that allow one to characterize the
mechanism of the fluctuations. Of primary interest are fluc-
tuations with the correlation time that exceeds the deco-
herence time of the qubit due to its decay and dephasing
by fast processes. The approach is based on periodically
repeated Ramsey measurements. Such measurements are
fairly versatile, as one can vary the duration of the single
measurement tR, the period of the measurements tcyc, and
the measurement phase φR that mimics the effect of the
detuning of the drive from the mean qubit frequency. They
are also advantageous as they enable finding the correlators
of the measurement outcomes from a single data array.

Our results show that important information about the
features of the frequency noise can be learned from the
probability r1 of observing “1” as a measurement outcome
along with the two- and three-time correlation functions
r2(k) and r3(k, �) of observing two “1s” separated by time
ktcyc and three “1s” separated by times ktcyc and �tcyc,
respectively. Correlators r2 and r3 determine the spectrum
and the bispectrum of the measurement outcomes. They
depend not only on the spectrum but also on the statistics
of the qubit frequency noise.

The results cover a broad range of noise characteristics
and sensitively depend on these characteristics. For TLSs,
the relevant parameters include (i) the strength of the TLS
coupling to the qubit (in units of frequency) compared
to the TLS switching rates and to the reciprocal Ramsey
accumulation time t−1

R , (ii) the TLS asymmetry, i.e., the
difference between the interstate switching rates, and last
but not least, (iii) the number of TLSs coupled to the qubit.
For Gaussian noise, the relevant noise characteristics are
the intensity and the power spectrum; we have studied
several major types of noise power spectra.

The developed analytical approach to describing the
qubit dynamics during repeated Ramsey measurements is
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quite general. It enables calculating probabilities r1 and
correlators r2(k) for dispersive coupling to TLSs, and also
finding r1,2,3 for Gaussian noise. The approach is recur-
sive; it accounts for the evolution of the qubit during and
between successive gate operations. It directly extends
to studying higher-order correlators of the measurement
outcomes. It can also be immediately extended to allow
for gate errors and for measurement errors. For a qubit
driven by telegraph noise, an alternative method of calcu-
lating correlators r1 and r2(k) has been developed as well
(Appendix A). Such noise mimics the effect of the coupling
to independent TLSs.

The results of the simulations are in excellent quantita-
tive agreement with the analytical results. Moreover, they
allow us to study correlator r3 for the coupling to TLSs,
where analytical results become too cumbersome to be
presented.

One of the central goals of the paper is to develop
means for identifying whether noise is Gaussian. A distin-
guishing feature of Gaussian noise is the relation between
the correlators. Once r1 and r2(k) have been measured,
they determine the form of r3(k, �). We use the corre-
sponding relation to test noise “Gaussianity.” We also find
that the system can be “tuned” to be highly sensitive to
non-Gaussianity by varying the measurement phase φR.
In particular, for Gaussian noise, the centered correlator
r̃3(k, �) is zero for φR = π/2 independent of the noise
spectrum and intensity.

Noise from TLSs is generally non-Gaussian. We illus-
trate this for the coupling to one TLS. One expects that
noise would mimic Gaussian for weak coupling to a large
number of TLSs. However, we find that, already for ten
TLSs, and sometimes even for five TLSs, the noise can
be close to Gaussian in a broad range from weak to
strong coupling. This is only true, though, for symmetric
TLSs. Noise from ten asymmetric TLSs is profoundly non-
Gaussian even for a comparatively weak coupling. The
asymmetry is seen, in particular, from a nonzero value of
r̃3(k, �) for φR = π/2.

Noise from TLSs is often assumed to be the cause of
slow fluctuations of the qubit frequency. The presented
analysis provides a tool for testing this assumption for
various types of qubits. The developed methods can be
extended to other types of noise of potential interest.
In a way, this paper is a step toward creating a “map”
of the effects of different types of slow qubit frequency
fluctuations.
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APPENDIX A: EFFECT OF TELEGRAPH NOISE
ON PERIODICALLY REPEATED RAMSEY

MEASUREMENTS

In this section, we discuss an alternative method of
deriving our major result in Eqs. (15) and (19) for the effect
of the coupling to TLSs on the probability of a Ramsey
measurement outcome and the correlator of the outcomes.
We describe this effect as resulting from classical tele-
graph noise δωq(t) that is added to the qubit frequency.
Noise comes from random uncorrelated switching of TLSs
between their two states |0〉(n) and |1〉(n).

The method is based on relation (37) between the sought
parameters r1 and r2 and the random phases

θk =
∫ ktcyc+tR

ktcyc

δωq(t)dt

accumulated during the kth Ramsey measurement. The
idea is to relate r1, r2 to the characteristic function of
phases {θk}.

The characteristic function is defined as the average over
random phases θk,

�(�q) = 〈ei�q·�θ 〉, (A1)

where we consider the values θ0, θ1, . . . and numbers
q1, q2, . . . as components of vectors �θ = (θ0, θ1, θ2, . . .) and
�q = (q0, q1, q2, . . . ).

From Eq. (7), r1 and r2 can be written in terms of the
characteristic function as

r1 = 1
2 + 1

2 e−tR/T2Re[eiφR�(q0 = 1, qk �=0 = 0)], (A2)

r2(k) = r2
1 + 1

8 e−2tR/T2{�(q0 = −1, qk = 1, qk′ �=0,k = 0)

− |�(q0 = 1, qk �=0 = 0)|2

+ Re[e2iφR�(q0 = 1, qk = 1, qk′ �=0,k = 0)

− e2iφR�2(q0 = 1, qk �=0 = 0)]}. (A3)

In what follows we derive explicit expressions for the char-
acteristic function when the qubit frequency is subject to
telegraph noise.

1. Characteristic function for one TLS

We first consider the case where the qubit is coupled to
one classical TLS. Therefore, in this subsection we omit
superscript (n) that enumerates TLSs; the TLS parameters
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V, W,�W are the values of V(n), W(n),�W(n) for the con-
sidered TLS. In particular, the qubit frequency shift due to
the coupling to this TLS is δωq(t) = V(τz(t)− 〈τz〉). Here
τz(t) is a classical random variable, telegraph noise that
takes values ±1 depending on whether the considered TLS
is in state |0〉 or |1〉 , i.e., τz is the eigenvalue of τ̂z on the
corresponding states. It follows from the definition of θn
that the characteristic function in Eq. (A1) can be written
in the form

�(�q) =
〈

exp
[

i
∫ ∞

0
α(t)(τz(t)− 〈τz〉)dt

]〉
, (A4)

where α(t) is a piecewise-constant function of time and
is only nonzero in between the two Ramsey pulses within
each cycle,

α(t) = qkV, ktcyc ≤ t ≤ ktcyc + tR, (A5)

whereas α(t) = 0 for ktcyc + tR ≤ t ≤ (k + 1)tcyc.

a. Auxiliary functions

Telegraph noise τz(t) is a Markov process. The Marko-
vian property and the feature that the noise takes values
±1 allow one to derive an important relation [57], which
extends to asymmetric TLSs and was previously obtained
in Ref. [58] for symmetric TLSs,

d
dt

〈τz(t)F[τz]〉 = −W〈τz(t)F[τz]〉

+
〈
τz(t)

d
dt

F[τz]
〉
+�W〈F[τz]〉, (A6)

where F[τz] is an arbitrary functional of τz(t′) for 0 ≤ t′ ≤
t, with t = 0 being the moment of imposing initial con-
ditions. The last term in Eq. (A6) can be understood by
noting that 〈τz〉 = �W/W.

We use relation (A6) to reduce the calculation of the
characteristic function �(�q) to a set of ordinary differ-
ential equations. To this end, we introduce the following
functions:

χ(t) =
〈

exp
[

i
∫ t

0
α(t′)τz(t′)dt′

]〉
, (A7)

X (t) =
〈
τz(t) exp

[
i
∫ t

0
α(t′)τz(t′)dt′

]〉
. (A8)

From Eq. (A6), functions χ(t) and X (t) satisfy a system of
coupled differential equations,

d
dt
χ(t) = iα(t)X (t), (A9)

d
dt
X (t) = −WX (t)+ iα(t)χ(t)+�Wχ(t), (A10)

where we used the fact that τz
2 = 1.

b. One-time characteristic function

With Eqs. (A9) and (A10) at hand, we are ready to derive
the expression for�(q0 = 1, qk �=0 = 0) in Eq. (A2), which
we refer to as the one-time characteristic function.

It follows from Eqs. (A4) and (A7) that, to compute
�(q0 = 1, qk �=0 = 0), we simply need to compute χ(t),
assuming that α(t) = V for 0 ≤ t ≤ tR and α(t) = 0 for
t > tR. For such α(t), we have

�(q0 = 1, qk �=0 = 0) = χ(tR)e−iVtR〈τz〉. (A11)

Solving Eqs. (A9) and (A10) in the interval 0 ≤ t ≤ tR with
α(t) = V, we find that

(
χ(tR)
X (tR)

)
= T̂(V, tR)

(
χ(0)
X (0)

)
,

(
χ(0)
X (0)

)
=

(
1

�W/W

)
, (A12)

T̂(V, tR) = 1
γ

exp[−WtR/2]
( 1

2 W sinh(γ tR)+ γ cosh(γ tR) iV sinh(γ tR)
(iV +�W) sinh(γ tR) γ cosh(γ tR)− 1

2 W sinh(γ tR)

)
. (A13)

Here we have introduced the transfer matrix T̂(V, tR) that
will be useful below. Carrying out the matrix multiplica-
tion in Eq. (A12), we obtain

χ(tR) = 
(tR), (A14)

where 
(tR) is given by Eq. (16) for 
(n)(tR) for the con-
sidered nth TLS. Equations (A2), (A11), and (A14) give

the expression for r1, which coincides with Eq. (15) for the
case of one TLS.

c. Two-time characteristic function

We now evaluate �(q0 = ±1, qk = 1, qk′ �=k,0) in
Eq. (A3), which we refer to as the two-time characteristic
functions. Again, we start with the case of the coupling
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to one TLS. To this end, we need to solve Eqs. (A9) and
(A10) for α(t) of the form

α(t) = ±V, 0 ≤ t ≤ tR, (A15a)

α(t) = 0, tR < t < ktcyc, (A15b)

α(t) = V, ktcyc ≤ t ≤ ktcyc + tR. (A15c)

The relevant two-time characteristic functions in Eq. (A3)
are then expressed in terms of χ(t) as

�(q0 = ±1, qk = 1, qk′ �=k,0 = 0)

= χ±(ktcyc + tR)e−i(q0+qk)VtR〈τz〉, (A16)

where subscript “±” corresponds to χ(t) calculated for
α(t) = ±V in the time interval 0 ≤ t ≤ tR, respectively.

Function χ±(ktcyc + tR) can be found using the trans-
fer matrix in Eq. (A12) to connect the solutions of χ(t) in
different regions where α(t) is a constant. The solution is
reduced to just matrix multiplication,

(
χ±(ktcyc + tR)
X (ktcyc + tR))

)
= T̂(V, tR)T̂(0, ktcyc)T̂(±V, tR)

(
χ(0)
X (0)

)
.

(A17)

This gives

χ+(ktcyc + tR) = [
(tR)]2 + [ξk(tR)]2,

χ−(ktcyc + tR) = |
(tR)|2 + |ξk(tR)|2,
(A18)

where ξk(tR) is given in Eq. (19). Substituting Eqs. (A16)
and (A18) into Eq. (A3), for the pair correlator r2(k), we
obtain the same expression as Eq. (19) written for the case
of coupling to one TLS.

2. Characteristic function in the presence of multiple
TLSs

Having found the characteristic function in the pres-
ence of one TLS, let us consider multiple independent
TLSs. Qubit frequency noise is now a sum over TLSs,
δωq = ∑

n V(n)[τ (n)z − 〈τ (n)z 〉].
A key advantage of using the characteristic function is

that, in the presence of many independent TLSs coupled
to the qubit, it factors into a product of the characteristic
functions for individual TLSs. Specifically, the one-time
characteristic function now becomes

�(q0 = 1, qk �=0 = 0) =
∏

n

χ(n)(tR)e−iV(n)tR〈τ (n)z 〉 (A19)

with χ(n)(tR) given in Eq. (A14) and the TLS parameters
given by those of the nth TLS. Similarly, the expression for

the two-time characteristic function reads

�(q0 = ±1, qk = 1, qk′ �=k,0 = 0)

=
∏

n

χ
(n)
± (ktcyc + tR)e−i(q0+qk)V(n)tR〈τ (n)z 〉 (A20)

with χ(n)± (ktcyc + tR) given in Eq. (A18).
Substituting Eqs. (A19) and (A20) into Eqs. (A2) and

(A3), we immediately obtain the same expressions for r1
and r̃2(k) as Eqs. (15) and (19).

APPENDIX B: SIMULATIONS

In this section we describe the algorithms used in the
simulations of qubit frequency noise induced by two-level
systems and of Gaussian qubit frequency noise.

1. Simulating noise from TLSs

Noise from TLSs is simulated as a sum of telegraph
noises produced by each TLS independently. An nth TLS
has two states, |0〉(n) and |1〉(n), in which its contributions
to noise are 1 and −1, respectively. These contributions are
multiplied by parameter V(n) of the coupling to the qubit
to obtain the qubit frequency shift. The time is discretized
with the same step δt for all TLSs. In the simulations
we use δt/tR = 0.1, where tR is the duration of the Ram-
sey measurement. As everywhere else, we use the relative
length of the cycle tcyc/tR = 3

All TLSs are randomly (with equal probability) initial-
ized in either the |0〉 or |1〉 state. At each time step a
TLS can switch between its states |0〉(n) and |1〉(n). The
switching probabilities are

p (n)01 = W(n)
01 δt, p (n)10 = W(n)

10 δt, (B1)

where W(n)
01 and W(n)

10 are the switching rates. We numer-
ically determine whether or not the TLS switches in a
standard way by comparing W(n)

ij δt with a random number
from the uniform distribution U(0, 1).

The generated states of the TLS produce an array d(n)(m)
of random numbers that take values ±1. Here m enumer-
ates the time steps. We collect N = 105 outcomes of the
simulated Ramsey measurements, which means that we
use Ñ = (tcyc/δt)× 105 samples, that is, 1 ≤ m ≤ Ñ . A
kth Ramsey measurement, which is done in the time inter-
val ktcyc ≤ t ≤ ktcyc + tR, corresponds to the range of steps
k(tcyc/δt) < m ≤ k(tcyc/δt)+ (tR/δt). For our discretized
time sequence, the random phase accumulated by the qubit
in this time interval is

θ k =
�tR/δt�∑
m=1

NTLS∑
n=1

V(n)d(n)(�ktcyc/δt� + m). (B2)
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FIG. 8. Simulated power spectrum of the noise from ten
symmetric TLSs with V(n) = V = 0.2/tR and W(n)

01 = W(n)
10 =

exp(−3n/4)/2tR for n = 1, 2, . . . , 10 (green data points). The
spectrum displays 1/f character over more than two decades.
The results agree with the analytical result, Eq. (14) of the main
text. Inset: the power spectrum for 20 TLSs, n = 1, . . . , 20, with
the same V and W(n)

ij calculated from Eq. (14). In this case the
spectrum displays more than five decades of 1/f behavior. The
dashed lines in the main plot and in the inset show 1/f noise,
α = 3/4.

The probability of obtaining “1” in a kth measurement
p(θk) is given by Eq. (7). We compare p(θk) with a ran-
dom number ok from U(0, 1). If p(θk) > ok, we set the
outcome of the kth Ramsey measurement to xk = 1; other-
wise, we set xk = 0. The whole procedure is independently
repeated 300 times for statistical averaging. This allows
us to numerically analyze and compare the parameters
r1, r2(k), r3(k, �) with the theory, as well as to investigate
other parameters of interest, as discussed in the main text.

Of primary interest to us is the analysis of TLSs that
produce noise of 1/f type in a reasonably broad frequency
range. There are many ways to obtain such noise. The
results presented in the main text refer to noise in which
the coupling of TLSs to the qubit is the same for all
TLSs, V(n) = V, but the distribution of the switching rates
W(n) = W(n)

01 + W(n)
10 is log uniform. The noise spectrum is

shown in Fig. 8.
The spectrum of the main plot in Fig. 8 is obtained

from the simulated d(n)(m) = ±1. At each time step m we
evaluate the outcome

D(m) =
NTLS∑
n=1

V(n)tRd(n)(m). (B3)

The fast Fourier transform of D(m) is then calculated in
the standard way as

D̃(ωk) =
∣∣∣∣
∑

m

exp(−2π imk/Ñ )D(m)
∣∣∣∣
2/

Ñ , (B4)

whereωk = 2πk/Ñ and, as before, Ñ = Ntcyc/δt with N =
105.

To obtain the power spectrum Sq(ωk) = 〈D̃(ωk)〉, this
procedure is repeated 300 times to get sufficient statistics
for averaging. For weak coupling to TLSs, spectrum Sq(ω)

is immediately related to the centered correlator r̃2(k); cf.
Sec. V

2. Simulating Gaussian noise

The effect of Gaussian noise on the outcomes of Ram-
sey measurements is fully characterized by the correlation
function fk = 〈θnθn+k〉 of phases θ k acquired by the qubit
in the measurements. Since the measurements are periodi-
cally repeated, one has to sample θ k for successive k. The
probability to have a given phase θk depends on the entire
history of the previously “observed” phases θk′ with k′ < k.
This means that the quantity of interest is the conditional
probability

P(θ k|θ0, . . . , θ k−1) = P(θ0, . . . , θ k)

× [P(θ0, . . . , θ k−1)]−1, (B5)

where θ0 is the outcome of the first measurement. Proba-
bility (B5) has to be evaluated recursively starting with the
probability of θ0. We use the fact that the distribution of
the phases is stationary,

P({θ}) = Z−1 exp
[

− 1
2

∑
k,k′
(f̂ −1)k−k′θkθk′

]
,

where Z is the normalization constant and f̂ −1 is the matrix
reciprocal to matrix fkk′ ; we note that the matrix elements
of the latter matrix are fkk′ = f|k−k′|; cf. Eq. (74).

In evaluating the conditional probability given by Eq.
(B5) one should keep in mind that the values of θ k
are correlated at a finite distance kcorr, which is deter-
mined by the relation between the correlation time of
the underlying noise and the period of the sequence tcyc.
In other words, it means that, to a good approximation
(which needs to be checked), |fk| can be set equal to
zero for k > kcorr. Then, for k > kcorr, one can approxi-
mate the conditional probability P(θ k|θ0, . . . , θ k−1) with
P(θ k|θ k−kcorr , θ k−kcorr+1, . . . , θ k−1), i.e., instead of probabil-
ity (B5) we have to calculate

P(θ k|θ k−kcorr , . . . , θ k−1) = P(θ k−kcorr , . . . , θ k)

× [P(θ k−kcorr , . . . , θ k−1)]−1.
(B6)

It is important that all conditional probabilities in Eq.
(B6) have a Gaussian form, albeit they are not zero mean,
because of the correlations. As we now show, we can
sample each θ k from N (μk, σk), where μk and σk are
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respectively the mean value and the standard deviation for
θk. They depend on the values of θk′ with k′ < k.

The first phase to be sampled, θ0, is sampled with
μ0 = 0 and σ0 = 1/

√
f0. To find the distribution of

phases θ k with k > 0, we note that, when calculating
P(θ k−kcorr , . . . , θ k), rather than using the full reciprocal
matrix (f̂ −1)|k−k′| we should use a (kcorr + 1)× (kcorr + 1)
matrix reciprocal to the (kcorr + 1)× (kcorr + 1) part of
matrix fkk′ . This matrix �kk′ is defined by the equation

k∑
m=k−kcorr

�kmfmk′ = δkk′ .

Along with �kk′ we need matrix ψkk′ , which is the recipro-
cal of the kcorr × kcorr part of fkk′ ,

k−1∑
m=k−kcorr

ψkmfmk′ = δkk′ .

Matrices �kk′ and ψkk′ are symmetric. However, even
though fkk = f0 is independent of k, the diagonal matrix
elements of matrices �kk and ψkk depend on k.

There is an important relation between matrices ψ̂ and
�̂:

ψkk′ = �kk′ − (�mk�mk′/�mm),

k, k′ = m − kcorr, . . . , m − 1. (B7)

This relation can be checked by multiplying from the left
by fk1k and summing over k = m − kcorr, . . . , m − 1.

Taking relation (B7) into account, we can write the
exponential in P(θ k−kcorr , . . . , θ k) as

exp
[

− 1
2
�kk(θ k − μk)

2 − 1
2

k−1∑
m,m′=k−kcorr

ψmm′θmθm′

]
,

where

μk = −�−1
kk

k−1∑
m=k−kcorr

�kmθm (B8)

is the phase accumulated over kcorr steps that preceded the
kth step.

Ultimately, for the conditional probability of θ k, we have
the distribution

P(θ k|θ k−kcorr , θ k−kcorr+1, . . . , θ k−1)

= (�kk/2π)1/2 exp
[ − 1

2�kk(θ k − μk)
2]. (B9)

We have also used here the Cramer rule that relates the
matrix element �kk to the ratio of the determinants of
matrices �̂ and ψ̂ .

The above prescription allows us to sample a sequence
of random phases θ k. Each obtained θ k is used to determine
whether the outcome of the simulated Ramsey measure-
ment gives “0” or “1” based on probability (7). From the
observed outcomes, we can calculate r1, r2(k), and r3(k, �)
as well as other statistical characteristics of the simulated
sequence of periodic Ramsey measurements.

The value of kcorr depends on a particular type of noise.
We choose it in such a way that the results become virtu-
ally independent of kcorr. For exponentially correlated fre-
quency noise with the correlation time τcorr, one can choose
kcorr = acorrτcorr/tcyc with a sufficiently large acorr. For the
1/f -type noise we study, with the characteristic minimal
frequency ωmin, one can choose kcorr = a1/f (ωmintcyc)

−1

with a sufficiently large a1/f . However, for the parame-
ters used in the simulations, we checked that the results
become independent of kcorr once one sets kcorr ≈ 10 for
the exponentially correlated noise and kcorr = 400 for the
1/f noise.

APPENDIX C: EXPLICIT EXPRESSIONS FOR
PHASE CORRELATORS FOR 1/f -TYPE NOISE

For completeness, here we provide the explicit expres-
sions for correlators fk = 〈θ0θk〉 of the phases accumulated
by the qubit during Ramsey measurements separated by
k cycles, i.e., separated by time ktcyc. The expressions are
related to the Gaussian noise δωq(t) produced by a large
number of TLSs with the same coupling to the qubit and
with the log-normal distribution of the switching rates. The
power spectrum Sq(ω) of δωq(t) in this case is given by Eq.
(46) in the main text.

The integral overω, Eq. (36) in the main text, that relates
fk to Sq(ω) can be expressed in terms of the exponential
integral and hyperbolic sine and cosine integral functions
Ei(z), shi(z), and chi(z) as follows:

fk = Dfl t2R
2π

{2e−akbmin[(1 − akbmin)[cosh bmin − 1]

+ bmin sinh bmin]/b2
min

+ 2a2
kEi(−akbmin)− (ak + 1)2Ei(−akbmin − bmin)

− (ak − 1)2Ei(bmin − akbmin)}, k > 0, (C1)

and

f0 = Dflt2R
π

[
− 1

b2
min

+ 2
bmin

− (bmin − 1) exp(−bmin)/b2
min

− chi(bmin)+ shi(bmin)

]
. (C2)

These expressions depend on two dimensionless parame-
ters,

ak = ktcyc

tR
, bmin = ωmintR,
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that are convenient for a numerical evaluation of correla-
tors fk.

APPENDIX D: THE EFFECT OF THE
MEASUREMENT PHASE φR AND THE NUMBER

OF TLSS

An important feature of Gaussian noise is that the cen-
tered correlator r̃3(k, �) is zero if phase φR of the Ramsey
measurements is π/2. Testing the effect of the noise from
TLSs for φR = π/2 thus provides a glimpse at how dif-
ferent this noise is from Gaussian. In Fig. 9 we present the
results of simulations of r̃2(k) and r̃3(k, �) for φR = π/2 for
the noise from ten TLSs with the same parameters as in the
main text, where the simulations are done for φR = π/4.
As expected, correlators r̃2(k) display similar behavior to
that for φR = π/4 in Fig. 2. However, correlators r̃3(k, �)
are extremely small for all values of V(n) that we study.

The noise from symmetric TLSs is close to Gaussian
even for five TLSs provided they are symmetric. This is
seen from Fig. 10. In contrast, the noise from asymmetric
TLSs is profoundly non-Gaussian.

FIG. 9. Centered correlators r̃2(k) and r̃3(k, k + 3) for ten sym-
metric TLSs for the measurement phase φR = π/2. Top panel:
ten TLSs with W(n)

01 tR = W(n)
10 tR = exp(−3n/4)/2, n = 1, . . . , 10.

The coupling is the same for all TLSs, V(n) = V. The solid lines
show the theory, Eq. (19). Correlators r̃3(k, �) display fluctua-
tions around zero that cannot be resolved with 105 measurements.

FIG. 10. Comparison of the effects of the coupling to sym-
metric and asymmetric TLSs, for 5 TLSs, V(n)tR = 0.2 and
φR = π/4. For the symmetric TLSs W(n)tR = exp(−3n/4) with
n = 1, . . . , 5. For the asymmetric TLSs W(n)

01 tR = exp[−3(n +
1)]/4]/2 and W(n)

10 tR = exp(−3n/4)/2. In the upper inset the
lines are the Gaussian approximation for symmetric (solid) and
asymmetric (dashed) TLSs.

APPENDIX E: TLS DYNAMICS DURING A
RAMSEY MEASUREMENT

We consider here the dynamics of the TLS-dependent
components of the density matrix during the Ramsey mea-
surement, i.e., in the time interval ntcyc < t < ntcyc + tR.
These components, ρλ with λ = I , z, ±, are defined in Eqs.
(59) and (63). As indicated in the main text, the equations
for ρλ with different λ are obtained by substituting Eq. (63)
into the full master equation (60), multiplying the left- and
right-hand sides by Îq, Îq − σz, σ±, and taking a trace over
the qubit states. The left-hand side of the resulting equation
for ρλ is

∂tρλ =
∑

n

∑
κ=0,z

Ċ(n)λκ
τ̂ (n)

κ

∏
m �=n

∑
κ

′=0,z

C(m)
λκ

′ τ̂
(m)
κ

′ . (E1)

As seen from Eq. (60), the term
∑

n L(n)ρλ on the right-
hand side of the equation for ∂tρλ has the same structure
as Eq. (E1): a sum over n multiplied by the product over
m �= n of

∑
κ

′=0,z C(m)
λκ

′ τ̂
(m)
κ

′ . The commutator [ρ, Hq−TLS]
also has the same structure. One can divide both sides of
the equation for ∂tρλ by ρλ, reminiscent of the standard
trick of separation of variables in a differential equation.
This gives Eq. (65).

The equations for C(n)λκ
are split into sets of pairs of

coupled equations. For λ = I , z, we have

Ċ(n)λ0 = 0, Ċ(n)λz = �W(n)C(n)λ0 − W(n)C(n)λz ,

�W(n) = W(n)
10 − W(n)

01 .
(E2)

Parameter �W(n) characterizes the asymmetry of the TLS,
whereas W(n) = W(n)

10 + W(n)
01 is the TLS relaxation rate.
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If λ = +, Eq. (65) for C(n)λκ
reads

Ċ(n)+0 = iV(n)C(n)+z ,

Ċ(n)+z = (�W(n) + iV(n))C(n)+0 − W(n)C(n)+z ,
(E3)

and, by construction, C(n)−κ
= C(n)+κ

∗.
Solving these equations, we obtain, for λ = I , z,

C(n)λz (t) =
[

C(n)λz (0
+)− �W(n)

W(n) C(n)λ0 (0
+)

]
e−W(n)t

+ �W(n)

W(n) C(n)λ0 (0
+),

C(n)λ0 (t) = C(n)λ0 (0
+),

(E4)

whereas

C(n)+κ
(t) =

∑
k=1,2

B(k;n)
κ

exp(ν(n)k t) (E5)

with

ν
(n)
1,2 = − 1

2 W(n) ± γ (n), (E6a)

γ (n) = 1
2 [(W(n))2 + 4iV(n)(�W(n) + iV(n))]1/2, (E6b)

B(k;n)
0 = [ν(n)3−kC(n)+0(0

+)− iV(n)C(n)+z(0
+)](ν(n)3−k − ν

(n)
k )−1,

(E6c)

B(k;n)
z = −i(ν(n)k /V(n))B(k;n)

0 , k = 1, 2. (E6d)

These expressions are used in the main text to obtain
C(n)λκ

(t) in the explicit form.
To find the initial conditions for the equations for C(n)λκ

in the above expressions, we take into account the fact
that at instant t = 0+ the qubit is in state (|0〉 + |1〉)/√2,
whereas the stationary TLS populations are given by Eq.
(61). Therefore,

C(n)Iz (0
+) = C(n)±z(0

+) = −C(n)zz (0
+) = �W(n)/2W(n),

C(n)I0 (0
+) = C(n)±0(0

+) = −C(n)z0 (0
+) = 1

2 ,
(E7)

With these initial conditions, we have, in particular,

C(n)Iz (tR) = −C(n)zz (tR) = �W(n)/2W(n),

C(n)I0 (tR) = −C(n)z0 (tR) = 1
2 ,

(E8)

and

C(n)+z(tR) = 1
2

e−W(n)tR/2
[
�W(n)

W(n) cosh(γ (n)tR)

+
(

i
V(n)

γ (n)
+ �W(n)

2γ (n)

)
sinh(γ (n)tR)

]
; (E9)

the expression for C(n)+0(tR) is given in the main text, Eq.
(16).

APPENDIX F: TIME EVOLUTION OF THE PAIR
CORRELATOR

Operator Rcorr defined in Eq. (70) describes the decay of
the pair correlation function of the Ramsey measurement
outcomes. Parameters K{m}s in the expression for Rcorr
read

K{m}s = 1
2

e−tR/T2Re
[

eiφ̃RJ (m1) · · ·J (ms)

×
∏

n�=m1,...,ms


(n)(tR)
]

, (F1)

where

J (n) = C(n)+z(tR)− �W(n)

W(n) C(n)+0(tR)

= 2i
V(n)

γ (n)

W(n)
01 W(n)

10

W(n)2 e−W(n)tR/2 sinh γ (n)tR. (F2)

Here we have used Hamiltonian HR, Eq. (57), in which φR
was replaced by the auxiliary phase φ̃R to compensate the
coupling-induced shift of the average qubit frequency.

1. Time evolution of the terms ∝ σ± in Rcorr

As indicated in the main text, the evolution of the terms
∝ σ± in Rcorr(t) in the time interval ktcyc < t < ktcyc + tR
has to be studied separately for each term in the sum over
m1, . . . , ms in Rcorr(t). We denote the corresponding terms
as Rcorr(t|{m}s),

Rcorr(t) =
∑
s≥1

∑
{m}s

Rcorr(t|{m}s).

Similar to Eqs. (63) and (64), we seek Rcorr(t|{m}s) in the
form

Rcorr(t|{m}s) = 1
4

e−(t−ktcyc)/T2K{m}s

×
∑
α=±

σα
∏

n

∑
κ=0,z

C̃(n)ακ
(t|{m}s)τ̂

(n)
κ

. (F3)

The equations for coefficients C̃(n)ακ
(t|{m}s) have the same

form as Eq. (E3) for C(n)ακ
(t). The initial conditions for these

equations are set at t = t+cyc. They follow from expression
(73) for Rcorr(ktcyc) and Eq. (72). They are different for the
values of n that coincide with one of the components mi of
vector {m}s and for those values of n that differ from the
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components of {m}s. For the first group, we have

C̃(mi)
+0 (kt+cyc|{m}s) = 0,

C̃(mi)+z (kt+cyc|{m}s) = exp[−W(mi)(ktcyc − tR)], mi ∈ {m}s.
(F4)

In contrast, for the second group, we have

C̃(n)+0(kt+cyc|{m}s) = 1/2,

C̃(n)+z(kt+cyc|{m}s) = �W(n)/2W(n), n �= m1, . . . , ms.
(F5)

It then follows from Eqs. (E4)–(E6) that

C̃
(mj )

+0 (ktcyc + tR|{m}s)

= i(Vmj /γ
(mj )) sinh γ (mj )tR

× exp[−W(mj )(ktcyc − tR/2)], mj ∈ {m}s, (F6)

whereas

C̃(n)+0(ktcyc + tR|{m}s) = 1
2


(n)(tR), n /∈ {m}s, (F7)

where 
(n)(tR) is given by Eq. (16).
At time ktcyc + tR the qubit undergoes a rotation about

the z axis by an angle φ̃R followed by a π/2 rotation about
the y axis, as seen from Eqs. (56) and (57). As a result, the
matrices σα in the operator Rcorr(ktcyc + tR|{m}s), Eq. (F3),
transform as

σα → eiαφ̃R(iασy − σz).

This transformation corresponds to the transformation of
Rcorr(ktcyc + tR|{m}s) into Rcorr(ktcyc + t+R |{m}s). As indi-
cated in the main text, if the qubit is reset at ktcyc + t+R
then Rcorr(ktcyc + t+R |{m}s) decays. However, if the mea-
surement is performed at time ktcyc + t+R , i.e., Rcorr(ktcyc +
t+R |{m}s) is multiplied by P̂ = (Îq − σz)/2 and the trace
is taken over the qubit and TLSs, the contribution of
Rcorr(ktcyc + t+R |{m}s) to the result of the measurement is

r̃2(k) = 1
2

e−tR/T2

×
∑

s

∑
{m}s

K{m}sRe
[

eiφ̃R
∏

n

2C̃(n)+0(ktcyc + tR|{m}s)

]
.

(F8)

This result depends only on the coefficients C̃(n)+κ
with κ =

0, which describe the contribution of the identity operators
of TLSs; the trace of the terms proportional to τ̂ (n)z is zero.
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and Ł. Cywiński, Environmental noise spectroscopy with
qubits subjected to dynamical decoupling, J. Phys.: Con-
dens. Matter 29, 333001 (2017).

[38] Y. Sung, F. Beaudoin, L. M. Norris, F. Yan, D. K. Kim,
J. Y. Qiu, U. von Lüpke, J. L. Yoder, T. P. Orlando, S.
Gustavsson, L. Viola, and W. D. Oliver, Non-Gaussian
noise spectroscopy with a superconducting qubit sensor,
Nat. Commun. 10, 3715 (2019).

[39] X. You, A. A. Clerk, and J. Koch, Positive- and negative-
frequency noise from an ensemble of two-level fluctuators,
Phys. Rev. Res. 3, 013045 (2021).

[40] Z. A. Maizelis, M. L. Roukes, and M. I. Dykman, Detect-
ing and characterizing frequency fluctuations of vibrational
modes, Phys. Rev. B 84, 144301 (2011).

[41] F. Sun, J. Zou, Z. A. Maizelis, and H. B. Chan, Tele-
graph frequency noise in electromechanical resonators,
Phys. Rev. B 91, 174102 (2015).
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