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Twin-field quantum key distribution (TFQKD) enables two distant parties to establish a shared secret
key, by interfering weak coherent pulses (WCPs) in an intermediate measuring station. This allows
TFQKD to reach greater distances than traditional QKD schemes and makes it the only scheme capa-
ble of beating the repeaterless bound on the bipartite private capacity. Here, we generalize TFQKD to the
multipartite scenario. Specifically, we propose a practical conference key agreement protocol that only
uses WCPs and linear optics and prove its security with a multiparty decoy-state method. Our protocol
allows an arbitrary number of parties to establish a secret conference key by single-photon interference,
enabling it to overcome recent bounds on the rate at which conference keys can be established in quantum
networks without a repeater.
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I. INTRODUCTION

Quantum key distribution (QKD) allows two parties to
take advantage of quantum mechanical properties to share
a common secret key with information-theoretic security.
In the past decades, QKD developed at an increasingly
high pace and today represents one of the most mature
applications of quantum information science, both in terms
of theoretical development and experimental implemen-
tation [1,2]. More recently, in view of building quantum
communication networks, a lot of effort has been put into
generalizing QKD to the multipartite scenario with con-
ference key agreement (CKA) [3–9], which has already
seen the first experimental implementations [10,11]. CKA
exploits the correlations offered by multipartite entangle-
ment to deliver the same conference key to a set of parties
and it has recently been extended to guarantee anonymity
of the communicating parties in a larger network [12–14].

However, CKA protocols are faced with the difficulty
of establishing multipartite entanglement over large dis-
tances, limiting their applicability in real-world scenarios.
In particular, most of the protocols proposed so far exploit
Greenberger-Horne-Zeilinger (GHZ) correlations, which
are known to be difficult to distribute at large distances
[3–8].

In the bipartite case, a variant of QKD, named twin-
field QKD (TFQKD) [15–19], enables two parties to share
keys at much longer distances than most other QKD pro-
tocols. The founding idea of TFQKD [17–19] consists in
a measurement-device independent (MDI) scheme where
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a single photon sent by either of the parties interferes in
an intermediate untrusted relay, thus halving the commu-
nication distance. This enables TFQKD to beat the well-
known repeaterless Pirandola-Laurenza-Ottaviani-Banchi
(PLOB) bound on the secret key capacity [20] (see also
Refs. [21,22] for other preliminary bounds), as demon-
strated by several experiments [23–33].

In an effort to extend the range of CKA, Ref. [34] intro-
duces a CKA protocol based on single-photon interference
that is inspired by the TFQKD setup. This protocol, how-
ever, is highly unpractical as it requires each party to
entangle solid-state qubits with the optical signals sent to
the relay. Moreover, each party must store their qubit until
the relay announces the interference outcome and then
measure the qubit accordingly.

Alternatively, more practical generalizations of TFQKD
were devised in Refs. [8,35–37], where the parties are
only required to send weak coherent pulses or interfere
the pulses with linear optics. However, the protocols in
Refs. [35–37] are not MDI and, what is more, are lim-
ited to tripartite configurations and cannot be scaled to an
arbitrary number of parties.

In this work, we introduce an MDI CKA protocol that
does not present such drawbacks. Our protocol can be real-
ized using only weak coherent pulses interfered with linear
optics at an untrusted relay and allows an arbitrary num-
ber of parties to establish a conference key. In particular,
our protocol postselects correlations belonging to W-class
states [38] through single-photon interference, indepen-
dently of the number of parties. This enables our CKA
protocol to operate at much higher losses than previous
CKA schemes, which require either the simultaneous
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distribution of photonic multipartite entangled states [3–
5,10,11] or the postselection of GHZ-type correlations
[6–8].

We prove the security of our protocol against collec-
tive attacks in the asymptotic regime by developing a
multiparty decoy-state analysis [39–41], through which
we derive analytical upper bounds on multipartite yields.
We simulate the performance of our protocol with a real-
istic channel model that accounts for photon loss, dark
counts in the detectors as well as phase and polarization
misalignment.

Furthermore, we benchmark the protocol’s conference
key rate with recent upper bounds that apply to arbitrary
quantum networks, namely the single-message multicast
bound derived in Ref. [42], adopting a similar approach
used to benchmark bipartite TFQKD setups. In partic-
ular, we consider network architectures where the relay
is removed and compute their single-message multicast
bounds. Our simulations show that our CKA protocol can
overcome such bounds for certain noise regimes and num-
ber of parties, thus paving the way for long-distance CKA
in quantum networks.

The paper is structured as follows. In Sec. II we describe
our CKA protocol and in Sec. III we prove its security.
In Sec. IV we detail our multipartite decoy-state method.
We simulate the protocol’s performance in Sec. V and con-
clude in Sec. VI. Appendix A describes the optical setup in
the untrusted relay. In Appendix B we draw the connection
between our protocol and the correlations of W states. The
analytical upper bounds on multipartite yields are derived
in Appendix C. Appendix D contains details on the channel
model and related calculations, while Appendix E provides
details on the numerical simulations.

II. PROTOCOL

In this section we present our CKA protocol based on
single-photon interference, which is schematically repre-
sented in Fig. 1. We limit the description to the asymptotic
regime, where the effects due to finite detection statistics
are negligible.

In the following, the symbol �v stands for the binary rep-
resentation of the integer v, with components vi ∈ {0, 1},
and |�v| is the Hamming weight of the vector �v.

The CKA protocol is run by N parties, which we denote
A0, A1, . . . , AN−1.

Protocol 1 (CKA protocol)
1. Quantum state distribution and measurement: repeat

the following steps a sufficiently large number of times.
1.1. Each party Ai prepares an optical mode ai in a state

that depends on whether the round is labeled as a PE round
or KG round (the type of round could be predetermined,
e.g., by a short preshared key held by every party [4,5]).
In a PE round, they prepare a phase-randomized coherent

RKG

RKG
RPE

RKG
RPERPE

FIG. 1. Schematic representation of our CKA protocol. In a
key generation (KG) round, each party sends one of two coher-
ent states |±αi〉 at random. In a parameter estimation round (PE),
they send a phase-randomized coherent state (PRCS). In an hon-
est implementation of the protocol, the relay combines the signals
from each party with a beam-splitter network with M inputs and a
threshold detector at each of the M outputs (see Fig. 2 for the case
M = 4 and Appendix A for general M ). The relay announces the
detection pattern �k = (k0, k1, . . . , kM−1).

state (PRCS):

ρai(βi) = e−βi

∞∑

n=0

βn
i

n!
|n〉〈n|, (1)

where the intensity βi of the coherent state is chosen at ran-
dom from a finite set Si and where |n〉 is a Fock state. They
record the intensity βi. In a KG round, each party Ai pre-
pares the coherent state |xiαi〉ai for a fixed αi ∈ R, where
xi = ±1 is randomly chosen. They record the outcome xi.

1.2. Every party sends their optical pulse to an untrusted
relay through an insecure channel.

1.3. The untrusted relay performs an arbitrary opera-
tion on the N optical signals and announces the pattern
�k ∈ {0, 1}M , with M ≥ N . [In an honest implementation
of the protocol, kj = 1 (kj = 0) corresponds to a click (no
click) in threshold detector Dj .] The round gets discarded
if |�k| �= 1 and we label �j the event where kj = 1 and
k�=j = 0.

2. Parameter estimation: the parties partition their out-
comes and intensities in M sets, where each set corre-
sponds to the event �j (for j = 0, . . . , M − 1). For each
partition, the parties reveal a fraction of their outcomes
in order to estimate the probabilities Pr(�j |x0, xi, RKG)

that event �j occurs in a KG round, given that par-
ties A0 and Ai prepared coherent states |x0α0〉 and |xiαi〉,
respectively. With the estimated probabilities, the parties
calculate the quantum bit error rate (QBER) with respect
to reference party A0, for every party pair and every parti-
tion (Qj

X0,Xi
).Similarly, for each partition the parties reveal

the intensities βi used in the PE rounds and estimate the
so-called gains, Gj

β0,...,βN−1
:= Pr

(
�j |β0, . . . ,βN−1

)
, i.e.,
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the probability of the event �j in a PE round, given
that the parties prepared PRCSs in Eq. (1) with intensi-
ties β0, . . . ,βN−1, respectively. Using the gains, the parties
compute an upper bound (Q

j
Z) on the phase error rate (Qj

Z)
of the protocol.

3. Classical postprocessing: the parties extract a secret
conference key from the remaining (undisclosed) KG out-
comes. To do so, for each partition labeled by �j , party
Ai flips their outcomes xi when (−1)�j ·�i = −1. The parties
then perform error correction and privacy amplification.
The asymptotic conference key rate of the protocol is

r =
M−1∑

j =0

Pr(�j |RKG)

[
1 − h(Q

j
Z)− max

i≥1
h(Qj

X0Xi
)

]
, (2)

where h(x) = −x log2(x)− (1 − x) log2(1 − x) is the
binary entropy and where Pr(�j |RKG) = (1/4)

∑
x0,xi=±1

Pr(�j |x0, xi, RKG) is the probability of event �j in a KG
round.

We prove the security of the CKA protocol in Sec. III.
We remark that the security holds for any implementation
of the quantum channels and of the relay, as far as the relay
announces a pattern in every round.

In an honest implementation of the protocol, the opti-
cal signals are sent through potentially noisy and lossy
channels to the relay, where they interfere in a balanced
beam-splitter (BBS) network of M inputs and M outputs,
with M ≥ N and M being a power of 2. The BBS net-
work for M = 4 is depicted in Fig. 2, while the structure
for generic M is reported in Appendix A. We note that the
total number of beam splitters required by the BBS net-
work scales favourably with the number N of parties, as
O(N log2 N ). The network transforms the input modes (â†

i )
in a balanced combination of the output modes (d̂†

j ), i.e.,

â†
i → 1√

M

M−1∑

j =0

(−1)�j ·�id̂†
j . (3)

We point out that a setup designed with M inputs can be
used by any number of parties N ≤ M , by simply pair-
ing the modes of the N parties with M − N additional
modes in the vacuum state. However, it is worth noting
that adding unused ports in the BBS network introduces
unwanted noise and may reduce the performance of the
protocol. Then, the relay measures each output mode dj
with a threshold detector Dj , for j = 0, . . . , M − 1, and
announces the detection pattern �k ∈ {0, 1}M , where kj = 1
if detector Dj clicked and kj = 0 otherwise. The round is
retained only when exactly one detector clicks (event �j
for some j ).

In the following, we provide the formulas to compute
the QBER (Qj

X0,Xi
) and the upper bound on the phase error

FIG. 2. BBS network for M = 4 inputs, which can be used by
N = 2, N = 3, and N = 4 parties. We indicate the input modes
with â†

i and the output modes with d̂†
i , for i = 0, 1, 2, 3. The net-

work for a general number of inputs (M = 2s) is described in
Appendix A.

rate (Q
j
Z). The QBER is defined for every pair of parties

(A0, Ai) and for every partition labeled by �j , as follows:

Qj
X0,Xi

= Pr(X0 �= (−1)�j ·�iXi|�j , RKG), (4)

where Xi is the binary random variable with outcomes xi =
±1. The QBER is computed through Bayes’ theorem:

Qj
X0,Xi

=
∑

x0 �=(−1)�j ·�ixi

Pr
(
�j |x0, xi, RKG

)

4 Pr(�j |RKG)
. (5)

The computation of the upper bound on the phase error
rate is more involved. Indeed, it requires the derivation of
upper bounds on quantities called yields and defined as

Yj
n0,...,nN−1

:= Pr(�j |n0, . . . , nN−1), (6)

i.e., the probability of the event �j given the hypothetical
scenario where the parties send Fock states with photon
numbers n0, . . . , nN−1. In Eq. (34), we provide analytical
upper bounds (Y

j
n0,...,nN−1

) on the yields as a function of

the estimated gains Gj
β0,...,βN−1

. Then, one can compute the
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upper bound on the phase error rate as follows:

Q
j
Z = 1

Pr(�j |RKG)

∑

v∈V

⎛
⎝

∑

n0+···+nN−1≤n

×
N−1∏

i=0

c(vi)
i,ni

√
Y

j
n0,...,nN−1

+�v,n

)2

, (7)

where n is a positive even number, while the set V ,
the coefficients c(vi)

i,ni
and the quantity �v,n are defined as

follows:

V = {
v ∈ {0, 2N − 1} : |�v| mod 2 = 0

}
, (8)

c(l)i,n =
{

e−α2
i /2

αn
i√
n!

if n + l is even

0 if n + l is odd
(9)

�v,n =
∑

n0+···+nN−1≥n+2

N−1∏

i=0

c(vi)
i,ni

. (10)

The full derivation of the upper bound (7) on the phase
error rate is provided Sec. III.

We remark that the protocol presented here uses the cor-
relations of postselected W-like states to obtain a secret
conference key. In Appendix B we clarify the connection
between the correlations generated in the CKA protocol
and the W state. Moreover, we note that, for two par-
ties (N = 2), our protocol reduces to the TFQKD protocol
introduced in Ref. [17] (see Appendix A).

III. SECURITY PROOF

Here we prove the security of the CKA protocol pre-
sented in Sec. II under the assumption of collective attacks.

Theorem 1.—The CKA protocol (Protocol II), under col-
lective attacks by the eavesdropper and in the asymptotic
limit, generates a conference key with rate r, given by
Eq. (2).

Proof.—In the asymptotic limit and under collective
attacks, the achievable conference key rate r of a CKA pro-
tocol with one-way reconciliation is lower bounded by the
following [9]:

r ≥ H(X0|E)− max
i≥1

H(X0|Xi), (11)

where H(X0|E) (H(X0|Xi)) is the von Neumann (Shannon)
entropy of the KG outcome of reference party A0, condi-
tioned on the eavesdropper’s total side information (party
Ai’s KG outcome), and it is evaluated on the state shared
by the parties in a KG round. Note that the probability of
a KG round is set to one in Eq. (11), since, asymptotically,
the fraction of PE rounds becomes negligible.

In the case of our protocol, we postselect the KG rounds
where event �j occurred and discard all the other rounds.
And for each event �j , we independently extract a confer-
ence key. Hence, the asymptotic conference key rate of the
whole protocol is bounded by

r ≥
M−1∑

j =0

Pr(�j |RKG)

[
H(X0|E)�j − max

i≥1
H(X0|Xi)�j

]
,

(12)

where the entropies are computed on the state shared by
the parties in a KG round, conditioned on event �j .

Recall that, in an honest implementation, �j cor-
responds to the event where only detector Dj clicks.
Although our proof holds regardless of the physical details
associated to the event �j , in the following we often refer
to �j in terms of detector clicks for concreteness.

The second term in Eq. (12) is the conditional Shan-
non entropy between the KG outcomes of parties A0 and
Ai, when only detector Dj clicked. Thus, it can be readily
bounded through Fano’s inequality with the corresponding
QBER in Eq. (4) as follows:

H(X0|Xi)�j ≤ h(Qj
X0,Xi

). (13)

In order to lower bound the first conditional entropy in
Eq. (12), we employ the entropic uncertainty relation [43].
To apply the uncertainty relation, we need to view the out-
come X0 corresponding to the coherent state prepared by
party A0 as the result of a fictitious measurement. To this
aim, we consider an equivalent formulation of the protocol
where each party, in a KG round, first prepares the fol-
lowing entangled state between their optical mode ai and a
virtual qubit Qi:

|ψi〉Qiai = 1√
2

(|+〉Qi |αi〉ai + |−〉Qi |−αi〉ai

)
, (14)

where |±〉 = (|0〉 ± |1〉)/√2, and then measures their
qubit in the X basis. Note that, from the eavesdropper’s
point of view, the fictitious protocol is completely equiva-
lent to the actual protocol, even in the case that the parties
delay their X -basis measurement until after the relay’s
announcement. This allows us to consider the state of the
N qubits and optical modes, conditioned on detector Dj
clicking in a KG round, prior to the X -basis measurements.
The state reads

|χj 〉Q0Q1...QN−1E :=
K̂j

(⊗N−1
i=0 |ψi〉Qiai

)

√
Pr(�j |RKG)

, (15)

where K̂j is the Kraus operator [44] that models the
action of the untrusted relay, i.e., the eavesdropper, when
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it announces the event �j . The operator K̂j acts between
the Fock space of optical modes a0 . . . aN−1 and a generic
Hilbert space HE , i.e., K̂j : Ha0 ⊗ · · · ⊗ HaN−1 → HE .

We remark that, due to the assumption of collective
attacks, the operator K̂j remains the same in every KG and
PE round. Nevertheless, due to the partial distinguishabil-
ity of the states prepared in KG and PE rounds, K̂j could
model the attempt to guess the type of round followed by
an operation, which is specific to KG and PE rounds. This
implies that, in general, Pr(�j |RKG) �= Pr(�j |RPE).

With the pure state in Eq. (15), we can apply the entropic
uncertainty relation by considering the hypothetical sce-
nario where party A0 performs either an X -basis or a
Z-basis measurement on their qubit. We thus obtain the
following lower bound on the first entropy in Eq. (12):

H(X0|E)�j ≥ 1 − H(Z0|Q1 . . .QN−1)�j , (16)

where both conditional entropies are computed on the state
(15). We then derive an upper bound on the entropy on the
right-hand side of Eq. (16) by using the fact that quantum
maps on the conditioning systems can only increase the
entropy [45]:

H(Z0|Q1 · · · QN−1)�j ≤ H(Z0|
N−1∏

i=1

Zi)�j

≤ h(Qj
Z). (17)

In the second line, we use Fano’s inequality and the
definition of phase error rate:

Qj
Z = Pr(

∏N−1

i=0
Zi = 1|�j , RKG), (18)

which expresses the probability that, in the hypotheti-
cal scenario where each party measures in the Z basis
their virtual qubit, the product of the outcomes is one. By
employing Eqs. (13) and (17) in Eq. (12), we obtain the fol-
lowing expression for the asymptotic conference key rate
of our CKA protocol:

r ≥
M−1∑

j =0

Pr(�j |RKG)

[
1 − h(Qj

Z)− max
i≥1

h(Qj
X0Xi

)

]
. (19)

To complete the security proof, we still need to bound the
phase error rate (Qj

Z) with the statistics collected by the
parties in the PE rounds. The derivation of the bound is
inspired by the security proof in Ref. [17] for a bipartite
TFQKD protocol.

By definition (18), the phase error rate is the probability
that an even number of parties obtains −1 as the outcome
of their Z-basis measurement, in the hypothetical scenario
in which all parties measured their virtual qubit in the Z

basis in a KG round and detector Dj clicks. Through the
N -qubit state (15), which describes the state of the virtual
qubits in a KG round conditioned on the click of detector
Dj , we are able to express the phase error rate as follows:

Qj
Z =

∑

v∈V

∥∥∥〈�v|Q0...QN−1
|χj 〉

∥∥∥
2

, (20)

where the set V is defined in Eq. (8), i.e., the set of binary
strings with parity zero. In order to bound the expres-
sion in Eq. (20), we observe that, for l = 0, 1, we have
Qi 〈l|ψi〉Qiai

= |C(l)i 〉ai
, where |C(l)i 〉ai

are unnormalized “cat
states”:

|C(l)i 〉ai
= |αi〉 + (−1)l |−αi〉

2
=

∞∑

n=0

c(l)i,n |n〉ai , (21)

with c(l)i,n defined in Eq. (9). By employing the states in
Eq. (21), we can derive an upper bound on each term in
the sum of Eq. (20) as follows:

Pr(�j |RKG)

∥∥∥〈�v|Q0...QN−1
|χj 〉

∥∥∥
2

=
∥∥∥∥∥K̂j

N−1⊗

i=0

|C(vi)
i 〉ai

∥∥∥∥∥

2

=
∥∥∥∥∥∥

∞∑

n0,...,nN−1=0

K̂j

N−1⊗

i=0

c(vi)
i,ni

|ni〉
∥∥∥∥∥∥

2

≤
⎛
⎝

∞∑

n0,...,nN−1=0

∥∥∥∥∥K̂j

N−1⊗

i=0

c(vi)
i,ni

|ni〉
∥∥∥∥∥

⎞
⎠

2

=
⎛
⎝

∞∑

n0,...,nN−1=0

N−1∏

i=0

c(vi)
i,ni

√
Yj

n0,...,nN−1

⎞
⎠

2

, (22)

where we use the fact that K̂j acts only on the optical sys-
tems in the first equality and the triangle inequality in the
third line. Moreover, we identified

∥∥∥K̂j |n0〉a0 . . . |nN−1〉aN−1

∥∥∥
2

= Pr
(
�j |n0, . . . , nN−1

)

=: Yj
n0,...,nN−1

, (23)

as the yields. We derive an upper bound on the phase
error rate by employing the inequality (22) in Eq. (20). We
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obtain

Qj
Z ≤ Q

j
Z = 1

Pr(�j |RKG)

∑

v∈V

⎛
⎝

∞∑

n0,...,nN−1=0

×
N−1∏

i=0

c(vi)
i,ni

√
Yj

n0,...,nN−1

)2

, (24)

where the set V is given in Eq. (8) and the coefficients c(vi)
i,ni

are given in Eq. (9).
The bound in Eq. (24) is not yet sufficient to obtain

a computable lower bound on the key rate (19) of our
CKA protocol, i.e., an expression that can be evaluated
from the observed statistics. Indeed, the yields in Eq. (24)
are not directly observed and must be estimated through a
multipartite decoy-state method.

From the detection statistics of PE rounds, the par-
ties can estimate the gains. By recalling that, under the
assumption of collective attacks, the Kraus operator K̂j
corresponding to the event �j is the same in every round,
we can express the gains as follows:

Gj
β0,...,βN−1

=
∞∑

n0,...,nN−1=0

Tr

[
K̂j

N−1⊗

i=0

e−βi
β

ni
i

ni!
|ni〉 〈ni| K̂†

j

]

=
∞∑

n0,...,nN−1=0

N−1∏

i=0

Pβi(ni)Tr

[
K̂j

N−1⊗

i=0

|ni〉 〈ni| K̂†
j

]

=
∞∑

n0,...,nN−1=0

N−1∏

i=0

Pβi(ni)Yj
n0,...,nN−1

, (25)

where we use Eq. (23) in the last equality and defined the
Poisson distribution Pλ(n) = e−λλn/n!. The last expres-
sion links the observed gains to the yields and forms the
basis of our multipartite decoy-state method, which we
detail in Sec. IV. Our method allows us to obtain analytical
upper bounds Y

j
n0,...,nN−1

on any yield.
Although our method is general and works for any

choice of photon numbers n0, . . . , nN−1, in practice it is
not necessary to bound every yield appearing in Eq. (24)
with a nontrivial upper bound. This is because the product
of the coefficients defined in Eq. (9) satisfies

N−1∏

i=0

c(vi)
i,ni

�= 0 ⇐⇒ ntot :=
N−1∑

i=0

ni is even. (26)

Therefore, the only yields contributing to the phase error
rate upper bound in Eq. (24) are those with ntot =
0, 2, 4, . . . and so on. Moreover, the product of the coef-
ficients rapidly decreases with ntot, implying that it is

sufficient to nontrivially bound only the yields correspond-
ing to the first few values of ntot, while the rest of the yields
can be bounded by one.

With the yields’ bounds, we can further bound the quan-
tity in Eq. (24) and obtain the following upper bound on
the phase error rate:

Qj
Z ≤ Q

j
Z = 1

Pr(�j |RKG)

∑

v∈V

⎛
⎝

∑

n0+···+nN−1≤n

×
N−1∏

i=0

c(vi)
i,ni

√
Y

j
n0,...,nN−1

+�v,n

)2

, (27)

where Y
j
n0,...,nN−1

are the nontrivial bounds derived in
Sec. IV and�v,n is the residual term obtained by bounding
by one all the remaining yields. We have

�v,n =
∑

n0+···+nN−1≥n+2

N−1∏

i=0

c(vi)
i,ni

, (28)

where n is an even number.
By employing Eq. (27) in Eq. (19), we recover the com-

putable lower bound on the conference key rate in Eq. (2).
This concludes the security proof. �

As a final remark, we stress that the assumption on col-
lective attacks, i.e., the operator K̂j being constant in every
round, is instrumental in our proof. Extending the security
proof to coherent attacks would mean that K̂j could not
only guess the type of the current round, but also depend
on the sequence of previous guesses, thus not remaining
constant throughout the protocol run. The security of our
protocol under coherent attacks could be proved by adapt-
ing the technique in Ref. [46]. Indeed, in Ref. [46] the
authors perform a full finite-key analysis against coher-
ent attacks for the TFQKD protocol in Ref. [17], which
is recovered by our protocol when N = 2. We conjecture
that the asymptotic key rate of our protocol would not be
affected by coherent attacks, as suggested by taking the
asymptotic limit of the finite key rate in Ref. [46] and real-
izing that it coincides with our asymptotic key rate, Eq. (2),
when N = 2.

IV. MULTIPARTITE DECOY-STATE METHOD

In this section we present a technique that generalizes
the decoy-state method to the multipartite scenario and
provides an analytical upper bound on any yield Yj

n0,...,nN−1 ,
when an arbitrary number of parties N use the same set of
two decoy intensities: S = {β0,β1}.

The starting point of the multipartite decoy-state method
is the equation that relates the observed gains with the

064017-6



OVERCOMING FUNDAMENTAL BOUNDS... PHYS. REV. APPLIED 19, 064017 (2023)

yields, Eq. (25), which we report here for clarity:

Gj
�f =

∞∑

n0,...,nN−1=0

Yj
n0,...,nN−1

N−1∏

i=0

e−βfiβ
ni
fi

ni!
, (29)

where we introduce the binary vector �f that fixes the
choice of intensity to βfi for party Ai.

Of note, the yields are independent of �f , i.e., of the
selected intensities. Thus, Eq. (29) can be interpreted as
a system of 2N linear equations, each one labeled by �f ,
where the yields are the unknowns. By performing appro-
priate linear combinations of the system of equations, one
can derive equalities where only a subset of yields sur-
vive, thus reducing the number of unknowns. However,
the number of unknowns is infinite, implying that such a
technique cannot generate the exact solution for each yield.
Nevertheless, from the linear combinations presenting a
reduced number of yields, one can still obtain nontrivial
upper bounds.

For concreteness, consider the following toy example of
an equality linking a function B of the observed statistics
to a (possibly infinite) subset of yields, Y and Yi,

B = cY +
∑

i

ciYi, (30)

where c and ci are real coefficients. Suppose that our goal is
to derive an upper bound on the yield Y. To do so, we first
split the sum of the other yields in two sums, one in which
the coefficients ci have the same sign as c and another
where they have opposite sign. By labeling si := sign(ci)

(s) the sign of coefficient ci (c), we have

B = cY +
∑

i:si=s

ciYi +
∑

i:si �=s

ciYi. (31)

Now, by multiplying both sides by s and isolating Y, we
get

Y|c| = sB −
∑

i:si=s

|ci|Yi +
∑

i:si �=s

|ci|Yi. (32)

Then, it is straightforward to obtain an upper bound on Y
by minimizing the yields Yi whose coefficients have the
same sign as the coefficient of Y (si = s) and by maximiz-
ing the other yields (si �= s). In the case we do not have
nontrivial bounds on the yields Yi, we simply set the former
to zero and the latter to one. In many cases, the described
procedure can lead to a nontrivial bound on Y:

Y ≤ min

⎧
⎨
⎩B/c +

∑

i:si �=s

|ci/c|, 1

⎫
⎬
⎭ , (33)

where the minimum is taken to ensure that the bound is
never greater than 1.

In Appendix C, we apply this method on the system in
Eq. (29) and obtain a nontrivial upper bound on the generic
yield Yj

n0,...,nN−1 , given by

Y
j
n0,...,nN−1

= min{Uj
n0,...,nN−1

, 1},

Uj
n0,...,nN−1

=
∏

i s.t.
ni �=0

ni!
β

ni
0 − β

ni
1

[
Bj

�h(−1)N−m

(β0 − β1)N−m

+ (
eβ0 − eβ1

)m
�(N−m−1)/2�∑

k=0

(
N − m
2k + 1

)

×
(
β1eβ0 − β0eβ1 + β0 − β1

β0 − β1

)2k+1
]

, (34)

where �h is the binary vector with components:

hi =
{

1 if ni ≥ 1
0 if ni = 0,

(35)

while m = |�h|, �x� is the floor function, and Bj
�h is given by

Bj
�h =

2N −1∑

f =0

(−1)|�f |β(
�1−�h)·�f

0 β
(�1−�h)·(�1−�f )
1

Gj
�f∏N−1

i=0 e−βfi
. (36)

As a final remark, our analytical technique can be gener-
alized to scenarios with different and more intensities for
each party. Besides, we point out that the calculation of
the yields’ bounds required by the phase error rate bound
in Eq. (7) can also be done numerically by using linear
programming techniques [16].

V. SIMULATIONS

In order to assess the performance of our protocol,
we simulate its key rate (2) under a channel model that
includes different sources of noise. First, we model the
losses between each party and the detectors at the relay
with the same pure-loss channel with transmittance η.
We also account for a polarization and phase misalign-
ment of 2% between the reference party A0 and each
other party. Moreover, we account for dark counts in the
detectors by computing the key rates considering different
dark-count probabilities, namely, 10−8, 10−9, and 10−10. In
Appendix D we describe the channel model in detail and
provide the calculations of the protocol’s statistics under
such model.

In our symmetric channel model each party experiences
the same loss. Thus, the optimal signal intensities are inde-
pendent of the party, implying that we can set αi = α and
Si = S for every i, without losing in performance. Under
these conditions, we analytically verify (see Appendix D)
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that the detection statistics, i.e., Pr(�j |x0, xi, RKG) and
Pr(�j |β0, . . . ,βN−1), are independent of which detector
clicks (j ) and of the party (i).

This readily implies that the QBER in Eq. (5) is indepen-
dent of the party and of the detector and we can indicate
it as Qj

X0Xi
= QX . Similarly, the analytical upper bounds

on the yields presented in Sec. IV are independent of j
since the gains are independent of j . We employ our yields
bounds, Eq. (34), in the calculation of the bound QZ on the
phase error rate (7), where we choose n = 4 as the cutoff
number above which every yield is trivially bounded by
one. The choice is motivated by the fact that, for n = 4,
the residual term �v,n in Eq. (10) becomes negligible.

By considering the discussed symmetries, the asymp-
totic conference key rate of our simulations simplifies
to

r ≥ M Pr(�|RKG)
[
1 − h(QZ)− h(QX )

]
, (37)

where Pr(�|RKG) is the probability that a fixed detector
clicks in a KG round and M ≥ N is the number of detectors
in the relay.

In order to benchmark the performance of our proto-
col, we follow the approach used for TFQKD schemes.
Typically, the key rate of a TFQKD protocol is bench-
marked against the repeaterless bound [20], i.e., the bound
on the private capacity between Alice and Bob when the
relay between the two parties is removed. If the TFQKD
rate surpasses the repeaterless bound, this indicates that
adding an untrusted relay enables higher secret key rates
and proves the usefulness of the TFQKD protocol. Simi-
larly, in our multipartite setting we compare the conference
key rate of our protocol with the ultimate conference key
rate that could be achieved in the quantum network with-
out the relay. This is the single-message multicast bound of
the quantum network [42] and it depends on the network
architecture. In our scenario, there are at least two network
configurations (star network and fully connected network)
that can arise when removing the relay, which we depict in
Fig. 3.

In the star network (left configuration in Fig. 3), there is
a pure-loss bosonic channel with transmittance η2 between

2

0

3

1

2

0

31

FIG. 3. Two possible network configurations that arise when
the relay is removed, for N = 4 parties. In the left configuration,
there is a bipartite link between A0 and each other party (star
network). In the right configuration, each party is connected with
each other (fully connected network). The transmittance of the
channel connecting any two parties is η2.

party A0 and each other party Ai (for i = 1, . . . , N − 1).
In this case, the single-message multicast bound is inde-
pendent of the number of parties N and coincides with
the bipartite repeaterless bound [20] used to benchmark
TFQKD protocols:

r ≤ − log2 (1 − η2) =: R1. (38)

In the right configuration of Fig. 3, the resulting network is
fully connected, such that each party is linked to each other
with the same pure-loss bosonic channel with transmit-
tance η2. In this case, the single-message multicast bound
reads [42]

r ≤ −(N − 1) log2 (1 − η2) =: R2(N ). (39)

In this network configuration the single-message multi-
cast bound increases with the number of parties, N . This
could be explained by the quadratic scaling of the number
of bipartite links with N , compared to the linear scaling
of the star network. It is worthwhile to emphasize that, in
order to obtain the network configurations of Fig. 3 when
removing the relay, additional pure-loss channels need to
be added on top of the existing channels used by our pro-
tocol. For instance, the star network can be seen as the
result of a combination of six channels with transmittance
η: three channels connect A0 to the point where the relay
was located and are subsequently linked to the three chan-
nels connecting to parties A1, A2, and A3. While our CKA
protocol requires only four such channels (from the relay
to each of the parties) when N = 4. This contrasts with the
benchmarking of bipartite TFQKD against the repeaterless
bound, where the relay is removed and the two original
channels are linked together without the need to add fur-
ther channels. Therefore, when comparing the multicast
bounds (38) and (39) with the CKA rate of our protocol,
one should consider that the multicast bounds can only be
attained if additional channels are used.

In Fig. 4, we plot the key rate (37) of our protocol for
N = 3, N = 4, and N = 5 parties (for every N , we fix the
number of inputs M in the BBS network to the smallest
power of two such that M ≥ N ), together with the multi-
cast bounds, Eqs. (38) and (39). In Fig. 4(a), we compute
the phase error rate bound in Eq. (7) with our analytical
upper bounds on the yields (34) obtained with two decoy
intensities fixed to β0 = 0.5 and β1 = 0, respectively. In
Fig. 4(b), instead, we assume that the relevant yields in the
phase error rate bound (7) are known and use their exact
analytical expression (D74) (see Appendix D for the calcu-
lation). This corresponds to the limit where the parties have
an infinite number of decoy intensities and can estimate
the yields exactly. In both plots, we optimize the key rate
at each level of loss over the signal amplitude α. Further
details on the numerical simulations and on the optimal
values for α are reported in Appendix E.
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FIG. 4. Asymptotic conference key rate of our protocol
[Eq. (37)] as a function of the loss (in dB) between any two
parties, when (a) each party uses two decoy intensities; (b) the
parties can perfectly estimate the yields. We plot the key rate
for different dark-count probabilities: pd = 10−10 (solid lines),
pd = 10−9 (dashed lines), and pd = 10−8 (dotted lines) and a dif-
ferent number of parties N , while we fix the polarization and
phase misalignment to 2%. We report the single-message multi-
cast bound R1 [Eq. (38), solid magenta line] for the star network
and the bounds R2(3) and R2(4) [Eq. (39), dashed and dotted
magenta line] for the fully connected network. (a) For sufficiently
high loss, our protocol with two decoys can overcome the mul-
ticast bounds for both configurations when N = 3. (b) A tighter
estimation of the yields (e.g., by adding decoy intensities) would
allow our protocol to overcome both multicast bounds for N = 3
and N = 4.

From Fig. 4(a) we observe that our protocol, already
with two decoy intensities per party, is capable of over-
coming both the single-message multicast bounds R1 and
R2, for three parties and in the high-loss regime. This is
explained by the fact that our protocol relies on single-
photon interference events, regardless of the number of
parties, hence its key rate scales with the transmittance
between one party and the relay: r ∼ η. Conversely, the
multicast bounds in Eqs. (38) and (39) for a quantum
network without a relay cannot scale better than r ∼ η2.

However, as the number of parties increases, the key
rate of our protocol drops due to the unavoidable QBER
inherited from W-state correlations and cannot beat the
multicast bounds. This can be mitigated by increasing the
number of decoy intensities per party, as suggested by
Fig. 4(b) that represents the best-case scenario of infinite
decoys. Indeed, we observe a significant improvement of
the key rate, especially in the high-loss regime, allowing
it to overcome the multicast bounds R1 and R2 for three
and four parties. The advantage provided by our protocol
could extend beyond four parties when compared to more
realistic multicast bounds that account for additional noise
on top of pure loss (for example, the noise model used in
the simulations), as well as tighter multicast bounds (the
multicast bounds used in our comparison are not proven to
be tight and might be quite loose [42]).

The improvement of the key rate in the high-loss regime
occurs because adding decoy intensities to the multipar-
tite decoy-state method allows for tighter yields’ bounds
when evaluating the phase error rate through (7). As a con-
sequence, the optimal value of the signal intensity (α2)
can increase without severely affecting the phase error rate
bound, as shown in Appendix E. In turn, higher signal
intensities increase the probability that exactly one detector
clicks (up to the limit where multiple-photon contribu-
tions become dominant), thus increasing the key rate. The
gain in the key rate is particularly visible in the high-loss
regime, where the effect of dark counts on the detector
clicks is comparable to the arrival of a signal.

In parallel, the key rate computed with the exact yields
[Fig. 4(b)] is higher than the one computed with two
decoys [Fig. 4(a)] even in the low-loss regime. This is due
to the fact that the latter is not optimized over the decoy
intensities. In particular, the value of β0 = 0.5 is chosen
such that it is close-to-optimal only for high losses, thus
explaining the suboptimal behavior of the key rate with
two decoys at low losses.

VI. CONCLUSION

We design a practical, measurement-device-independent,
conference key agreement protocol that delivers a shared
conference key to an arbitrary number of parties. In the
protocol, each party only has to transmit coherent pulses
to an untrusted relay, which interferes the pulses in a net-
work of balanced beam splitters and performs threshold
measurements. Our protocol harnesses single-photon inter-
ference at the relay in order to establish a common key.
This can be understood by realizing that the correlations
postselected by our protocol correspond to the correla-
tions of a W state, which can indeed generate conference
keys [9].

We prove the security of our protocol against collec-
tive attacks and derive an analytical expression for the
asymptotic key rate, by combining the entropic uncertainty
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relation [43] with an developed multipartite decoy-state
analysis. We emphasize that our protocol and its security
proof are general and can account for scenarios with arbi-
trary asymmetric losses. Moreover, we provide extended
numerical simulations with a realistic channel model that
accounts for phase and polarization misalignment, photon
loss, and dark counts in the detectors. We show that our
protocol is capable, in certain regimes, of overcoming the
ultimate conference key rates achievable in a quantum net-
work without a relay, by comparing it to single-message
multicast bounds [42].

A notable byproduct of our work is the derivation of ana-
lytical upper bounds on the yields of any combination of
Fock states sent by the parties, which may find applica-
tion in other multipartite protocols where yields need to be
estimated. Our analytical bounds on the yields are the first
bounds derived for an arbitrary number of parties.

At the same time, our protocol represents the first exam-
ple of a CKA protocol that can beat single-message multi-
cast bounds in quantum networks [42]. This heralds a key
step for long-distance CKA, similarly to how the introduc-
tion of TFQKD [15] allowed QKD to reach much longer
distances by beating the repeaterless bound [20]. Indeed,
our results show that adding an untrusted relay, with a rel-
atively simple optical setup, in a quantum network, can
increase the rate at which the network users establish con-
ference keys over long distances. In particular, the scaling
improvement in the key rate (the key rate scales with η
instead of η2) matches the one that could be achieved by
future quantum repeaters.

In addition, our protocol is readily implementable with
current technology as it does not add further experimen-
tal requirements compared to state-of-the-art experiments
on TFQKD protocols [23–33]. As a matter of fact, for
two parties our CKA scheme reduces to the bipartite
TFQKD protocol in Ref. [17], which has already been
implemented in several experiments [23,25,28,31]. In such
experiments, phase-tracking and phase-locking techniques
are required in order to ensure that the parties’ signals
remain in phase. This, however, might become more chal-
lenging when more parties are involved. A solution could
be found by multiplexing in time and/or frequency as
shown in Refs. [47,48]. We remark that the implementa-
tion of our CKA protocol would represent the first instance
of a multipartite conference key agreement, which does not
rely on GHZ-type states.

The work presented in this paper can be further devel-
oped along different lines of research. From a security
perspective, a complete finite-key analysis along the lines
of the proof given in Ref. [46] for bipartite TFQKD is
required, in order to prove the protocol secure in the
presence of statistical fluctuations and coherent attacks.

Moreover, our decoy-state analysis assumes a highly
symmetrical configuration where every party uses the same
set of decoy intensities, which is optimal in the scenario

of symmetric channel losses analyzed in this work. How-
ever, real-life scenarios would likely display asymmetric
channel losses, which require a more general decoy anal-
ysis with independent decoy intensities for each party, as
shown for the bipartite case in Ref. [49]. On a similar note,
our decoy analysis employs only two decoy settings per
party, which is not sufficient to achieve close-to-optimal
key rates (i.e., key rates obtained with infinite decoy set-
tings), as shown by Fig. 4. Hence, it is likely that using
more than two decoy settings to derive numerical or ana-
lytical bounds on the yields appearing in the phase error
rate could improve the resulting key rate.

Finally, the efficiency of the protocol at lower losses
could be improved by retaining those rounds where more
than one detector clicks and using them to extract extra
conference key bits. The security proof presented in this
work could be naturally extended to make use of such
rounds.

To conclude, we believe that our work constitutes a
significant step towards increasing the practicality of mul-
tipartite cryptographic protocols and their applicability in
high-loss regimes.
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Note added.—Recently, another CKA scheme has been
posted on preprint servers [50], with our same goal of
extending the communication distance of CKA. However,
we believe that the protocol in Ref. [50] is much more
technologically demanding than ours. For the legitimate
users, the protocol in Ref. [50] requires the parallel gen-
eration of multiple one-photon pulses from each party,
compared to only a phase randomized weak coherent pulse
in our protocol. For the measuring station, the protocol in
Ref. [50] requires a quantum nondemolition measurement
that heralds the arrival of a photon, followed by a GHZ-
state analyzer acting on the heralded signals, while in our
protocol we require only an interferometric measurement
as depicted in Fig. 2.

CODE AVAILABILITY

The code used to run the simulations can be made
available upon request to the authors.
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APPENDIX A: THE BALANCED BEAM-SPLITTER
NETWORK

In this Appendix, we provide a complete description of
the BBS network that describes the honest implementation
of the untrusted relay. The network is composed of s lay-
ers, labeled by r = 0, . . . , s − 1, and each layer receives as
input M = 2s optical modes â(r)i , for 0 ≤ i ≤ M − 1. Note
that for r = 0 the modes correspond to the modes arriving
at the relay from the parties.

In a generic layer r, the optical mode â(r)i is mixed with
the mode â(r)i+2r in a BBS, for all modes âi ∈ Fr. The set Fr
for layer r contains the modes:

Fr :=
2s−r−1−1⋃

k=0

{âk2r+1 , âk2r+1+1, . . . , âk2r+1+2r−1}. (A1)

For example, F0 contains the even modes and F1 contains
modes 0, 1, 3, 4, and so on. This pattern repeats until the
last layer, that contains the first half of the modes. Each
layer contains M/2 beam splitters. Hence, the total num-
ber of beam splitters in the BBS network, in terms of the
number of inputs M , is

nBS = M
2

log2 M . (A2)

We note that the BBS network, due to its structure, must
be prepared for a number of inputs M equal to a power of
2 but can be used by any number of parties N ≤ M . We
also remark that, for s = 1, the BBS network reduces to a
single beam splitter and coincides with the setup used in
the TFQKD protocol of Ref. [17].

We are interested in the evolution of the creation opera-
tors in layer r through a BBS, which is given by

(â(r)i )
† → 1√

2
[(â(r+1)

i )† + (â(r+1)
i+2r )

†] ∀i ∈ Fr

(â(r)j )
† → 1√

2
[(â(r+1)

j −2r )
† − (â(r+1)

j )†] ∀j ∈ Fr, (A3)

where Fr indicates the complement of Fr.
By going through all layers until r = s − 1, we are

able to transform each input mode in a balanced combi-
nation of all the output modes, whose coefficients are at
most a minus sign. The global mode transformation, which
includes the transformation of each layer, is given in the
following theorem.

Theorem 2.—Given M = 2s input modes in the BBS
network described above where, in each layer r, the modes

transform according to Eq. (A3). Then, the global evolu-
tion of the modes over all the s layers is given by

â†
i → 1

(
√

2)s

2s−1∑

k=0

f (s)k,i (â
(s)
k )

† ∀i = 0, . . . , 2s − 1, (A4)

where the function f (s)k,i is given by

f (s)k,i =
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

, (A5)

and �·� is the floor function. Moreover, f (s)k,i can be recast
as follows:

f (s)k,i = (−1)�k·�i, (A6)

where �k and�i are the binary vectors of length s representing
the integers k and i in binary representation.

Proof.—The theorem is proved by induction on s.
Hence, the first step of the proof is to prove the result for
s = 1, i.e., just two inputs. We thus have two optical modes
â†

0 and â†
1 mixed in a BBS. The transformation of the modes

is given in Eq. (A3), for r = 0, i.e.,

â†
0 → 1√

2
[(â(1)0 )

† + (â(1)1 )
†]

â†
1 → 1√

2
[(â(1)0 )

† − (â(1)1 )
†].

(A7)

The formula provided in the theorem’s statement,
Eq. (A4), for s = 1 reads

âi → 1√
2

1∑

k=0

(−1)ki(â(1)k )
†, (A8)

which is equivalent to the transformation of the modes of
Eq. (A7). The theorem is thus proved for s = 1.

Now, in the inductive step we assume that the theorem’s
statement in Eq. (A4) is correct for generic s and show that
it induces the same transformation for s + 1, i.e., that the
theorem holds for s + 1.

We start by adding to the modes labeled by i another
set of 2s modes, labeled by j = 2s, . . . , 2s+1 − 1, that
undergoes the same kind of transformations, i.e.,

â†
j → 1

(
√

2)s

2s+1−1∑

k=2s

f (s)k,j (â
(s)
k )

† ∀j = 2s, . . . , 2s+1 − 1.

(A9)

We now follow the prescription in Eq. (A3) and com-
bine the modes in the s + 1 layer of the BBS network.
This means that we combine the mode (â(s)i )

† with the
corresponding mode (â(s)i+2s)

†, and obtain
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(â(s)i )
† → 1√

2
[(â(s+1)

i )† + (â(s+1)
i+2s )

†] ∀i = 0, . . . , 2s − 1

(â(s)j )
† → 1√

2
[(â(r+1)

j −2s )
† − (â(s+1)

j )†] ∀j = 2s, . . . , 2s+1 − 1.

(A10)

We use the assumption in the inductive step. That is, we
use Eqs. (A4) and (A9) to describe the transformations
of the modes in the first s layers. We separately address
the transformations on the first 2s modes â†

i , described by
Eq. (A4), and the transformations on the other 2s modes
â†

j , described by Eq. (A9).

1. For the modes â†
i with i = 0, . . . , 2s − 1, we employ

the first equation in Eq. (A10) together with Eq. (A4). We
obtain the following transformation of the modes after s +
1 layers:

â†
i → 1

(
√

2)s

2s−1∑

k=0

f (s)k,i
1√
2

[(â(s+1)
k )† + (â(s+1)

k+2s )
†]

= 1

(
√

2)s+1

(
2s−1∑

k=0

f (s)k,i (â
(s+1)
k )† +

2s−1∑

k=0

f (s)k,i (â
(s+1)
k+2s )

†

)

(A11)

Now let us consider the coefficient f (s+1)
k,i . By definition

(A5), we have

f (s+1)
k,i =

s∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

= (−1)�k/2s��i/2s�
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

= (−1)�k/2s��i/2s�f (s)k,i . (A12)

However, since i = 0, . . . , 2s − 1 we have that �i/2s� =
0 ∀i, which in turn implies

f (s+1)
k,i = f (s)k,i ∀ i = 0, . . . , 2s − 1, ∀k. (A13)

We use this result in Eq. (A11) combined with a rescaling
of the second sum with k → k − 2s to write

â†
i → 1

(
√

2)s+1

(
2s−1∑

k=0

f (s+1)
k,i (â(s+1)

k )†

+
2s+1−1∑

k=2s

f (s)k−2s,i(â
(s+1)
k )†

⎞
⎠ , (A14)

where

f (s)k−2s,i =
s−1∏

l=0

(−1)
⌊
(k−2s)/2l

⌋⌊
i/2l

⌋

=
s−1∏

l=0

(−1)
⌊

k/2l−2s−l
⌋⌊

i/2l
⌋

.

(A15)

Since k ≥ 2s we have that k/2l ≥ 2s−l. Moreover, s > l for
every l, which means that 2s−l is a positive, even integer.
We thus can write

f (s)k−2s,i =
s−1∏

l=0

(−1)
(⌊

k/2l
⌋
−2s−l

)⌊
i/2l

⌋

=
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

(−1)−2s−l
⌊

i/2l
⌋

=
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

i/2l
⌋

= f (s)k,i = f (s+1)
k,i , (A16)

where (−1)−2s−l
⌊

i/2l
⌋

= 1 ∀i because 2s−l is even for all l
and where we use Eq. (A13) in the last equality. With the
last expression, we can simplify (A14) as follows:

â†
i → 1

(
√

2)s+1

(
2s−1∑

k=0

f (s+1)
k,i (â(s+1)

k )†

+
2s+1−1∑

k=2s

f (s+1)
k,i (â(s+1)

k )†

⎞
⎠

= 1

(
√

2)s+1

2s+1−1∑

k=0

f (s+1)
k,i (â(s+1)

k )†, (A17)

which concludes the proof for i = 0, . . . , 2s − 1.
2. For the modes â†

j , with j = 2s, . . . , 2s+1 − 1, we
combine the second equation in Eq. (A10) with the
assumption (A9) and obtain

â†
j → 1

(
√

2)s+1

⎛
⎝

2s+1−1∑

k=2s

f (s)k,j (â
(s+1)
k−2s )

† −
2s+1−1∑

k=2s

f (s)k,j (â
(s+1)
k )†

⎞
⎠.

(A18)
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Once again, we can rescale the first sum with k → k + 2s

in the last expression and obtain

â†
j → 1

(
√

2)s+1

⎛
⎝

2s−1∑

k=0

f (s)k+2s,j (â
(s+1)
k )† −

2s+1−1∑

k=2s

f (s)k,j (â
(s+1)
k )†

⎞
⎠.

(A19)

Since 2s−l is a positive, even integer, we can simplify the
coefficient in the first sum as follows:

f (s)k+2s,j =
s−1∏

l=0

(−1)
(⌊

k/2l
⌋
+2s−l

)⌊
j /2l

⌋

=
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

j /2l
⌋

(−1)2
s−l
⌊

j /2l
⌋

=
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

j /2l
⌋

= f (s)k,j . (A20)

Moreover, since k = 0, . . . , 2s − 1, one has that �k/2s� =
0 and hence that

f (s+1)
k,j =

s∏

l=0

(−1)
⌊

k/2l
⌋⌊

j /2l
⌋

= (−1)�k/2s��j /2s�
s−1∏

l=0

(−1)
⌊

k/2l
⌋⌊

j /2l
⌋

= (−1)�k/2s��i/2s�f (s)k,i = f (s)k,i , (A21)

which means that we can replace the coefficient f (s)k+2s,j

in the first sum of Eq. (A19) with f (s+1)
k,j . Regarding the

second sum in Eq. (A19), we can write the coefficient as

(−1)f (s)k,j = (−1)g(k,j )f (s)k,j , (A22)

where g(k, j ) is a function that is odd for j , k =
2s, . . . , 2s+1 − 1. For instance, we can choose the function
to be the following:

g(k, j ) = ⌊
k/2s⌋ ⌊j /2s⌋ . (A23)

Then, the coefficient of the second sum in Eq. (A19)
becomes

(−1)f (s)k,j = (−1)�k/2s��j /2s�f (s)k,j ≡ f (s+1)
k,j . (A24)

With the above expressions, we can recast Eq. (A19) as
follows and conclude the proof for j = 2s, . . . , 2s+1 − 1:

â†
j → 1

(
√

2)s+1

(
2s−1∑

k=0

f (s+1)
k,j (â(s+1)

k )†

+
2s+1−1∑

k=2s

f (s+1)
k,j (â(s+1)

k )†

⎞
⎠

= 1

(
√

2)s+1

2s+1−1∑

k=0

f (s+1)
k,j (â(s+1)

k )†. (A25)

The combination of the two results in Eqs. (A17)
and (A25) imply that the global transformation of the
modes, for M = 2s+1 inputs, is given by Eq. (A4) where
s is replaced by s + 1. This proves the theorem for s + 1
and concludes the proof. �

APPENDIX B: W-STATE CORRELATIONS

In this Appendix we present the logical steps that
brought us to design the protocol presented in Sec. II and
show the connection between the correlations generated by
our protocol and the correlations of the W state [38].

We start by describing an Ideal protocol, i.e., a protocol
that is less practical than the one presented in the main text
but has the merit of elucidating the core ideas that lead
to the CKA protocol of Sec. II. The protocol is run by N
parties, which we call A0, . . . , AN−1, and consists of the
following steps.

Protocol 2 (Ideal protocol)
1. Quantum part: repeat what follows for a sufficient

amount of iterations.
1.1. Every party holds an optical mode ai and a qubit Qi and

prepares the following entangled state:

|φi〉 = √
qi|0〉Qi |0〉ai +

√
1 − qi|1〉Qi |1〉ai , (B1)

where |0〉Qi and |1〉Qi are two orthogonal states of the
qubit, |0〉ai and |1〉ai are the vacuum and one-photon
state of the optical mode, respectively, and 0 < qi <

1.
1.2. Every party sends their optical pulse through a noisy

and lossy channel to an untrusted relay.
1.3. In the untrusted relay, the optical signals interfere in

a BBS network of M = 2s inputs and M outputs,
for some natural number s with M ≥ N . The BBS
network is described in Appendix A. The network
transforms the input modes in a balanced combination
of the output modes, i.e.,

â†
i → 1√

M

M−1∑

j =0

(−1)�j ·�id̂†
j , (B2)
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where â†
i and d̂†

j are the creation operators of the input
and output modes, respectively, and �j and �i the binary
representations of the integers j and i and �j · �i is their
scalar product.

1.4. The untrusted relay measures each output mode dj with
a threshold detector Dj , for j = 0, . . . , M − 1. The
relay announces the detection pattern �k ∈ {0, 1}M for
each detector, where kj = 1 if detector Dj clicked and
kj = 0 otherwise. The round gets discarded unless
only one detector clicked, i.e., if |�k| = 1, where |�x|
is the Hamming weight of vector �x.

1.5. Each party Ai measures their qubit Qi. If the round is
labeled as a PE round, each party measures in the Z
basis and obtains an outcome Zi = ±1. If the round is
a KG round, each party measures in the X basis and
obtains outcome Xi = ±1.

2. Parameter estimation: the parties partition their out-
comes in M sets, where each set corresponds to the event
�j where only detector Dj clicks. For each partition, the
parties reveal a fraction of their X -basis outcomes in order
to compute the QBER, with respect to reference party A0.
The QBER is defined as

Qj
X0,Xi

= Pr(X0 �= (−1)�j ·�iXi|�j , RKG). (B3)

Similarly, for each partition of outcomes the parties reveal
their Z-basis outcomes and evaluate the phase error rate,
defined as follows:

Qj
Z = Pr(

∏N−1

i=0
Zi = 1|�j , RKG). (B4)

3. Classical postprocessing: the parties extract a secret
conference key from the remaining undisclosed X -basis
outcomes. To do so, for each partition labeled by �j ,
party Ai flips their X -basis outcomes when (−1)�j ·�i = −1.
The parties then perform error correction and privacy
amplification.

We remark that the probabilities defining the QBER
(B3) and the phase error rate (B4) are conditioned on
the event that only detector Dj clicked and the round
was chosen to be a KG round. While the QBER can be
directly computed from the outcomes collected in KG
rounds, the phase error rate refers to the hypothetical
scenario where the parties measured in the Z basis in a
KG round. However, since the only difference between
KG and PE rounds is the local qubit measurement, the
choice of the type of round can be delayed until the
qubit measurement is performed. Hence, the phase error
rate, as defined in Eq. (B4), effectively coincides with
the analogous quantity observed from the PE data: Qj

Z ≡
Pr(
∏N−1

i=0 Zi = 1|�j , RPE). As we discuss below, this fact
does not hold in our CKA protocol (Sec. II), where the

phase error rate (18) is indirectly bounded with the PE
statistics thanks to a multiparty decoy-state method.

The Ideal protocol is designed to exploit the correlations
of a particular class of multipartite, W-type states, which
are postselected due to single-photon interference. As a
matter of fact, a noisy version of such states is recovered
as the conditional state of the qubit systems postselected on
the event that only detector Dj clicks. In order to see this
more clearly, one can derive such a state under the Ideal
conditions of no losses in the channels and qi = q → 1
for every i—indeed, the optimal values of q are close to
one [34], hence we approximate the state to first order in
(1 − q). Under these simplifications, the state of the qubits
Q0 . . .QN−1 shared by the N parties, once postselected on
the click of detector Dj , reads

|Wj 〉Q0,...QN−1 := 1√
N

N−1∑

i=0

(−1)�j ·�i |�bi〉Q0,...QN−1
, (B5)

where the vector �bi is defined as the N -bit vector of all
zeroes except for the ith element that is one.

The state in Eq. (B5) is a W-type state, where each term
in the sum presents a real phase determined by the detec-
tor that clicked. The state is postselected from the events
where only one photon is effectively sent by any of the
parties with equal probability. Indeed, under the above
approximations, the probability that the W-type state in
Eq. (B5) is postselected is qN−1(1 − q)N/M .

In this regard, the Ideal protocol resembles the CKA pro-
tocol of Ref. [34] as it exploits the multipartite correlations
of a W state to establish a shared conference key. As a mat-
ter of fact, we note that in the classical postprocessing the
parties flip their X -basis outcomes according to (−1)�j ·�i,
where �i depends on the party and �j on the detector that
clicked. This can be equivalently seen as party Ai applying
a Z gate on their qubit before the X -basis measurement, if
�j · �i is odd. In other words, party Ai applies the gate Z�j ·�i
(note that Z2 = 1). Since such a gate does not change the
Z-basis outcomes in the PE rounds, we can assume, with-
out loss of generality, that party Ai applies the gate Z�j ·�i
before measuring their qubit in any basis. If we now apply
the gates in the postselected state of the qubits (B5), we
obtain

|Wj 〉Q0,...QN−1 = 1√
N

N−1∑

i=0

(−1)�j ·�i
N−1⊗

k=0

Z�j ·�k |�bi〉Q0,...QN−1

= 1√
N

N−1∑

i=0

(−1)�j ·�i(−1)�j ·�i |�bi〉Q0,...QN−1

= 1√
N

N−1∑

i=0

|�bi〉Q0,...QN−1
, (B6)
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where we use the fact that the operator Z�j ·�k has no effect
on the ket |�bi〉 except for k = i, i.e., when it acts on the
ith qubit that is in state |1〉. From Eq. (B6) we see that
the postselected state, after the local operations that simu-
late the classical postprocessing of the outcomes, coincides
with the W state, as claimed. The Ideal protocol presents a
crucial difference from the protocol in Ref. [34], which is
made explicit in the following remark:

Remark.—In Ref. [34] the parties needed to tailor their
KG measurements depending on which detector clicks, in
order to neutralize the effects of complex phases in their
postselected W-type state. In the Ideal protocol, thanks
to the bespoke BBS network, the postselected state (B5)
only presents real phases, which are corrected as discussed
above by simply flipping the KG outcomes and without
changing the measurement basis.

This implies that, in the Ideal protocol, the parties’ mea-
surements are independent of the relay’s announcements,
hence they commute with the action of the relay. This
enables us to reformulate the Ideal protocol in prepare-
and-measure (PM) form. In the resulting PM protocol,
the parties first measure their qubits and record the out-
come. Then they send the optical mode, whose state is
conditioned on the outcome, to the relay. Hence, the
PM protocol coincides with the Ideal protocol except for
Step 1.1.

Protocol 3 (Prepare-and-measure protocol)
1. Quantum part: repeat what follows for a sufficient

amount of iterations.
1.1. Each party Ai prepares an optical mode ai in a state

that depends on whether the round is labeled as a PE or KG
round.

(a) In a PE round, they prepare the vacuum state |0〉ai
with probability qi, corresponding to the outcome Zi =
+1, and the one-photon state |1〉ai with probability 1 − qi,
corresponding to the outcome Zi = −1.

(b) In a KG round, they prepare with equal probabil-
ity either the state |+〉ai = √

qi|0〉ai + √
1 − qi|1〉ai , cor-

responding to the outcome Xi = +1, or the state |−〉ai =√
qi|0〉ai − √

1 − qi|1〉ai , corresponding to the outcome
Xi = −1.

1.2. same as in Ideal prot.
1.3. same as in Ideal prot.
1.4. same as in Ideal prot.
2. same as in Ideal prot.
3. same as in Ideal prot.

Note that, while the PM protocol is more practical
than the Ideal protocol (e.g., it does not require qubit-
photon entanglement), it is equivalent to the latter from
the point of view of security, since an adversary could
not distinguish which of the two protocols is run. Despite
the increased practicality, the PM protocol still requires

the preparation of single-photon states and their super-
position with the vacuum. This prompts us to reduce
even further the complexity of the protocol’s implemen-
tation and obtain a practical, prepare-and-measure, CKA
protocol.

In order to derive a practical CKA protocol, we observe
that the states prepared in the KG rounds of the PM pro-
tocol (|±〉ai) can be approximated by coherent states of
suitable amplitude (|±αi〉, for αi ∈ R), where the informa-
tion about the X -basis outcome is encoded in the ampli-
tude’s sign. At the same time, the statistics collected in PE
rounds and used to compute the phase error rate (B4) are
linked to the so-called yields, i.e., the probability that a
detector clicks given that each party sent a fixed number
of photons. This suggests us to prepare phase-randomized
coherent states in PE rounds and use their detection statis-
tics to apply the decoy-state method and compute the
yields, with which we bound the phase error rate. This
heuristic reasoning leads us to the practical CKA protocol
presented in Sec. II, where, we recall, each party Ai pre-
pares a coherent state |xiαi〉ai with xi = ±1 in KG rounds
and phase-randomized coherent states in PE rounds.

We emphasize that, in the protocol of Sec. II, the choice
of the type of round (KG or PE) cannot be delayed until
after the action of the untrusted relay, contrary to the
Ideal protocol. Indeed, the average state prepared by Ai in
KG rounds, (1/2)(|αi〉 〈αi| + |−αi〉 〈−αi|), differs from the
average state prepared in PE rounds, (1/|Si|)

∑
k ρai(βk),

due to the coherences of the former in the Fock basis. This
means that an adversary controlling the relay could par-
tially distinguish the type of round being executed and act
accordingly. Another way to see this is that there is no
equivalent entanglement-based version of the CKA proto-
col. That is, party Ai cannot find two suitable POVMs (one
for KG rounds and one for PE rounds) such that the state of
their optical mode, conditioned on measuring with one of
the two POVMs a fictitious system entangled with the opti-
cal mode, corresponds to the state that Ai should prepare in
that round [51].

One of the implications of the above fact is that the
phase error rate (B4) affecting the KG rounds cannot be
directly observed from the statistics of the PE rounds, as
instead happens in the Ideal protocol. Nevertheless, in the
security proof provided in Sec. III, we show how to use
the PE statistics to derive an upper bound on the phase
error rate (B4). Specifically, we develop a multipartite
decoy-state method that allows us to bound certain yields
through the PE statistics. The yields, in turn, are needed to
analytically upper bound the phase error rate with Eq. (7).

This concludes our connection between the Ideal proto-
col, which manifestly makes use of W-state correlations
and whose phase error rate can be directly observed in
PE rounds, and the CKA protocol discussed in the main
text, whose phase error rate is bounded by PE statistics
combined with the decoy-state method.
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APPENDIX C: ANALYTICAL UPPER BOUND ON
THE YIELDS

In this Appendix, we report the full derivation of the
analytical bounds on the yields as a function of the
observed gains, Eq. (34). The bounds are derived with
a multipartite decoy-state method in which each party is
provided with the same set of two decoy intensities: S =
{β0,β1}.

We recall that the gains are probabilities that can
be directly estimated from the observed data and are
defined as Gj

�f := Pr
(
�j |βf0 , . . . ,βfN−1

)
, where �f is an

N -dimensional binary vector that covers all the possible
choices of intensities by the parties. From Eq. (25) in
Sec. III, we show that the gains are related to the yields
by the following equality:

Gj
�f =

∞∑

n0,...,nN−1=0

Yj
n0,...,nN−1

N−1∏

i=0

Pβfi
(ni)

=
∞∑

n0,...,nN−1=0

Yj
n0,...,nN−1

N−1∏

i=0

e−βfiβ
ni
fi

ni!

=
N−1∏

i=0

e−βfi

∞∑

n0,...,nN−1=0

Yj
n0,...,nN−1

n0! · · · nN−1!

N−1∏

i=0

β
ni
fi . (C1)

We remark that, in principle, the gains can depend on
the detector Dj that clicks and so can the yields. How-
ever, for simplicity of notation, in this section we drop
the superscript j from the gains and yields. Moreover,
in our simulations, due to the symmetric losses affecting
each party, the gains and hence the yields are independent
of which detector clicks (see Appendix D). Hence their
dependency on j vanishes.

The last equality in Eq. (C1) brings us to define a
rescaled gain, G̃, as follows:

G̃�f := G�f∏N−1
i=0 e−βfi

=
∞∑

n0,...,nN−1=0

Yn0,...,nN−1

n0! · · · nN−1!

N−1∏

i=0

β
ni
fi

.

(C2)

We now define, from a fixed binary vector �h of dimension
N and Hamming weight |�h| = m, the following quantity:

B�h :=
∞∑

n0,...,nN−1=0

Yn0,...,nN−1

n0! · · · nN−1!

N−1∏

i=0

(
β

1−hi
1 β

ni
0 − β

1−hi
0 β

ni
1

)
,

(C3)

which can be recast as a combination of rescaled gains G̃�f .
To see this, we expand the product over i in the last expres-
sion as a sum of 2N products, each labeled by a binary

vector �f , where each term in the sum is the product of
either β1−hi

1 β
ni
0 or −β1−hi

0 β
ni
1 for every i = 0, . . . , N − 1. In

particular, fi = 0 (fi = 1) indicates that the former (latter)
quantity is picked. With this in mind, we can write

N−1∏

i=0

(
β

1−hi
1 β

ni
0 − β

1−hi
0 β

ni
1

)

=
2N −1∑

f =0

N−1∏

i=0

β
ni
fi (−1)fiβ(1−hi)fi

0 β
(1−hi)(1−fi)
1

=
2N −1∑

f =0

(−1)|�f |β(
�1−�h)·�f

0 β
(�1−�h)·(�1−�f )
1

N−1∏

i=0

β
ni
fi . (C4)

By replacing the last expression in Eq. (C3), we can
employ Eq. (C2) to directly relate B�h and G̃�f . We obtain

B�h =
2N −1∑

f =0

(−1)|�f |β(
�1−�h)·�f

0 β
(�1−�h)·(�1−�f )
1 G̃�f . (C5)

This expression is fundamental as is constitutes the link
between the quantity B�h, which in the following is used to
bound the yields, and the observed gains.

By recasting Eq. (C3) as follows:

B�h =
∞∑

n0,...,nN−1=0

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

×
∏

i s.t.
hi=0

(β1β
ni
0 − β0β

ni
1 ), (C6)

we notice that, whenever hi = 1, the coefficient of the
yields Yn0,...,0i,...,nN−1 (i.e., with with ni = 0) is null, imply-
ing that they do not contribute to the value of B�h. Similarly,
when hi = 0, all yields of the form Yn0,...,1i,...,nN−1 are
removed. With this observation, we can now obtain a non-
trivial upper bound on any yield Yn0,...,nN−1 in terms of a
certain combination of B�h.

To do so, we recast Eq. (C6) as follows, where in the
first term we sum only over the indexes ni that correspond
to hi = 1 and set all the other photon indexes to zero, while
in the second term we account for all the other possibilities:
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B�h =(−1)N−m(β0 − β1)
N−m

∑

(n0,...,nN−1)∈N (�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

+
∑

(n0,...,nN−1)∈Ñ (�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )
∏

i s.t.
hi=0

(β1β
ni
0 − β0β

ni
1 ), (C7)

where the sets of indexes N (�h) and Ñ (�h) are defined as

N (�h) := {(n0, . . . , nN−1) : ni = hiri, ri ≥ 1} , (C8)

Ñ (�h) := {(n0, . . . , nN−1) : ni ≥ 1 (if hi = 1); ni ≥ 2 or ni = 0 (if hi = 0)} \ N (�h), (C9)

where ki are integers. Note that the sum over ni in the second term skips the case ni = 1 for hi = 0 since this contribution
is null in Eq. (C6) (see observation above).

We observe that the yields in the first sum in Eq. (C7) contain exactly m nonzero photon numbers, which allowed us
to factor out the quantities (β1β

ni
0 − β0β

ni
1 ). Now, we split the second sum in Eq. (C7) in a sum of N − m terms, where

each term contains only yields with m + k nonzero photon numbers, for k = 1, . . . , N − m. In this way, we can factor out
the quantities (β1β

ni
0 − β0β

ni
1 ) even in the second sum. This becomes relevant later, when we want to evaluate the sign in

front of each yield. In order to sum over the various combinations of yields with m + k photon numbers, we introduce the
binary vectors �h(k), which can be seen as “expansions” of the vector �h obtained by flipping k of its zeros to ones. Thus, we
have that |�h(k)| = m + k and that h(k)i = 1 whenever hi = 1, which can be formally stated as the condition: �h(k) ∧ �h = �h,
where ∧ is the bitwise AND operation. Analogously to �h, when h(k)i = 0 we fix the corresponding photon number ni

to zero. Then, in analogy with N (�h), we define a set of indexes N (�h, �h(k)) for each expansion �h(k) that represents the
combinations of photon numbers that are allowed by the chosen vector �h(k):

N (�h, �h(k)) :=
{
(n0, . . . , nN−1) : ni = h(k)i ri, ri ≥ 1 + h(k)i − hi

}
, (C10)

where we account for the fact that each additional bit equal to one in �h(k), which is a zero in �h, corresponds to an index ni
that starts from two instead of one. According to this, we obtain

B�h = (−1)N−m(β0 − β1)
N−m

∑

(n0,...,nN−1)∈N (�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

+
N−m∑

k=1

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k
∑

(n0,...,nN−1)∈Nk(�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

∏

i s.t.
h(k)i −hi=1

(β
ni−1
0 − β

ni−1
1 ),

(C11)

where we define the following set that accounts for all possible choices of �h(k), for a given k:

Nk(�h) :=
⋃

�h(k)∈{0,1}N :
|�h(k)|=m+k
�h(k)∧�h=�h

N (�h, �h(k)), (C12)

where the operation ∧ represents the entry-wise product. Now, we wish to isolate a specific yield Yu0,...,uN−1 from the first
sum in Eq. (C11) in order to derive an upper bound on it. Note that we can choose any combination of photon numbers
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(u0, . . . , uN−1) such that ui = hiki, for ki ≥ 1. Since the choice of the vector �h is arbitrary, the photon numbers are also
arbitrary. By isolating the yield Yu0,...,uN−1 in Eq. (C11), we obtain

B�h = (−1)N−m(β0 − β1)
N−mYu0,...,uN−1

∏

i s.t.
hi=1

(β
ui
0 − β

ui
1 )

ui!

+ (−1)N−m(β0 − β1)
N−m

∑

(n0,...,nN−1)∈N (�h)\{(u0,...,uN−1)}

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
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0 − β

ni
1 )

+
N−m∑

k=1

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k
∑

(n0,...,nN−1)∈Nk(�h)

Yn0,...,nN−1

n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

∏

i s.t.
h(k)i −hi=1

(β
ni−1
0 − β

ni−1
1 ).

(C13)

We now derive an upper bound on Yu0,...,uN−1 . To this aim, we observe that the yield Yu0,...,uN−1 and each of the yields
in the second term in Eq. (C13) are multiplied by coefficients of the same sign. Indeed, they are multiplied by the same
number of terms of the form (βs

0 − βs
1). More quantitatively, the sign of the coefficient Cu0,...,uN−1 of Yu0,...,uN−1 and of the

coefficients of the yields in the second term is

sign(Cu0,...,uN−1) = (−1)N−m [sign(β0 − β1)]N . (C14)

By similar arguments, the yields in the third term in Eq. (C13) are multiplied by coefficients Cn0,...,nN−1 with the following
sign:

sign(Cn0,...,nN−1) = (−1)N−m−k [sign(β0 − β1)]N . (C15)

In order to extract an upper bound on Yu0,...,uN−1 , we need to minimize all the yields carrying the same sign as Yu0,...,uN−1
and maximize all the yields with opposite sign in Eq. (C13). In our case, this means setting to zero all the yields in the first
sum and all the yields in the second sum that correspond to even values of k. The other yields are set to one. By applying
this reasoning to Eq. (C13), we obtain the following expression satisfied by an upper bound Uu0,...,uN−1 on Yu0,...,uN−1 :

B�h = (−1)N−m(β0 − β1)
N−mUu0,...,uN−1

∏

i s.t.
hi=1

(β
ui
0 − β

ui
1 )

ui!
+

N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k

×
∑

(n0,...,nN−1)∈Nk(�h)

1
n0! · · · nN−1!

∏

i s.t.
hi=1

(β
ni
0 − β

ni
1 )

∏

i s.t.
h(k)i −hi=1

(β
ni−1
0 − β

ni−1
1 ). (C16)

In order to simplify the above expression, we first focus on the term with the sum over k, which we denote B(2)�h and recast
as follows:

B(2)�h =
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k
∑

(n0,...,nN−1)∈Nk(�h)

∏

i s.t.
hi=1

β
ni
0 − β

ni
1

ni!

∏

i s.t.
h(k)i −hi=1

β
ni−1
0 − β

ni−1
1

ni!

=
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k

×
∑

�h(k)∈{0,1}N :
|�h(k)|=m+k
�h(k)∧�h=�h

∑

(n0,...,nN−1)∈N (�h,�h(k))

∏

i s.t.
hi=1

β
ni
0 − β

ni
1

ni!

∏

i s.t.
h(k)i −hi=1

β
ni−1
0 − β

ni−1
1

ni!
, (C17)
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where in the second equality we split the second sum over all the different subsets N (�h, �h(k)) in Nk(�h) using Eq. (C12).
We can now swap the innermost sum in the last expression with the products and obtain

B(2)�h =
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k(β0β1)

k
∑

�h(k)∈{0,1}N :
|�h(k)|=m+k
�h(k)∧�h=�h

∏

i s.t.
hi=1

⎛
⎝

∞∑

ni=1

β
ni
0 − β

ni
1

ni!

⎞
⎠

∏

i s.t.
h(k)i −hi=1

⎛
⎝

∞∑

ni=2

β
ni−1
0 − β

ni−1
1

ni!

⎞
⎠ . (C18)

It can now be easily seen, using the Taylor series of the exponential function, that the following identities hold:

∞∑

n=1

βn
0 − βn

1

n!
= eβ0 − eβ1 , (C19)

∞∑

n=2

βn−1
0 − βn−1

1

n!
= 1
β0β1

(
β1eβ0 − β0eβ1 + β0 − β1

)
. (C20)

By using the above identities in Eq. (C18), we obtain

B(2)�h =
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k

∑

�h(k)∈{0,1}N :
|�h(k)|=m+k
�h(k)∧�h=�h

(eβ0 − eβ1)m
(
β1eβ0 − β0eβ1 + β0 − β1

)k , , (C21)

where we observe that the argument of the sum over �h(k) is independent of �h(k). Therefore, the sum reduces to counting all
the possible choices of �h(k) for a given k. This number is given by the possible combinations of k bits in �h(k) that are set to
one, chosen among the N − m elements that correspond to zeroes in �h. Hence, we have

(N−m
k

)
choices and we obtain

B(2)�h =
N−m∑

k=1
k odd

(−1)N−m−k(β0 − β1)
N−m−k

(
N − m

k

)
(eβ0 − eβ1)m

(
β1eβ0 − β0eβ1 + β0 − β1

)k

=
�(N−m−1)/2�∑

k=0

(−1)N−m−2k−1(β0 − β1)
N−m−2k−1

(
N − m
2k + 1

) (
eβ0 − eβ1

)m (
β1eβ0 − β0eβ1 + β0 − β1

)2k+1 , (C22)

where �x� is the floor function. Finally, by employing (C22) in Eq. (C16), we obtain the following equality satisfied by
the upper bound on the selected yield

B�h = (−1)N−m(β0 − β1)
N−mUu0,...,uN−1

∏

i s.t.
hi=1

(β
ui
0 − β

ui
1 )

ui!
+

�(N−m−1)/2�∑

k=0

(−1)N−m−2k−1(β0 − β1)
N−m−2k−1

×
(

N − m
2k + 1

) (
eβ0 − eβ1

)m (
β1eβ0 − β0eβ1 + β0 − β1

)2k+1 . (C23)

By isolating the yield’s upper bound and relabeling ui → ni, we obtain the final expression of the yield bound: Yn0,...,nN−1 =
min{Un0,...,nN−1 , 1}, where

Un0,...,nN−1 =
∏

i s.t.
ni �=0

ni!
β

ni
0 − β

ni
1

[
B�h (−1)N−m

(β0 − β1)N−m + (
eβ0 − eβ1

)m
�(N−m−1)/2�∑

k=0

(
N − m
2k + 1

)(
β1eβ0 − β0eβ1 + β0 − β1

β0 − β1

)2k+1
]

,

(C24)
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where B�h is given in Eq. (C5) (and in principle can depend on the detector Dj through the gains) and m = |�h|, while �h is
the binary vector with components hi defined by

hi =
{

1 if ni ≥ 1
0 if ni = 0. (C25)

APPENDIX D: CHANNEL MODEL

In this Appendix we describe our channel model and compute the detection statistics of the protocol. The channel model
includes the following sources of noise.

1. Pure-photon loss: the optical mode of party goes through the same lossy channel. The lossy channel is modeled
with a beam splitter with transmittance η, where the additional input port of the beam splitter is fed with the vacuum.

2. Polarization misalignment: the optical mode of each party undergoes a polarization misalignment modeled by a
unitary operation that maps the creation operator of each mode according to

â†
i → cos θiâ

†
i,P − sin θiâ

†
i,P⊥ , (D1)

where â†
i,P is the creation operator on the original polarization and â†

i,P⊥ is the creation operator on the orthogonal
polarization.

3. Phase shift: the optical mode of each party undergoes a phase shift φi, modelled by multiplying the mode operator
â†

i by a phase φi.
4. Dark counts in the detectors: each detector is affected by dark counts, with a probability pd that is equal for all

detectors and independent on the state sent.

In Sec. V we argue that since the channel of each party is equally lossy, the optimal choice for the signal intensities is the
same for each party. Hence, here we assume that the amplitudes of each party in KG and PE rounds coincide: αi = α and
Si = S , for every i. Moreover, we choose the same polarization misalignment between the reference party A0 and each
other party. This means that we choose a misalignment of θ0 for A0 and θ1 for the other parties. Similarly for the phase
shift, we set φ0 = 0 and φi = φ for i �= 0.

1. Computation of Pr(�j |x0, x1, . . . , xN−1, RKG)

We start by computing the detection probability Pr(�j |x0, x1, . . . , xN−1, RKG), which is the probability that only detector
Dj clicks, given that party Ai prepared, in a KG round, the coherent state |xiα〉, with xi = ±1. This detection probability
is needed to compute the QBER, Eq. (4), through Eq. (5).

The state prepared by the N parties in a KG round, before any noise or loss is applied, reads

|ψin〉 =
N−1⊗

i=0

|xiα〉. (D2)

We now apply the sources of noise discussed above.

1. The resulting state after the lossy channel is the following:

|ψ ′
in〉 =

N−1⊗

i=0

|xi
√
ηα〉. (D3)

2. After applying the polarization misalignment, we obtain

|ψ ′′
in〉 =

N−1⊗

i=0

∣∣xi cos θi
√
ηα
〉
P

∣∣−xi sin θi
√
ηα
〉
P⊥

. (D4)
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3. After the phase shift φi is applied on each mode, we get

|ψ ′′′
in 〉 =

N−1⊗

i=0

∣∣xi cos θieiφi
√
ηα
〉
P

∣∣−xi sin θieiφi
√
ηα
〉
P⊥

. (D5)

The state in Eq. (D5) is the global state of the N parties’ modes, after the noisy and lossy channel and before entering the
BBS network. We now evolve the modes through the M -input and M -output BBS network, according to the transformation
in Eq. (3). We define the coefficients of the inverse transformation of the modes as fi,j := (−1)−�i·�j . Here, we make the
nonrestrictive assumption that the N modes sent by the parties correspond to the first N inputs of the BBS network. A
different choice would not alter the protocol’s performance. The output state after the BBS network reads

|ψout〉 =
M−1⊗

j =0

∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,j cos θieiφi

〉

P

∣∣∣∣∣−
√
η

M
α

N−1∑

i=0

xifi,j sin θieiφi

〉

P⊥

. (D6)

At this point, the relay performs a threshold measurement on each mode that returns a click in the corresponding
detector if one or more photons are detected. We are interested in the probability that only detector Dj clicks, i.e.,
Pr(�j |x0, x1, . . . , xN−1, RKG). By including the effect of dark counts, we can express such probability as follows:

Pr(�j |x0, x1, . . . , xN−1, RKG) = pd(1 − pd)
M−1Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

+ (1 − pd)
M−1Tr

⎡
⎣ρout(1j − |0〉〈0|j )

⊗

k �=j

|0〉〈0|k
⎤
⎦

= (1 − pd)
M−1Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦− (1 − pd)

M Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

, (D7)

where |0〉〈0|k is the projector on the vacuum of the output mode k for polarizations P and P⊥, as the detectors do not
distinguish polarization, and ρout = |ψout〉〈ψout|. We calculate both terms appearing in Eq. (D7). For the second term, we
have

Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

=
M−1∏

k=0

exp

⎡
⎣−

∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

−
∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎤
⎦

= exp

⎡
⎣− η

M
α2

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠
⎤
⎦ . (D8)

We now focus on the sum over k in the last expression and use the fact that we fix the angles θi and φi as discussed above.
The sum over k simplifies to

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠

=
M−1∑

k=0

⎛
⎝
∣∣∣∣∣x0 cos θ0 + cos θ1eiφ

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+
∣∣∣∣∣x0 sin θ0 + sin θ1eiφ

N−1∑

i=1

xifi,k

∣∣∣∣∣

2
⎞
⎠

064017-21



CARRARA, MURTA, and GRASSELLI PHYS. REV. APPLIED 19, 064017 (2023)

=
M−1∑

k=0

⎛
⎝x2

0 cos2 θ0 + cos2 θ1

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+ x2
0 sin2 θ0 + sin2 θ1

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+ 2x0 cos θ0 cos θ1 cosφ
N−1∑

i=1

xifi,k + 2x0 sin θ0 sin θ1 cosφ
N−1∑

i=1

xifi,k

)

=
M−1∑

k=0

⎛
⎝1 +

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+ 2x0 cos θ cosφ
N−1∑

i=1

xifi,k

⎞
⎠ , (D9)

where we use that xi = ±1, cos θi
2 + sin θi

2 = 1 and cos θ0 cos θ1 + sin θ0 sin θ1 = cos(θ0 − θ1) and where we define θ :=
θ0 − θ1. Consider the following lemma for the function fi,k, which coincides with fk,i in Eq. (A6).

Lemma 1.—For fk,i as defined by (A6), it holds

M−1∑

i=0

fk,i = M δk,0. (D10)

Proof.—To show the result of the lemma we first recall that the function fk,i is given by

fk,i = (−1)�k·�i, (D11)

where �k and �i are the binary vectors of length s that represent the numbers k and i in binary representation. Then, the sum
over i of fk,i can be recast as

M−1∑

i=0

fk,i =
∑

�i∈{0,1}s

(−1)�k·�i =

∣∣∣�k
∣∣∣∑

c=0

(−1)c
(|�k|

c

)
2s−

∣∣∣�k
∣∣∣, (D12)

where in the second equality we perform the sum over all the possible values c of �k · �i and count how many distinct vectors
�i lead to the same scalar product c = �k · �i. This number is given by the ways in which we can select c bits equal to one in
�k (the binomial coefficient), which fixes the corresponding c bits in �i to be one and also fixes other |�k| − c bits in �i to be
zero since they correspond to the ones in �k that have not been selected. At this point, the vector �i is almost all fixed, except
for the bits that correspond to the s − |�k| zero bits in �k. Since such bits in �i can be arbitrary as they would not contribute
to the scalar product, the total number of possibilities is given by 2s−|�k|.

Now, we can simplify the expression in Eq. (D12) as follows:

M−1∑

i=0

fk,i =

∣∣∣�k
∣∣∣∑

c=0

(−1)c
(|�k|

c

)
2s−

∣∣∣�k
∣∣∣ = 2s−

∣∣∣�k
∣∣∣

∣∣∣�k
∣∣∣∑

c=0

(|�k|
c

)
(−1)c(1)|�k|−c = 2s−

∣∣∣�k
∣∣∣
(1 − 1)|�k| = Mδk,0, (D13)

where we use the binomial formula in the third line and that M = 2s together with the definition of Kronecker δ in the last
line. This concludes the proof. �
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By applying Lemma 3 in Eq. (D9), we can simplify the term with the cosines as follows:

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠ =

M−1∑

k=0

⎛
⎝1 +

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

+ 2x0 cos θ cosφ
N−1∑

i=1

xifi,k

⎞
⎠

=
M−1∑

k=0

⎛
⎝1 +

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2
⎞
⎠+ 2x0 cos θ cosφ

N−1∑

i=1

xiMδi,0

=
M−1∑

k=0

⎛
⎝1 +

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2
⎞
⎠ = M +

M−1∑

k=0

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

, (D14)

where the sum with the Kronecker δ δi,0 is identically zero since the index i starts from one.
We now expand the square in the last expression and obtain

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠ = M +

M−1∑

k=0

∣∣∣∣∣

N−1∑

i=1

xifi,k

∣∣∣∣∣

2

= M +
M−1∑

k=0

N−1∑

i,i′=1

xixi′ fi,kfi′,k = M +
N−1∑

i,i′=1

xixi′
∑

�k∈{0,1}s

(−1)(�i+�i′)·�k,

(D15)

where we remark that the result of Lemma 3 cannot be directly applied to the innermost sum since (�i +�i′) is not a binary
vector. However, we can use the lemma to compute such a sum. In order to do so, we observe that the vector (�i +�i′)
deviates from a binary vector only in the elements r where ir = i′r = 1, and we have �i · �i′ many such elements. These
elements do not contribute to the value of (−1)(�i+�i′)·�k regardless of the value of kr. Hence, we can define shorter vectors
�m ∈ {0, 1}s−�i·�i′ and �l ∈ {0, 1}s−�i·�i′ that correspond to the remaining s −�i · �i′ elements of �i +�i′ and �k, respectively, where
ir + i′r �= 2. By definition, we have that (−1)(�i+�i′)·�k = (−1) �m·�l. Now, in order to replace the sum over �k with a sum over
�l, we must account for the fact that, for every fixed value of �l and hence of (−1) �m·�l, there are 2�i·�i′ vectors �k such that
(−1)(�i+�i′)·�k = (−1) �m·�l. Therefore, we can recast the innermost sum in Eq. (D15) as follows:

∑

�k∈{0,1}s

(−1)(�i+�i′)·�k = 2�i·�i′ ∑

�l∈{0,1}s−�i·�i′
(−1) �m·�l = 2�i·�i′2s−�i·�i′δ �m,�0 = Mδ �m,�0 = Mδ�i,�i′ , (D16)

where in the second equality we used Lemma 3 since now �m is a binary vector and in the fourth equality we use the fact
that the δ δ �m,�0 effectively implies that �i = �i′ over the whole set of s elements since �m is given by the elements of �i +�i′
corresponding to the positions where the two vectors are not both equal to one.

Thus, by using Eq. (D16) in Eq. (D15), we obtain

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠ = M + M

N−1∑

i,i′=1

xixi′δ�i,�i′

= M

(
1 +

N−1∑

i=1

x2
i

)
= MN , (D17)

where we use the fact that xi = ±1. Finally, by employing Eq. (D17) in Eq. (D8), we obtain

Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

= e−Nηα2
, (D18)

which concludes the calculation of the second trace in Eq. (D7).

064017-23



CARRARA, MURTA, and GRASSELLI PHYS. REV. APPLIED 19, 064017 (2023)

We now move on to calculate the first trace in Eq. (D7). In a similar manner to Eq. (D8), we can write

Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦ =

∏

k �=j

exp

⎡
⎣−

∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

−
∣∣∣∣∣

√
η

M
α

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎤
⎦

= exp

⎡
⎣− η

M
α2
∑

k �=j

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2
⎞
⎠
⎤
⎦

= exp

⎡
⎣− η

M
α2
∑

k �=j

Ck

⎤
⎦ = exp

[
− η

M
α2

(
M−1∑

k=0

Ck − Cj

)]
= e−Nηα2

e(η/M )α2Cj , (D19)

where in the third line we define

Ck :=
∣∣∣∣∣

N−1∑

i=0

xifi,k cos θieiφi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

xifi,k sin θieiφi

∣∣∣∣∣

2

, (D20)

and we use Eq. (D18) in the last line. With analogous calculations to those leading to Eq. (D9), one can simplify Cj as
follows:

Cj = 1 +
∣∣∣∣∣

N−1∑

i=1

xifi,j

∣∣∣∣∣

2

+ 2x0 cos θ cosφ
N−1∑

i=1

xifi,j . (D21)

We now recall that in the postprocessing of the protocol, party Ai flips their X -basis outcome, xi, if fi,j = (−1)�i·�j = −1.
For this, we identify the sum

∑N−1
i=1 xifi,j in the last expression as the sum of the postprocessed X -basis outcomes of the

parties (excluding A0) and can label it as follows:

N−1∑

i=1

xifi,j =: Sj
x1,...,xN−1

. (D22)

This allows us to recast Cj as follows:

Cj = 1 + (Sj
x1,...,xN−1

)2 + 2Sj
x1,...,xN−1

x0 cos θ cosφ. (D23)

By using the last expression in Eq. (D19), we obtain the final form of the first trace in Eq. (D7):

Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦ = e−Nηα2

e(η/M )α2
(

1+(Sj
x1,...,xN−1 )

2+2Sj
x1,...,xN−1 x0 cos θ cosφ

)

= e−(MN−1)ηα2/M eηα
2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 x0 cos θ cosφ
)
/M . (D24)

Finally, by combining Eqs. (D18) and (D24) in Eq. (D7), we obtain the following expression for the probability that only
detector Dj clicks, conditioned on the parties preparing coherent states |x0α〉 , . . . , |xN−1α〉 in a KG round:

Pr(�j |x0, x1, . . . , xN−1, RKG)

= (1 − pd)
M−1e−(MN−1)ηα2/M eηα

2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 x0 cos θ cosφ
)
/M

− (1 − pd)
M e−Nηα2

, (D25)

where Sj
x1,...,xN−1 is given in Eq. (D22) and θ = θ0 − θ1.
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2. Computation of Pr(�j |RKG)

We now calculate the probability that detector Dj clicks in a KG round, i.e.,

Pr(�j |RKG) = 1
2N

∑

(x0,...,xN−1)∈{1,−1}N

Pr(�j |x0, x1, . . . , xN−1, RKG)

= −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N e−(MN−1)ηα2/M

×
∑

(x0,...,xN−1)∈{1,−1}N

eηα
2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 x0 cos θ cosφ
)
/M . (D26)

We denote the leftover sum in the last expression as � for brevity. Then, we can simplify it as follows:

� =
∑

(x1,...,xN−1)∈{1,−1}N−1

(
eηα

2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 cos θ cosφ
)
/M + eηα

2
(
(Sj

x1,...,xN−1 )
2−2Sj

x1,...,xN−1 cos θ cosφ
)
/M
)

=
∑

(x1,...,xN−1)∈{1,−1}N−1

eηα
2(Sj

x1,...,xN−1 )
2/M

(
eηα

22Sj
x1,...,xN−1 cos θ cosφ/M + e−ηα22Sj

x1,...,xN−1 cos θ cosφ/M
)

= 2
∑

(x1,...,xN−1)∈{1,−1}N−1

eηα
2(Sj

x1,...,xN−1 )
2/M cosh

(
2
ηα2

M
Sj

x1,...,xN−1
cos θ cosφ

)
. (D27)

At this point, we define a vector �y ∈ {1, −1}N−1 such that yi = xifi,j . Then, we can rewrite Sj
x1,...,xN−1 = ∑

i yi. Of note,
since we sum over all possible vectors (x1, . . . , xN−1), we reach all possible values for �y. This implies that we can recast
the sum over (x1, . . . , xN−1) as a sum over all possible vectors �y. This has the consequence that the probability of detector
Dj clicking is independent of j . With these considerations, we rewrite the last expression as follows:

� = 2
∑

�y∈{1,−1}N−1

eηα
2(
∑

i yi)
2/M cosh

(
2
ηα2

M
(
∑

i

yi) cos θ cosφ

)
. (D28)

Now let us call k the number of ones in the vector �y. We have that
∑

i yi = k − (N − 1 − k) = 2k + 1 − N . Since there
are

(N−1
k

)
different vectors �y that have a fixed number k of ones, we can recast the last expression as follows:

� = 2
N−1∑

k=0

(
N − 1

k

)
eηα

2(2k+1−N )2/M cosh
(

2
ηα2

M
(2k + 1 − N ) cos θ cosφ

)
. (D29)

By inserting the last expression in Eq. (D26), we obtain the final expression for the probability that detector Dj clicks in
a KG round:

Pr(�j |RKG) = −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N−1 e−(MN−1)ηα2/M

×
N−1∑

k=0

(
N − 1

k

)
eηα

2(2k+1−N )2/M cosh
(

2
ηα2

M
(2k + 1 − N ) cos θ cosφ

)
, (D30)

where θ = θ0 − θ1. As discussed above, the probability that a specific detector clicks is independent of j , as expected
given our symmetric channel model.
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3. Computation of Qj
X0,Xi

The QBER is computed through Eq. (5), which we report here for clarity:

Qj
X0,Xi

=
∑

x0 �=xifi,j

Pr
(
�j |x0, xi, RKG

)

4 Pr(�j |RKG)
, (D31)

where the only quantity that still needs to be computed is Pr
(
�j |x0, xi, RKG

)
. By definition, we have

Pr(�j |x0, xi, RKG) = 1
2N−2

∑

(x1,...,x̂i,...,xN−1)∈{1,−1}N−2

Pr(�j |x0, x1, . . . , xN−1, RKG)

= −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N−2 e−(MN−1)ηα2/M

×
∑

(x1,...,x̂i,...,xN−1)∈{1,−1}N−2

eηα
2
(
(Sj

x1,...,xN−1 )
2+2Sj

x1,...,xN−1 x0 cos θ cosφ
)
/M , (D32)

where (x1, . . . , x̂i, . . . , xN−1) are (N − 2)-dimensional vectors where the ith element is removed. Then, we can define a
vector �y ∈ {1, −1}N−1 with yl = xlfl,j for l �= i and yi = 0, such that Sj

x1,...,xN−1 = ∑
l yl + xifi,j . Since the sum in the last

expression runs over all vectors (x1, . . . , x̂i, . . . , xN−1), we can reach all possible choices of �y, meaning that we can recast
the sum as a sum over all possible choices of �y. With these considerations, we recast Eq. (D32) as follows:

Pr(�j |x0, xi, RKG) = −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N−2 e−(MN−1)ηα2/M

×
∑

�y∈{1,−1}N−1:
yi=0

eηα
2
(
(
∑

l yl+xifi,j )2+2(
∑

l yl+xifi,j )x0 cos θ cosφ
)
/M . (D33)

We label the sum as �′ and focus on it

�′ =
∑

�y∈{1,−1}N−1:
yi=0

eηα
2
(
(
∑

l yl)
2+1+2xifi,j

∑
l yl+2xifi,j x0 cos θ cosφ+2x0 cos θ cosφ

∑
l yl

)
/M

= eηα
2(1+2x0xifi,j cos θ cosφ)/M

∑

�y∈{1,−1}N−1:
yi=0

eηα
2
(
(
∑

l yl)
2+2

∑
l yl(xifi,j +x0 cos θ cosφ)

)
/M . (D34)

By replicating the argument in the calculation of Pr(�j |RKG), we can replace the sum over �y with a sum over k, which is
the number of ones in �y:

�′ = eηα
2(1+2x0xifi,j cos θ cosφ)/M

N−2∑

k=0

(
N − 2

k

)
eηα

2(2k+2−N )2/M e2ηα2(2k+2−N )(xifi,j +x0 cos θ cosφ)/M . (D35)

By inserting this in Eq. (D33), we obtain the final expression for the probability that detector Dj clicks, given that party
A0 (Ai) prepared coherent state |x0α〉 (|xiα〉):

Pr(�j |x0, xi, RKG) = −(1 − pd)
M e−Nηα2 + (1 − pd)

M−1

2N−2 e−(MN−2−2x0xifi,j cos θ cosφ)ηα2/M

×
N−2∑

k=0

(
N − 2

k

)
eηα

2(2k+2−N )2/M e2ηα2(2k+2−N )(xifi,j +x0 cos θ cosφ)/M . (D36)
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With Eq. (D36) we can finally compute the QBER as follows:

Qj
X0,Xi

=
∑

x0 �=xifi,j

Pr
(
�j |x0, xi, RKG

)

4 Pr(�j |RKG)
= −(1 − pd)

M e−Nηα2

2 Pr(�j |RKG)
+ (1 − pd)

M−1

2N Pr(�j |RKG)
e−(MN−2+2 cos θ cosφ)ηα2/M

×
N−2∑

k=0

(
N − 2

k

)
eηα

2(2k+2−N )2/M

×
(

e2ηα2(2k+2−N )(1−cos θ cosφ)/M + e−2ηα2(2k+2−N )(1−cos θ cosφ)/M
)

= −(1 − pd)
M e−Nηα2

2 Pr(�j |RKG)
+ (1 − pd)

M−1

2N−1 Pr(�j |RKG)
e−(MN−2+2 cos θ cosφ)ηα2/M

×
N−2∑

k=0

(
N − 2

k

)
eηα

2(2k+2−N )2/M cosh
(

2
ηα2

M
(2k + 2 − N )(1 − cos θ cosφ)

)
,

(D37)

which is also independent of j (Pr(�j |RKG) is independent of j , see Eq. (D30)), as well as i, due to the symmetry of the
considered noise model.

4. Computation of Pr(�j |β0, β1, . . . , βN−1)

We now calculate the gains, i.e., the probability that only detector Dj clicks in a PE round where the parties prepared
phase-randomized coherent states with intensities β0,β1, . . . ,βN−1. We recall that the state (1) sent by party Ai can be
equivalently described as follows:

ρai(βi) = 1
2π

∫ 2π

0
dϕi|

√
βieiϕi〉〈

√
βieiϕi |, (D38)

where βi ∈ Si. Thus, the state sent by all parties reads

ρin =
N−1⊗

i=0

ρai(βi) = 1
(2π)N

∫ 2π

0
dϕ0 · · · dϕN−1

N−1⊗

i=0

|
√
βieiϕi〉〈

√
βieiϕi |. (D39)

We now apply our channel model comprising a pure-loss channel and a polarization misalignment (we neglect the phase
shift as the states are already phase randomized). After going through the lossy and noisy channel, ρin evolves to

ρ ′
in = 1

(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

N−1⊗

i=0

| cos θi
√
ηβieiϕi〉〈cos θi

√
ηβieiϕi |P

⊗ | − sin θi
√
ηβieiϕi〉〈− sin θi

√
ηβieiϕi |P⊥ . (D40)

The final step consists in evolving ρ ′
in through the BBS network. We obtain the following state:

ρout = 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

M−1⊗

k=0

∣∣∣∣∣

√
η

M

N−1∑

i=0

fi,k cos θi
√
βieiϕi

〉 〈√
η

M

N−1∑

i=0

fi,k cos θi
√
βieiϕi

∣∣∣∣∣
P

⊗
∣∣∣∣∣−
√
η

M

N−1∑

i=0

fi,k sin θi
√
βieiϕi

〉 〈
−
√
η

M

N−1∑

i=0

fi,k sin θi
√
βieiϕi

∣∣∣∣∣
P⊥

, (D41)
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which we remark is not anymore a product state of phase-randomized coherent states. Now, similarly to the calculation of
Pr(�j |x0, . . . , xN−1, RKG), we can express each gain as follows:

Pr(�j |β0,β1, . . . ,βN−1) = (1 − pd)
M−1Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦− (1 − pd)

M Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

, (D42)

where |0〉〈0|k is the projector on the vacuum of the output mode k for polarizations P and P⊥, since the detectors do not
distinguish polarization. We now evaluate the two terms in Eq. (D42). Let us begin with the second, i.e.,

Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

= 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

×
M−1∏

k=0

∣∣∣∣∣〈0|
√
η

M

N−1∑

i=0

fi,k cos θi
√
βieiϕi〉

∣∣∣∣∣

2 ∣∣∣∣∣〈0| −
√
η

M

N−1∑

i=0

fi,k sin θi
√
βieiϕi〉

∣∣∣∣∣

2

= 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

×
M−1∏

k=0

exp

⎡
⎣−

∣∣∣∣∣

√
η

M

N−1∑

i=0

fi,k cos θi
√
βieiϕi

∣∣∣∣∣

2

−
∣∣∣∣∣

√
η

M

N−1∑

i=0

fi,k sin θi
√
βieiϕi

∣∣∣∣∣

2
⎤
⎦

=
∫ 2π

0
,

dϕ0 . . . dϕN−1

(2π)N
exp

⎡
⎣− η

M

M−1∑

k=0

⎛
⎝
∣∣∣∣∣

N−1∑

i=0

fi,k cos θi
√
βieiϕi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

fi,k sin θi
√
βieiϕi

∣∣∣∣∣

2
⎞
⎠
⎤
⎦

≡
∫ 2π

0

dϕ0 . . . dϕN−1

(2π)N
e− η

M
∑M−1

k=0 Ck . (D43)

Let us now focus on the sum of the terms labeled Ck. By expanding the squares in Ck we obtain

M−1∑

k=0

Ck =
M−1∑

k=0

⎛
⎜⎜⎝

N−1∑

i=0

∣∣∣fi,k cos θi
√
βieiϕi

∣∣∣
2
+

N−1∑

i,i′=0
i�=i′

fi,kfi′,k cos θi cos θi′
√
βiβi′ei(ϕi−ϕi′ )

+
N−1∑

i=0

∣∣∣fi,k sin θi
√
βieiϕi

∣∣∣
2
+

N−1∑

i,i′=0
i�=i′

fi,kfi′,k sin θi sin θi′
√
βiβi′ei(ϕi−ϕi′ )

⎞
⎟⎟⎠

=
M−1∑

k=0

⎛
⎜⎜⎝

N−1∑

i=0

cos2 θiβi + 2
N−1∑

i,i′=0
i<i′

fi,kfi′,k cos θi cos θi′
√
βiβi′ cos(ϕi − ϕi′)

+
N−1∑

i=0

sin2 θiβi + 2
N−1∑

i,i′=0
i<i′

fi,kfi′,k sin θi sin θi′
√
βiβi′ cos(ϕi − ϕi′)

⎞
⎟⎟⎠ . (D44)
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Now, we use the result in Eq. (D16) (derived from Lemma 3) to argue that

M−1∑

k=0

fi,kfi′,k =
M−1∑

k=0

(−1)(�i+�i′)·�k

= Mδ�i,�i′ . (D45)

By applying this result in Eq. (D44), and by noting that �i and �i′ must differ in the sums that involve them, we are left with

M−1∑

k=0

Ck =
M−1∑

k=0

(
N−1∑

i=0

βi cos θi
2 +

N−1∑

i=0

βi sin θi
2

)
= M

N−1∑

i=0

βi. (D46)

By using this result in Eq. (D43), we can directly integrate over the phases and obtain the following expression for the
second term in Eq. (D42):

Tr

[
ρout

M−1⊗

k=0

|0〉〈0|k
]

= e−η∑i βi . (D47)

Regarding the first term in Eq. (D42), we can express it as follows:

Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦ = 1

(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1e−(η/M )

∑M−1
k=0, k �=j Ck

= 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1e−(η/M )

(∑M−1
k=0 Ck−Cj

)

= e−η∑i βi
1

(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1eηCj /M . (D48)

Now we calculate the coefficient Cj by expanding its squares:

Cj =
∣∣∣∣∣

N−1∑

i=0

fi,j cos θi
√
βieiϕi

∣∣∣∣∣

2

+
∣∣∣∣∣

N−1∑

i=0

fi,j sin θi
√
βieiϕi

∣∣∣∣∣

2

=
N−1∑

i=0

βi + 2
N−1∑

i,i′=0
i<i′

fi,j fi′,j (cos θi cos θi′ + sin θi sin θi′)
√
βiβi′ cos(ϕi − ϕi′)

=
N−1∑

i=0

βi + 2
N−1∑

i,i′=0
i<i′

fi,j fi′,j cos(θi − θi′)
√
βiβi′ cos(ϕi − ϕi′). (D49)

Now we use the fact that θi = θ1 for every i ≥ 1. By splitting the second sum into two terms, where the first has i = 0
fixed and in the second i ≥ 1, we obtain

Cj =
N−1∑

i=0

βi + 2 cos θ
N−1∑

i=1

fi,j
√
β0βi cos(ϕ0 − ϕi)+ 2

N−1∑

i,i′=1
i<i′

fi,j fi′,j
√
βiβi′ cos(ϕi − ϕi′), (D50)

where θ = θ0 − θ1. By using this expression in Eq. (D48), we obtain the following expression for the first term in
Eq. (D42):

Tr

⎡
⎣ρout1j

⊗

k �=j

|0〉〈0|k
⎤
⎦ = e−η(1−1/M )

∑
i βi Ij (β0, . . . ,βN−1), (D51)
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where we define the integral:

Ij (β0, . . . ,βN−1) := 1
(2π)N

∫ 2π

0
dϕ0 . . . dϕN−1

× exp

⎡
⎢⎢⎣

2η
M

⎛
⎜⎜⎝cos θ

N−1∑

i=1

fi,j
√
β0βi cos(ϕ0 − ϕi)+

N−1∑

i,i′=1
i<i′

fi,j fi′,j
√
βiβi′ cos(ϕi − ϕi′)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ . (D52)

By employing Eqs. (D51) and (D47) in Eq. (D42), we obtain the following compact expression for the gains:

Pr(�j |β0,β1, . . . ,βN−1)

= (1 − pd)
M−1e−η(1−1/M )

∑
i βi Ij (β0, . . . ,βN−1)− (1 − pd)

M e−η∑i βi , (D53)

where Ij (β0, . . . ,βN−1) is given in Eq. (D52).
Of note, due to our symmetric channel model, the gains are independent of which detector Dj clicks. To show this, we

argue that the integral in Eq. (D52) is actually independent of j . To this aim, we label the function to be integrated in
Eq. (D52) as follows:

Fj (ϕ0, . . . ,ϕN−1) := exp

⎡
⎢⎢⎣

2η
M

⎛
⎜⎜⎝cos θ

N−1∑

i=1

(−1)�i·�j
√
β0βi cos(ϕ0 − ϕi)+

N−1∑

i,i′=1
i<i′

(−1)(�i+�i′)·�j√βiβi′ cos(ϕi − ϕi′)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ (D54)

and observe that this function is periodic in each variable ϕi, with period 2π . The only dependency of Fj on j comes from
the ±1 signs inside the sums. We can reabsorb such signs by defining alternative integration variables �i := ϕi − π · (�i ·
�j ), which allow us to simplify the summands as follows:

(−1)�i·�j cos(ϕ0 − ϕi) = cos(�0 −�i), (D55)

(−1)(�i+�i′)·�j cos(ϕi − ϕi′) = (−1)�i
′·�j −�i·�j cos(ϕi − ϕi′) = cos(�i −�i′). (D56)

Then, by performing the change of variable �i := ϕi − π · (�i · �j ) in the integral and by using the fact that the function Fj
is periodic in each variable, we obtain

Ij (β0, . . . ,βN−1) = 1
(2π)N

∫ 2π−π(�i·�j )

−π(�i·�j )
d�0d�1 . . . d�N−1F0(�0,�1, . . . ,�N−1)

= 1
(2π)N

∫ 2π

0
d�0d�1 . . . d�N−1F0(�0,�1, . . . ,�N−1) = I0(β0, . . . ,βN−1), (D57)

which confirms that Ij is independent of j . The final formula for the gains is thus

Pr(�j |β0,β1, . . . ,βN−1) = (1 − pd)
M−1e−η(1−1/M )

∑
i βi I(β0, . . . ,βN−1)− (1 − pd)

M e−η∑i βi , (D58)

where the integral

I(β0, . . . ,βN−1) =
∫ 2π

0

dϕ0 . . . dϕN−1

(2π)N
exp

⎡
⎢⎢⎣

2η
M

⎛
⎜⎜⎝cos θ

N−1∑

i=1

√
β0βi cos(ϕ0 − ϕi)+

N−1∑

i,i′=1
i<i′

√
βiβi′ cos(ϕi − ϕi′)

⎞
⎟⎟⎠

⎤
⎥⎥⎦ , (D59)

is evaluated numerically in our simulations. Note that we freely relabeled the variables in the integral back to ϕi.
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5. Computation of Pr(�j |n0, . . . , nN−1)

Here we calculate the analytical expression of any yield Yj
n0,...,nN−1 , defined in Eq. (6) as the probability that detector Dj

clicks given the hypothetical scenario in which party Ai sent exactly ni photons.
We remark that in an experiment the parties cannot, in general, learn the exact value of each yield with the decoy-state

analysis, but can derive upper bounds as shown in Appendix C. In the limit of an infinite number of decoy intensities, the
yields’ upper bounds would tend to the exact values computed here.

To evaluate Yj
n0,...,nN−1 , we consider the scenario in which the parties send the state

⊗N−1
i=0 |ni〉, where |ni〉 is a Fock state

of ni photons. The state can be written as

|ξ(n0, . . . , nN−1)〉 =
(

N−1∏

i=0

(â†
i )

ni

√
ni!

)
|0〉 , (D60)

where â†
i is the creation operator of the optical mode of party Ai and |0〉 represents the vacuum state on all modes. We

now introduce, step by step, the effect of all sources of noise and then apply the BBS network.
The lossy channel transforms each party’s mode according to

â†
i → √

ηâ†
i +

√
1 − ηl̂†i , (D61)

where l̂†i is the creation operator of the loss mode of party Ai. The input state |ξ〉 is transformed as follows:

|ξ ′(n0, . . . , nN−1)〉 =
(

N−1∏

i=0

(
√
ηâ†

i + √
1 − ηl̂†i )

ni

√
ni!

)
|0〉

=
⎡
⎣

N−1∏

i=0

⎛
⎝

ni∑

ki=0

(
ni

ki

)
ηki/2(1 − η)(ni−ki)/2

√
ni!

(âi
†
)ki(l̂†i )

ni−ki

⎞
⎠
⎤
⎦ |0〉

=
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)
η
∑

i ki/2(1 − η)
∑

i(ni−ki)/2

√
n0! · · · nN−1!

√
(n0 − k0)! · · · (nN−1 − kN−1)!

×
[

N−1∏

i=0

(âi
†
)ki

]
|0〉a0,...,aN−1 ⊗ |n0 − k0〉l0 ⊗ · · · ⊗ |nN−1 − kN−1〉lN−1 , (D62)

where we just use the binomial expansion in the second line and where ai and li are used to indicate the optical mode and
the loss mode of party Ai, respectively.

We now note that the loss modes are not observed by the parties and thus need to be traced out. The density matrix
ρ ′ = |ξ ′〉〈ξ ′| will thus have two sets of indices (k0, . . . , kN−1) and (k′

0, . . . , k′
N−1). However, it is immediate to see from

Eq. (D62) that tracing out the loss modes will impose the conditions ki = k′
i ∀i. Thus we are left with the state

ρ ′ =
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

(
n0

k0

)2

· · ·
(

nN−1

kN−1

)2

η
∑

i ki(1 − η)
∑

i(ni−ki)
(n0 − k0)! · · · (nN−1 − kN−1)!

n0! · · · nN−1!

×
[

N−1∏

i=0

(âi
†
)ki

]
|0〉〈0|a0,...,aN−1

[
N−1∏

i=0

(âi)
ki

]

=
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)
η
∑

i ki(1 − η)
∑

i(ni−ki)

k0! · · · kN−1!

[
N−1∏

i=0

(âi
†
)ki

]
|0〉〈0|a0,...,aN−1

[
N−1∏

i=0

(âi)
ki

]
, (D63)

where we use the fact that (ni − ki)!/ni! = 1/
(ni

ki

)
ki! and where, from now on, for simplicity of notation we neglect the

explicit dependence of the state on n0, . . . , nN−1.
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We now introduce the polarization misalignment, while we skip the phase misalignment since its effect cancels out on
tensor products of Fock states. The polarization misalignment acts on the creation operators of each mode as follows:

â†
i → cos θiâ

†
i,P − sin θiâ

†
i,P⊥ , (D64)

where we recall that in our channel model we set θi = θ1 for i ≥ 1, i.e., we introduce only a misalignment between the
reference party A0 and the other parties. For simplicity of notation we omit the label P and consider the polarization P
to be the input polarization and label the orthogonal polarization with ⊥. By applying the above transformation to the
creation operators in Eq. (D63) and by using again the binomial expansion we obtain

N−1∏

i=0

(
cos θiâi

† − sin θiâ
†
i,⊥
)ki =

N−1∏

i=0

⎛
⎝

ki∑

li=0

(−1)ki−li

(
ki

li

)
(cos θi)

li(sin θi)
ki−li(âi

†
)li(â†

i,⊥)
ki−li

⎞
⎠

=
k0∑

l0=0

· · ·
kN−1∑

lN−1=0

(−1)
∑

i(ki−li)
(

k0

l0

)
· · ·
(

kN−1

lN−1

)
(cos θ0)

l0

× (sin θ0)
k0−l0(cos θ1)

∑N−1
i=1 li(sin θ1)

∑N−1
i=1 (ki−li)

[
N−1∏

i=0

(âi
†
)li(â†

i, ⊥)
ki−li

]
. (D65)

By using this expression in Eq. (D63), we obtain

ρ ′′ =
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

k0∑

l0=0

· · ·
kN−1∑

lN−1=0

k0∑

l′0=0

· · ·
kN−1∑

l′N−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

lN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× (−1)
∑

i(2ki−li−l′i)
η
∑

i ki(1 − η)
∑

i(ni−ki)

k0! · · · kN−1!
× (cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0(cos θ1)

∑N−1
i=1 (li+l′i)(sin θ1)

∑N−1
i=1 (2ki−li−l′i)

×
[

N−1∏

i=0

(âi
†
)li(â†

i, ⊥)
ki−li

]
|0〉〈0|a0,...,aN−1,a0,⊥,...,aN−1,⊥

[
N−1∏

i=0

(âi)
l′i(âi, ⊥)ki−l′i

]
. (D66)

We now let the state evolve through the optical setup of the BBS network. The resulting transformation of the incoming
creation operators is given in Eq. (3), as proved in Appendix A. This brings us to the following state of the output modes
in the BBS network:

ρout =
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

k0∑

l0=0

· · ·
kN−1∑

lN−1=0

k0∑

l′0=0

· · ·
kN−1∑

l′N−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

lN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× (−1)
∑

i(2ki−li−l′i)
η
∑

i ki(1 − η)
∑

i(ni−ki)

k0! · · · kN−1!
(cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0(cos θ1)

∑N−1
i=1 (li+l′i)(sin θ1)

∑N−1
i=1 (2ki−li−l′i)

×
⎡
⎣

N−1∏

i=0

(
1√
M

M−1∑

s=0

(−1)�s·�i d̂†
s

)li (
1√
M

M−1∑

s′=0

(−1)�s
′·�i d̂†

s′,⊥

)ki−li
⎤
⎦ |0〉〈0|d0,...,dN−1,d0,⊥,...,dN−1,⊥

×

⎡
⎢⎣

N−1∏

i=0

⎛
⎝ 1√

M

M−1∑

q=0

(−1)�q·�i d̂q

⎞
⎠

l′i ⎛
⎝ 1√

M

M−1∑

q′=0

(−1)�q
′·�i d̂q′,⊥

⎞
⎠

ki−l′i
⎤
⎥⎦ . (D67)

From the definition of yields, Yj
n0,...,nN−1 = Pr(�j |n0, . . . , nN−1), we can express them as follows by including dark counts

(each detector has a probability pd of a dark count):

Yj
n0,...,nN−1

= (1 − pd)
M−1Tr

⎡
⎣ρout1j

M−1⊗

r �=j

|0〉〈0|r
⎤
⎦− (1 − pd)

M Tr

[
ρout

M−1⊗

r=0

|0〉〈0|r
]

, (D68)
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where the identity operator and the projector on the vacuum are defined on both modes of polarization, since the detectors
cannot distinguish them. We note that calculating the second trace in Eq. (D68) is trivial: projecting all modes onto the
vacuum forces all indexes to be equal to zero, thus yielding the result:

Tr

[
ρout

M−1⊗

r=0

|0〉〈0|r
]

= (1 − η)
∑

i ni . (D69)

In order to calculate the first trace in Eq. (D68), we would need to expand the sums over the detectors’ creation modes
using multinomial expansions. However, since we need to project onto the vacuum state in all modes except modes dj
and dj ,⊥, this operation will force all the terms in the multinomial expansion to vanish, except for the terms containing
d̂j or d̂j ,⊥. Therefore, the reduced state of ρout after projecting onto the vacuum all modes except the j th mode, ρ(j )out :=
〈01, . . . , 0j −1, 0j +1, . . . , 0M−1|ρout|01, . . . , 0j −1, 0j +1, . . . , 0M−1〉, reads

ρ
(j )
out =

n0∑

k0=0

· · ·
nN−1∑

kN−1=0

k0∑

l0=0

· · ·
kN−1∑

lN−1=0

k0∑

l′0=0

· · ·
kN−1∑

l′N−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

lN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× (−1)
∑

i(2ki−li−l′i)
η
∑

i ki(1 − η)
∑

i(ni−ki)

k0! · · · kN−1!
(cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0(cos θ1)

∑N−1
i=1 (li+l′i)(sin θ1)

∑N−1
i=1 (2ki−li−l′i)

×
⎡
⎣

N−1∏

i=0

(
(−1)�j ·�i√

M

)ki (
d̂†

j

)li (
d̂†

j ,⊥
)ki−li

⎤
⎦ |0〉〈0|dj ,dj ,⊥

⎡
⎣

N−1∏

i=0

(
(−1)�j ·�i√

M

)ki (
d̂j

)l′i (
d̂j ,⊥

)ki−l′i

⎤
⎦

=
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

k0∑

l0=0

· · ·
kN−1∑

lN−1=0

k0∑

l′0=0

· · ·
kN−1∑

l′N−1=0

(
n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

kN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× (−1)
∑

i(2ki−li−l′i)
η
∑

i ki(1 − η)
∑

i(ni−ki)

M
∑

i kik0! · · · kN−1!
(cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0(cos θ1)

∑N−1
i=1 (li+l′i)(sin θ1)

∑N−1
i=1 (2ki−li−l′i)

×
[(

d̂†
j

)∑
i li (

d̂†
j ,⊥
)∑

i(ki−li)
]

|0〉〈0|dj ,dj ,⊥

[(
d̂j

)∑
i l′i (

d̂j ,⊥
)∑

i(ki−l′i)
]

, (D70)

where we use the fact that
(
(−1)�j ·�i

)2
∑

i ki = 1. We observe that, as expected, the yields do not depend on j , i.e., on the
detector that clicked, due to our symmetric channel model.

We can now compute the first trace in Eq. (D68) by simply taking the trace of ρ(j )out. We note that this forces the identity∑
i li = ∑

i l′i on the indexes, allowing us to obtain the following expression:

Tr

⎡
⎣ρout1j

M−1⊗

r �=j

|0〉〈0|r
⎤
⎦ = Tr[ρ(j )out] = Q(n0, . . . , nN−1), (D71)

where we define

Q(n0, . . . , nN−1) =
n0∑

k0=0

· · ·
nN−1∑

kN−1=0

∑

(l0,...,lN−1,l′0,...,l′N−1)∈L(k0,...,kN−1)

×
(

n0

k0

)
· · ·
(

nN−1

kN−1

)(
k0

l0

)
· · ·
(

kN−1

lN−1

)(
k0

l′0

)
· · ·
(

kN−1

l′N−1

)

× η
∑

i ki(1 − η)
∑

i(ni−ki)

M
∑

i kik0! · · · kN−1!
(cos θ0)

l0+l′0(sin θ0)
2k0−l0−l′0

× (cos θ1)
∑N−1

i=1 (li+l′i)(sin θ1)
∑N−1

i=1 (2ki−li−l′i)
(
∑

i

li

)
!

(
∑

i

(ki − li)

)
!, (D72)
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where the summation set is defined as

L(k0, . . . , kN−1) :=
{
(l0, . . . , lN−1, l′0, . . . , l′N−1) : 0 ≤ li ≤ ki, 0 ≤ l′i ≤ ki,

N−1∑

i=0

li =
N−1∑

i=0

l′i

}
. (D73)
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FIG. 5. The optimal value of the signal amplitude (α) that maximizes the key rate plotted in Fig. 4, for different values of the dark-
count probability (pd) and number of parties (N ). On the left, the key rate is computed by using the analytical bounds on the yields
(34) in the phase error rate bound (7), while the plots on the right use the exact expressions of the yields for our channel model (D74).
We observe that a tighter bound on the yields allows for a higher value of α and leads to a higher key rate (see Fig. 4).
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By using Eqs. (D69) and (D71) in Eq. (D68), we obtain the
final expression for the yields in our channel model:

Yj
n0,...,nN−1

= (1 − pd)
M−1Q(n0, . . . , nN−1)

− (1 − pd)
M (1 − η)

∑
i ni , (D74)

where Q(n0, . . . , nN−1) is defined in Eq. (D72) and we
emphasize once again that the yields are independent of j .

APPENDIX E: NUMERICAL SIMULATIONS

In this Appendix we provide more details about the
numerical simulations presented in Sec. V of the paper.

In our simulations, we set a polarization and a phase
misalignment between the reference party A0 and each
other party of 2%. This means that the parameters θi and φi,
introduced in Appendix D to describe the polarization rota-
tion and the phase mismatch of party Ai, are set to φ0 = 0,
φi≥1 = φ, θi≥1 = θ1, and φ = θ0 − θ1 = arcsin

√
0.02. We

compute the protocol’s key rate for three values of pd, i.e.,
the probability of a dark count in a given detector, namely,
pd = 10−8, 10−9, and 10−10.

As for the decoy-state analysis, we consider two decoy
intensities for each party, β0 and β1, and use the analyti-
cal bounds derived in Sec. IV to compute the upper bound
(7) on the phase error rate. The decoy intensity β0 is fixed
to β0 = 0.5, which we verify is a close-to-optimal value
for all loss parameters, while β1 = 0 is optimal. In Sec. V
we also plot the key rate in the case in which the exact
value of the yields is known, which corresponds to the
limit where the parties have an infinite number of decoy
intensities. The exact values of the yields are computed
for our channel model in Appendix D and are reported in
Eq. (D74). We then replaced the exact yields Y0, . . . , YN−1
in the phase error rate bound (7), in place of the yields’
bounds Ȳ0, . . . , ȲN−1.

The key rates in Fig. 4 are optimized over the signal
amplitude α for all values of loss and is computed for
N = 3, 4, and 5 parties. In Fig. 5 we provide the optimal
values of α for every loss, both when we use the yields
bounds obtained with two decoys and when we use the
exact expressions of the yields from the channel model.
By comparing the optimal values of α in the two cases, we
deduce that tighter bounds on the yields would allow for a
higher optimal value of α. This is explained by the fact that
having tighter bounds on the yields in the phase error rate
bound (7) allows the yields’ coefficients in that expression
to grow, i.e., α to grow, without increasing the phase error
rate bound. In turn, greater values of α can increase the key
rate due to a higher chance of having a detector click [see
Fig. 4(b)]. Therefore, we deduce that increasing the num-
ber of decoy intensities used by each party would lead to
better yields’ bounds and hence to a significantly improved
key rate.

In order to reduce the number of yields that are nontriv-
ially bounded in Eq. (7), we remark that the polarization
and phase angles θi and φi are the same for all parties
except for reference party A0. Moreover, the signal and
decoy intensities are the same for all parties as well as the
losses. Therefore, the channel model is symmetric under
the permutation of parties A1, A2, . . . , AN−1. This implies,
in particular, that the yields in Eq. (7) satisfy

Yn0,n1,...,nN−1 = Yn0,σ(n1,...,nN−1), (E1)

where σ(n1, . . . , nN−1) represents a permutation of the
indexes n1, . . . , nN−1. The permutational symmetry of the
yields in our channel model implies that, in computing the
phase error rate bound (7) for a cutoff n = 4 (above which
every yield is bounded by one), we need only to bound
the following yields for N = 3: Y0,0,0, Y2,0,0, Y0,2,0, Y4,0,0,
Y0,4,0 Y1,1,0, Y0,1,1, Y2,2,0, Y0,2,2, Y1,3,0, Y0,1,3, Y1,1,2.

Similarly, for N = 4 we bound only the yields: Y0,0,0,0,
Y2,0,0,0, Y0,2,0,0, Y4,0,0,0, Y0,4,0,0, Y1,1,0,0, Y0,1,1,0, Y2,2,0,0,
Y0,2,2,0, Y1,3,0,0, Y0,1,3,0, Y1,1,2,0, Y0,1,1,2, Y1,1,1,1.

And for N = 5 we bound only the yields: Y0,0,0,0,0,
Y2,0,0,0,0, Y2,0,0,0,0, Y4,0,0,0,0, Y0,4,0,0,0 Y1,1,0,0,0, Y0,1,1,0,0,
Y2,2,0,0,0, Y0,2,2,0,0, Y1,3,0,0,0, Y0,1,3,0,0, Y1,1,2,0,0, Y0,1,1,2,0,
Y1,1,1,1,0, Y0,1,1,1,1.
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