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In the superconducting state, the presence of a finite gap in the excitation spectrum implies that the
number of excitations (quasiparticles) is exponentially small at temperatures well below the critical tem-
perature. Conversely, minute perturbations can significantly impact both the distribution in energy and
the number of quasiparticles. Typically, the interaction with the electromagnetic environment is the main
perturbation source driving quasiparticles out of thermal equilibrium, while a phonon bath is responsi-
ble for restoration of equilibrium. Here we derive approximate analytical solutions for the quasiparticle
distribution function in superconducting resonators and explore the impact of nonequilibrium on two
measurable quantities: the resonator’s quality factor and its resonance frequency. Applying our results
to experimental data, we conclude that while at intermediate temperatures there is clear evidence for the
nonequilibrium effects due to heating of the quasiparticles by photons, the low-temperature measurements
are not explained by this mechanism.
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I. INTRODUCTION

Nonequilibrium effects in superconductors have long
attracted the interest of both experimentalists and theorists,
starting with observations in the 1960s of enhancements in
the critical current of weak links subjected to microwaves
[1,2]. Soon after, theoretical work [3] predicted enhance-
ments not only of the critical current but also of the critical
temperature Tc and the gap � (see Ref. [4] for an early
review and Ref. [5] for a recent one). These effects are
generally related to a redistribution in energy of quasi-
particles: in a superconductor, the density of states is
lower at higher energy, so a given number of quasipar-
ticle excitations is less harmful to superconductivity if
they are shifted to higher energy by the microwaves. The
effects are more evident near Tc, where they were ini-
tially discovered, but more recently the focus has shifted
to temperatures low compared with Tc, where nonequilib-
rium quasiparticles can be a resource or a complication.
They are a resource in detectors such as kinetic induc-
tance [6] and nanowire single-photon detectors [7], while
they negatively affect qubits, electron pumps and turn-
stiles, and microrefrigerators [8]. A fundamental question
that we address here is how the quasiparticles redistribute
themselves in energy at low temperature T � Tc. The the-
oretical model to study this question can be written in the
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form of a kinetic equation for the quasiparticle distribu-
tion function in the presence of the microwave drive and
accounting for the interaction with phonons, whose distri-
bution is also determined by a kinetic equation [9]. Solving
for the distribution function in the presence of microwaves
is, in general, challenging, since the full model consists
of coupled nonlinear integral equations. Assuming T = 0,
some basic properties of the solution were considered in
Ref. [10]; recently, a more-detailed analysis of this case,
where linearization is possible, was given in Ref. [11]. The
main qualitative result of that work is the identification
of two regimes, cold and hot quasiparticles: cold quasi-
particles have energy largely close to the gap, while hot
ones are more broadly distributed over an energy T∗ that
depends on the strength of the microwave drive; the lat-
ter determines the transition between the two regimes. The
assumption T = 0 means that the phonon distribution is
fixed to be zero; to our knowledge, the full model allowing
for nonequilibrium phonons has been studied only numer-
ically [12]. Here we build on the results in Ref. [11] to
arrive at an analytical description of the hot-quasiparticle
case beyond the linearized regime. This description, in
turn, enables us to derive explicit formulas for the inter-
nal quality factor of superconducting resonators that can
be compared with experimental measurements. Our main
finding is that the energy scale T3

∗/�
2 separates two

qualitatively different regimes: for phonon temperature
above this scale, the quasiparticle density is close to its
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thermal value and the quality factor decreases exponen-
tially with temperature and increases with drive strength;
vice versa, for temperature below this scale, the density is
much higher than the thermal value and the quality factor
depends weakly on temperature and decreases with drive
strength. For temperatures above T3

∗/�
2, our results agree

quantitatively with the measurements reported in Ref. [13].
Although the focus of this article is on the nonequi-

librium quasiparticle distribution, our results are relevant
to applications such as kinetic inductance detectors. For
example, the existence of two different regimes depend-
ing on temperature and microwave drive strength could
impact the way the detectors are characterized and their
response is calibrated [14]. This work can also enable fur-
ther research on the impact of material parameters on the
detector responsivity; see, for instance, Ref. [15]. More
broadly, understanding the effects of phonons and photons
on the quasiparticle distribution in resonators can provide
a reference point in the study of other superconducting
systems, such as nanobridge junctions [16] and granular
superconductors [17].

In the next section we briefly review the kinetic equa-
tions for quasiparticles and phonons to establish our nota-
tion. In Sec. III we first extend the T = 0 solution for the
quasiparticle distribution to a wider energy range than that
in Ref. [11]; then we consider finite phonon temperature
as well as deviations of the phonon distribution from its
equilibrium form. Going beyond the linearized model, we
consider in Sec. IV the effect of microwave photons on
quasiparticle density and the superconducting gap; the ana-
lytical results are validated by comparison with numerical
solutions. Section V presents the calculation of the quality
factor and the resonance frequency, as well as comparison
with experiments. We summarize our work in Sec. VI.

II. KINETIC EQUATIONS

The quasiparticle distribution function f (E) in a super-
conductor obeys the kinetic equation

df (E)
dt

= Stphon{f , n} + Stphot{f , n̄}, (1)

with the two collision integrals Stphon{f , n} and Stphot{f , n̄}
accounting for the interaction of quasiparticles with
phonons and photons, respectively. In our notation, n(ω)
represents the distribution function of phonons and n̄ repre-
sents the (average) number of photons. The collision inte-
grals can be derived with use of nonequilibrium Green’s
functions [18] or Fermi’s golden rule [19], and can be gen-
erally split into terms that conserve or change the number
of quasiparticles. Note that we assume the system to be
homogeneous, so the distribution functions are indepen-
dent of position. The kinetic equation is complemented by

the self-consistent equation for the superconducting gap�:

ln
(
�0

�

)
=
∫ ∞

�

dEρ(E)
2f (E)

E
, (2)

where �0 is the zero-temperature gap (i.e., in the absence
of quasiparticles) and

ρ(E) = E√
E2 −�2

(3)

is the normalized density of states.

A. Interaction with phonons

For the phonon collision integral, in the term conserv-
ing the quasiparticle number we distinguish spontaneous
emission of phonons from stimulated emission and absorp-
tion, while the number-nonconserving terms account for
recombination of quasiparticles into Cooper pairs and
pair-breaking events:

Stphon{f , n} = Stphon
sp {f } + Stphon

st {f , n} + Stphon
r {f , n}

+ Stphon
PB {f , n}. (4)

The first term on the right-hand side describes spontaneous
emission (we use units with kB = � = 1):

Stphon
sp {f }

= 1
τ0T3

c

{∫ ∞

0
dωω2U−(E, E + ω)f (E + ω) [1 − f (E)]

−
∫ E−�

0
dωω2U−(E, E − ω)f (E) [1 − f (E − ω)]

}
,

(5)

where Tc � �0/1.764 is the critical temperature and the
functions

U±(E, E′) = ρ(E′)K±(E, E′) (6)

are given by a product between the density of states,
Eq. (3), and the BCS coherence factors [20]

K±(E, E′) = 1 ± �2

EE′ . (7)

Finally, the factor ω2/T3
cτ0 accounts for the strength of

the electron-phonon interaction in the Debye model and
in a low-frequency approximation appropriate for weakly
coupled superconductors [21].

With the notation introduced above, the contribution of
stimulated emission and absorption is given by
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Stphon
st {f , n} = 1

τ0T3
c

∫ ∞

0
dωω2U−(E, E + ω) {f (E + ω) [1 − f (E)] − f (E) [1 − f (E + ω)]} n(ω)

+ 1
τ0T3

c

∫ E−�

0
dωω2U−(E, E − ω) {f (E − ω) [1 − f (E)] − f (E) [1 − f (E − ω)]} n(ω). (8)

Quasiparticle-number conservation follows from the identities
∫ ∞

�

dEρ(E)Stphon
sp =

∫ ∞

�

dEρ(E)Stphon
st = 0. (9)

The recombination and pair-breaking terms are, respectively,

Stphon
r {f , n} = − 1

τ0T3
c

∫ ∞

E+�
dωω2U+(E,ω − E)f (E)f (ω − E) [1 + n(ω)] (10)

and

Stphon
PB {f , n} = 1

τ0T3
c

∫ ∞

E+�
dωω2U+(E,ω − E)[1 − f (E)] [1 − f (ω − E)] n(ω). (11)

Since the processes described by Stphon involve the emission or absorption of a phonon, in a general nonequilibrium
situation one must also consider the kinetic equation for the phonon distribution function [9,19]:

dn(ω)
dt

= 2
π�0τ

PB
0

∫ ∞

�

dEρ(E)U−(E, E + ω)
{
f (E + ω) [1 − f (E)] [1 + n(ω)] − f (E) [1 − f (E + ω)] n(ω)

}

+ 1
π�0τ

PB
0

∫ ω−�

�

dEρ(E)U+(E,ω − E)
{
f (ω − E)f (E) [1 + n(ω)] − [1 − f (ω − E)] [1 − f (E)] n(ω)

}

− 1
τl

[n(ω)− nT(ω, TB)] . (12)

The first integral on the right-hand side is the counterpart to the quasiparticle-conserving collision integrals Stphon
sp and

Stphon
st of Eqs. (5) and (8), while the second integral is the counterpart to the recombination and pair-breaking terms of

Eqs. (10) and (11), the factor of 2 in front of the first integral accounting for spin. For frequencies ω < 2�, the second
integral has to be replaced by zero. Within a phenomenological relaxation-time approach, the last term in Eq. (12) takes
into account phonon exchange with a thermal-equilibrium bath of temperature TB, nT(ω, TB) = (eω/TB − 1)−1. Note that
the lifetime of a phonon of energy 2�0 with regard to pair breaking at zero temperature τ PB

0 and the characteristic time τ0
are related [12,22]:

τ0

τ PB
0

= 2�0πρFω
3
D

9NionT3
c

, (13)

where ρF is the single-spin electronic density of states at the Fermi energy, ωD is the Debye frequency, and Nion is the ionic
volume density. For Al, use of the parameters reported in Ref. [21] gives τ0/τ

PB
0 � 1.7 × 103, but this ratio is smaller for

other materials considered there (for instance, it is about 36 for Nb).

B. Interaction with photons

For the photon collision integral, we consider a single mode of frequency ω0 < 2�, so no photon-mediated recombina-
tion or pair breaking can occur. Then the collision integral resembles the number-conserving contribution to the phonon
collision integral,

Stphot{f , n̄} = cQP
photU

+(E, E + ω0)
{

f (E + ω0) [1 − f (E)] (n̄ + 1)− f (E) [1 − f (E + ω0)] n̄)
}

+ cQP
photU

+(E, E − ω0)
{

f (E − ω0) [1 − f (E)] n̄ − f (E) [1 − f (E − ω0)] (n̄ + 1)
}

, (14)

054087-3



P.B. FISCHER and G. CATELANI PHYS. REV. APPLIED 19, 054087 (2023)

and is itself number-conserving,
∫
�

dEρ(E)Stphot = 0. The
term in the second curly brackets is set to zero for E −� <

ω0. Here the average photon number n̄ is treated as a
known, independent quantity. More generally, it can be
affected by the properties of the resonator, and in Sec. V
we calculate n̄ as a function of the readout power for a
half-wavelength resonator coupled to a transmission line.
Following Ref. [11], we define an effective temperature T0
via eω0/T0 ≡ (n̄ + 1)/n̄. However, instead of approximat-
ing the density of states and coherence factors by their form
near the gap, as done in Ref. [11], we keep their full form,
and in contrast to Refs. [9,19] we include spontaneous pho-
ton emission. The coupling constant in resonators can be
estimated as [23]

cQP
phot = δ

2Q′ , (15)

with Q′ the quality factor of the resonator if the material
resistivity were as in the normal state and δ � 1/VρF the
mean level spacing, where V is the volume occupied by the
quasiparticles. A schematic representation of the system
considered is presented in Fig. 1.

C. Numerical approach

Equations (1)–(12) constitute a system of coupled non-
linear integral equations whose solution, even in the steady
state, is clearly nontrivial. Here we describe briefly how
we solve the system numerically. To discretize the sys-
tem in the steady state, we divide the energy axis into

FIG. 1. The interaction of quasiparticles with photons and phonons. Absorption and emission of photons of frequency ω0 drives
the quasiparticle distribution out of equilibrium. The divergence in the BCS density of states leads to a quasiparticle distribution with
peaks at multiples of the photon energy above the gap; the peaks’ amplitudes follow a slowly varying (on the scale ω0) envelope. The
quasiparticles also exchange energy ω with the phonons in the superconductor; the phonons are in contact with a thermal bath, so their
distribution can relax toward equilibrium over time τl.

intervals �i = [ψi,ψi+1], with ψi = ih, and average the
kinetic equation over each such interval, so the steady-state
condition for Eq. (1) becomes

d
dt

∫ �+ψi+1

�+ψi

dEf (E) = 0. (16)

We choose the discretization such that the gap is an
integer multiple of h, and additionally round the pho-
ton energy to the nearest integer multiple of h. Fur-
thermore, for Ei ∈ �i +� and ωj ∈ �j , we approximate
f (Ei) = f (�+ ψi), n(ωj ) = n(ψj ), and K±(Ei, Ei ±
ωj ) = K±(�+ ψi,�+ ψi±j ) to convert Eq. (1) to a sys-
tem of ordinary equations. This procedure is equivalent to
replacing the quasiparticle density of states by the density
of states averaged over each interval �i and replacing the
other quantities by their value on a grid as described above.
A similar discretizetion procedure was used in Ref. [24];
the major differences from our work are that we discretize
phonon and quasiparticle kinetic equations separately and
ignore the variation of the coherence factors K± and the
factor ω2 over each interval, enabling us to calculate the
weights analytically [25]. We use the same approach of
replacing the quasiparticle density of states by the aver-
aged density of states, and discretizing the other quantities
as described above, to obtain the discretized version of
Eq. (12).

To arrive at the numerical solution of the full system,
we proceed via intermediate steps that are similar to those
we use to find approximate analytical results; see Secs. III

054087-4



NONEQUILIBRIUM QUASIPARTICLE DISTRIBUTION. . . PHYS. REV. APPLIED 19, 054087 (2023)

and IV. To begin with, we take the phonon distribution to
be the thermal-equilibrium phonon distribution, and keep-
ing only terms linear in f � 1, we find Eq. (1) reduces to
a matrix equation:

Mf 0 = 0, (17)

where superscript 0 is used to denote the initial solution
(i.e., step zero) for the quasiparticle distribution function.
This equation can be solved by diagonalizing M but it does
not determine the distribution’s normalization. The latter is
fixed by the nonlinear terms, and its approximate value can
be found with use of the discretized version of the approach
described in Sec. IV.

After obtaining the properly normalized f 0, we can take
into account nonlinear terms in Eqs. (1) and (12) using
Newton’s algorithm. To solve the two equations simulta-
neously, we follow Ref. [12] by forming the state vector
x = (f , n)T and writing the system of equations deter-
mining the state vector in the steady state in the form
g(x) = 0. Successive approximations xi to the state vector
are calculated with use of the recursive relation

xi+1 = xi − J −1(xi)g(xi), (18)

with J −1 the inverse of the Jacobian matrix of g. The nor-
malized f 0 is used as the initial guess for the quasiparticle
distribution, while the initial guess for the phonon distri-
bution can be obtained by inserting f 0 in Eq. (12), setting
the temporal derivative to zero, and solving that linear
equation for n. Calculations of the initial phonon distribu-
tion and of the Jacobian matrix can be done analytically,
thus avoiding long computational times and rounding
errors.

The discretized system of equations is not differentiable
with respect to the gap �, so we do not include the self-
consistency condition, Eq. (2), in Newton’s algorithm. To
find deviations of the gap from its equilibrium value, we
can solve Eq. (18) for a fixed gap. This gives the distri-
bution f as a function of the gap, and we can use the
result in a bisection algorithm applied to Eq. (2) to cal-
culate the nonequilibrium gap. While this method gives a
fully self-consistently calculated gap, it is accurate only
up to variations of the gap of order h, as both the gap
and the photon energy have to be rounded to an integer
multiple of h in the calculation of the distribution func-
tion. For the small deviation δ = �0 −� of the gap from
its zero-temperature value encountered in this work, we
instead proceed as follows: the left-hand side of Eq. (2)
is approximately δ/�0 at leading order; therefore, in an
iterative approach to solving the equation, we calculate f
with the gap fixed at its thermal-equilibrium value, thus
ignoring the deviation of the gap from equilibrium on the
right-hand side. This gives an expression for δ in terms
of an integral that depends only on the quasiparticle dis-
tribution obtained with use of the thermal-equilibrium gap

and that can be evaluated numerically. The numerical solu-
tion gives the quasiparticle distribution at points on an
energy grid of spacing h; since we want to use a finer grid
to numerically evaluate the integral, between these points
we linearly interpolate the distribution function (the inter-
polation can be used because the distribution function is
smooth between two nearby peaks at multiples of ω0 above
the gap).

D. Relevant timescales

While a numerical solution to the system of coupled
integral equations, Eqs. (1) and (12), can be found as just
described, an exact analytical solution is likely impossible
except in particular cases such as thermal equilibrium; it
is therefore instructive to discuss the different timescales
governing the dynamics of the quasiparticles and phonons
and under which conditions approximate analytical solu-
tions might be found. Throughout this work we assume
the quasiparticles to be nondegenerate, f (E) � 1, so we
always ignore Pauli-blocking factors by using the replace-
ment [1 − f (E)] → 1.

There are several characteristic times that can be read
off from the kinetic equations, as detailed in Appendix A.
These lifetimes, in general, depend on the energy E of
the quasiparticle or ω of the phonon; we begin by dis-
cussing the phonon lifetimes. For phonons with energy
above the pair-breaking threshold, ω > 2�, their pair-
breaking lifetime τ phon

PB (ω) depends weakly on energy near
the threshold, so we take τ phon

PB (ω) ≈ τ PB
0 ; in Al, τ PB

0 � 240
ps [21]. The lifetime due to the phonon being absorbed
by a quasiparticle is, in general, much longer than this,
τ

phon
abs (ω) � τ PB

0 , due to the assumed nondegeneracy (and
hence low density) of the quasiparticles. In contrast, in
aluminum films the thermalization time τl [last term in
Eq. (12)] is comparable to the pair-breaking time, τl ∼
τ PB

0 ; for films of thickness 100 nm on a sapphire substrate,
the thermalization time is estimated to be approximately
500 ps [19,26,27]. Since thermalization and pair-breaking
times are comparable, we expect them both to have an
impact on the above-threshold phonon distribution and
hence on the quasiparticle number. Moreover, the absorp-
tion time being long means that the phonon distribution can
significantly deviate from the equilibrium phonon distri-
bution; however, as we discuss below, generally this does
not impact the shape of the quasiparticle distribution. We
note that these considerations can be material specific; for
instance, for a 100-nm-thick Nb film on sapphire we esti-
mate τ PB

0 � 4 ps and τl � 1.5 ns [21,26], so deviations
from equilibrium can become more significant compared
with the aluminum case.

Turning to the quasiparticle lifetimes, we can identify
two scattering times, τQP

s,t (E) and τQP
s,n (E), involving pho-

tons and phonons, respectively, and accounting for all
possible number-conserving processes (absorption as well
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as spontaneous and stimulated emission), and the recombi-
nation lifetime τQP

r (E), which is inversely proportional to
the quasiparticle density. In this work we focus on quasi-
particles of energies up to a few times the superconducting
gap, as the energy dependence of the phonon scattering
time implies that quasiparticles of higher energies typi-
cally relax very quickly toward the gap and therefore do
not contribute directly to processes such as photon absorp-
tion. When the recombination lifetime is longer than the
scattering lifetimes, τQP

r � τ
QP
s,n , τQP

s,t , as is the case for
low quasiparticle densities and sufficiently high photon
number, the shape of the quasiparticle distribution func-
tion is determined by the number-conserving processes,
while generation and recombination affect its normaliza-
tion (i.e., the overall quasiparticle density). Moreover, for
strong deviations from equilibrium to be possible, the pho-
ton scattering time should be the shortest timescale, τQP

s,t �
τ

QP
s,n , a condition that can be met if the number of photons

n̄ is sufficiently large and/or the phonon bath temperature
TB sufficiently low; in particular, the phonon scattering
time being longer than the photon scattering time means
that deviations of the phonon distribution from equilibrium
have a small effect on the shape of the quasiparticle distri-
bution (see also Sec. III C). Therefore, in the next section
we study the shape of the quasiparticle distribution func-
tion starting with the case of zero phonon temperature and
then generalizing to finite temperature. Interestingly, we
show that despite the assumption of low TB, stimulated
emission and absorption of phonons cannot be ignored at
all energies and that they determine the high-energy tail of
the distribution function.

III. SHAPE OF THE QUASIPARTICLE
DISTRIBUTION FUNCTION

As discussed in Sec. I, our goal is to find the quasi-
particle distribution function by approximately solving the
system of coupled equations (1), (2), and (12) in the
steady state in the regime of low temperatures, and hence
low quasiparticle density, and high number of photons,
n̄ � 1, or equivalently T0 � ω0. A sufficient condition
for having low density is f (E) � 1, which enables us to
approximate the Pauli-blocking factors as [1 − f (E)] ≈ 1.
Moreover, we ignore in this section the recombination
and pair-breaking collision integrals, Eqs. (10) and (11),
since they affect the normalization but not the shape of the
quasiparticle distribution function, as argued in Sec. II D.

At low temperature TB � ω0, the competition between
absorption of photons and emission of phonons results in
a quasiparticle distribution with peaks at energies �+
mω0, m = 0, 1, 2, . . . [11,12]. Here we focus on the enve-
lope function that determines the heights of these peaks.
Then interpreting f (E) as this envelope, we can approx-
imately write the photon collision integral, Eq. (14), as a

generalized diffusion operator in energy space,

Stphot{f , n̄} � cQP
phot

ω2
0

U+(E, E)
n̄
∂

∂E′

[
U+(E, E′)2e−E′/T0

× ∂

∂E′
(

f (E′)eE′/T0
)] ∣∣∣∣

E′=E
, (19)

as one can verify by Taylor expansion of Eq. (14) to sec-
ond order in ω0. Next we consider explicitly three cases (1)
phonons in equilibrium at zero temperature; (2) phonons
in equilibrium at finite temperature; (3) nonequilibrium
corrections to the phonon distribution function.

A. Phonons in equilibrum at TB = 0

The assumption that phonons are in equilibrium corre-
sponds to taking the limit τl → 0 in Eq. (12), so n(ω) =
nT(ω, TB) is the (leading-order) solution for the phonon
distribution function. For TB = 0, this implies n(ω) = 0,
and the steady-state equation for the quasiparticle distribu-
tion function reduces to

0 = Stphon
sp {f } + Stphot{f , n̄}, (20)

with Stphon
sp of Eq. (5) and Stphot of Eq. (19). Even this

much-simplified equation cannot be solved exactly, so we
consider separately three energy ranges—low, intermedi-
ate, and high—to be defined below. In all three ranges we
assume the photon number to be so large that T0 is the
highest energy scale; then we can take the limit T0 → ∞
in Eq. (19) and replace the exponential factors with unity.

The low-energy and intermediate-energy ranges are
sufficiently close to the gap, E −� � �, so one can
approximate

U+(E1, E2) �
√

2�
E2 −�

(21)

for E2 > � and U+ = 0 otherwise in Eq. (19) and

U−(E1, E2) � E1 + E2 − 2�√
2�(E2 −�)

(22)

in Eq. (5). Within this approximation, Stphon
sp {f } takes the

form

Stphon
sp {f } = − 128

105
√

2

(
�

Tc

)3 (E −�

�

)7/2 f (E)
τ0

+ 1
τ0T3

c

∫ ∞

0
dωω2 2E − 2�+ ω√

2�(E + ω −�)

× f (E + ω). (23)
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Introducing the temperature scale

T∗ ≡
(

105
64

T3
c cQP

photn̄τ0ω
2
0�

)1/6

(24)

characterizing the width of the distribution function and
ignoring the first term on the right-hand side in Eq. (23)
for E −� � T∗ (low energy range) and the second one
for T∗ � E −� � � (intermediate range) leads to the
solution derived in Ref. [11]:

f (x) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0
(
1 − 0.564x5/2 + 0.119x7/2) , x � 1,

(25a)

3b0Ai
(

x2

41/3

)
, 1 � x � �/T∗, (25b)

with x ≡ (E −�)/T∗, Ai the Airy function, and b0 a nor-
malization constant whose determination is the subject of
Sec. IV. Note that depending on the parameters (and in
particular by increasing n̄) the intermediate regime could
be absent; here we assume for simplicity that the condi-
tion T∗ < � is satisfied (this is consistent with considering
quasiparticles with energies up to a few times the gap;
see Sec. II D). Moreover, the initial assumptions that T0 is
large and that we can study the envelope concretely means
T0 � T∗ � ω0.

In the high-energy range E −� � �, we ignore terms
of order (�/E)2 in Eq. (19), leading to

Stphot{f , n̄} = n̄cQP
photω

2
0f ′′(E). (26)

Since for T∗ < �most quasiparticles are at energies below
2�, at energies E > 2� the first integral in Eq. (5) is much
smaller than the second one and can be ignored; therefore,
we can further approximate

Stphon
sp � − f (E)

τ0T3
c

(E −�)3

3
(27)

in the high-energy regime. Using the substitution x̃ ≡ (E −
�)/T̃∗, with

T̃∗ ≡ (3n̄cQP
photω

2
0τ0T3

c)
1/5 =

(
64
35

T∗
�

)1/5

T∗, (28)

in Eq. (20), that equation takes the form of a generalized
Airy equation,

f ′′(x̃)− x̃3f (x̃) = 0. (29)

The solution to this equation can be written in terms of a

modified Bessel function of the second kind:

f (x̃) = b̃0

√
x̃K1/5

(
2
5

x̃5/2
)

. (30)

With our assumptions we are interested only in the limit of
large x̃, so we can approximate

f (x̃) � b̃0

√
5π

4x̃3/2 e−2x̃5/2/5. (31)

This expression should match the similar approximation
for Eq. (25b) at an energy of order 2�. Indeed, the expo-
nential factors are identical at E = 143�/80, and the
prefactors are then related by

b̃0

b0
= 33/222/3

5π

(
64
35

T∗
�

)−2/5

. (32)

Because of the faster-than-exponential decay of the dis-
tribution over the energy scale T∗ � �, it might seem
irrelevant to calculate here and in the next subsection the
behavior of its high-energy tail (E � 2�); however, quasi-
particles with energy above 3� can relax by emitting
a pair-breaking phonon, which in turn can generate two
quasiparticles. That is why knowledge of the tail is needed
to understand how the photons influence the quasiparticle
density; see Sec. IV.

B. Equilibrium phonons, TB > 0

We now consider in more detail the effect of thermal
phonons. We aim to show that ignoring phonons is a good
approximation up to a crossover energy E∗, above which
the (envelope of the) quasiparticle distribution function
takes the thermal-equilibrium form. Using Eq. (8), we
define the energy scale E∗ as that energy at which the
equation

Stphon
st {f , nT} + Stphot{f , n̄} = 0 (33)

is satisfied, with f as obtained in Sec. III A and n = nT
being the thermal distribution of phonons.

By the definition of E∗, up to that energy we can
ignore the phonons and hence Eq. (20) holds; that equation
enables us to express Stphot in terms of Stphon

sp . For the latter,
at high energies E −� � �, we can use Eq.(27) to get

Stphot{f , n̄} = −Stphon
sp {f } � (E −�)3

3τ0T3
c

f (E), (34)

with f (E) decreasing faster than exponentially; see
Eq. (31). To estimate E∗ using Eq. (33) we need an approx-
imate expression for Stphon

st . It turns out that the main
contribution to this collision integral originates from the
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term in Eq. (8) proportional to f (E − ω), since as a func-
tion of ω that factor increases faster than exponentially (as
long as E − ω remains sufficiently large); thus, it domi-
nates over the exponential suppression of n(ω, TB) at ω �
TB, leading to a sharply peaked maximum of the inte-
grand at a certain energy ωM , as detailed in Appendix B.
Introducing the crossover temperature

T∗
B ≡
(

T∗
�

)3

� = ω0

√
105
64

cQP
photn̄τ0

(
Tc

�

)3/2

, (35)

we can distinguish two regimes: for low phonon tempera-
ture and high photon number, TB � T∗

B, we find

E∗ ≈ �+ T̃∗(T̃∗/TB)
2/3 � 2�, (36)

while for high phonon temperature and low photon num-
ber, T∗

B � TB � T∗, we get

E∗ ≈ �+ T∗(T∗/TB)
1/2 � 2�. (37)

In both cases, it turns out that for E > E∗, stimulated
emission and absorption of phonons dominates over the
interaction with photons, so the distribution function is
approximately of the Boltzmann form,

f (E) � bTe−E/TB , (38)

where bT can be found by requiring continuity of f at
E = E∗. Note that while here the ratio between TB and T∗

B
being below or above unity has the apparently minor role
of determining whether E∗ is above or below 2�, we later
see that this ratio influences also the temperature depen-
dence of both the quasiparticle density and the quality
factor.

C. Finite thermalization time

So far we have assumed that the phonon distribution
has the equilibrium form, corresponding to the limit of
zero thermalization time τl. If the thermalization time is
nonzero, the phonon distribution can deviate from the equi-
librium phonon distribution, as discussed in Sec. II D. We
can distinguish between phonons of energy ω below and
above the pair-breaking threshold 2�. Above-threshold
phonons can break Cooper pairs and thus influence the
quasiparticle density—this is the subject of Sec. IV. These
phonons can also affect the shape of the quasiparticle distri-
bution by being absorbed, but these processes are far-less
frequent than pair breaking (since τ phon

abs � τ PB
0 ) and the

change would occur only at high energies E > 3� where
the occupation is generically extremely small, so we ignore
this effect.

Below-threshold phonons, in contrast, can affect the
quasiparticle distribution at all energies. However, we

now show that significant deviations from the equilib-
rium phonon distribution appear only at relatively high
energy ω and have a negligible effect on the shape of
the quasiparticle distribution. Indeed, for ω < 2� we can
approximately solve Eq. (12) in the steady state, writ-
ing n(ω) � nT(ω, TB)+ n1(ω), with (see Appendix C for
details)

n1(ω) � 2τl

π�0τ
PB
0

∫ ∞

�

dEρ(E)U−(E, E + ω)f (E + ω),

(39)

and the n1 term becomes dominant above the crossover
energy

ωc ≈ TB ln
(
�

T∗

τ PB
0

τl
b−1

0

)
(40)

(this approximate expression is valid for T∗ � ωc �
T∗

√
3T∗/TB and ωc � �; see Appendix C for a more-

accurate determination of ωc). The crossover energy
depends on the quasiparticle density through b0 � 1,
which cannot be determined without considering the non-
linear terms in the kinetic equations. However, for ther-
malization time τl short compared with τ PB

0 , we expect the
density to be comparable to the density in thermal equilib-
rium, and hence b0 ∼ e−�/TB (the quasiparticle density is
discussed in more detail in Sec. IV); this implies that ωc
would become larger than � and grow with decreasing τl
or T∗, as one would expect, since reducing these parame-
ters means that the system is closer to thermal equilibrium.
We return to this point when comparing our results with
numerical calculations in Sec. IV C.

To determine if n1 influences the shape of the distri-
bution function f , one can proceed as in Sec. III B, by
the replacement nT → nT + n1 in Eq. (33). As mentioned
there, the main contribution of nT to the collision integral
Stphon

st comes from the region around an energy ωM ; if this
energy is smaller than ωc, we expect negligible impact of
n1 on the shape of f . This is clearly the case in the limit
of fast phonon thermalization τl → 0, since in this case,
as discussed above, ωc > �, while, in general, ωM < �

(see Appendix B), so ωM < ωc. We do not investigate here
more generally when the condition ωM < ωc is satisfied,
or the effect of n1 on f when it is violated, but we show
numerically that for experimentally relevant parameters
the shape of f derived in this section is valid at least up
to energies of a few times �.

IV. QUASIPARTICLE DENSITY

The considerations in the previous section are limited to
the shape of the quasiparticle distribution function, includ-
ing the effect of nonequilibrium phonons due to finite
thermalization time; see Sec. III C. However, it follows
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from the pair-breaking phonon collision integral, Eq. (11),
that nonequilibrium phonons can potentially affect the
quasiparticle number as soon as the crossover frequency
ωc between the equilibrium phonon population and the
nonequilibrium phonon population satisfies ωc � 2�, a
weaker condition than that required for them to affect
the shape of the distribution function, ωc < ωM . Conse-
quently, in this section we investigate the effect a nonzero
thermalization time has on the number of quasiparticles
in the regime ωM < ωc � 2�, in which the influence of
nonequilibrium phonons on the shape of the quasiparticle
distribution can be ignored, while their influence on the
quasiparticle density must be established.

The quasiparticle density NQP is given by

NQP ≡ 4ρF

∫ ∞

�

dEρ(E)f (E) � 4.2ρF

√
2�T∗b0, (41)

where for f we use the distribution function from Sec. III
and the numerical prefactor was determined in Ref. [11].
As remarked previously, to find the value of the normal-
ization constant b0, the recombination and pair-breaking
collision integrals, Eqs. (10) and (11), must be taken
into account. To do so, we multiply the kinetic equation,
Eq. (1), by the BCS density of states ρ(E), integrate
the resulting equation over energy E, and assume the
steady-state condition df /dt = 0 to arrive at the equation∫

�

dEρ(E)
∫

E+�
dωω2U+(E,ω − E)

× [n(ω)− f (E)f (ω − E)] = 0, (42)

where, as before, we ignore Pauli-blocking factors and
assume n(ω) � 1 for ω > 2�. The two terms in square
brackets originate from pair breaking and recombination,
respectively. For the former, we can switch the integra-
tion order and realize that the resulting integral over E is
the same as that determining the lifetime of phonons with
regard to pair breaking (see Appendix A); ignoring again
the weak dependence of the result on ω, we rewrite the
above equation as

∫
2�

dωω2
[

n(ω)− 1
π�

∫ ω−�

�

dEρ(E)

× U+(E,ω − E)f (E)f (ω − E)
]

= 0. (43)

To proceed further, we need to know the phonon distribu-
tion function above the pair-breaking threshold, ω > 2�;
as shown in Appendix C, it takes the form

n(ω) � τ PB
0

τl + τ PB
0

[nT(ω, TB)+ n1(ω)+ n2(ω)] , (44)

with n1 of Eq. (39) and n2 being equal to the product of
τl/τ

PB
0 and the second term in square brackets in Eq. (43).

Equation (43) can now be recast as a quadratic equation
for b0 (see Appendix D):

I2b2
0 − 2

τl

τ PB
0

I1b0 − I0 = 0, (45)

with the quadratic term arising from the pair-breaking con-
tribution together with n2, the linear term from n1, and
the constant term from nT. Because of their origins, I0
and I2 are dimensionless functions of TB/� and T∗/�,
respectively, while I1 depends, in general, on both. We can
distinguish two limiting cases: If (τlI1/τ

PB
0 )2 � I2I0, then

(see Appendix D)

b0 �
√

I0/I2 �
√
πTB/T∗e−�/TB/2.1, (46)

and the quasiparticle density is approximately the same
as in thermal equilibrium, even though the distribution
function differs significantly from the equilibrium one. In
the opposite limit we find that b0 � 2τlI1/τ

PB
0 I2 is larger

than the thermal-equilibrium value and is proportional to
the ratio τl/τ

PB
0 : the larger this ratio (i.e„ the greater τl),

the easier it is to enter into this limit and the larger the
quasiparticle density. We discuss further the correspond-
ing nonequilibrium quasiparticle density in the framework
of a generalized Rothwarf-Taylor (RT) model.

A. Generalized RT model

Given the proportionality between b0 and NQP, Eq. (41),
the last and first terms on the left-hand side of
Eq. (45) correspond exactly to the phonon-generation and
quasiparticle-recombination terms in the steady-state ver-
sion of the Rothwarf-Taylor model [28] (we do not con-
sider here direct quasiparticle injection). We can relax the
steady-state assumption and allow for variation in time
of parameters such as bath temperature (TB) and photon
number (i.e., T∗), as long as their change is slow on the
scale over which the shape of the distribution function is
established, namely, the quasiparticle scattering times; see
Sec. II D (note that since τ PB

0 is less that τ0, the phonon dis-
tribution quickly follows any change in the quasiparticle
distribution). Then the shape of the distribution function is
at all times the one we calculate in Sec. III, and integration
over energy of the kinetic equation times 4ρFρ(E) gives

dNQP

dt
= GT + G(T∗/�)NQP − RN 2

QP, (47)

where

GT = 16πρF�

τ̄0

(
�

Tc

)3 TB

�
e−2�/TB (48)
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is the rate of quasiparticle generation (per unit volume) due
to thermal phonons for TB small compared with 2�, and

R = 2�2

ρF τ̄0T3
c

(49)

is the quasiparticle-recombination coefficient. Both quan-
tities are renormalized by the finite phonon thermalization
time, an effect known as “phonon trapping”[19],

τ̄0 = τ0(1 + τl/τ
PB
0 ). (50)

Note that as T∗ approaches �, corrections to R and τ PB
0

resulting from the finite distribution’s width, of order
T∗/�, can become relevant, as discussed in Appendix E.

The central term on the right-hand side of Eq. (47)
is absent in the Rothwarf-Taylor model, and represents
an additional quasiparticle-generation term proportional
to the quasiparticle density itself. It originates from pair-
breaking nonequilibrium phonons emitted by quasiparti-
cles that have been excited to sufficiently high energies
by the photons. Indeed, the coefficient can be taken in the
form (see the end of Appendix D)

G(x) = γ

τ̄0

τl

τ PB
0

(
�

Tc

)3

x9/2e−√
14/5x−3

, (51)

with γ = 213/633/2/(2.1 × 5
√

7) � 0.84, and vanishes if
the phonons are forced to be in thermal equilibrium (τl =
0). At high phonon temperature and low photon number,
TB � T∗

B, this term can be ignored, and in the steady state
the quasiparticle density approximately takes the thermal-
equilibrium value; in the opposite regime, TB � T∗

B, it
leads to a quasiparticle density independent of the bath
temperature TB and larger than that in thermal equilib-
rium. Although the linearity in NQP of this additional
generation term could be expected—the more quasiparti-
cles there are, the more can be excited to high energy and
emit phonons—we stress that the dependence on the pho-
ton number can be found only after solving the kinetic
equation for the shape of the distribution function; there-
fore, it is beyond the reach of phenomenological treatments
that consider just the quasiparticle density from the out-
set. In this regime the quasiparticle density is strongly
dependent on the photon number; the strong dependence
originates from the fact that only quasiparticles in the high-
energy tail of the distribution function, E > 3�, can emit
pair-breaking photons, and a quasiparticle must absorb
a large number of photons to reach that energy while
also losing energy by emitting phonons. Note that in the
extreme case TB = 0, the solution NQP = 0 is unstable:
even a single quasiparticle can start the process of driving
the phonons out of equilibrium and hence generate more
quasiparticles. In Fig. 2 we provide an overview of the dif-
ferent regimes we identify and of the parameter regions
where our approach is applicable.

FIG. 2. Depending on the phonon temperature TB and the
photon number n̄ [i.e., T∗ in Eq. (24)], there are two regimes
for the quasiparticle density. In regime 1, thermal phonons
dominate quasiparticle creation and the quasiparticle density
is approximately as in equilibrium. In regime 2, the photons
drive a sufficient amount of quasiparticles to energies E > 3�
such that quasiparticle creation from phonons emitted by these
high-energy quasiparticles is dominant; in this regime, the quasi-
particle density is larger than in equilibrium and depends on
the photon number but not on the temperature of the phonon
bath. The crossover between the two regimes occurs when TB ∼
T3

∗/�
2 [see Eq. (35)], as indicated by the dashed curve. The

area shaded in gray (T∗ < ω0, T∗ > �, TB > T∗) identifies the
parameter regions where approximations made in the analytical
derivations are not valid.

B. Gap suppression

Once the normalization constant b0 is found using
Eq. (45) [or, equivalently, NQP is found using Eq. (47)], we
can perturbatively calculate the change in the gap δ� =
�0 −�. Indeed, substituting the distribution function of
Sec. III into Eq. (2), we find

δ�

�0
= 4.2b0

√
T∗

2�0

(
1 − 1

4
0.88
2.1

T∗
�0

)
, (52)

where we use the numerical estimate
∫

0 dx
√

xf (x) � 0.88
[in the perturbative calculation we ignore the deviation of
� from �0 on the right-hand side of Eq. (2); this is con-
sistent if T∗/�0 � b2

0]. The leading-order term is equal
to the leading-order approximation for NQP/(2ρF�0) [see
Eq. (41)], which is the fraction of broken Cooper pairs;
this result is generic to quasiparticles whose distribution-
function width above the gap (in our case, T∗) is small
compared with the gap itself. Including corrections up to
second order in T∗/�, we can rewrite Eq. (52) in the form

δ�

�0
= NQP

2ρF�0

[
1 − 0.42

T∗
�0

+ 0.22
(

T∗
�

)2
]

. (53)
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For comparison, in thermal equilibrium the terms in square
brackets read 1 − 0.5TB/�0 + 3(TB/�0)

2/8; this shows
that for a given quasiparticle density, the gap is less sup-
pressed in the nonequilibrium case, since by assumption
T∗ > TB. We can therefore find an enhancement of super-
conductivity, since for TB � T∗

B the quasiparticle density
takes roughly the same value as in equilibrium (more
accurately, the quasiparticle density slightly decreases with
increasing T∗ in this regime, as discussed in Appendix E,
and thus the enhancement is even stronger). In the oppo-
site case, the density is much larger than in equilibrium
and hence superconductivity is weakened.

C. Comparison with numerical calculations

As a validation of our approach, we now compare the
analytical results with the numerical solution of the full
system of kinetic equations, Eqs. (1)–(12). Unless oth-
erwise stated, in this subsection we use the parameters
listed in Table I. Their values are chosen to enable the
comparison with experiments that is discussed in the next
section; that is, they should be typical for thin-aluminum-
film resonators. The critical temperature is assumed to be
connected to the gap via the BCS relation �0 = 1.764Tc,
resulting in Tc � 1.18 K. Using Eq. (13) and the assumed
τ0, we find the phonon lifetime with regard to pair breaking
τ PB

0 is 255 ps. The parameters loosely satisfy the valid-
ity conditions for the analytical approximations, namely,
ω0 � T∗ � �, b0 � 1, and ωc > ωM (b0 can be read off
Fig. 3; using the results in Appendix B, we calculate
ωM � 0.57�0, while ωc can be estimated from Fig. 4). For
the numerical calculations, we take h = �0/180 for the
discretization step size and truncate the energy at Emax =
10�0; note that ω0 = 20h, meaning the shape of the peaks
is captured by the numerical calculations.

In Fig. 3 we plot with solid lines the numerically cal-
culated quasiparticle distribution function f as function of
energy for different values of the thermalization time τl. In
all cases, we find good agreement with the analytical pre-
dictions (dashed lines) of Sec. III spanning several orders
of magnitude in occupation probability, whose large varia-
tion occurs over an energy range of a few times the gap.
For τl = 0, the phonons are at thermal equilibrium and
the high-energy tail of f approaches the expected expo-
nential decay; see Sec. III B. As τl increases, however, the
high-energy tail deviates significantly from the τl = 0 pre-
diction; the reason for this deviation is the reabsorption

TABLE I. Parameters used for the plots in Figs. 3 and 4. The
quantities T∗ and T∗

B are calculated from the other parameters
with use of their respective definitions, Eqs. (24) and (35).

cQP
phot τ0 �0 ω0 n̄ TB T∗ T∗

B

1 Hz 438 ns 180 µeV �0/9 107 0.1 K �0/2 0.26 K

FIG. 3. Quasiparticle distribution function versus energy for
the parameters in Table I. Solid gray lines shows the results of
numerical calculations. The dashed colored lines are obtained
with use of the analytical approximations in their respective
regimes of applicability; from left to right: Eqs. (25a), (25b),
(31), and (for τl = 0) Eq. (38). The normalization coefficient
b0 is calculated by use of the steady-state solution to Eq. (47)
in Eq. (41) (we take into account the corrections to the recom-
bination coefficient and the quasiparticle density discussed in
Appendix E).

of phonons emitted by recombination processes [see n2 in
Eq. (44)], which have energy ω > 2�. Consequently, the
deviation occurs at energies above 3�. At those energies
for T∗ � � the occupation probability is so small that the
deviation does not affect the quasiparticle density.

Figure 4 shows the phonon distribution function versus
energy ω. There are no visible deviations from the thermal-
equilibrium behavior up to the τl-dependent energy ωc (see
Sec. III C) for all values of τl considered. For ω between ωc

FIG. 4. Phonon distribution for the system simulated in Fig. 3.
The dashed blue lines in the phonon distribution are the analyt-
ical results derived in Appendix C, and the solid gray lines are
simulation results.
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and 2�, phonons spontaneously emitted by the nonequi-
librium quasiparticles become relevant and the phonon
distribution function is predominantly given by n1(ω) of
Eq. (39) (see also Appendix C). For ω > 2� the recombi-
nation of nonequilibrium quasiparticles affects the phonon
distribution. Since the quasiparticle density is larger than
in equilibrium, this leads to a phonon occupation probabil-
ity bigger than the equilibrium probability, as captured by
the term n2(ω) in Eq. (44) (see also Appendix C, where
we give an expression for n2 valid up to ω � 2�+ T∗;
the analytically calculated phonon distribution is in good
agreement with the numerical results).

In Fig. 5 the quasiparticle density is shown as a func-
tion of T∗ for a few different bath temperatures TB and as
a function of TB for a few different phonon numbers (T∗).
The analytical and numerical approaches give consistent

FIG. 5. Quasiparticle densities calculated from the simula-
tion (solid lines) and from solving Eq. (47) in the steady state
(dashed lines). The upper plot is obtained by varying the pho-
ton number for three different bath temperatures, and the lower
plot is obtained by varying the bath temperature for n̄ = 107,
5 × 107, and 108 ,respectively. The thermalization time is fixed
at τl = τ PB

0 , and the other parameters are as in Fig. 3 (given in
Table I). The corrections to the leading analytical results given in
Appendix E are included.

results over a range of parameter values relevant to exper-
iments, with small deviations arising at low temperatures
and photon numbers. These deviations are caused by the
condition ω0 � T∗ holding only weakly, and we checked
that there is a closer match between the two approaches
when decreasing the photon energy. For n̄ � 1, Eq. (14)
is a symmetric function of ω0; therefore, the leading cor-
rections to Eq. (19) and hence to the density are of order
(ω0/T∗)2. As the magnitude of the deviations is beyond
the accuracy of the considerations in the next section, we
do not pursue this further.

In Fig. 6 the nonequilibrium gap suppression δ�,
Eq. (53), is compared with the equilibrium one δ�T for
the same set of parameters as in Fig. 5. Superconduc-
tivity is enhanced relative to that in thermal equilibrium
when the difference δ�T − δ� is positive. We focus on
the region of low photon number (relatively small T∗/�),
where the enhancement occurs; in this region the factor
in square brackets in Eq. (53) gives the main dependence
of the gap on photon number, causing the gap to increase
compared with the gap in thermal equilibrium. For larger
photon numbers the quasiparticle density increases quickly
(see Fig. 5), leading to a strong suppression of the gap since
δ� ∝ NQP. The analytical estimate (dashed lines) slightly
overestimates the enhancement compared with the numer-
ical results (solid lines), but both sets of curves display
a maximum at the temperature-dependent value of T∗ at
which G(T∗/�) becomes the dominant term in Eq. (47);
that is, above this value, quasiparticle creation from reab-
sorption of pair-braking phonons becomes dominant.

FIG. 6. Suppression δ� of the gap as function of T∗ for the
same parameters used in the upper panel in Fig. 5. Solid lines
are numerical results, and dashed lines correspond to the ana-
lytical formula in Eq. (53). The suppression is compared with
that in thermal equilibrium, δ�T; a positive difference δ�T − δ�

corresponds to gap enhancement. The rapid change from posi-
tive to negative coincides with the onset of large nonequilibrium
quasiparticle density (see Fig. 5).
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V. QUALITY FACTOR AND RESONANCE
FREQUENCY

The ac response of a superconductor depends on the
quasiparticle distribution function, and the dissipative part
can be strongly affected under nonequilibrium conditions;
see, for example, Ref. [29]. Indeed, the real part σ1 of the
ac conductivity σ = σ1 + iσ2 at frequency ω0 is given by

σ1 = 2σN

ω0

∫ ∞

�

dE [f (E)− f (E + ω0)]

× ρ(E)U+(E, E + ω0). (54)

To estimate σ1, we can use the low-energy approximation
for coherence factors and density of states [see Eq. (21)],
expand the integrand in Eq. (54) to lowest order in ω0, and
use the numerical result

∫
0 dxf ′(x)/x � −1.15b0, where

x = (E −�)/T∗, to find

σ1 � 2.3σN
�

T∗
b0 � 0.77σN

NQP

2ρF�

(
�

T∗

)3/2

. (55)

The form on the right shows that the dependence of σ1 on
the distribution function is not only via proportionality to
the quasiparticle density, due to the appearance of T∗ in
the last factor. Interestingly, as T∗ increases (at fixed NQP),
dissipation decreases; this effect is due to the redistribution
of quasiparticles to higher energies, where the density of
states is lower, similar to the decrease in relaxation of a
superconducting qubit in which a residual quasiparticle is
pushed on average to higher energy in the presence of a
microwave drive [30].

For (ω0/4�)2 � 1, the imaginary part σ2 can be
approximated as σ2 � (πσN�0)/ω0 + δσ2, with

δσ2 = −δσ2,f − δσ2,�,

δσ2,f = 2σN

ω0

∫ �

�−ω0

dEf (E + ω0)
U+(E, E + ω0)E√

�2 − E2
,

δσ2,� = πσN δ�

ω0
.

(56)

The contribution δσ2 collects all the quasiparticle effects,
with δσ2,f accounting directly for their distribution and
δσ2,� being due to the gap suppression of Eq. (52). Cal-
culation of δσ2,f requires knowledge of the shape of the
distribution function within the first peak above the gap,
and it is therefore beyond the description in terms of only
the envelope that we use in our analytical approach. For
this reason, this term is evaluated numerically in what fol-
lows. Still, we can give an order-of-magnitude estimate
assuming f ∼ b0, which gives δσ2,f ∼ 2πσN�0b0/ω0;
this shows that the two contributions to δσ2 can be of
similar magnitude.

Knowledge of the ac conductivity makes it possi-
ble to estimate the internal quality factor Qi and the
resonance-frequency shift δω0 of superconducting res-
onators. For half-wavelength, open-ended resonators made
of thin superconducting film, we have [31,32]

Qi = σ2

ασ1
� σNπ�0

ω0ασ1
� πT∗

2.3αω0b0
, (57)

where α is the kinetic inductance fraction (that is, the
ratio between kinetic inductance and total inductance of
the resonator) and

δω0

ω0
= α

2
δσ2

σ2
� −αδ�

2�0
− αω0δσ2,f

2πσN�0
. (58)

Not surprisingly, this expression resembles that for the fre-
quency shift in superconducting qubits, in which terms
originating from gap suppression and virtual transitions
mediated by quasiparticle tunneling have been identified
[33]. Note that, in contrast to the frequency shift, the first
peak’s shape does not affect the calculation of Qi, since
δσ2/σ2 � 1.

Both the quality factor and the frequency shift depend,
in general, on the bath temperature TB and the photon num-
ber n̄ through b0 and T∗ [in particular, the quality factor
scales inversely with quasiparticle density, see Eq. (41),
but it also depends explicitly on T∗]. For comparison with
experiments, we henceforth assume that TB corresponds to
the reported base temperature of the fridge. To estimate n̄,
we relate it to power absorbed by the quasiparticles Pabs:

n̄ = QiPabs

ω2
0

. (59)

Using this relation in Eq. (57), we arrive at an implicit
equation for Qi in terms of Pabs. The latter is, in gen-
eral, not a directly measurable quantity; however, for a
half-wavelength resonator capacitively coupled to a trans-
mission line, we follow Ref. [13] and relate Pabs to the
readout power Pread:

Pabs = 2Pread
Q2

QiQc
, (60)

where Q = QiQc/(Qi + Qc) is the loaded quality factor
and Qc is the coupling quality factor. The same expres-
sion for n̄ in terms of Pread is obtained with use of the
relation between internal power and photon number, Pint =
n̄ω2

0/2π , together with that between internal and read-
out powers, Pint = PreadQ2/πQc [31]. Equations (57), (59),
and (60) make possible a self-consistent calculation of the
photon number and the internal quality factor as a func-
tion of readout power. In the following, we solve these
equations explicitly in two regimes.
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The approach just described is simplified considerably
in the limit Qi � Qc, in which Eqs. (59) and (60) reduce to
n̄ = 2QcPread/ω

2
0, which is independent of Qi. Then T∗ can

be calculated from its definition, Eq. (24), and b0 by solv-
ing Eq. (45). In what follows, we denote with T∗,0 the value
of T∗ obtained under the assumption Qi � Qc, namely,

T∗,0

�
≡
[

105
64

(
Tc

�

)3

cQP
photτ0

2PreadQc

�2

]1/6

. (61)

If we further consider the regime of low phonon temper-
ature and high photon number, TB � T∗

B, we find that the
quality factor is given by

Qi,0 = γ0�

αω0

τ PB
0

τl

(
�

T∗,0

)3

e
√

14/5(�/T∗,0)
3
, (62)

with γ0 = π21/35
√

7(2.1)2/(2.3 × 33/2) � 19.3. There-
fore, in this case the quality factor is a decreasing function
of readout power and does not depend on TB. The fast
decrease of the quality factor with increasing power is due
to the large increase in the number of quasiparticles with
increasing photon number, as discussed in Sec. IV A.

The regime of high phonon temperature and low pho-
ton number, TB � T∗

B, also offers significant simplifica-
tion, since in that case we can relate b0 to the (thermal)
quasiparticle density using Eq. (41), and rewrite Eq. (57) as

Qi = 2.1
√

2π
2.3α

�

ω0

(
T∗
�

)3/2
(

N TB
QP

2ρF�

)−1

(63)

where the superscript TB in N TB
QP = 2ρF�

√
2πTB/�e−�/TB

denotes the thermal-equilibrium density at temperature TB,
which is independent of n̄. This formula, with use of
Eqs. (24), (59) and (60), leads to a quadratic equation for
Qi whose solution can be written in the form

Qi =

√√√√(Qc

2

)2

+
(

2.1
√

2π�
2.3αω0

)2 (
T∗,0

�

)3
(

N TB
QP

2ρF�

)−2

− Qc

2
. (64)

In this regime, Qi is an increasing function of readout
power (through T∗,0) and depends exponentially on TB

(through N TB
QP). As remarked above, the increase of the

quality factor with readout power can be traced to the redis-
tribution of the quasiparticles to higher energies, where the
density of states is lower. Note that if Qi � Qc holds up
to temperatures of order T∗

B or higher, Eqs. (62) and (64)
together capture the temperature and power dependence of
Qi at all temperatures; we do not investigate here the case
in which this condition is not satisfied.

So far we have assumed that the internal quality fac-
tor is determined by the energy absorbed by quasiparticles.
More generally, extrinsic (i.e., nonquasiparticle) mecha-
nisms such as dielectric losses can contribute to the total
internal quality factor Qi,tot; collecting those contributions
into Qi,ext we have

1/Qi,tot = 1/Qi + 1/Qi,ext, (65)

where, as before, Qi denotes the quasiparticle part. For
TB � T∗

B, Qi is given by Eq. (64) with the replacement
1/Qc → 1/Qc + 1/Qi,ext and is therefore unchanged (at
leading order) if Qi,ext � Qc.

We now proceed to compare our theoretical findings
with the measurements of the temperature dependencies
of the quality factor and the resonance frequency for dif-
ferent readout powers reported in Ref. [13]. In that work,
a temperature-independent plateau in the quality factor at
low temperatures is observed, which qualitatively agrees
with the result in Eq. (62). By comparing experimental
values with numerical calculations, de Visser et al. [13]
suggest the plateau is explainable by the nonequilibrium
steady-state solution to the kinetic equations. However,
estimating the value of the plateau Qi,0, Eq. (62), using the
parameters in Table II, we find much-larger values than
measured experimentally (see Table III). The discrepancy
cannot be due to approximations being used: while in par-
ticular the assumption ω0 � T∗ holds only weakly, for the
highest readout power comparison with numerical results
(see Fig. 5) shows that our analytical expression underesti-
mates the quasiparticle density by a factor smaller than 2;
then the quality factor could be overestimated by the same
factor, but the estimated quality factor is 3 orders of mag-
nitude larger than the measured quality factor [34]. This
indicates that the plateau is not due to the quasiparticles
being driven out of equilibrium by the resonator’s photons,
but is due to some other driving mechanism and/or extrin-
sic relaxation channels. The measured power dependence
of the quality factor is qualitatively opposite that typi-
cally expected in the presence of two-level systems [35],
so they are unlikely to be the cause of the plateau. More-
over, the low-temperature saturation of the quasiparticle

TABLE II. Parameters used for comparison between theory in
this work and experiments in Ref. [13]. The estimation of cQP

phot,
�0, and α is discussed in Appendix F. For the phonon thermal-
ization time τl and the coupling quality factor Qc = 20 100, we
use the same values as in Ref. [13]. In the numerical calcula-
tions, the gap is fixed at its thermal-equilibrium value �T, the
discretization step size h = �T/189, and the energy is truncated
at Emax = 10�T. The time τ0 is used as a free fit parameter, while
τ PB

0 follows from it via Eq. (13).

cQP
phot τ0 �0 ω0 τ PB

0 τl α

0.06 Hz 63 ns 189 µeV 22�T/189 40 ps 170 ps 0.13
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TABLE III. For each readout power used in Ref. [13], we cal-
culate T∗,0 using Eq. (61) and the (theoretical) low-temperature
quality factors Qi,0 using Eq. (62) (except for the lowest power,
since in that case T∗,0 � ω0, while the theory is valid for T∗,0 >

ω0). The experimental low-temperature quality factors Qi,ext are
assumed to be due to extrinsic (nonquasiparticle) mechanisms
(see the main text).

Pread (dBm) −100 −90 −80 −72 −68 −64

T∗,0/� 0.12 0.18 0.26 0.36 0.42 0.49
Qi,0/106 10124 1038 1013 107 103

Qi,ext/106 2.5 2.5 2.5 1.3 0.9 0.7

lifetime reported in Ref. [13] (for a different sample and for
a narrower range of power) points to the presence of a sec-
ond driving mechanism, a situation that deserves further
study. Nonetheless, assuming for simplicity an extrinsic
mechanism, we use Eq. (65) to fit the experimental data
and find the values of Qi,ext given in Table III. Results
obtained with the analytical formula and from the numer-
ical calculations are compared with experimental data for
the quality factor and the resonance frequency in Fig. 7;
in the numerical calculations, the experimentally measured
(total) internal quality factor is used in Eqs. (59) and (60)
to obtain the photon number. At temperatures T � 0.25
K we find good agreement between theory and experi-
ment. The fitted value of τ0 is less than an estimate derived
from neutron-scattering data [21] but is consistent with
other experimental estimates; see for example, Ref. [36].
This further validates our approach, especially since from
the analytical expressions it is evident that τ0 enters into
the quality factor via the product cQP

photτ0n̄, and therefore

inaccuracies in the estimates of cQP
phot and/or n̄ (equivalently,

Pread) could affect the extracted value of τ0.
The disagreement between theory and experiment for

the frequency shift at low temperature and readout power
greater than −80 dBm could perhaps be due to the same
driving and/or extrinsic mechanisms responsible for the
saturation of the low-temperature quality factor. It is sug-
gested in Ref. [37] that the depairing effect of a microwave
drive modifies the density of states in such a way to cause
a negative frequency shift proportional to the power; how-
ever, the corresponding influence on the quality factor was
not analyzed. Finally, we note that in agreement with the
discussion after Eq. (56), on the basis of our numerical
calculations about 40%–45% of the calculated frequency
shift originates from the gap suppression, which is compa-
rable to the direct contribution due to the nonequilibrium
distribution.

VI. SUMMARY

In this work we investigate the quasiparticle distribution
function in superconducting resonators in the regime of
low quasiparticle density in the presence of a large number
of low-energy (ω0 � �) photons and of a low-temperature
(TB � �) phonon bath. In the steady state, we present
approximate analytical solutions to the kinetic equations
governing the dynamics of the quasiparticle and phonon
distribution functions. The shape of the quasiparticle dis-
tribution function—that is, its functional dependence on
energy—is determined by interplay between absorption
and emission of photons and phonons (see Sec. III) and
has a typical width T∗ above the gap [see Eq. (24)
and Ref. [30] ]. The overall normalization and hence the

FIG. 7. Internal quality factor Qi,tot versus temperature for different readout powers (left) and deviation of the resonance fre-
quency from its experimentally determined low-temperature and low-readout-power value δω0(T, Pread) = ω0(T, Pread)− ω0(T =
0.06 K, Pread = −100 dBm) in the unit of 10−5ω0 for different readout powers (right). Experimental data from [13] are displayed
as circles (we omit the data for Pread = −90 dBm for clarity of presentation), results from the numerical calculations described in
Sec. II C are displayed as solid lines, and results from the analytical formulas [Eqs. (62)–(65)] are displayed as dashed lines. The
analytical curve for the lowest readout power assumes thermal equilibrium (see Appendix F).
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quasiparticle density are controlled by the balance between
recombination by phonon emission and generation (see
Sec. IV); due to the photons driving the quasiparticles
out of equilibrium, the generation is due not only to ther-
mal phonons but also to nonequilibrium phonons emitted
by quasiparticles of sufficiently high energy. The density
dynamics then follows from the generalized Rothwarf-
Taylor model in Sec. IV A; for TB > T∗

B = T3
∗/�

2, the
steady-state density is approximately the same as in ther-
mal equilibrium, while it is much larger than that at lower
bath temperatures. The analytical results are validated by
comparison with numerical calculations.

Our results enable us to calculate the dependence on
temperature and readout power of the internal quality fac-
tor and (numerically) of the frequency shift in thin-film
resonators (see Sec. V). In contrast to previous sugges-
tions [12,13], we find that the quasiparticle distribution
driven out of equilibrium by the resonator’s photons can-
not explain the experimental data in Ref. [13] at low
temperature, while it quantitatively describes them above
about 0.25 K (see Fig. 7).
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APPENDIX A: QUASIPARTICLE AND PHONON
LIFETIMES

In Sec. II D a number of lifetimes are introduced to
qualitatively discuss the behavior of the quasiparticle dis-
tribution function out of equilibrium. Here we give their
precise definitions in terms of the nonequilibrium quasipar-
ticle and phonon distributions, as obtained by our inspect-
ing the structure of the kinetic equations. As in Sec. II D,
we consider first the phonon lifetimes.

The lifetime of a phonon of energy ω with regard to pair
breaking is given by [see the last term in curly brackets in
the second integral in Eq. (12)]

1

τ
phon
PB (ω)

= 1
π�0τ

PB
0

∫ ω−�

�

dEρ(E)U+(E,ω − E)

× [1 − f (ω − E)] [1 − f (E)] . (A1)

Approximating the Pauli-blocking factors as [1 − f (E)] �
1, as done throughout this paper, we can express the depen-
dence of 1/τ phon

PB on ω in terms of the spectral density S+

in Refs. [38,39] as

1

τ
phon
PB (ω)

= �

π�0τ
PB
0

S+(ω/�), (A2)

where

S+(x) = (x + 2)E
(

x − 2
x + 2

)
− 4x

x + 2
K
(

x − 2
x + 2

)
, (A3)

with E and K the complete elliptic integrals of the second
and first kind, respectively. Note that S+(x) = 0 for x <
2, S+(x) � x for x � 2, and S+(x) � π [1 + (x − 2)/4]
for x − 2 � 2. The last expression shows that the pair-
breaking lifetime approaches τ PB

0 at low temperature and
only weakly depends on energy for ω � 2�.

The lifetime of a phonon against with regard to being
absorbed by a quasiparticle is given by [see the last term in
curly brackets in the first integral in Eq. (12)]

1

τ
phon
abs (ω)

= 2
π�0τ

PB
0

∫ ∞

�

dEρ(E)U−(E, E + ω)

× f (E) [1 − f (E + ω)] . (A4)

For f � 1, one can show that the right-hand side is
bounded by 1/πτ PB

0 times the normalized quasiparticle
density NQP/2ρF�. Since at low temperature the latter is
much smaller than 1, we have τ phon

abs � τ PB
0 .

The last phonon lifetime we take into account is the
thermalization time τl. For a phonon of energy 2� whose
mean free path with regard to pair breaking sτ PB

0 (with s the
speed of sound) is of a similar order as the film thickness
d, τl can be estimated to be given by [19,26,27]

τl ≈ 4d
ηs

, (A5)

where η is the direction-averaged transmission coefficient
between the film and the substrate. For aluminum on sap-
phire, the speed of sound and the transmission coefficient
are s � 3.3–6.7 km/s and η � 0.2, respectively [26]. For
the resonator of Ref. [13] considered in Sec. V, this expres-
sion gives τl � 180–360 ps. In Ref. [13], τl = 170 ps was
used, and to simplify comparison with the results therein,
we also use this latter value in our analysis. Our results
do not depend on the exact value of the thermalization
time at energies ω < 2� if the condition τ phon

abs � τl holds,
as is the case for both choices of τl. We note that some
authors [24,40] suggest the thermalization time of phonons
with ω < 2� is limited by total internal reflection and,
for sufficiently smooth interfaces, to be several orders of
magnitude longer than the thermalization time at energies
above 2�. We assume this not to be the case and use the
thermalization time at energy ω = 2� for all energies.
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We now turn to the quasiparticle lifetimes. The scatter-
ing lifetime τQP

s,t of a quasiparticle due to interaction with
photons has three contributions,

1

τ
QP
s,t

= 1

τ
QP
sp,t

+ 1

τ
QP
st,t

+ 1

τ
QP
abs,t

, (A6)

originating, respectively, from spontaneous emission,
stimulated emission, and absorption of a photon. They
are given respectively by [see the second terms in curly
brackets in Eq. (14)]

1

τ
QP
sp,t

= cQP
photU

+(E, E − ω0) [1 − f (E − ω0)] , (A7)

1

τ
QP
st,t

= cQP
photn̄U+(E, E − ω0) [1 − f (E − ω0)] , (A8)

1

τ
QP
abs,t

= cQP
photn̄U+(E, E + ω0) [1 − f (E + ω0)] . (A9)

The scattering lifetime τQP
s,n due to interaction with phonons

also has three contributions,

1

τ
QP
s,n

= 1

τ
QP
sp,n

+ 1

τ
QP
st,n

+ 1

τ
QP
abs,n

, (A10)

accounting for spontaneous phonon emission [see the last
term in curly brackets in Eq. (5)]

1

τ
QP
sp,n

= 1
τ0T3

c

∫ E−�

0
dωω2U−(E, E − ω) [1 − f (E − ω)] ,

(A11)

stimulated phonon emission [see the last term in curly
brackets in the second integral in Eq. (8)]

1

τ
QP
st,n

= 1
τ0T3

c

∫ E−�

0
dωω2U−(E, E − ω)n(ω)

× [1 − f (E − ω)] , (A12)

and phonon absorption [see the last term in curly brackets
in the first integral of Eq. (8)]

1

τ
QP
abs,n

= 1
τ0T3

c

∫ ∞

0
dωω2U−(E, E + ω)n(ω)

× [1 − f (E + ω)] . (A13)

In addition, the lifetime of a quasiparticle with regard to
recombination is given by [see Eq. (10)]

1

τ
QP
r

= 1
τ0T3

c

∫ ∞

E+�
dωω2U+(E,ω − E)

× f (ω − E) [1 + n(ω)] . (A14)

For a system in equilibrium, these lifetimes (except those
due to photons) are discussed in Ref. [21]. When f �
1, the only lifetimes with significant dependence on the
quasiparticle distribution function are τ phon

abs and τQP
r : since

the rates are proportional to f , the times are inversely
proportional to the quasiparticle density. In Appendix E
we study the dependence of the recombination coefficient
R [i.e., the recombination rate for the quasiparticle den-
sity; see Eq. (47)] on T∗, while as discussed in Sec. III C,
the effect of τ phon

abs on the quasiparticle distribution can be
ignored.

APPENDIX B: FINITE PHONON TEMPERATURE

Here we present in some detail the derivation of the
results discussed in Sec. III B. As mentioned there, we
want to find the energy E∗ below which ignoring the effect
of thermal phonons is justified, in which case the formulas
in Sec. III A can be used, and to find E∗ we need an esti-
mate for Stphon

st , Eq. (8), at E = E∗. In the integrands in that
equation, we assume as usual f � 1 at all energies; then
as long as factors other than n(ω) = nT(ω, TB) grow with ω
more slowly than exponentially, the integral is determined
by the integration in the interval around ω ∼ TB. This is the
case for all terms except that proportional to f (E∗ − ω),
which increases faster than exponentially; for this term, the
integral can be estimated as follows: We consider a fre-
quency ω∗ such that ω∗ � TB and ωM − ω∗ � T̃∗, with
ωM � TB to be defined below (here we assume E∗ � 2�;
for E∗ � 2� the condition reads ωM − ω∗ � T∗, with ωM
having different definitions in the two cases). The contri-
bution to the integral from the interval 0 < ω < ω∗ can be
estimated together with the other terms in Eq. (8), while
that from ω∗ < ω < E∗ −� is to be considered separately.

We start with the low-frequency contribution, ω < ω∗,
which we denote by Stphon

st,low. Then since n restricts ω to be
of order TB � E∗, while the (envelope of the) quasiparticle
distribution function f varies at most over a scale T∗ �
TB, we can approximate U−(E∗, E∗ ± ω) � 1, perform a
series expansion for the distribution functions, and push
the integration limit from ω∗ to infinity to find

Stphon
st,low � 1

τ0T3
c

∫ ∞

0
dωω4 ∂

2f
∂E2

∣∣∣∣
E=E∗

n(ω, TB). (B1)

According to Eq. (31), for (E∗ −�)/T̃∗ � 1 we have

∂2f
∂E2

∣∣∣∣
E=E∗

� 1

T̃2∗

(
E∗ −�

T̃∗

)3

f (E∗), (B2)

and therefore

Stphon
st,low � 24ζ(5)

τ0T3
c

(
TB

T̃∗

)5

(E∗ −�)3 f (E∗), (B3)
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with ζ denoting the Riemann ζ function. From compar-
ison of this expression with Eq. (34), it is clear that the
low-frequency contribution can be ignored for TB � T̃∗. A
similar calculation for the case E∗ � 2� is slightly more
complex, as one needs to use the approximation in Eq. (22)
for U−; the resulting condition reads (E∗ −�)T5

B/T
6
∗ � 1.

We now turn to the high-frequency contribution

Stphon
st,hi ≈ 1

τ0T3
c

∫ E∗−�

ω∗
dωω2f (E∗ − ω)e−ω/TB , (B4)

where the approximations used are U− ≈ 1 and n(ω, TB) ≈
e−ω/TB . For E∗ − ω > 2�, we can use Eq. (31) for f
and estimate the integral using Laplace’s method; indeed,
the argument of the exponential has a maximum at fre-
quency ωM = E∗ −�− T̃∗(T̃∗/TB)

2/3, and E∗ − ωM >

2� if TB/� < (T∗/�)3. Similarly, for E∗ − ω < 2� one
can use the asymptotic approximation for the result in
Eq. (25b) to find ωM = E∗ −�− T∗(T∗/TB)

1/2, and E∗ −
ωM < 2� if (T∗/�)3 < TB/� � T∗/� [we note that the
algebraic prefactor is different in this case, as U− takes
approximately the form given in Eq. (22)]. The estimate
of the integral in Eq. (B4) is then obtained by our evalu-
ating the prefactor at ω = ωM , expanding the argument of
the exponential up to second order around ωM , and finally
evaluating the resulting Gaussian integral; here the inte-
gration limits can be extended to infinity, since the width
of the Gaussian peak is of order T̃∗(TB/T̃∗)1/6 for E∗ > 2�
and T∗(TB/T∗)1/4 for E∗ < 2�.

We can now use the estimate thus found for Stphon
st in

Eq. (33) together with Eq. (34) to arrive at the following
equation for E∗ > 2�:

4
√

3π(x̃∗ − χ̃2/3)2e(3/5)χ̃
5/3+(2/5)x̃5/2

∗ −χ̃ x̃∗ = x̃9/4
∗ χ̃2/3,

(B5)

where x̃∗ = (E∗ −�)/T̃∗ and χ̃ = T̃∗/TB. For E∗ < 2�,
the term Stphot in Eq. (33) can be expressed as the opposite
of the first term on the right-hand side of Eq. (23), and we
similarly find the equation

105
√
π(x∗ + √

χ)(x∗ − √
χ)2e(2/3)χ

3/2+(1/3)x3∗−x∗χ

= 64x3
∗χ

3/4, (B6)

with x∗ = (E∗ −�)/T∗ and χ = T∗/TB. These equations
can be solved approximately by expansion up to sec-
ond order, both in the prefactors and in the argument of
the exponential, around x̃∗ = χ̃2/3 (x∗ = √

χ ), to find for

TB � T∗
B

E∗ � �+ T̃∗(T̃∗/TB)
2/3

+ T̃∗

√√√√√4
3

(
TB

T̃∗

)1/3

W

⎡
⎣

√
3

16
√
π

(
T̃∗
TB

)5/2
⎤
⎦ � 2�,

(B7)

where W is the Lambert or product logarithm function with
the asymptotic behavior W(x) � ln x − ln ln x for x � 1,
while for T∗

B � TB � T∗ we get

E∗ � �+ T∗(T∗/TB)
1/2

+ T∗

√√√√(TB

T∗

)1/2

W

[
32

105
√
π

(
T∗
TB

)9/4
]

� 2�.

(B8)

In Sec. III B we report for simplicity only the leading terms
for E∗.

By construction, the energy E∗ denotes that energy at
which the effects of absorption and stimulated emission of
phonons become comparable to the effect of photons, so
ignoring Stphon

st is justified only below E∗. Conversely, we
now show that for E > E∗ we can ignore the photons, and
the quasiparticle distribution function takes the Boltzmann
form,

f (E) ∝ e−E/TB . (B9)

It is straightforward to check that (within the approxi-
mation of ignoring the Pauli-blocking factors) this form
satisfies the equation

Stphon
sp {f } + Stphon

st {f , nT} = 0. (B10)

Then using this equation and Eq. (27), which is valid
irrespective of the exact form of f , we can write

Stphon
st � Stphon

sp

∣∣∣
E=E∗

(
E −�

E∗ −�

)3

e−(E−E∗)/TB . (B11)

Moreover, using Eq. (B9), we can write the photon colli-
sion integral in the form

Stphot = Stphot
∣∣∣
E=E∗

e−(E−E∗)/TB . (B12)

Since Stphot|E=E∗ = Stphon
sp |E=E∗ , comparing the last two

equations, we see that, Stphot < Stphon
st for E > E∗. Note

that to get the estimate in Eq. (B11), we assume the valid-
ity of Eq. (B9) at all energies, including E < E∗, and this
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assumption underestimates the contribution to Stphon
st from

the term in Eq. (8) proportional to f (E − ω) originat-
ing from the interval E − E∗ < ω < E −�. However, this
contribution is smaller than that coming from the inter-
val 0 < ω < E − E∗ if E − E∗ � E∗ −�− T̃∗(T̃/TB)

2/3

[with E∗ in Eq. (B7)], an inequality that identifies the width
of the crossover region between the approximate expres-
sions valid below and above E∗. These considerations are
for the case E∗ > 2�, but they can be extended to the
interval E∗ < E < 2� in the remaining case.

APPENDIX C: NONEQUILIBRIUM PHONON
DISTRIBUTION

Here we study the nonequilibrium form of the phonon
distribution function. We start by considering energies
below the pair-breaking threshold, ω < 2�. Then if we
write n = nT + n1, in the steady state Eq. (12) takes the
form (ignoring as usual Pauli-blocking factors)

n1(ω) = 2τl

π�0τ
PB
0

∫ ∞

�

dEρ(E)U−(E, E + ω)

× {f (E + ω) [1 + nT(ω)+ n1(ω)]

− f (E) [nT(ω)+ n1(ω)]
}
. (C1)

To solve this equation approximately, we consider
two limiting cases. First, we consider energies such
that n1 � nT; then we can ignore n1 on the right-
hand side, and the resulting expression amounts to the
first iterative solution. To this case belongs in par-
ticular the low-energy regime ω � TB, in which case
we can approximate nT(ω) � TB/ω, f (E + ω) � f (E)+
ωf ′(E), U−(E, E + ω) � U−(E, E) = 1/ρ(E) and there-
fore find n1 � (2τl/πτ

PB
0 )(TB/�0)b0. Then typically n1 �

nT unless τl is several orders of magnitude greater than τ PB
0 .

A second limiting case is when nT � n1 � f (E +
ω)/f (E) (since f is, in general, monotonically decreas-
ing, the latter inequality also implies n1 � 1). In this case
n1 is approximately as in Eq. (39), and using Eq. (25b), we
have, for T∗ � ω � �,

f (E + ω) � 3b0

25/6
√
π

(
E + ω −�

T∗

)−(1/2)

× e−[(E+ω−�)/T∗]3/3. (C2)

In the argument of the exponential function, we can keep
terms linear in (E −�)/T∗ while disregarding higher
powers, and for ω � T∗ we can approximate U−(E, E +
ω) � ω/

√
ω2 + 2ω�. In calculating the integral over

energy E in Eq. (C1), we can also approximate ρ(E) �

√
�/(2(E −�)) to arrive at

n1(ω) � 3
21/3π

b0
τl

τ PB
0

(
T∗
�

)2
�

ω

√
�

2�+ ω
e−(ω/T∗)3/3.

(C3)

For ω � � we can proceed as for ω � �, but using
Eq. (31) instead of Eq. (25b); in this way we obtain

n1(ω) � 21/633/2

√
5π

b0
τl

τ PB
0

(
T∗
�

)2
�

ω

√
�

2�+ ω

× exp

[
−2

5

√
35
64

(
ω

T∗

)5/2
√
�

T∗

]
. (C4)

Note that the two exponents in Eqs. (C3) and (C4) match
at ω = 63�/80, which as expected is of order �.

To find the crossover frequency ωc between the thermal
distribution at ω < ωc and the nonequilibrium distribution
at higher energies, assuming ωc � �, we equate Eq. (C3)
for n1 to nT(ω) � e−ω/TB , which leads to the equation

1
3

y3 − T∗
TB

y + ln y + 1
2

ln
(

1 + T∗
2�

y
)

+ ln
(

25/6π

3
�

T∗

τ PB
0

τl
b−1

0

)
= 0, (C5)

where y = ωc/T∗. For y � √
3T∗/TB, we can ignore the

first term in this equation, and up to small corrections we
arrive at Eq. (40). More-accurate estimates for ωc can be
found by solving Eq. (C5) numerically. For ωc � �, the
same approach can be used, but with use of Eq. (C4) for
n1.

We now turn to energies above the pair-breaking thresh-
old, ω > 2�. On the basis of the considerations thus far,
so long as ωc � 2�, we expect the inequalities nT �
n1 � 1 to hold, meaning that we could discard nT in
Eq. (12); however, to allow for ωc > 2� we keep the nT
term. In both cases, in the second integral in Eq. (12)
we can ignore n(ω) � 1 in the first term in curly brack-
ets and, using the approximate energy independence of
1/τ phon

PB (see Appendix A), we can rewrite the second term
as −n(ω)/τ PB

0 . Furthermore, we assume the quasiparticle
density to be sufficiently low for τ phon

abs � τ 0
PB to hold, so

we can ignore the second term in curly brackets in the first
integral in Eq. (12) (see Sec. II D). Then the approximate
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solution for the phonon distribution reads

n(ω) � 1
ζ

[n1(ω)+ n2(ω)+ nT(ω)]

= τl

π�0τ
PB
0 ζ

[
2
∫ ∞

�

dEρ(E)U−(E, E + ω)f (E + ω)

+
∫ ω−�

�

dEρ(E)U+(E,ω − E)f (ω − E)f (E)
]

+ 1
ζ

nT(ω), (C6)

where

ζ = 1 + τl/τ
PB
0 (C7)

is the phonon trapping factor [see Eq. (50)]. The first term
in the square brackets coincides with n1 in Eq. (39), but
here the prefactor 1/ζ is smaller than unity, since in addi-
tion to scattering a new relaxation channel for phonons
(i.e., pair breaking) is now available. The second term in
square brackets, n2(ω), takes into account phonon genera-
tion by quasiparticle recombination. Assuming the (enve-
lope of the) quasiparticle distribution to be monotonically
decreasing, we can bound this term by b2

0�S+(ω/�) [with
S+ in Eq. (A3)], which near ω = 2� is approximately
b2

0�π ; then, using Eq. (C4) (with the appropriate prefac-
tor), we find that the first term always dominates over the
second one at the threshold ω = 2� if

b0 < (3 × 21/6/
√

5π)ζ(T∗/2�)2e−√
35/32(2�/T∗)3/5. (C8)

Even if n2 dominates, as discussed in Sec. III C, these
nonequilibrium phonons due to quasiparticle recombina-
tion could affect the shape of the quasiparticle distribution
only at energies E > 3� by contributing to the collision
integral Stphon

st , Eq. (8). For ω − 2� � T∗, one can apply
the low-energy approximation to the product of the den-
sity of states and the coherence factor and use Eq. (25a) to
evaluate approximately the second term in square brackets
in Eq. (C6) to find

n2(ω) � b2
0τl

π(τ PB
0 + τl)

[
π − 1.20(ω − 2�)5/2

]
. (C9)

We do not consider here the behavior of n2 for frequencies
ω > 2�+ T∗.

APPENDIX D: NORMALIZATION EQUATION

We derive here an explicit expression for the coefficients
Ii (i = 0, 1, 2) entering Eq. (45) for the normalization con-
stant b0. To find those coefficients, we substitute Eq. (44)

into Eq. (43) and divide the result by (2�)3/(1 + τl/τ
PB
0 ).

From the term containing nT we find

I0 = 1
(2�)3

∫
2�

dωω2nT(ω, TB) � TB

2�
e−2�/TB . (D1)

To find I2, we collect together the terms quadratic in f ,
switch the integration order between ω and E, and change
variables from ω to E′ = ω − E; we obtain

I2 = 1
b2

0π�(2�)3

∫
�

dE
∫
�

dE′(E + E′)2ρ(E)

× U+(E, E′)f (E)f (E′). (D2)

The presence of the two distribution functions implies that
the main contributions to the integrals come from regions
close to�, and using approximations similar to those used
in Eq. (41), we arrive at

I2 � (2.1)2

π

T∗
2�

. (D3)

Finally, considering the n1 term, we get

I1 = 1
b0π�(2�)3

∫
�

dE
∫

2�
dωω2ρ(E)

× U−(E, E + ω)f (E + ω). (D4)

Here we have to consider separately various regimes. For
high phonon temperature and low photon number, T∗

B �
TB � T∗, the distribution function takes the Boltzmann
form f (E) = bTe−E/TB above energy E∗ � 2� < 3� (see
Sec. III B), and we have

I1 � 1√
2π

bT

b0

(
TB

2�

)3/2

e−3�/TB , (D5)

where

bT

b0
� 3

25/6
√
π

(
TB

T∗

)1/4

e�/TBe(2/3)(T∗/TB)
3/2

. (D6)

With these expressions, using (T∗/�)3 � TB/�, we
can rewrite the condition for the normalization con-
stant b0 to give the thermal-equilibrium density as
0.16(τl/τ

PB
0 )2(TB/�)

2e−2�/3TB < 1; even at the relatively
high temperature TB = 0.3Tc, this condition becomes
10−4(τl/τ

PB
0 )2 < 1, showing that in this regime deviations

from the thermal-equilibrium density are possible only if
τl exceeds τ PB

0 by at least a few orders of magnitude. We
do not pursue the analysis of this large-τl limit here, as
we focus on the experimentally relevant case of aluminum
films in which τl is comparable to τ PB

0 . However, the large-
τl regime could be relevant for other materials, such as
niobium.
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For low phonon temperature and high photon num-
ber, TB � T∗

B, we have E∗ � 2�, so we need to distin-
guish between E∗ < 3� and E∗ > 3�. In the former case,
Eq. (D5) still holds, but now

bT

b0
� 33/2

21/3
√

5π

√
35
64

(
TB

�

)1/2 (T∗
�

)−1

× e�/TBe(3/5)(T̃∗/TB)
5/3

. (D7)

Using this expression, one can check that the condition for
b0 to give the thermal-equilibrium density is easily vio-
lated, due to the last exponential factor in Eq. (D7) being
dominant and large in the regime TB/� � (T∗/�)3 (the
violation occurs unless τl/τ0 is small compared with the
inverse of that exponential factor). Similarly, in the case
E∗ > 3�, we find again that the density generically devi-
ates from the thermal-equilibrium density. In this case we
have

I1 = 33/2

27/35π
√

7

(
T∗
�

)5

exp

[
−
√

14
5

(
�

T∗

)3
]

, (D8)

and in the ratio I 2
1 /(I0I2) the exponential factor e2�/TB

from I0 dominates over the exponential in I1. Note that
despite the similarity, the coefficient I1 and hence the value
of b0 in the two cases are different. Also, although we
include the case E∗ < 3� for completeness, it has lim-
ited relevance, since the inequality holds if (T∗/�)3 <
23/2√35/64 (TB/�), and at the same time we require
TB/� � (T∗/�)3.

To summarize, we find that for high phonon tempera-
ture and low photon number the quasiparticle density is
the same as in thermal equilibrium and the term linear in
b0 in Eq. (45) can be ignored. Conversely, at low phonon
temperature and high photon number the constant term can
be ignored. The relationship to the generalized Rothwarf-
Taylor equation can be found by restoring all prefactors;
in practice, this amounts to expressing b0 in terms of NQP
using Eq. (41), multiplying the left-hand side of Eq. (45) by
4ρF(2�/Tc)

3π�/τ̄0, and equating the result to dNQP/dt.
In this procedure, we can use Eq. (D8) for I1; in this
way, the crossover between the two regimes is correctly
identified up to numerical factors of order unity.

APPENDIX E: PHOTON-NUMBER-DEPENDENT
CORRECTIONS IN THE GENERALIZED RT

MODEL

In the discussion of the generalized RT model in
Sec. IV A, we limit our considerations to the leading
order in the parameter T∗/� � 1. However, corrections
in powers of ε ≡ T∗/� can be taken into account, as
we now show. We begin by evaluating corrections to
the expression for the quasiparticle density, Eq. (41).

FIG. 8. Numerically calculated recombination coefficient
(solid blue line) for the distributions derived in Sec. III (for
TB = 0), in the unit of the (zeroth-order) recombination coef-
ficient R defined in Eq. (49), and the analytical approximation
(dashed black line), Eq. (E2).

In the integral there, we make the change of vari-
ables E = �(1 + εx) and express the density of states
as ρ(E) � √

�/2T∗x
(
1 + 3εx/4 − 5(εx)2/32

)
. Defining

aβ = ∫0 dx xβ f (x)/b0, we find

NQP � 2ρF

√
2T∗�b0

(
a−1/2 + 3

4
a1/2ε − 5

32
a3/2ε

2
)

.

(E1)

The aβ factors can be estimated numerically; they have the
values a−1/2 � 2.1, a1/2 � 0.88, and a3/2 � 0.77.

The same procedure can be applied to the evaluation of
I2 in Eq. (D2) by expanding in the integral the energy-
dependent factors multiplying the two distribution func-
tions. By comparing the result with the square of Eq. (E1),
we find that the recombination term in Eq. (47) can be
written as R̄N 2

QP, with

R̄
R

= 1 + a1/2

a−1/2
ε +
[

5
4

a3/2

a−1/2
− 3

4

(
a1/2

a−1/2

)2
]
ε2 (E2)

and R defined in Eq. (49). In Fig. 8 we show that this
second-order-in-ε expression gives a reasonable approxi-
mation for the recombination coefficient even for T∗ close
to �.

Additional corrections originate from our taking into
account the dependence on ω of the phonon pair-breaking
lifetime τ phon

PB (ω), Eq. (A2), which we previously ignored.
In the expression for the phonon distribution function,
Eq. (C6), this amounts to the substitution ζ → ζ(ω), where
the energy-dependent phonon trapping factor is

ζ(ω) = 1 + τl/τ
phon
PB (ω). (E3)
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We also need to modify Eq. (43) by multiplying the distri-
bution function n(ω) by τ PB

0 /τ
phon
PB (ω). Inserting the thus-

corrected Eq. (C6) into the modified Eq. (43), we find that
the two integrals I0 and I1 for the generation terms are mod-
ified by inserting in the integrands of Eqs. (D1) and (D4) a
factor τ PB

0 ζ/τ
phon
PB (ω)ζ(ω), while in the integrand for the

generation term I2, Eq. (D2), we must include the fac-
tor ζ/ζ(E + E′). Since in the relevant regime (TB � T∗

B)
I1 has stronger-than-exponential dependence on T∗/�, see
Eq. (D8), we do not pursue the calculation of weak cor-
rections proportional to ε9/5 [the main correction to the
function G(x) originates from the linear term in Eq. (E1)
for NQP, so the right-hand side of Eq. (51) should be mul-
tiplied by 1 − (3a1/2/4a−1/2)ε]. Similarly, we ignore the
small corrections in TB/� that would be introduced to the
leftmost expression in Eq. (D1). For I2, we limit ourselves
to terms linear in ε; at this order we find that the coeffi-
cient of the linear term in Eq. (E2) should be multiplied by
(1 + τl/2τ PB

0 )/(1 + τl/τ
PB
0 ). As a function of τl, this factor

varies between 1 and 1/2, so the finite thermalization time
can weaken the dependence of the recombination coeffi-
cient R̄ on T∗/�, but it does not change its increase with
this parameter. Therefore, in the high-phonon-temperature
regime, TB � T∗

B, in which the I1 term can be ignored, this
increase implies a decrease of quasiparticle number with
increasing photon number.

APPENDIX F: PARAMETERS FOR COMPARISON
WITH EXPERIMENT

We discuss here our estimates for the parameters used in
the comparison with the experiment reported in Ref. [13]
(see Table II in Sec. V). The kinetic inductance fraction
α and the zero-temperature gap �0 are obtained by our
fitting the measured internal quality factor for temperatures
T > 0.25 K and the lowest readout power, Pread = −100
dBm, to the thermal-equilibrium expression [31]

Qi = π

4α sinh(x)K0(x)
exp
(
�T

T

)
, (F1)

where x = ω0/2T and K0 is the zeroth-order modified
Bessel function. A least-squares fit gives α � 0.13 and
�0 � 189 µeV. The assumption of thermal equilibrium
for the quasiparticles is justified, since the estimated T∗ is
comparable to ω0 (see Table III).

The kinetic inductance fraction can be estimated on the
basis of the geometry of the resonator using Eqs. (8) and
(46) in Ref. [41] (in the latter equation, the penetration
depth can be estimated using the measured value of resis-
itivity); this yields α = 0.07, which is of the same order
as the value obtained from the fit. In Ref. [13] a smaller
value for �0 is given, estimated by measuring the criti-
cal temperature and using the BCS relation for the ratio
�0/Tc; our estimate agrees with previous findings of a

higher ratio in thin aluminum films [42]. To estimate cQP
phot

using Eq. (15), we follow Ref. [13] and assume the volume
occupied by the quasiparticles to be twice the central strip
volume, V = 2 × 1770 µm3, to account for quasiparticles
in the ground plane, and take ρF = 1.74 × 104/µeV µm3.
Then for thin-film resonators we use Q′ = π�0/αω0, as
can be seen by replacement of σ1 → σN in the central
expression in Eq. (57).
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