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A remarkable phenomenon in contemporary physics is quantum scarring in systems whose classical
dynamics are chaotic, where certain wave functions tend to concentrate on classical periodic orbits of
low periods. Quantum scarring has been studied for more than four decades, but detecting quantum scars
still mostly relies on human visualization of the wave-function patterns. The widespread and successful
applications of machine learning in many branches of physics suggest the possibility of using artificial
neural networks for automated detection of quantum scars. Conventional machine learning often requires
substantial training data, but, for quantum scars, this poses a significant challenge: in typical systems
the available distinct quantum scarring states are rare. We develop a meta machine-learning approach to
accurately detect quantum scars in a fully automated and highly efficient fashion. In particular, taking
advantage of some standard large datasets such as Omniglot from the field of image classification, we
train a “preliminary” version of the neural network that has the ability to distinguish different classes of
noisy images. We then perform few-shot classification to further train the neural network but with a small
number of quantum scars. We demonstrate that the meta-learning scheme can find the correct quantum
scars from thousands of images of wave functions without any human intervention, regardless of the
symmetry of the underlying system. From a general applied point of view, our success opens the door to
exploiting meta learning for solving challenging image detection and classification problems in other fields
of science and engineering. For example, in microlasing systems, identifying scarring states is critical as
these states are desired for directional emission. The task is also important for quantum-dot devices where
the scarring states can lead to resonances in the conductance.
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I. INTRODUCTION

In the field of quantum chaos that studies the quan-
tum manifestations of classical chaos [1,2], wave-function
scarring is a fundamental phenomenon that has been exten-
sively investigated. Here the term “scarring” is referred
to as the unusually high concentrations of the wave func-
tions about certain classical periodic orbits. In this regard,
if the underlying classical dynamics are integrable with
stable periodic orbits, nonuniformly distributed wave func-
tions about these orbits are expected. What is surprising
is quantum scarring in systems whose classical dynamics
are fully chaotic, where all periodic orbits are unstable, so,
intuitively, it does not seem possible for the wave func-
tions to concentrate about them. From another viewpoint,
because of the intrinsic ergodicity associated with chaos, a
classical trajectory generates a uniform distribution in the
phase space (accordingly in the physical space as well),
so the intuition would be that the quantum wave functions
should also have a uniform distribution in space. It was first
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discovered by McDonald and Kaufman [3] when solving
the Helmholtz equation in the classically chaotic stadium
billiard that there are eigenstates whose wave functions are
highly nonuniform and in fact tend to concentrate on some
classical unstable periodic orbits. A more detailed study by
Heller [4] confirmed the phenomenon, who gave the name
“quantum scars” to the nonuniform wave functions. A the-
ory for quantum scars based on the semiclassical Green’s
function was developed by Bogomolny [5] and Berry [6].

There are a variety of physical systems in which the
phenomenon of quantum scarring can occur. For exam-
ple, in graphene, the low-energy excitations are governed
by the Dirac equation [7–9] and correspond to mass-
less particles, where relativistic quantum scars can arise
[10–12]. Solutions of the Dirac equation in classically
chaotic billiards also revealed a distinct class of relativis-
tic quantum scars—chiral scars that require two complete
cycles for their wave functions to return to their origi-
nal values [13–16]. Quantum scarring can also occur in
open or transport systems such as quantum dots, where
the scarred states are referred to as quantum pointer states
[17–23]. In microcavity lasing systems, quasibound states
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in a deformed cavity are scarring states with strong direc-
tional emission [24–27]. Quite recently, scarring has been
uncovered in quantum many-body systems, where certain
special eigenstates were found to concentrate in certain
parts of the Hilbert space [28–34], which were named
quantum many-body scars and are highly relevant to
multiple-qubit systems in quantum information science
and technology.

In the study of quantum chaos, identifying quantum
scarring states has been a challenging problem. The con-
ventional approach has been “manual,” where one first
generates a large number of eigenstates and then visually
checks to see if an eigenstate is a scarring state based on
information about the classical periodic orbits. This can be
an extremely difficult task for two reasons. First, scarring
states are rare in typical quantum systems. For example,
in a chaotic billiard, only approximately 5% to 10% of the
eigenstates are quantum scars. Compounding the difficulty
is the different classes of quantum scars, where each class
corresponds to a different group of classical periodic orbits.
For a given class, quantum scarring states are even more
rare. For example, when chiral scars were first discovered
[13], more than 104 eigenstates were examined visually by
human eyes. The second reason is that the wave-function
patterns associated with quantum scars can be complicated
with a random or noisy component. As a result, labeling the
quantum scars is a hard task with significant uncertainties
for the human eyes.

In recent years, deep learning has enjoyed great success
in visual object recognition, object detection, and many
other domains [35]. Deep convolutional neural networks
(DCNNs) were introduced for image recognition, the train-
ing of which often requires very large datasets [36]. For
example, in Ref. [36], the authors considered 1000 classes,
which required more than one million images as the train-
ing data. In physics, DCNNs have been adopted in different
areas to solve problems associated with a large num-
ber of images [37], such as jet tagging [38,39], neutrino
event classification [40], gravitational lensing [41], and
identification of symmetry-breaking states from scanning-
electron-microscope images [42]. A convolutionlike neu-
ral network structure was also developed to solve problems
in quantum many-body physics [43]. Quite recently, a
machine-learning-based quantum chaos detector was pro-
posed [44]. In applications where such massive datasets
are not available, machine learning based on small datasets
was also developed, especially for the classification task
[45–47] where only a small number of labeled examples
per class (a few shots) are required. Since only small
training data are required for classification, such machine
learning schemes find broad applications, e.g., learning and
detecting rare events [48,49].

The remarkable success of machine learning in image
recognition and pattern classification naturally leads to
the idea of developing a neural-network-based quantum

scar detector. However, even as the image classification
algorithms have become more powerful, detecting and
classifying quantum scars remains an open and difficult
problem, due to the availability of a small number of
quantum scarring patterns and the lack of sufficient dis-
tinction between quantum scars and conventional wave
functions. Intuitively, since each type of quantum scar cor-
responds to a unique class of classical periodic orbits, if
we select some scarring states as the training data, the neu-
ral network so trained should be able to make the correct
classification when an image containing a similar pattern is
presented as the input to the network. However, this sim-
ple approach may not be workable for detecting quantum
scars because it is difficult to find them in the first place
and obtaining a large number of training images is prac-
tically impossible. To develop a machine-learning-based
automated quantum scar detector, this difficulty must be
overcome. We also note that there were previous works on
using convolutional neural networks to distinguish chaotic
and regular eigenstates [44,50], and it was mentioned in
Ref. [51] that a machine learning tool had been devel-
oped for automated detection and classification of a class
of scars—perturbation-induced scars. However, a general
algorithm applicable to large classes of models is lacking.

In this paper, we exploit meta learning [52] to develop
an automated and efficient quantum scar detector. The
essence of meta machine learning is to encode “previ-
ous experience” into a pretrained neural network so that
it can quickly adapt to a new input. Meta learning has
found broad applications in regression, classification, and
reinforcement learning. Our idea is to exploit some exist-
ing data sets to train the neural network, which can be
completely unrelated to quantum systems but with images
similar to scarring patterns. In this regard, the Omniglot
dataset [46] widely used in the field of image classifica-
tion stands out as an excellent choice. Our strategy is to
train a “preliminary” version of the neural network that has
the ability to distinguish different classes of noisy images
from the Omniglot dataset and then perform few-shot clas-
sification to further train the neural network with a small
number of quantum scars. A pertinent issue is that standard
meta learning algorithms can only be used to classify but
not detect patterns. Our solution is to use an ensemble of
neural networks. In particular, nonscarring states as input
to the neural networks can be used as references with sig-
nificantly different statistical features than those associated
with scarring states, thereby accomplishing the detection
task. We demonstrate that the neural network so trained
can detect and classify quantum scars with remarkable effi-
ciency and accuracy even with limited training data of
actual quantum scars. Our meta-learning-based approach
not only solves a long-standing problem in the field of
quantum chaos, but can also be generalized to address
challenging image detection and classification problems in
other fields.
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We remark that machine learning has been increasingly
used in applied physics. For example, in Ref. [53], a neural
network was used to characterize the relationship between
the gate voltage and performance in a double quantum-dot
device to find an optimal combination of the gate voltages
to achieve desired performance. In Ref. [54], a convolu-
tional neural network was used to realize single-exposure
absorption imaging of ultracold atoms. Our work is not
about using a convolutional neural network on some spe-
cific realization of a chaotic billiard. Our meta-learning
approach addresses the difficulty of sparse training data
and is applicable to a vast range of scarred systems with
few modifications.

We also remark that robust and accurate detection of
quantum scars has practical applications in physics. For
example, it has been known for more than a decade [55,56]
that, in microlasing systems, a scarring state is ideal for
directional emission. In solid-state devices such as quan-
tum dots, quasiscarring states (pointer states) can lead to
Fano resonances in the conductance as a function of the
Fermi energy [57]. Identifying scarring states in the dot
region is key to understanding experimental characteris-
tics such as the conductance-fluctuation patterns. A quite
recent experimental work on the chaotic stadium billiard
system [58] revealed a large number of quasibound states
in the cavity, including at least three quantum scarring
states of relatively high period, which can generate differ-
ent far-field emission patterns. In this work [58], even in
a small interval of size 0.02 in the dimensionless quantity
(kR), where k is the wave vector and R is the system size,
there are about ten quantum states. In the typical range
kR ∼ 100 for a cavity or quantum-dot system, the num-
ber of states can be of the order of thousands. Relying
on human visualization is not practical. Our machine-
learning-based, automated scarring detector provides an
effective solution.

In Sec. II, we describe a prototypical relativistic quan-
tum billiard system and articulate the basic training pro-
cedures for neural networks. In particular, we detail the
construction of our quantum-scar detector based on meta
learning (Sec. II B) and few-shot classification (Sec. II C).
In Sec. III, we use two types of chaotic Dirac billiard
systems to demonstrate the feasibility and power of meta
learning in detecting and classifying relativistic quan-
tum scars. Conclusions and discussions are presented in
Sec. IV.

II. METHODS: RELATIVISTIC QUANTUM SCARS
AND MACHINE LEARNING ALGORITHMS

A. Relativistic quantum scarring in chaotic billiard
systems

We use the standard setting of two-dimensional bil-
liard systems [3,59,60] to generate quantum scars. In the
classical limit, a particle moves freely inside the billiard,

experiencing elastic reflections from the hard-wall bound-
ary. The geometric shape of the boundary determines the
nature of the classical dynamics. For example, the dynam-
ics in a circular billiard are integrable but those in a
stadium, Africa, or heart-shaped billiard are chaotic. To
be concrete, we focus on the relativistic quantum regime
as described by the massless Dirac equation. For a chaotic
billiard, there are standard methods to calculate the rela-
tivistic quantum eigenvalues and eigenstates such as those
based on the boundary integrals [61,62] and conformal
mapping [13,63].

We consider the situation where the particle has spin 1/2
and a vertical magnetic flux [14] is applied through the
billiard region, whose strength α is effectively an exter-
nally adjustable parameter: different sets of spinor wave
functions can be generated by changing the value of α.
Possessing such an experimentally controllable parame-
ter has two advantages. First, from the point of view of
machine learning, the neural network can be trained with
one set of wave-function patterns and then be tested using
datasets from different parameter values, enabling the full
power of the learning process to be revealed and exploited.
Second, through testing the datasets from different values
of α, the statistical properties of the detected quantum scars
can be calculated and compared with the semiclassical
prediction [14].

Our working examples are the class of billiards with
fully chaotic dynamics in the classical limit [13,63], whose
boundary is defined by the following conformal mapping
of a unit circle in the complex plane z ≡ x + iy to the
complex plane w ≡ u + iv:

w(z) = z + bz2 + ceiδz3

√
1 + 2b2 + 3c2

. (1)

Here b, c, and δ are parameters, and the origin in the z
plane maps to the origin in the w plane. For example, for
b = 0.49, c = δ = 0, the billiard has the shape of a heart,
which possesses an inverse symmetry with respect to the
x axis. For b = c = 0.2 and δ = π/3, the billiard has the
shape of Africa. For a massless relativistic spin-1/2 particle
inside the billiard, the Hamiltonian is [14]

Ĥ = vF σ̂ ·
(

p̂ − q
c

A
)

+ V(u, v)σ̂z, (2)

where vF is the Fermi velocity, σ = (σx, σy) and σz are the
Pauli matrices, the hard-wall confining potential V(u, v) is
zero inside and infinite outside the billiard region, and A is
the vector potential. If the magnetic flux is �, the vector
potential is given by

A(u, v) = �

2π

(
∂F
∂v

, −∂F
∂u

)
, (3)
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where α = q�/(hc) is the normalized flux strength and
the function F(u, v) is determined by the flux profile in
the (u, v) plane. For example, for a singular flux through
the origin, F(u, v) can be solved from the Poisson-like
equation [64]

∇2
u,vF = −2πδ(u, v).

The eigenvalue problem Hψ = Eψ , where ψ is the two-
component spinor, can be solved by employing the con-
formal mapping method [13,14], where the analytically
solvable spinor wave functions in the hard-wall circular
billiard in the z plane are transformed to those in the
w plane through the conformal mapping. The accuracy
of this method depends on the size of the wave-function
base. In particular, an arbitrarily large number of analytic
eigenstates can be written down in the z plane. When trans-
formed into the w plane, a smaller but still large number
of eigenstates can be obtained with a preset, desired accu-
racy. In our work, for each α value in the unit interval, we
use 40 000 base eigenstates in the circular billiard in the z
plane. For the heart and Africa billiards in the w plane,
we use the first 15 000 and the first 10 000 eigenstates,
respectively. The eigenstates are labeled by integer n.

We represent each eigenstate ψ(n) by an image, where
the probability distribution for a uniformly spaced, rectan-
gular grid of points is evaluated and the probability is set
to zero for points outside the billiard region. For the heart-
shaped and Africa billiards, the image sizes are 202 × 232
and 201 × 148, respectively. From the point of view of pat-
tern recognition, the eigenstates can be quite distinct. For
example, quantum scarring states, the detection of which is
the aim of this work, are those whose probability distribu-
tion is concentrated about certain classical periodic orbits
and are rare. There are also quantum states with certain pat-
terns that do not correspond to any periodic orbits, such as
the boundary states. In fact, the majority of the eigenstates
do not have any recognizable patterns.

Quantum scarring states are relatively more pronounced
in the semiclassical limit n � 1. Numerically, for both
types of chaotic billiards, we find that the first scarring
states, which correspond to classical periodic orbits of
period two, emerge at n ≈ 200. As the period increases,
the corresponding scarring states occur in a more semiclas-
sical regime. For example, scarring states corresponding
to classical periodic orbits of period four or five begin to
arise for n ≈ 1000. Figure 1(a) presents, for the heart bil-
liard, the quantum states with n = 8480 and n = 8523 for
α = 0.5, where the n = 8480 eigenstate is localized about
a squarelike periodic orbit and belongs to a scarring state
of period four, while the n = 8523 eigenstate is approxi-
mately uniform in the billiard with no apparent pattern that
can be deemed a nonscarring state. A few distinct classes
of quantum scarring states are shown in Fig. 1(b).

It should be noted that, in a classical chaotic system, the
number of unstable periodic orbits increases exponentially

(a)

(c)

(b)

FIG. 1. CNN-based quantum scar detector. (a) Two specific
eigenstates (images) from the chaotic heart billiard as the input to
the CNN. The upper and lower left states correspond to a scarring
and nonscarring state, respectively. The CNN contains convo-
lutional layers and fully connected layers, and the output is an
N -dimensional vector whose elements represent the probabilities
for the input wave function to belong to the corresponding class.
(b) Six types of scarring states in a heart billiard, where the cor-
responding periods of the classical periodic orbits are denoted
by roman numerals. (c) The averages and variances of the out-
put probabilities from a small ensemble of ten neural network
realizations.

with the period at the rate of the topological entropy [65].
Within a finite and relatively large period, the number of
unstable periodic orbits can be quite large. However, quan-
tum scarring states corresponding to periodic orbits of even
moderately large periods tend to be unstable [66]. As a
result, the study of quantum scars has mostly been limited
to the quantum states that concentrate on classical periodic
orbits of low periods.

B. Meta learning

In the physical space (i.e., the billiard domain), the prob-
ability distribution of a quantum scarring state focusing
on a classical periodic orbit of a low period resembles
the image of a simple language character. To develop a
machine-learning-based quantum scar detector, we take
advantage of this resemblance by exploiting meta learning
[52], an image classification algorithm that has attracted a
great deal of interest recently. In the field of image clas-
sification, an often used and somewhat standard dataset
is Omniglot [46], which contains more than one thousand
handwritten characters taken from different languages. The
basic principle underlying our work is then that a machine
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learning algorithm that is able to distinguish the charac-
ters in Omniglot can be effectively transferred to detecting
quantum scars.

Our specific idea is as follows. Since it is practically
infeasible to have a training dataset that contains a large
number of quantum scarring states, the problem of iden-
tifying quantum scars is similar to the tasks that meta
learning algorithms are designed to solve, e.g., image clas-
sification for the Omniglot dataset [52]. A meta learning
algorithm aims to encode “previous experience” in a pre-
trained neural network such that it can quickly adapt to
new images. To encode the “previous experience,” train-
ing from a large dataset containing many different patterns
is necessary. We can thus use the images in Omniglot as the
“substituting” training set. Since there is a unique pattern
associated with each type of quantum scar, the problem
is essentially one of supervised learning. Utilizing certain
images from Omniglot as the training data, we can find
the images whose patterns correspond to a specific type of
quantum scars.

Our meta-learning-based training process consists of
three major components. The first component is image
processing, as described in Appendix A, where we add
noise to each image in the Omniglot dataset to generate
a set of images whose patterns resemble those of quan-
tum scars. We then perform image processing for some
quantum eigenstates from a chaotic billiard, after which
each eigenstate is represented by a matrix of dimension
100 × 100 with binary elements. The images so created are
used as inputs to the CNN.

The second component is to conduct training based
on the Omniglot dataset to determine the weights and
biases of the CNN. In particular, our CNN consists of four
convolutional and two fully connected layers. Each convo-
lutional layer creates a kernel that is convoluted with the
layer input to produce a tensor of outputs. The activation
function is chosen to be ReLU—the rectified linear unit.
After the convolution stage, we apply layer flattening and
change the tensor to a large vector. A linear transformation
takes this vector to the final output v, whose dimension is
equal to the total number of classes in the system. We use
the softmax function to normalize v:

pi = exp(vi)∑
i exp(vi)

(4)

where vi is the ith component of v and pi is the normal-
ized probability for the input that belongs to class i. The
loss function in the training process is taken to be the cross
entropy. The whole process can be implemented in PYTHON
with the open-source package Tensorflow [67].

Initially, the weights and biases are randomly chosen
from a normal distribution labeled θ(w, b). In the train-
ing process, we first use the modified, noise-contaminated
Omniglot dataset to find a pretrained neural network,

denoted θ0(w, b), which readily results in different image
classes. We use the Reptile algorithm to renew the weights
and biases in each step until some criterion is met [68] (see
Appendix B for the algorithmic details). To avoid over-
fitting for the Omniglot dataset, we monitor the test error
from each step, as detailed in Appendix D. The training
based on the Omniglot dataset is deemed complete when
the global minimum is reached.

The third component is training based on certain actual
quantum scarring states. In particular, after training with
Omniglot that yields a neural network θ0(w, b), we per-
form further training by using the few-shot classification
algorithm with a small number of actual images of quan-
tum scars as the training dataset (see Sec. II C below).
Since θ0(w, b) already has the ability to distinguish dif-
ferent classes of noisy images in the Omniglot dataset,
the neural network can quickly adapt to quantum scarring
states.

When all three components of the training process are
completed, the CNN is effectively a mapping from the
wave functions to the probability for each class of scars.
Figure 1(c) shows the prediction probability for the two
images in Fig. 1(a), where the average is taken from an
ensemble of ten neural network realizations (see Sec. III A
for details) with different combinations of quantum scars
as the training data. Since the particular scarring pattern
(n = 8480) corresponds to a period-four orbit, a high value
of the probability for class IV-1 is achieved. For the non-
scarring states (n = 8523), while there is a relatively large
probability to associate it with a period-five scarring state,
the variance is large, making the association highly uncer-
tain. The distinct statistical behaviors for scarring and
nonscarring states are an initial indication that our meta-
learning-based method has the ability to detect quantum
scars.

C. Few-shot classification

Physically significant quantum scarring states that have
been studied in the past are typically those corresponding
to classical periodic orbits of low periods and thus consist
of a few classes. From the point of view of image process-
ing, the number of classes to be classified is small and there
are only a few images available in each class. The few-
shot classification algorithm is designed to deal with such
problems [45–47]. Suppose that the target contains N dif-
ferent classes and that each class has at least K + 1 images
with K being a small integer. We randomly choose K + 1
images in each class, train the neural network using the first
K images, and then use the trained network to classify the
last image. For the Omniglot dataset, a 95% accuracy can
be achieved even for N = 5 and K = 1, and the accuracy
can reach 99% if K is increased to K = 5. In general, for
a fixed N value, increasing the value of K can improve the
accuracy. However, for a fixed K value, a larger value of
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N leads to a lower accuracy as more classes require more
images to train the network.

To test the power of few-shot classification in detecting
quantum scars, we take the heart billiard as an example,
where six distinct classes of scars are shown in Fig. 1(b).
We create an image dataset where each class contains ten
images taken from the eigenstates whose energy index n ∈
[1000, 15 000]. We obtain the pretrained neural network θ0
by using meta learning and conduct further training using
the actual quantum-scar images. To be concrete, we fix
N = 6 and vary K . For K = 1, we randomly choose two
images from each class, where the first and second images
are used for training and testing, respectively. The training
and testing datasets are thus extremely small. To obtain
the accuracy, we repeat this process (i.e., training θ0) 1000
times and calculate the ratio of the number of correctly
labeled images to the total number of test images in all the
trials. The average ratio and the corresponding variance are
obtained by using ten realizations of the neural network θ0.
Table I lists the accuracy versus the shot number K , where
a 90% accuracy is achieved even for K = 1. The some-
what lower accuracy than that of classifying the characters
in the Omniglot dataset is due to the “noisy” nature of the
images of quantum scars, where the scarring patterns are
not sharp but have local fluctuations. As the shot number
K increases, the scar-detection accuracy improves.

Another quantity characterizing the detection perfor-
mance is the confusion matrix whose diagonal and off-
diagonal elements are the probabilities of correct and
incorrect detection of different classes of quantum scars,
respectively. Figure 2 shows, for K = 1, the confusion
matrix for the six classes of quantum scars from the chaotic
heart billiard, where the roman letters indicate the periods
of the underlying classical periodic orbits and the arabic
numbers represent distinct configurations of the orbits. For
five out of the six classes (except type V-1), the detection
accuracy is close to 100%. The accuracy for type-V-I scars
is somewhat lower, where occasionally the machine learn-
ing algorithm would erroneously classify such a scar as
belonging to class II or III. From Fig. 1(b), it can be seen
that this error may be expected for two reasons: (1) the
relatively long period of the corresponding classical peri-
odic orbits leads to a relatively low concentration of the
spinor wave function around the orbits and (2) the type-
V-1 scars have approximately the same edges as those in
class II or III.

TABLE I. Few-shot classification accuracy of detecting rela-
tivistic quantum scars in the chaotic heart billiard.

Shot number Accuracy

K = 1 90.16% ± 1.41%
K = 2 95.30% ± 0.68%
K = 5 98.58% ± 0.32%
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FIG. 2. Confusion matrix associated with detection of quan-
tum scars in the chaotic heart billiard. The horizontal and vertical
axes are the labels of the real and detected classes, respectively.
The various probabilities are color coded as defined by the color
bar on the right, where the diagonal and off-diagonal elements
are the probabilities of correct and incorrect detection of different
classes of quantum scars, respectively. The detection accuracies
(the values of the diagonal elements) are generally close to 100%
except for the V-1 scars—see the text for an explanation.

III. RESULTS

We use two types of chaotic Dirac billiard systems to
demonstrate the feasibility and power of meta learning in
detecting and classifying relativistic quantum scars.

A. Chaotic heart billiard

In Sec. II C, we have described the idea of adapting the
method of few-shot classification to detect quantum scars
from a chaotic billiard. For a target set of six distinct scars
in the chaotic heart billiard, the one-shot accuracy is close
to 90%. Here we extend the method to finding desired
quantum scars from a large number of wave functions.

There can be a large variety of spatial distributions
of the eigenstates of a chaotic Dirac billiard. Visually,
most eigenstates have a random distribution and they do
not exhibit any discernible pattern. For those eigen-wave-
functions that do, they can be quantum scars associated
with periodic orbits of high periods or boundary states.
From the point of view of machine-learning-based detec-
tion of scars, such a dataset is unbalanced because the
number of nonscarring states is much larger than that of
the actual scarring states. In computer science, this prob-
lem associated with object detection is well known [69],
where the number of “real” objects in the training dataset
is extraordinarily small. An intuitive solution is to treat the
nonscarring states as a new class of objects when imple-
menting the few-shot classification algorithm, but there are
limitations due to the unbalanced nature of the dataset.

We develop an alternative approach to addressing this
issue of an unbalanced dataset. After the CNN is properly

064042-6



META-MACHINE-LEARNING-BASED QUANTUM SCAR. . . PHYS. REV. APPLIED 19, 064042 (2023)

trained, we input an additional quantum nonscarring pat-
tern to the neural network. Ideally, the prediction should
be robust, meaning that the normalized probability should
have a high concentration about this pattern. Since this
nonscarring image does not belong to any of the classes
that the neural network has learned from the training pro-
cess, when other eigenstates are inputted to the neural
network, the overall prediction probability will be lower.
Another feature that can be exploited, as can be seen from
Fig. 1(c), is that the variances of the output probabilities
with nonscarring states as the input are typically large.
Our general quantum-scar detector is built on these two
features.

For the chaotic heart billiard, the training data are the
eigen-wave-functions generated at α = 0, where two quan-
tum scars are chosen for each training class: one at low
energy (n ≈ 2000) and another at high energy (n ≈ 104).
We perform one-shot classification and train the neural net-
works. Since each class contains two images, there are 26

possible neural networks. The testing data consist of eigen-
wave-functions from α = 0.25 or α = 0.5. For a quantum
state n inputted to the ith neural network, the output is
denoted as pj , where j is the scar index. We multiply the
results from different neural networks to find the scarring
state that maximizes the product:

ξ(n) = max
j

(∏
i

p (i)j (n)
)

. (5)

As an illustrative example, we consider two quantum
states: n = 8480 (a scarring state) and n = 8523 (a non-
scarring state) for α = 0.5. The average and variance of
p for the distinct scar indices are shown in Fig. 1(c). We
use an ensemble of ten neural networks for the one-shot
(K = 1) scheme. For the scarring state n = 8480, the pre-
dicted p value concentrates on the corresponding type of
scar, where the product in Eq. (5) achieves maximum for
the IV-1 scar class with ξ(n = 8480) = 0.23. For the non-
scarring state, the p value does not concentrate at any scar
index and the variance from different neural networks is
large. We get ξ(n = 8523) = 4.3 × 10−5. There is then
a 4-order-of-magnitude difference in the ξ values for the
scarring and nonscarring states, rendering accurate and
reliable detection of the scarring state.

To detect the scarring states from all available quantum
states for α = 0.5, we use the ensemble of neural net-
works and sweep through the states. Figure 3(a) shows
ξ(n) versus n for n ∈ [4000, 4100], where a nearly 8-
order-of-magnitude difference in the ξ(n) values emerges
among the quantum states. Setting a threshold, e.g., at
5 × 10−3 (the horizontal dashed line), we deem those states
whose ξ(n) is above the threshold as quantum scars, as
verified by the corresponding distinct scarring patterns
above Fig. 3(a). Similar results have been obtained for
n ∈ [14 000, 14 100], as shown in Fig. 3(b). The results

(a)

(b)

FIG. 3. Emergence of a meta-learning-based quantum scar
detector. Shown is ξ(n) versus the eigenstate index n for the
chaotic heart billiard for α = 0.5. (a) The results are for n ∈
[4000, 4100] (a relatively low-energy interval), where the scar
types are distinguished by the different colored symbols and the
horizontal dashed line at 5 × 10−3 indicates the detection thresh-
old. The eigenstates with ξ(n) values above the threshold are
deemed to be quantum scars. Some representative scarring states
detected are displayed above the panel. The agreement between
the detected states and the ground truth is perfect. (b) Same as
(a) but for n ∈ [14 000, 14 100]—a higher-energy interval. The
empirical threshold is chosen so that approximately 5% of the
eigenstates belong to quantum scars.

in Fig. 3 thus indicate the viability of a meta-learning
quantum scar detector based on evaluating the values of
ξ(n).

To verify if the scarring states found are truly relativistic
quantum scars, we exploit a criterion from semiclassical
theory. In particular, the semiclassical theory for rela-
tivistic quantum billiard systems [13,14] predicts that the
recurrent interval in the wave vector must obey the rule


k =
{

2π(
n − 2Wα)/L, even bounces,
2π(
n − 2Wα +
β)/L, odd bounces,

(6)
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TABLE II. Statistics of quantum scars in the heart billiard
system detected by machine learning.

Scar index 
k k0 Number

II (α = 0.25) 1.4810 190.9758 271
II (α = 0.5) 1.4810 199.8387 303
III (α = 0.25) 1.1687 197.3900 61
III (α = 0.5) 1.1687 199.4852 51
IV-1 (α = 0.25) 1.0843 197.4324 26
IV-1 (α = 0.5) 1.0843 192.9035 40

where L is the length of the classical orbit associated with
the scarring state and W is the winding number. For the
scarring states corresponding to classical periodic orbits
with an odd number of bounces or reflections from the bil-
liard boundary, the quantity 
β takes on the value 1/2, so
the spacing in the wave vector for such scarring states to
occur is π/L.

Table II presents the statistics of different types of quan-
tum scarring states detected. The simulation setting is
as follows. The training datasets are the same as those
described in Sec. II C, which are associated with zero
magnetic flux α = 0. Ten neural networks are trained for
one-shot classification. The test datasets are associated
with α = 0.25 and α = 0.5 with states whose level index
ranges from n = 4000 to n = 15 000. The types of scarring
states in Table II are those corresponding to classical peri-
odic orbits II, III, and IV-1. The reference wave vector k0
is chosen from a scarring state with the maximum value
of ξ(n) for n ∈ [9000, 10 000]. For example, for orbits II,
there are approximately 300 scarring states. Out of the
11 000 available eigenstates in the chaotic heart billiard,
approximately 5% are quantum scars. To verify that the
machine-detected scarring states are true quantum scars,
we select a few energy intervals and visually identify the
scarring states. The percentage of scarring states identified
this way is consistent with that of the scarring states found
by machine learning.

A convenient semiclassical quantity to characterize the
recurrence of a quantum scarring state is the winding
number [13]

η = |kn − k0|
δk

−
[ |kn − k0|

δk

]
, (7)

where δk = 2π/L, [x] denotes the largest integer less than
or equal to x, and k0 is the wave vector of a reference
scarring state (usually of high energy). Figure 4 shows
the value of η for a large number of scarring states of
three types: type II, type III, and type IV-1, where type-
II scars are the most abundant. As shown in Figs. 4(a)
and 4(b) for α = 0.25 and α = 0.5, respectively, the wind-
ing numbers of type-II scars are either zero or one. For
this type of scar, because of the even bounce numbers of
the underling classical orbits off the billiard wall, it is not
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FIG. 4. Semiclassical characterization of the relativistic quan-
tum scarring states detected by the meta-learning algorithm.
Shown are the values of the semiclassical winding number η for
three types of scars, where the top, middle, and bottom rows cor-
respond to type-II, type-III, and type-IV-1 scars, respectively. A
magnetic flux is present: (a),(c),(e) α = 0.25 and (b),(d),(f) α =
0.5. A geometric-phase-based semiclassical theory [14] stipu-
lates that, for all types of scars, the values of η can be zero
or one, and η = 0.5 is not possible for type-II scars, but can
occur for type-III (type-IV-1) scars under magnetic flux α = 0.5
(α = 0.25). The various quantum scars detected by the machine
learning algorithm obey these rules remarkably well, signifying
high detection accuracy.

possible for the quantum states to have η = 1/2. For type-
III scars, the winding numbers are one for α = 0.25, as
shown in Fig. 4(c). However, because of their odd bounces
with the billiard wall, scarring states with η = 0.5 can
arise for α = 0.5, as shown in Fig. 4(d). For type-IV-1
scars, η = 0.5 occurs for magnetic flux value α = 0.25 but
not for α = 0.5, as shown in Figs. 4(e) and 4(f), respec-
tively. These features of the relativistic quantum scars have
been understood theoretically based on a detailed analy-
sis of the geometric phases [14]. It is remarkable that our
meta-learning-based algorithm can reliably detect the dif-
ferent types of scarring states with the correct semiclassical
characteristic features.
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A few remarks are in order. First, from Fig. 3, it can
be seen that most detected quantum scars are associated
with classical periodic orbits of low periods, due to the fact
that these scarring states are more pronounced than those
corresponding to periodic orbits of high periods. This is
consistent with the semiclassical theory of quantum scars
[5,6].

Second, we use an ensemble of neural networks to com-
bine the accuracy measures, where each is trained based
on meta learning with one-shot classification. The train-
ing thus requires more than one image per class. For two
images per class, we can generate 26 combinations, so the
training data are sufficient for scar detection. In simula-
tions, we find that choosing two scars with one at relatively
low energy and another at high energy can help diver-
sify the neural network outputs to increase the detection
accuracy.

Third, Fig. 3 demonstrates the working of the scar detec-
tor in the energy interval with the level index ranging from
4000 to 15 000. In a lower-energy interval, e.g., n ≈ 1000,
the degree of quantum scarring in terms of the wave-
function concentration is relatively weak. The difference
in the values of ξ(n) between scarring and nonscarring
states is especially small, making detecting scars difficult.
However, this is expected as quantum scars are more pro-
nounced in the relatively high-energy regime, the so-called
semiclassical regime where both quantum and classical
behaviors are relevant [5,6].

Fourth, an advantage of the neural-network-based scar
detector is that all types of scars can be detected based on
a single threshold, as exemplified in Fig. 3. A large thresh-
old means that a small number of states can be found with
high accuracy. Decreasing the threshold can lead to more
“scarring” states but the accuracy may be compromised. In
principle, we can still pick up only those states with the
highest ξ values as the scarring states.

B. The Africa billiard

The Africa billiard system has fully chaotic dynamics
in the classical limit and exhibits relatively more com-
plicated quantum scarring states than the chaotic heart
billiard. Figure 5(a) shows eight types of scars. We extend
the few-shot classification algorithm by setting N = 8 and
selecting 10 images for each class for α ∈ [0, 0.1] from
our quantum-scar dataset. By varying K and repeating the
process 1000 times, we obtain the average accuracy, as
listed in Table III. Because of the large number of scar-
ring states and the relatively more sophisticated geometric
shape of the Africa billiard (than the chaotic heart bil-
liard), the accuracy for one-shot classification is somewhat
lower: less than 80%. The accuracy can be improved by
increasing the number of images for training.

Figure 5(b) shows the confusion matrix under one-shot
classification, where the large diagonal values indicate

(a)

(b)

FIG. 5. Types of quantum scarring states in the chaotic Africa
billiard and confusion matrix of classification. (a) Eight different
types of scars in the Africa billiard and (b) the confusion matrix
between the true and predicted labels from one-shot classifica-
tion. The diagonal elements have large values, indicating high
overall accuracies of the predictions of the neural network. Some
off-diagonal elements are non-negligible, e.g., those between
type-II-2 and type-II-3 scars.

that most predictions are correct. Nonetheless, some off-
diagonal values are not negligible. For example, the
algorithm appears to be “easily confused” by type-II-2 and
type-II-3 scars, because the concentration patterns of their
spinor wave functions are similar, as shown in Fig. 5(a). In
fact, the different kinds of type-II scars all have a straight
line pattern and this leads to the confusion. We also note
that the accuracy for type-III-2 scars is the lowest, due to
their similarity to the type-V scars.

We build a scar detector based on two-shot classifica-
tion, due to its reasonable accuracy, as shown in Table III.
The number of images per class in the training set is
set to be three and the scarring states used for train-
ing are associated with the magnetic flux in the interval
α ∈ [0, 0.1]. Figure 6 shows ξ(n) for n ∈ [6100, 6200] and
α = 0.25. We set the threshold to be 2 × 10−3 and those

TABLE III. Few-shot classification accuracy for scarring states
in the chaotic Africa billiard.

Shot number Accuracy

K = 1 78.14% ± 1.64%
K = 2 85.44% ± 1.15%
K = 5 93.00% ± 0.96%
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(a)

(b)

FIG. 6. Machine-learning detection of quantum scars in the
chaotic Africa billiard. Shown is ξ versus the mode index for α =
0.25 for (a) n ∈ [6100, 6200] and (b) n ∈ [8400, 8500], where the
horizontal dashed line indicates the detection threshold 2 × 10−3.
Points above the threshold correspond to the detected scarring
states with some representatives shown above the panel.

quantum states whose ξ values are larger than the thresh-
old are deemed scarring states. The detection results for
n ∈ [8400, 8500] are shown in Fig. 6(b). As in the case of
the chaotic heart billiard, most detected quantum scars cor-
respond to classical periodic orbits of low periods. We then
calculate the η values for each type of scar from Eq. (7),
where k0 is chosen to be associated with the eigenstate with
the largest ξ(n) value for n ∈ [9000, 10 000]. The results
for some representative scars detected from the energy-
level range n ∈ [4000, 10 000] are shown in Fig. 7 with
their basic properties listed in Table IV. For all scars dis-
played (for α = 0.25), the η values are either zero or one,
except for the type-IV-2 scars where η = 1/2 can occur,
which agrees well with the semiclassical prediction [14].

IV. DISCUSSION

In spite of the fundamental importance of the phe-
nomenon of quantum scarring, identifying such states
from a large number of eigenstates has been a laborious
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FIG. 7. Semiclassical quantification of the machine-learning-
detected relativistic quantum scars in the chaotic Africa billiard.
Shown is the semiclassical winding number η for scars of types
(a) II-2, (b) II-3, (c) III-1, and (d) IV-2. Because of the presence
of a magnetic flux, only IV-2 scars can have η = 0.5. The statis-
tical behaviors of the detected quantum scars agree well with the
semiclassical predictions.

task since the beginning of the field of quantum chaos,
relying mostly on going through all the available wave-
function patterns one after another and performing a visual
check of each pattern. This task has been well known to
practitioners of quantum chaos. To develop a fully auto-
mated method to accurately detect quantum scars is thus
highly desired, as it will enable a more systematic and
comprehensive study of the exotic quantum states. This
paper accomplishes this goal by developing a machine-
learning-based quantum-scar detector. While it may seem
straightforward to adopt some conventional deep neural
networks for image recognition to the problem of quantum
scar detection, a significant challenge lies in the require-
ment of extensive training data, as quantum scattering
states are rare. We meet this challenge by articulating a
meta-learning approach based on few-shot classification of

TABLE IV. Characteristics of representative relativistic quan-
tum scars in the Africa billiard.

Scar index 
k k0 Collected number

II-2 1.6558 198.1712 41
II-3 1.6427 195.5084 89
III-1 1.2313 191.8086 59
IV-2 1.0699 191.5694 25
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quantum scarring states, which allows the neural machine
to learn the hidden structure of each class and quickly adapt
to the new class even with quite a small number of images
of the scarring states. We test this approach using two
paradigmatic relativistic quantum billiard systems sub-
ject to a magnetic flux, which exhibit fully developed
chaos in the classical limit. Using a previously developed
conformal-mapping method [13,14] to calculate a large
number of quantum states in each system, we demon-
strate the power of our meta-learning method for accurate
detection of quantum scars.

Our fully automated quantum-scar detection framework
consists of two major steps. The first step is to use neural
networks to classify quantum scars. In particular, we apply
few-shot meta learning by designating a number of images
per class in the training dataset, e.g., a few different classes
of quantum scarring states in a chaotic Dirac billiard. For
one-shot classification, the achieved accuracy can already
be about 80%, which can be improved by increasing the
number of shots. The overall classification accuracy can be
characterized by the confusion matrix. In general, the accu-
racies for quantum scars associated with classical periodic
orbits of short periods are higher than those with longer
periods. The next step is to exploit the few-shot classifica-
tion algorithm to detect quantum scars by monitoring the
predicted probability difference between scarring and non-
scarring states. For quantum scars, due to the high few-shot
classification accuracy, the probability distributions are
well localized and large with small variances, but the oppo-
site occur for nonscarring states. Utilizing an ensemble of
neural networks allows us to define a statistical measure,
whereas a quantum eigenstate can be faithfully deemed
as a scarring state if this measure exceeds a well-defined
threshold. Utilizing a quantity derived from the semiclassi-
cal theory, we demonstrate that the quantum scars detected
are the correct scarring states. Our meta-learning-based
quantum-scar detector is thus accurate, efficient, and fully
automated.

We discuss a few pertinent issues. First, to build a gen-
eral machine-learning-based quantum-scar detector, it is
necessary to choose some representative quantum scars
as the training dataset. The training accuracy can depend
on the specific scarring states, e.g., whether they are from
the same or different energy regimes. For example, for
the chaotic heart billiard system, two scars per class are
needed for training. We find that, if one scar is chosen from
the low-energy regime and another from the high-energy
regime, a high accuracy can be achieved. The intuitive
reason is that quantum scarring states from drastically dif-
ferent energy regimes tend to be maximally distinct in their
patterns, thereby enhancing the learning capability of the
neural network.

The second issue concerns the number of images per
class required for the few-shot classification algorithm.
Accuracy can be improved by increasing the number

of such images, but the training dataset also becomes
larger, thereby increasing the computational complexity.
Our empirical experience is that the number of images
should be chosen such that the classification accuracy is
about 90%. For example, for the chaotic heart billiard with
six classes of quantum scars, using one image per class
in the training dataset suffices. For the chaotic African
billiard, two-shot classification is needed to achieve the
desired accuracy. For an ensemble of neural networks, var-
ious combinations of the training data are needed. As a
result, the number of images per class should be at least
one more than the shot number.

The third issue concerns the nonscarring states. An alter-
native idea is to treat them as another class of “scars.”
However, nonscarring quantum states tend to be uniform
and do not typically possess any unique feature. Treat-
ing them as a class of scarring states can lead to large
classification errors.

The fourth issue concerns overfitting in the meta-
learning algorithm. In our work, the neural networks are
trained based on the Omniglot dataset and transferred
to quantum scars. If a neural network performs well in
the Omniglot dataset, when executing transfer learning to
quantum scarring states, overfitting can arise, reducing the
classification accuracy. Our empirical method is to moni-
tor the test error to ensure that it does not exceed a certain
(small) threshold.

The fifth issue concerns the necessity of using machine
learning for automated detection of quantum scars. Can
some filtering techniques be used, e.g., based on count-
ing the probability value of the quantum wave function
along a classical periodic orbit? This is in general infea-
sible because, from an image processing point of view,
quantum scars are extremely noisy. Moreover, setting
a proper region to estimate the probabilities requires a
threshold, which can be difficult as the degree of localiza-
tion of the scarring wave function depends on the energy.
Even worse, the wave function associated with a quan-
tum scarring state may not follow a classical periodic orbit
exactly. To our knowledge, exploiting machine learning
for quantum-scar detection represents the best strategy at
present.

We note that, in Refs. [70,71], the Weyl entropy and
Husimi Q value were used to detect quantum scars for
a one-dimensional system, where a characterizing quan-
tity was defined based on wave-function localization and
a large value indicates a scar. It is difficult to generalize
this method to two dimensions for the following reasons.
First, for a chaotic cavity, the eigenstates can be found only
by numerical means, making it difficult to compute the
density matrix. Second, the computation complexity asso-
ciated with discretizing 104 eigenstates in two dimensions
can be formidable. Third, localization in two dimensions
can have a linear structure, making it difficult to detect
scars using a pointwise measure.
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Quantum scars can also arise in open systems. For
example, in the microlasing system, there can be quasi-
bound states that are strongly localized around classical
unstable periodic orbits [55,56]. Such states have strong
chaos-assisted directional emission. To extend our method
to open quantum systems, two modifications are necessary.
First, the features should be maximized because, in open
quantum systems, the wave function inside the cavity is
stronger than that outside. Second, the data distribution
between the revised Omniglot dataset and quantum scars
should be the same. A possible method is to generate a
binary representation of the wave function by setting an
appropriate threshold to ensure that the revised Omniglot
dataset and quantum scars have the same number of ones.

Taken together, in the field of quantum chaos, finding
quantum scars usually relies on human visualization. To
develop a machine learning framework typically requires
extensive training data, but quantum scarring states are
rare, posing a significant challenge. Taking advantage
of meta learning, a special class of machine learning
for image recognition and classification, we develop a
fully automated quantum-scar detector and demonstrate its
working with a remarkably small number of scar images
for training. Our detection algorithm requires no fine tun-
ing of the parameters of the neural networks and is effec-
tive in a broad energy range that contains many thousands
of eigenstates. The framework developed in this paper can
be readily generalized and extended to solving difficult
image processing problems in other disciplines of science
and engineering.

The data and code associated with this work are avail-
able online [72].
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APPENDIX A: DATA PROCESSING

We use the Omniglot dataset to obtain the basic neu-
ral network before training with quantum scars, which
contains more than one thousand handwritten characters
from different languages [46]. While some quantum scars
resemble certain characters, their details can be quite dif-
ferent. The left panel in Fig. 8(a) shows the Greek character
α in the Omniglot dataset, which has a well-defined struc-
ture in that each stroke has a similar width. The left panel
of Fig. 8(b) shows a period-four quantum scar, which dif-
fers significantly from the α character and is noisy. To
use the Omniglot dataset to train the neural networks for
detecting quantum scars, image preprocessing is necessary
to reduce the difference in details.

An image is represented by a matrix defined on a grid
of pixels, so a white pixel can be defined as zero and
a black pixel is represented by one. Our data processing

(b)(a)

Pretrained 

CNN   

(c)

(d)

…

…

FIG. 8. Schematic illustration of image processing. (a) Left:
a representative image in the Omniglot dataset with the Greek
character α of size 105 × 105 pixels. Right: the image after the
transform. (b) Left: a quantum scar image of size 202 × 234 from
the chaotic heart billiard. Right: the image after data processing
and resizing. With image processing, the detailed patterns of the
Omniglot and quantum-scar images become similar. (c),(d) Two
steps of the meta-learning algorithm, respectively. The first step
(c) is to start from a neural network with random weights and
biases θ to find the optimal network denoted as θ0 that quickly
adapts to randomly selected classes in the Omniglot dataset.
The second step (d) is to perform training with quantum scars.
Because of the similarity between the processed Omniglot char-
acter and quantum-scar images, adaptation of the neural network
θ0 to quantum scars can be achieved with only a small number of
images.

for each image in the Omniglot dataset consists of the
following steps: (i) converting an image to a matrix of
dimension 108 × 108, (ii) adding a uniform noise between
0 to 1 for each element, (iii) smoothing the image with
low-frequency filtering, (iv) setting the maximum 4% of
points in the matrix as black and other points as white, and
(v) using the PIL package in PYTHON to resize the image
to 100 × 100. For low-pass filtering, we use fast Fourier
transform (FFT) to transform the matrix into a coefficient
vector, one component for each frequency, set the coeffi-
cients for the top 10% of the frequency range to zero, then
perform the inverse FFT. To process the quantum scarring
images, we first calculate the density ψ = ψ2

1 + ψ2
2 of the

spinor wave function, assuming that the wave function out-
side the cavity is zero. We then set the points with the top
4% density values to be one (black) and the other points to
zero (white), and use the PIL package in PYTHON to resize
the image to 100 × 100. The right panels in Figs. 8(a)
and 8(b) show the images after processing for the α charac-
ter and the period-four quantum scars, respectively. It can
be seen that the processing has resulted in similar patterns
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for the Omniglot character and quantum scar. A heuris-
tic reason for this similarity is that the neural network
trained with the Omniglot dataset performs classification
by extracting line segments as features. With image pro-
cessing, both the Omniglot characters and quantum scars
contain line segments as features.

APPENDIX B: META-LEARNING ALGORITHM

There are two categories of meta-learning algorithms:
metric [47] and optimization [52,68] based. We adopt the
optimization-based approach, where θ denotes the train-
ing parameter set in the convolutional neural network. We
aim to find a pretrained neural network, denoted θ0, such
that the loss is minimized after operation Uk

τ (θ)—k steps of
gradient descent based on task τ . Let S be the cross-entropy
loss. The goal can then be formulated as minθ S[Uk

τ (θ)] for
all τ .

Different methods are available to solve the optimization
problem. One is model-agnostic meta learning (MAML)
[52], which can give higher accuracy. The method requires
computing the gradient for the iterative equation Uk(θ),
which is time consuming when k > 1. An approximate
method is Reptile [68]. For the Omniglot and Mini-
imagenet datasets, Reptile is computationally efficient, but
the accuracy is slightly compromised in comparison with
that of MAML.

Figures 8(c) and 8(d) respectively illustrate the two
basic steps involved in our meta-learning procedure. Start-
ing from a neural network with randomly generated
weights and biases, denoted θ , we use the images from the
Omniglot dataset to train the network to find an optimal
network, denoted θ0, as shown in Fig. 8(c). In the sec-
ond step [Fig. 8(d)], we start from θ0 and perform training
with quantum scars. Since the Omniglot dataset is large,
θ0, which has been trained to adapt to any image class in
the dataset, can quickly adapt to quantum scars.

The Reptile method is illustrated in Algorithm 1 below.
Initially, all the weights and biases are randomly chosen. A
loop is employed to update θ until the desired neural net-
work θ0 is found. In each epoch, the network θ is updated
as follows. The first step is to randomly generate N classes
from the processed Omniglot dataset, where each class
contains K images, so the labeled dataset has NK images.

Algorithm 1. Reptile—batched version.

The second step is to generate five tasks, each containing
ten images that are randomly chosen and can be repeated.
The third step is to perform stochastic gradient descent
(SGD) and Adam for each task. Let Uk(θ) denote the
stochastic gradient updating for k steps on cross-entropy
loss with the initial parameter set θ , which returns the
final parameter set. During this training process, we set
k = 5. The fourth step is to update θ based on the aver-
age. The learning rate β decays linearly with the number
of epochs, e.g., β = 10−3 for the first epoch and β = 0 for
the last epoch. After each epoch, θ is saved and SGD is per-
formed for quantum-scar images. The testing accuracy can
then be calculated. The cutoff point can be found based on
hyperparameter optimization as described in Appendix D.

APPENDIX C: NEURAL NETWORK
ARCHITECTURE

The convolutional neural network used in our study is
illustrated in Fig. 9, which contains four convolutional lay-
ers. Each layer is followed by batch normalization (BN)
to avoid overfitting [73]. We use ReLU as the nonlinear
activation function, which is applied after the batch nor-
malization. Each convolutional layer contains 64 kernels
of size 3 × 3. When applying convolutional kernels, we
use stride 2 and zero padding. The whole neural network
contains approximately 105 training parameters.

APPENDIX D: HYPERPARAMETER
OPTIMIZATION

Since the neural network with the parameter set θ is
optimized with the processed Omniglot dataset, too many
training steps can lead to overfitting for the Omniglot
dataset and reduce the training accuracy for quantum scars.
Our solution is to monitor the test error at each epoch.
Specifically, for each epoch, we save θ , perform a few-
shot classification for quantum scars, and calculate the
classification error. The error can have large fluctuations
due to the small quantum-scar testing set, so we take the
average over 200 steps. Figures 10(a) and 10(b) show the
classification error versus the number of epochs for the
quantum scars in the chaotic heart and African billiards,
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FIG. 9. Detailed structure of the CNN used in our study. The
CNN contains four convolutional layers, each layer having a 3 ×
3 convolutional kernel with stride equal to 2 and zero padding,
followed by ReLU and batch normalization.
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FIG. 10. Few-shot classification errors versus the number of
training epochs. The error is the average from a moving win-
dow of 200 epochs. (a),(b) The results for the quantum scars
from the chaotic heart and Africa billiards, respectively. The cut-
off point is determined by the empirical criterion that the testing
error reaches the minimum. Further updating the neural network
can lead to overfitting.

respectively. For quantum scars from the heart billiard, the
number of classes is 6, the total number of iterations is
104, and the error reaches a minimum for about 2000 steps
for all K values. The cutoff point is then set to be 2000.
For quantum scars from the Africa billiard, the number
of classes is 8, the total number of iterations is 2 × 104,
and the cutoff points for K = 1, 2, and 5 are 104, 5000,
and 2000, respectively. When performing the hyperparam-
eter optimization, the number of available quantum scars
is also limited. In our computations, the number of images
per class in the quantum scar dataset is fixed to be K + 1
to achieve data consistency.

APPENDIX E: META LEARNING VERSUS
TRANSFER LEARNING

The dataset of quantum scarring images typically con-
tains a small number of classes, which is the main reason
that we choose to exploit meta learning. In machine learn-
ing, transfer learning has also been widely used. It is
important to differentiate the two types of learning.

Indeed, meta learning and transfer learning share some
common features: both requiring a two-step learning
process and the trained neural network can then be applied
to different datasets. However, there are significant differ-
ences between the two methods, which can be understood
in a concrete manner by examining the classic problem of
image classification.

In transfer learning, the procedure is to train a convo-
lutional neural network on the first dataset to determine
the neural network with the maximal validation or testing
accuracy. The neural network is then fine-tuned using the
target dataset. Note that, even without the target dataset for
training, the neural network has already been well trained
using the first dataset and has “learned” the rules to extract
features. When a different dataset is presented to the neu-
ral network, it uses the already learned rules to classify
the images. Typically, the datasets in transfer learning are
required to be similar in terms of their sizes and the number
of classes contained therein.

In meta learning, the task is to classify images in a
dataset that has a small number of classes. Training a
neural network using such a dataset typically leads to over-
fitting. The solution is to first identify a pretrained neural
network according to the criterion that it has the “potential”
to be further trained for classifying the images in the target
dataset. The chosen network is then trained on the target
image dataset. The key difference from transfer learning is
that, in meta learning, without the second training step, the
pretrained neural network is unable to classify the images
in the target dataset, but it can be trained to do so. There is
then greater flexibility for the neural network to be applied
to datasets of different characteristics.

In our meta-learning framework for detecting and clas-
sifying quantum scars, we find it necessary to apply
data augmentation by creating a “noisy” version of the
Omniglot dataset because, from an imaging point of view,
the quantum scarring images are intrinsically noisy.
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lidis, Z. Papić, M. Serbyn, M. D. Lukin, and D. A. Abanin,
Emergent SU(2) Dynamics and Perfect Quantum Many-
Body Scars, Phys. Rev. Lett. 122, 220603 (2019).

[32] C.-J. Lin, V. Calvera, and T. H. Hsieh, Quantum many-body
scar states in two-dimensional Rydberg atom arrays, Phys.
Rev. B 101, 220304 (2020).

[33] S. Dooley, Robust Quantum Sensing in Strongly Interacting
Systems with Many-Body Scars, PRX Quantum 2, 020330
(2021).

[34] P.-F. Zhang, H. Dong, Y. Gao, L.-T. Zhao, J. Hao, J. Y.
Desaules, Q.-J. Guo, J.-C. Chen, J.-F. Deng, B.-B. Liu,
et al., Many-body Hilbert space scarring on a superconduct-
ing processor, Nat. Phys. 19, 120 (2023).

[35] Y. LeCun, Y. Bengio, and G. E. Hinton, Deep learning,
Nature 521, 436 (2015).

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet
classification with deep convolutional neural networks,
Adv. Neu. Info. Proc. Sys. 25, 1097 (2012).

[37] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld,
N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine
learning and the physical sciences, Rev. Mod. Phys. 91,
045002 (2019).

[38] P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson,
Jet substructure classification in high-energy physics with
deep neural networks, Phys. Rev. D 93, 094034 (2016).

[39] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A.
Schwartzman, Jet-images - deep learning edition, J. High
Energy Phys. 2016, 69 (2016).

[40] A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M.
Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, and
P. Vahle, A convolutional neural network neutrino event
classifier, J. Instrum. 11, 09001 (2016).

[41] F. Lanusse, Q. Ma, N. Li, T. E. Collett, C.-L. Li, S. Ravan-
bakhsh, R. Mandelbaum, and B. Póczos, CMU DeepLens:
Deep learning for automatic image-based galaxy–galaxy
strong lens finding, Mon. Not. R. Astrom. Soc. 473, 3895
(2018).

[42] Y. Zhang, A. Mesaros, K. Fujita, S. Edkins, M. Hamid-
ian, K. Ch’ng, H. Eisaki, S. Uchida, J. S. Davis, and E.
Khatami, et al., Machine learning in electronic-quantum-
matter imaging experiments, Nature 570, 484 (2019).

[43] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

064042-15

https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04233
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevLett.103.054101
https://doi.org/10.1063/1.5026904
https://doi.org/10.1016/j.physrep.2018.06.006
https://doi.org/10.1103/PhysRevLett.110.064102
https://doi.org/10.1088/1367-2630/aa50bf
https://doi.org/10.1103/PhysRevResearch.1.033008
https://doi.org/10.1103/PhysRevE.101.062201
https://doi.org/10.1103/PhysRevLett.79.123
https://doi.org/10.1103/PhysRevLett.90.010403
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/PhysRevLett.93.026803
https://doi.org/10.1103/PhysRevLett.101.024102
https://doi.org/10.1088/1742-6596/220/1/012015
https://doi.org/10.1038/srep01729
https://doi.org/10.1038/385045a0
https://doi.org/10.1103/PhysRevLett.104.163902
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/PhysRevLett.108.243902
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevLett.122.220603
https://doi.org/10.1103/PhysRevB.101.220304
https://doi.org/10.1103/PRXQuantum.2.020330
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3065386
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/PhysRevD.93.094034
https://doi.org/10.1007/JHEP07(2016)069
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1093/mnras/stx1665
https://doi.org/10.1038/s41586-019-1319-8
https://doi.org/10.1126/science.aag2302


HAN, WANG, and LAI PHYS. REV. APPLIED 19, 064042 (2023)

[44] Y. A. Kharkov, V. E. Sotskov, A. A. Karazeev, E. O. Kik-
tenko, and A. K. Fedorov, Revealing quantum chaos with
machine learning, Phys. Rev. B 101, 064406 (2020).

[45] L. Fei-Fei, R. Fergus, and P. Perona, One-shot learning of
object categories, IEEE Trans. Pat. Ana. Mach. Intel. 28,
594 (2006).

[46] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum,
Human-level concept learning through probabilistic pro-
gram induction, Science 350, 1332 (2015).

[47] O. Vinyals, C. Blundell, T. Lillicrap, and D. Wierstra, et al.,
Matching networks for one shot learning, Adv. Neural Inf.
Process. Syst. 29, 3630 (2016).

[48] Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio, Learning to
remember rare events, ArXiv:1703.03129 (2017).

[49] Y.-X. Wang, D. Ramanan, and M. Hebert, in Proceedings
of the IEEE/CVF International Conference on Computer
Vision (2019), p. 9925.

[50] D. Huber, O. V. Marchukov, H.-W. Hammer, and A. G.
Volosniev, Morphology of three-body quantum states from
machine learning, New J. Phys. 23, 065009 (2021).

[51] J. Keski-Rahkonen, A. Ruhanen, E. J. Heller, and E.
Räsänen, Quantum Lissajous Scars, Phys. Rev. Lett. 123,
214101 (2019).

[52] C. Finn, P. Abbeel, and S. Levine, in International Confer-
ence on Machine Learning (PMLR, 2017), p. 1126.

[53] J. P. Zwolak, T. McJunkin, S. S. Kalantre, J. Dodson, E.
MacQuarrie, D. Savage, M. Lagally, S. Coppersmith, M.
A. Eriksson, and J. M. Taylor, Autotuning of Double-Dot
Devices In Situ with Machine Learning, Phys. Rev. Appl.
13, 034075 (2020).

[54] G. Ness, A. Vainbaum, C. Shkedrov, Y. Florshaim, and
Y. Sagi, Single-Exposure Absorption Imaging of Ultracold
Atoms Using Deep Learning, Phys. Rev. Appl. 14, 014011
(2020).

[55] S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T.
Sasaki, and E. E. Narimanov, Chaos-Assisted Directional
Light Emission from Microcavity Lasers, Phys. Rev. Lett.
104, 163902 (2010).

[56] H. Cao and J. Wiersig, Dielectric microcavities: Model sys-
tems for wave chaos and non-Hermitian physics, Rev. Mod.
Phys. 87, 61 (2015).

[57] A. P. S. de Moura, Y.-C. Lai, R. Akis, J. P. Bird, and D. K.
Ferry, Tunneling and Nonhyperbolicity in Quantum Dots,
Phys. Rev. Lett. 88, 236804 (2002).

[58] F. Li, Y. Wu, P. Chen, L. Feng, Z. Wang, Y. Ren,
and Y. Wang, High-quality wave-chaotic microlasers from
deformed halide perovskite cavities, ACS Photon. 9, 2431
(2022).

[59] M. V. Berry, in A Half-Century of Physical Asymptotics and
Other Diversions: Selected Works by Michael Berry (World
Scientific, 1987), p. 307.

[60] M. C. Gutzwiller, Chaos in Classical and Quantum
Mechanics Vol. 1 (Springer, New York, 2013).

[61] M. V. Berry and M. Wilkinson, Diabolical points in the
spectra of triangles, Proc. R. Soc. A 392, 15 (1984).

[62] M. V. Berry and R. Mondragon, Neutrino billiards: Time-
reversal symmetry-breaking without magnetic fields, Proc.
R. Soc. A 412, 53 (1987).

[63] M. Robnik, Quantising a generic family of billiards with
analytic boundaries, J. Phys. A 17, 1049 (1984).

[64] M. V. Berry and M. Robnik, Statistics of energy levels
without time-reversal symmetry: Aharonov-Bohm chaotic
billiards, J. Phys. A 19, 649 (1986).

[65] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, UK, 2002), 2nd ed.

[66] T. M. Antonsen, E. Ott, Q. Chen, and R. N. Oerter, Statistics
of wave-function scars, Phys. Rev. E 51, 111 (1995).

[67] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, and M.
Isard, et al., in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16) (2016),
p. 265.

[68] A. Nichol, J. Achiam, and J. Schulman, On first-order meta-
learning algorithms, ArXiv:1803.02999 (2018).

[69] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár,
in Proceedings of the IEEE International Conference on
Computer Vision (2017), p. 2980.

[70] D. Villaseñor, S. Pilatowsky-Cameo, M. A. Bastarrachea-
Magnani, S. Lerma-Hernández, and J. G. Hirsch, Quantum
localization measures in phase space, ArXiv:2103.07480
(2021).

[71] S. Pilatowsky-Cameo, D. Villaseñor, M. A. Bastarrachea-
Magnani, S. Lerma-Hernández, L. F. Santos, and J. G.
Hirsch, Identification of quantum scars via phase-space
localization measures, Quantum 6, 644 (2022).

[72] https://github.com/hanchendi/ML_quantum_scar.
[73] S. Ioffe and C. Szegedy, in International Conference on

Machine Learning (PMLR, 2015), p. 448.

064042-16

https://doi.org/10.1103/PhysRevB.101.064406
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1126/science.aab3050
https://arxiv.org/abs/1703.03129
https://doi.org/10.1088/1367-2630/ac0576
https://doi.org/10.1103/PhysRevLett.123.214101
https://doi.org/10.1103/PhysRevApplied.13.034075
https://doi.org/10.1103/PhysRevApplied.14.014011
https://doi.org/10.1103/PhysRevLett.104.163902
https://doi.org/10.1103/RevModPhys.87.61
https://doi.org/10.1103/PhysRevLett.88.236804
https://doi.org/10.1021/acsphotonics.2c00537
https://doi.org/10.1088/0305-4470/17/5/027
https://doi.org/10.1088/0305-4470/19/5/019
https://doi.org/10.1103/PhysRevE.51.111
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/2103.07480
https://doi.org/10.22331/q-2022-02-08-644
https://github.com/hanchendi/ML_quantum_scar

	I. INTRODUCTION
	II. METHODS: RELATIVISTIC QUANTUM SCARS AND MACHINE LEARNING ALGORITHMS
	A. Relativistic quantum scarring in chaotic billiard systems
	B. Meta learning
	C. Few-shot classification

	III. RESULTS
	A. Chaotic heart billiard
	B. The Africa billiard

	IV. DISCUSSION
	ACKNOWLEDGMENTS
	A. APPENDIX A: DATA PROCESSING
	B. APPENDIX B: META-LEARNING ALGORITHM
	C. APPENDIX C: NEURAL NETWORK ARCHITECTURE
	D. APPENDIX D: HYPERPARAMETER OPTIMIZATION
	E. APPENDIX E: META LEARNING VERSUS TRANSFER LEARNING
	. References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


