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Resonant sensors hold great promise in measuring small masses, to enable future mass spectrometers,
and small forces in applications like atomic and magnetic force microscopy. During the last decades,
scaling down the size of resonators has led to huge enhancements in sensing resolution, but has also
raised the question of what the ultimate limit is. Current knowledge suggests that this limit is reached
when a resonator oscillates at the maximum amplitude for which its response is predominantly linear.
We present experimental evidence that it is possible to obtain better resolutions by oscillation amplitudes
beyond the onset of nonlinearities. An analytical model is developed that explains the observations and
unravels the relation between ultimate sensing resolution and speed. In the high-speed limit, we find that
the ultimate resolution of a resonator is improved when decreasing its damping. This conclusion contrasts
with previous works, which proposed that lowering the damping does not affect or even harms the ultimate
sensing resolution.
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I. INTRODUCTION

The use of mechanical resonators as precise sensors for
mass, force, and other physical parameters has been fueled
by recent advances in miniaturization. This is because a
lower resonator mass leads to a higher responsivity, i.e., a
larger shift of the resonance frequency for a given stimu-
lus [1]. However, the detection limit of resonant sensors
is not only determined by the responsivity, but also by
the frequency resolution, which is defined as the small-
est resonance frequency change that can be detected. In
order to be resolved, a frequency change needs to be larger
than the stochastic variations observed when measuring
the resonance frequency, which are commonly character-
ized by the Allan deviation σy [2,3]. The Allan deviation
of a resonant sensor results from the noise sources inher-
ent to the resonator, its environmental conditions, and the
noise from the readout [1,4–6]. When all environmental
and readout noise sources are eliminated, the fundamental
resolution limit at finite temperatures is determined by the
resonator’s thermomechanical noise. The corresponding
Allan deviation, which depends on the integration time of
the measurement, has been well established for mechanical
resonators in the linear regime [1,7].

The linear harmonic oscillator model does not predict
a lower limit for the Allan deviation, since increasing the
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actuation power, and so the signal-to-noise ratio, always
results in a lower Allan deviation σy for a given integra-
tion time. Several authors have pointed out that this trend
cannot continue indefinitely for real resonators, due to the
appearance of nonlinear effects at high enough actuation
powers [1,7–10]. For mechanical resonators at the micro-
and nanoscale, nonlinear effects usually manifest as a cubic
stiffness in the resonator dynamics, commonly known as
Duffing nonlinearity. This characteristic comes with con-
version of amplitude noise into phase noise that enhances
with the actuation power, worsening the frequency res-
olution. Therefore, it is expected that Duffing resonators
present an optimum power level as a result of the trade-off
between signal-to-noise ratio and amplitude-phase noise
conversion. Following this rationale, it has been assumed
that the minimum Allan deviation is obtained for a charac-
teristic oscillation amplitude at which the nonlinear effects
become dominant, known as the critical amplitude or onset
of nonlinearity [7–9]. Using the fact that this critical ampli-
tude is inversely proportional to the quality factor Q, it
has been proposed that the minimum Allan deviation is
independent of Q [7,9]; see Fig. 1. Using the same argu-
ment, Roy et al. [8] concluded that the minimum Allan
deviation can be even reduced by decreasing the quality
factor of a resonator; see Fig. 1(a). Differently from previ-
ous studies, this study did not include the dynamics of the
closed-loop controller often used to drive resonant sensors
[7]. With or without the closed-loop dynamics, the results
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cited noticeably contrast with historical efforts of the res-
onant sensor community to increase the quality factor of
mechanical resonators to improve resolution.

Besides resolution, fast reading is an important requisite
in most applications of resonant sensors. For example, the
scan speed in atomic force microscopy is key to charac-
terize dynamic biomolecular processes [11]. The analysis
of the proteom of single cells has been envisioned with
nanomechanical resonators [12], for which millions of
molecules need to be individually weighted. Neverthe-
less, for a linear resonator at a given oscillation amplitude,
the resolution scales with inverse proportionality to the
integration time [4], such that faster measurements result
in worse resolution (higher Allan deviation). This reduc-
tion in precision can be compensated by increasing the
oscillation amplitude, but only within the linear range.
Therefore, using the critical amplitude argument described
above, previous knowledge suggests that nonlinearities
fundamentally limit the sensing speed for a given resolu-
tion level.

In this work, we experimentally and theoretically ana-
lyze the ultimate frequency resolution of Duffing res-
onators under closed-loop operation. Our experimental
results show that sensor resolution can be improved
beyond the previously determined limits [7,9] for inte-
gration times τ shorter than a critical time constant of

(a) (b) (c)

FIG. 1. Log-log plots of the minimum Allan deviation that can
be obtained by a thermomechanically limited Duffing resonator
when optimizing the actuation power, as a function of the inte-
gration time τ . Each curve within the same plot corresponds to a
different value of the quality factor. (a) Limit found by Roy et al.
[8] by assuming that the minimum Allan deviation is reached for
actuation at the critical amplitude. (b) Limit found by Olcum et
al. [9] for high quality factor resonators, and by Demir and Hanay
[7] for any quality factor but assuming a closed-loop operation.
Both works use the assumption that the minimum Allan devi-
ation is reached at or close to the critical amplitude. (c) Limit
for Duffing resonators under closed-loop operation, by using the
optimum actuation amplitude found in this work, that depends
on the integration time. For short integration times, the minimum
Allan deviation is independent of the integration time. For long
integration times, the minimum Allan deviation shows a τ−1/2

dependence and matches the result in (b). The transition between
both regimes occurs at τc = √

3Q/(π f0).

approximately Q/f0, where Q is the quality factor and f0
is the linear resonance frequency. To gain insight into the
problem, the effect of white noise on the Allan devia-
tion of a Duffing resonator under closed-loop operation is
modeled using perturbation theory. The developed model,
based on linearization of the amplitude-phase space of
the Duffing resonator, closely reproduces our experimental
findings. In addition, the theory provides useful expres-
sions to determine the lower limit for the Allan deviation
in the nonlinear regime, and the optimal actuation level
needed to reach it, which turns out to depend on the
integration time.

Our results show that two regimes can be identified in
which the minimum Allan deviation of a Duffing resonator,
which defines its ultimate resolution limit, exhibits distinct
behaviors. For fast sensing (short integration times), the
ultimate resolution limit is independent of the integration
time, which implies that it can be attained at arbitrarily
high speeds. Furthermore, this limit can be improved by
increasing the resonator’s quality factor. For slow sens-
ing (long integration times), the ultimate resolution limit
does not depend on the quality factor as long as all other
resonator characteristics are left unchanged. Figure 1(c)
shows a graphical representation of the determined resolu-
tion limits and their dependence on the quality factor and
the integration time.

In the following, we first present an experimental study
of the frequency resolution of a nonlinear silicon nitride
nanomechanical membrane and its dependence on driv-
ing power and the integration time. Then we theoretically
analyze the resolution limits of Duffing resonators and
derive analytic expressions for the minimum Allan devia-
tion, for limiting cases of short and long integration times.
Finally, we perform numerical simulations of the Duff-
ing resonator under closed-loop operation to validate the
analytical model, and confirm the conclusions without the
linearization approximations introduced in the analytical
derivations.

II. EXPERIMENTAL RESULTS

A series of experiments is performed on a square sili-
con nitride membrane with a thickness of 92 nm and an
area of 2 × 2 mm2 that is suspended on a silicon chip; see
Figs. 2(a) and 2(b). The chip is mounted on a piezoactua-
tor inside a vacuum chamber at a pressure of 2 mPa (see
Appendix A). The motion in the center of the membrane is
recorded by Doppler laser vibrometry. The measurement
setup is sensitive enough to characterize the resonator’s
thermomechanical displacement noise in the absence of
piezoactuation, whose power spectral density (PSD) spec-
trum is shown in Fig. 2(c). The figure shows a peak at
188 kHz that corresponds to the fundamental vibration
mode of the membrane. The peak has an amplitude 6.3
times larger than the measurement noise floor allowed
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(a) (b) (c)

(d) (e)

FIG. 2. (a) Top-view optical picture of the Si3N4 membrane used in the experiments. (b) Cross-section representation of the chip
containing the membrane in the experimental setup. (c) Measured noise spectrum in the absence of actuation. The peak corresponds to
the thermomechanical noise of the membrane’s fundamental resonance. (d) The solid lines represent experimental upward frequency
sweeps around the fundamental resonance for different actuation levels. For low levels, the membrane behaves as a linear resonator.
For 4.4 nN and above, a stiffening effect is observed that produces bifurcation for 11 nN and above. The dotted lines represent fittings
to the Duffing model for each actuation level, using the values in Table I. The backbone curve described by Eq. (1) is plotted for
reference. The critical amplitude calculated from γ and Q [13], acrit = 0.59 µm, is also indicated. (e) Dimensionless Allan deviation
for the same actuation levels as in (d), when the membrane is driven by a PLL controller at the displacement maxima. The solid lines
represent measurements, where white force noise with PSD S0 = 2.5 × 10−21 N2 Hz−1 is added to the actuation to ensure that the
response is dominated by white force noise. This force noise resembles the thermomechanical noise the resonator would experience
at temperatures higher than room temperature. The dotted colored lines represent the theoretical values for the membrane assuming a
linear response under the experimental conditions. The dotted black line indicates the previously known limit for the Allan deviation,
defined by actuation at the critical amplitude. The horizontal dashed line indicates the lower boundary for the Allan deviation found
by our model at integration times below τc.

to extract the linewidth. The modal stiffness defining the
linear resonance, specified in Table I, is obtained by fitting
the PSD data using the equipartition theorem [14]. Then,
upward frequency sweeps are performed around the found
resonance with different actuation levels, with the results
plotted in Fig. 2(d). The experimental curves are fitted to a
Duffing model to obtain the rest of the parameters defining

the resonance, listed in Table I, as well as the applied force
values. As the actuation level increases, a hardening effect
becomes evident from the bending of the resonance peak to
the right. For an actuation force of 11 nN and above, a sud-
den jump in the displacement amplitude is observed, which
indicates that the critical amplitude has been surpassed,
i.e., the resonator shows bifurcation [13]. For 24 nN, a dip
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TABLE I. Resonator parameters obtained from the experiments. The modal stiffness is obtained by fitting the data in Fig. 2(c) using
the equipartition theorem. Then, the resonance frequency, modal mass, quality factor, and Duffing parameter are obtained by fitting
the curves in Fig. 2(d) to the Duffing model.

Resonance frequency Quality factor Modal stiffness Modal mass Duffing coefficient
f0 Q k1 m γ

188.1 kHz 30 × 103 320 N m−1 229 ng 1.47 × 108 m−2

is seen in the response curve at 188.14 kHz, which suggests
nonlinear coupling with a higher order mode [15]. The
displacement maxima, with amplitude ap for each actua-
tion level, follow the backbone curve of Duffing resonators
[16],

ωp = ω0

(
1 + 3

8
γ a2

p

)
(1)

with ωp the angular frequency at which amplitude ap is
reached and ω0 the angular resonance frequency in the lin-
ear regime. Parameter γ is the Duffing coefficient, defined
as the cubic stiffness divided by the linear stiffness; see
Eq. (5) below. The characteristic backbone curve of our
resonator model is plotted in Fig. 2(d).

Next, to evaluate the effects of thermomechanical noise
on the Allan deviation of the closed-loop-driven Duffing
resonator, experiments in the presence of white force noise
are performed. For that, a phase locked-loop (PLL) con-
trol scheme is set to continuously drive the resonator at
resonance (see Appendix A), with PLL parameters set
using the method described in Ref. [17]. The chosen con-
figuration ensures that the observed Allan deviation is
independent of the PLL parameters for integration times
longer than 100 µs. The controller is set to target a phase
shift of −π/2 in the resonator’s response, where phase
shifts introduced by other components are compensated
for. This condition ensures that the device is driven at
ω0 when the applied force is in the linear regime, and at
the nonlinear resonance frequency ωp when the resonator
enters the nonlinear regime [18]. Note that the nonlinear
coupling seen for 24 nN occurs at frequencies far from ωp ;
therefore, it is not expected to affect the Allan deviation
measurements.

The experimental analysis of resonators at their ther-
momechanical limits is hindered by resonance frequency
fluctuations [5] and the presence of measurement noise
introduced by instrumentation. To illustrate the challenge
to study the Allan deviation of micro- and nanomechan-
ical resonators in the absence of measurement noise, we
note that to reach that condition the thermomechanical
noise peak in Fig. 2(c) would have to exceed the back-
ground PSD at f < f0 by a factor 4Q2�f 2/f 2

n [19], where
�f is the measurement bandwidth that limits the mini-
mum integration time for which the Allan deviation can

be determined. For our device, this translates into a factor
of 1 × 107, which is much higher than the experimental
ratio of 6.3. To overcome this problem, we ensure that the
resonator operates in the regime where its response is dom-
inated by white force noise by using the piezo to add a
random force, with white spectral distribution and PSD S0,
to the sinusoidal actuation force provided by the PLL sys-
tem. According to the fluctuation-dissipation theorem, the
thermomechanical noise of a system is fully accounted for
by a force of such type and power spectral density (one
sided, on a per hertz basis) [20]

Sthm = 4ckBT, (2)

where kB is the Boltzmann constant, T is the absolute
temperature, and c is the dissipation constant of the sys-
tem. For either linear or Duffing resonators, c = √

k1m/Q,
where k1 is the linear modal stiffness, m is the modal mass,
and Q is the quality factor. By adding white noise with
PSD S0, we emulate the thermomechanical noise the res-
onator would experience at a higher effective temperature
Teff = S0/(4ckB). Making S0 much larger than the other
noise sources ensures that the Allan deviation is limited
by this artificial thermomechanical noise. Thus, our experi-
ments capture the ultimate situation where thermomechan-
ical noise dominates the frequency resolution, such that
contributions of instrumentation and fluctuations on the
operation conditions can be neglected. In all of the Allan
deviation experiments, the amplitude of the white noise is
set to a constant value of S0 = 2.5 × 10−21 N2 Hz−1.

In Fig. 2(e) (solid lines), we report the dimensionless
Allan deviations measured at the same actuation forces
as in Fig. 2(d). The diagonal dotted lines represent the
calculated Allan deviation for linear resonators under
closed-loop operation [7]:

σy0(τ ) = 1
ax

√
kBT

mQω3
0τ

(3)

with τ the integration time and ax the displacement ampli-
tude of the oscillation. Note that the phase condition φ =
−π/2 set in the experiments ensures that the driving fre-
quency equals ωp and therefore ax equals the peak ampli-
tude ap . It is observed that, for force amplitudes in the
linear range of operation (0.55, 1.1, and 2.2 nN), the mea-
sured Allan deviation shows good agreement with Eq. (3).
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At actuation force levels of 4.4 nN and above, where the
resonator response in Fig. 2(d) is seen to enter the non-
linear regime, the measured Allan deviation in Fig. 2(e) is
seen to differ strongly in behavior from the linear model,
with three distinguishable regimes. In the first regime, for
short integration times τ , the Allan deviation behaves as
predicted by the linear model, with a τ−1/2 dependence like
in Eq. (3) (indicated by dotted lines in the figure). Note that
the Allan deviation is not affected by the Duffing nonlinear-
ity in this regime, even for actuation forces that exceed the
critical amplitude (11 and 24 nN). At intermediate values
of τ , the Allan deviation increases significantly. Finally, in
the third regime at integration times longer than approxi-
mately Q/f0, the Allan deviation reduces again with a τ−1/2

trend, although at significantly higher levels than obtained
from Eq. (3). In this last regime, the data correspond well
to the theoretical prediction from Ref. [7], with the lowest
Allan deviation being found at a driving force of 4.4 nN,
which is the force that is closest to the critical amplitude
in Fig. 2(d). However, this driving force does not give the
lowest Allan deviation for all integration times, since the
curves at 11 and 24 nN show lower values in the region
τ < Q/f0. In addition, these curves show local minima at
an approximately constant value of the Allan deviation.
In the next sections, this behavior of the Allan deviation
in the nonlinear regime is analyzed further by theory and
simulations.

III. THEORY AND MODEL

For a driven Duffing resonator, the modal displace-
ment x and modal force g are related by the second-order
differential equation

mẍ(t)+ cẋ(t)+ k1x(t)+ k3x3(t) = g(t), (4)

where t represents the time and k3 is the cubic stiffness
of the vibration mode. This equation can be simplified by
normalizing the time, t̂ = tω0, and the force, ĝ = g/k1,
resulting in

ẍ(t̂)+ 2	ẋ(t̂)+ x(t̂)+ γ x3(t̂) = ĝ(t̂), (5)

where 	 = 1/(2Q) is the damping ratio and γ = k3/k1 is
the Duffing coefficient.

Let the displacement and force be approximately
harmonic functions of t̂, x(t̂) = ax(t̂) sin (ω̂t̂ + φx(t̂))
and ĝ(t̂) = ag(t̂) sin (ω̂t̂ + φg(t̂)), respectively, with ω̂ =
ω/ω0. The amplitudes and phases are assumed to vary
slowly, at characteristic times much longer than the inverse
of the resonance frequency ω0. In the high-Q limit,
the slow dynamics of the resonator can be modeled by

applying the method of averaging [16,21]:

ȧx = −	ax − 1
2 ag sinφ ≡ ηa, (6)

φ̇x = 3
8
γ a2

x − ψ − 1
2

ag

ax
cosφ ≡ ηφ , (7)

φ = φx − φg . (8)

Here ψ = ω̂ − 1 is the detuning of the normalized actua-
tion frequency, where ψ = 0 represents the tuned condi-
tion in which the resonator is actuated at ω0.

Equations (6)–(8) describe a system of nonlinear dif-
ferential equations that relate the amplitude and phase of
the displacement to the amplitude and phase of the applied
force. As detailed in Appendix B, this system can be lin-
earized around a fixed point and translated into the Laplace
domain to obtain a matrix of transfer functions H(s) that
relates the inputs to the outputs:

[
Ax(s)
�x(s)

]
=

[
H11(s) H12(s)
H21(s) H22(s)

] [
Ag(s)
�g(s)

]
. (9)

Here Ax, �x, Ag , and �g represent the Laplace transforms
of the small perturbations of ax, φx, ag , and φg , respec-
tively, around the fixed point, while s denotes the Laplace
variable. Matrix H(s) depends on 	, γ , and the chosen
fixed point.

A closed-loop driving scheme is necessary in most prac-
tical sensors operating in the linear regime to keep the
resonator’s phase shift φ close to −π/2 upon significant
shifts of the resonance frequency. Additionally, in the non-
linear regime a closed-loop scheme allows for controlling
the amplitude of vibration and therefore the fixed point
of operation. This is done by fixing either ax or ag . The
variables that define the fixed point, at which ȧx = 0 and
φ̇x = 0, are found from Eqs. (6)–(8) to be related through

ag = −2	ax

sinφ
, (10)

ψ = 3
8
γ a2

x + 	

tanφ
. (11)

For a given fixed point, a resonator driven by a closed-
loop system will operate at a constant detuning given by
Eq. (11). Therefore, the drive frequency ω keeps a constant
relation with ω0, such that an estimator for the resonance
frequency can be defined as

ω̄0 = ω

1 + 3γ a2
x/8 + 	/tanφ

. (12)

For a linear resonator driven at φ = −π/2, ω is directly
the estimator for ω0 and presents no bias. The bias of
the estimator for a nonlinear resonator is discussed in
Appendix C.
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(a) (b)

FIG. 3. (a) Laplace-domain block diagram of the linearized small-signal model of the resonator and the resonance-tracking con-
trol loop. The closed-loop system matrix J (s) governs the conversion of amplitude and phase perturbations at the input (force) into
amplitude and phase perturbations at the output (displacement). We highlight blue the input and output magnitudes used in the anal-
ysis. Amplitude and phase random perturbations due to thermomechanical noise, with PSDs Sa|thm and Sφ|thm, respectively, translate
into phase perturbations at the output with PSD Sφx, from which the Allan deviation (σy ) is calculated. (b) Log-log plot of the Allan
deviation predicted by the model in (a) for a Duffing resonator at its thermomechanical limit oscillating at φ = −π/2. Each curve
represents a different amplitude of oscillation. A characteristic minimum σy|min is reached at an integration time τc/χ that depends
on the amplitude of oscillation. For τ � τc/χ , the Allan deviation is governed by the linear response and the Duffing term can be
neglected (γ = 0).

It is worth noting that, while the estimator for the lin-
ear resonance frequency defined by Eq. (12) is obtained
by straightforward generalization from the standard esti-
mator for a closed-loop linear resonator, it might not be
optimal for nonlinear resonators. A better estimator could
possibly be obtained by Cramer-Rao lower bound analysis
[22], but this is beyond the scope of this work. In addition
to defining the fixed point of the resonator model, the con-
trol loop influences the time evolution of the noise-induced
amplitude and phase perturbations around the fixed point.
Figure 3(a) shows a block diagram in the Laplace domain
of the closed-loop model for the perturbations. A closed-
loop transfer function matrix J (s) is defined from the
resonator’s open-loop transfer function matrix H(s) and
the transfer function matrix B(s) of the feedback controller.
The derivations of these matrices, which can be found in
Appendix B, result in

J11(s) = − sinφ
2(s + 	)

, (13)

J12(s) = − 	ax

tanφ(s + 	)
, (14)

J21(s) = −3γ a2
x sinφ + 4s cosφ
8axs(s + 	)

, (15)

J22(s) = 	(4s tan2 φ − 3γ a2
x tanφ + 4	(1 + tan2 φ))

4s(s + 	) tan2 φ
.

(16)

These equations define a linear model for the ampli-
tude and phase perturbations associated with a Duffing
resonator under closed-loop operation. Since this study
focuses on the thermomechanical limits, we need to cal-
culate the model inputs that account for thermomechanical
noise. In the limit kBT � �ω0, where � is the reduced

Planck constant, this is achieved by considering a random
force with the PSD specified by Eq. (2). When this random
force is superimposed on a harmonic actuation force, the
result is a quasiharmonic total force with amplitude and
phase random perturbations. We can obtain the PSD of the
force phase perturbations Sφ|thm as the PSD of the thermo-
mechanical force divided by the mean value of the force
carrier squared [23], a2

gk2
1/2. Using Eq. (10), we obtain

Sφ|thm = 2Sthm

a2
gk2

1
= 8kBTQ sin2 φ

mω3
0a2

x
. (17)

Since thermomechanical noise is additive and uncorrelated
with the force carrier, the PSD of the normalized amplitude
perturbations will be the same as for the phase perturba-
tions [23]. The non-normalized version to be used as input
in our model results from multiplying Sφ|thm by the carrier
amplitude squared, a2

g , which gives

Sa|thm = 2Sthm

k2
1

= 8kBT
Qmω3

0
. (18)

With the PSD of the inputs, we can calculate the PSD of
the output amplitude and phase perturbations, Sax and Sφx,
respectively, through the relation

[
Sax(ω)

Sφx(ω)

]
=

[|J11(iω̂)|2 |J12(iω̂)|2
|J21(iω̂)|2 |J22(iω̂)|2

] [
Sa|thm
Sφ|thm

]
, (19)

where i is the imaginary unit. With the last equation, the
amplitude and phase noise of the resonator’s displacement
in a closed-loop configuration can be obtained. The latter is
the relevant quantity for the present study as it determines
the Allan deviation of the displacement signal, which is
a measure of the minimum resonance frequency shift that
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can be resolved from the resonator under closed-loop oper-
ation. With this model, an analysis of the displacement
phase noise Sφx as a function of the phase shift φ and
the displacement amplitude ax is given in Appendix D.
The results indicate that the Allan deviation of a Duff-
ing resonator can be approximated by three asymptotes at
different integration time ranges:

σy(τ � τc/χ) = σy0, (20)

σy(τc/χ � τ � τc) = σy0χ
π√

3

f0τ
Q

, (21)

σy(τ � τc) = σy0χ . (22)

Each asymptote is expressed as a function of the Allan
deviation for linear resonators actuated at resonance σy0
[Eq. (3)] and a factor χ that accounts for the amplitude-
phase noise conversion. Defining the normalized ampli-
tude â = ax/acrit, where acrit = 4

√
64/27/

√
Qγ is the criti-

cal amplitude [13], this factor can be expressed as

χ =
√

16
3

â4 − 8√
3 tanφ

â2 + 1
sin2 φ

. (23)

The integration time that defines the boundaries between
the different τ ranges is

τc =
√

3
π

Q
f0

. (24)

An important observation from this analysis is that the
Allan deviation for τ � τc/χ depends only on the dis-
placement amplitude ax and not on the particular choice
of φ and ag to achieve that value of ax. This implies that,
if the analysis is performed at fixed force amplitude ag ,
the displacement amplitude ax and therefore also the Allan
deviation for τ � τc/χ depend on the resonator’s phase
shift φ. Therefore, for the sake of simplicity and without
loss of generality, the Allan deviation will only be analyzed
at fixed displacement amplitude hereafter.

The analysis also shows that the smallest possible value
of χ is 1 and therefore the Allan deviation is larger than σy0
at τ � τc if χ > 1; see Eq. (22). However, φ can be chosen
such that χ = 1 for any displacement amplitude [see Fig.
4(a)]. From Eq. (23), we can obtain an analytic expression
for this optimal phase point φ∗:

φ∗ = arctan
(√

3
4â2

)
. (25)

If this phase shift is fixed by the feedback, the Allan devi-
ation will be the same as for a linear resonator oscillating
at resonance at the corresponding ax for any integration
time. This condition has been previously referred to as

the amplitude detachment point [24]. Several works have
pointed out the possibility of tuning the phase of a Duffing
resonator in order to reduce the phase noise [21,24–26].
These efforts discussed several cases that are particularly
interesting for improving the stability of time references.
Nevertheless, fixing this phase condition entails difficul-
ties that might prevent its practicality in sensing. First, as
visualized in Fig. 4(a), χ becomes extremely sensitive to φ
in the vicinity of φ = φ∗ as â becomes greater than 1. Sec-
ond, for a given displacement setpoint ax, a higher force is
needed at phase φ = φ∗ than at φ = −π/2. By using Eqs.
(10) and (25), it is deduced that the force needed to drive
the resonator at φ∗ is higher than that needed at φ = −π/2
by a factor that grows with a2

x ; see Fig. 4(c). The higher
force amplitude can introduce higher noise, which might
prevent reaching the thermomechanical limit. For these
practical reasons, the focus of the present work is on Duff-
ing resonators operated at resonance, i.e., φ = −π/2. This
condition minimizes the influence of small deviations of
φ on sensor resolution, and maximizes the conversion of
force to displacement.

Under the oscillation condition φ = −π/2 and
assuming a displacement amplitude well above the criti-
cal amplitude (â � 4√3/2), then χ ≈ 4â2/

√
3. A graphic

representation of Eqs. (20)–(22) under these assumptions
is shown in Fig. 3(b). As seen, the Allan deviation reaches
a minimum in the range τ � τc. This minimum value can
be found by evaluating σy0(τ ) at the boundary between the
short and intermediate integration times, i.e., τ = τc/χ :

σy|min(τ � τc) =
4√3
2

√
kBTγ
Qk1

. (26)

It is worth pointing out that the integration time at
which this minimum Allan deviation is reached (τc/χ )
is inversely proportional to the displacement amplitude at
which the resonator is driven. On the contrary, the value of
σy|min(τ � τc) is a characteristic of the resonator, and does
not depend on the oscillation amplitude set by the closed-
loop controller. As a result, the model shows that the fre-
quency resolution of a Duffing resonator presents a lower
boundary at short gate times (τ � τc) given by the Duff-
ing coefficient, the linear stiffness, and the quality factor.
Importantly, higher quality factors lead to resonators with
better (lower) resolution limits at this τ regime, because at
constant k1, T, and γ , the value of the minimum Allan devi-
ation for any ax is proportional to Q−1/2. This conclusion
extends that from previous works [7,8], which were based
on the assumption that a minimum Allan deviation curve
was reached at a certain displacement amplitude, with
that curve maintaining the σy ∝ τ−1/2 form of linear res-
onators. In contrast, the analysis provided here shows that
the amplitude-phase noise conversion, described by Eq.
(15), depends not only on the driving amplitude but also on
the frequency of the amplitude and phase noise, defined as
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(a) (b)

(c)

FIG. 4. (a) Factor χ accounting for the excess Allan deviation at τ � τc due to the amplitude-phase noise conversion, with the
phase shift φ in the horizontal axis. Each curve, obtained from Eq. (23), represents a different value of the displacement amplitude
normalized to the critical value (â), indicated by labels. (b) Factor χ for a resonator operated at φ = −π/2, with â in the horizontal
axis. For low values of â, a Duffing resonator behaves as a linear resonator, with χ ≈ 1. (c) Force needed to set a given value of â with
φ = φ∗, divided by the force needed to set the same value of â with φ = −π/2. This curve is obtained from Eq. (10).

an offset from the carrier frequency. As a consequence, the
excess Allan deviation due to the amplitude-phase noise
conversion depends on the integration time as well, yield-
ing a minimum Allan deviation given by Eq. (26) for τ �
τc. The model also shows that, for long averaging times
τ � τc, the minimum Allan deviation indeed presents a
τ−1/2 dependence that is reached at a displacement ampli-
tude close to the critical value, in accordance with previous
works [7,8]. Specifically, we find that Eq. (22) is mini-
mized for â = 4√3/2 ≈ 0.66, which results in a minimum
Allan deviation

σy|min(τ � τc) =
√

3kBTγ
k1ω0τ

. (27)

To compare the theoretical model to the experimental
results in Fig. 2(e), the Allan deviation limit calculated
with Eq. (26) is plotted as a horizontal dashed line.
The experimental data for high actuation forces are in
qualitative agreement with the model at τ � τc, with a
diminishing Allan deviation at short integration times and
an increasing Allan deviation at higher values of τ . In
between these regions a minimum value is found that
does not depend on the driving force and shows good
agreement with the value calculated with Eq. (26). For
integration times longer than τc, the τ−1/2 dependence is
seen, consistent with Eq. (27).

IV. SIMULATIONS

A Duffing resonator embedded in a direct feedback
oscillator (DFO) is simulated in MATLAB® to validate the
analytical model. The full nonlinear dynamics of the res-
onator, as described by Eq. (4), is used in the simulations,
with the details given in Appendix A. Figure 5 shows
the simulation results for different oscillation amplitudes
and φ = −π/2 for Q = 103 in Figs. 5(a) and 5(c) and
Q = 104 in Figs. 5(b) and 5(d). The other resonator param-
eters can be found in the figure caption. The results show
good qualitative agreement with the model prediction for
the minimum Allan deviation limits. The minimum Allan
deviation for τ � τc is confirmed as being independent
of τ , but dependent on the quality factor. In Figs. 5(c)
and 5(d), a color map is shown to visualize the locus of
the optimal displacement amplitude that minimizes the
Allan deviation for each τ , which is also in good agree-
ment with the model. As seen, the optimal displacement
amplitude is constant for τ � τc but dependent on τ for
τ � τc. As expected, the simulation results show that the
model is not accurate in the vicinity of τ = τc. There, the
Allan deviation slightly surpasses the limits defined in both
regimes and the optimal displacement amplitude smoothly
transitions between both regimes’ predictions.

V. DISCUSSION

The obtained results provide new insights into the ulti-
mate limits and optimum design of closed-loop resonant
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(a) (b)

(c) (d)

FIG. 5. Simulated Allan deviation for a Duffing resonator embedded in a direct feedback oscillator. The resonator parameters are
f0 = 1 Hz, k1 = 1 N m−1, γ = 1 m−2. The temperature is assumed to be 300 K. (a),(b) Each curve represents the Allan deviation as a
function of the integration time for a different displacement amplitude in the range from 10−4 to 10−1 m for φ = −π/2 and a quality
factor of (a) 103 and (b) 104. The minimum Allan deviation found by the model is indicated for each case by black dashed lines.
(c),(d) Color maps based on the same simulations. The Allan deviation is represented as a function of the displacement amplitude and
integration time for a quality factor of (c) 103 and (d) 104. The white solid lines (smoothed) mark the displacement amplitude that
minimizes the Allan deviation for each integration time simulated. The black dashed lines indicate the optimal displacement predicted
by the model.

sensors that operate at their resonance frequency (φ =
−π/2). In particular, in the fast-sensing regime, where the
acquisition rate fs = 1/τ of the sensor needs to exceed
1/τc, sensor optimization needs to proceed along differ-
ent lines, and operation in the nonlinear regime becomes
favorable. The oscillation amplitude that minimizes the
Allan deviation in this regime for a given fs can be found
by setting the acquisition rate to fs = χ/τc. Using Eq. (23)
for displacement amplitudes well above the critical ampli-
tude (â � 4√3/2) and Eq. (24), the optimal displacement
normalized to the critical amplitude is found as

âfast =
√

3Qfs
2ω0

(28)

with a non-normalized value of

ax|fast = âfastacrit = 2
4√3

√
fs
ω0γ

. (29)

For this situation, the ultimate frequency resolution is
given by Eq. (26) and can therefore be minimized by
increasing the quality factor and the linear stiffness, and
decreasing the cubic stiffness. Decreasing the acquisition
rate does not further improve the minimum frequency res-
olution, unless it is increased sufficiently, where, for fs =
1/τc, the slow-sensing regime is reached.

In the slow-sensing regime, the displacement amplitude
that yields the minimum Allan deviation can be obtained
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by minimizing Eq. (22), giving a normalized value of

âslow =
4√3
2

(30)

and a non-normalized value of

ax|slow = âslowacrit =
√

2
3Qγ

. (31)

In this case, the ultimate frequency resolution is described
by Eq. (27), and can therefore be minimized by increas-
ing the resonance frequency and the linear stiffness, and
decreasing the cubic stiffness. Noticeably, increasing the
quality factor does not further improve the ultimate fre-
quency resolution, but lowering the acquisition rate, i.e.,
increasing the integration time, does help.

Let us now reflect on the underlying mechanisms behind
our findings. In the linear regime, increasing the oscil-
lation amplitude or integration time increases the signal
energy with respect to the noise energy, which results in
a decrease of the Allan deviation as expressed by Eq.
(3). When entering the nonlinear regime, via the Duff-
ing curve, the resonance frequency becomes amplitude
dependent and amplitude noise tends to be converted to
frequency noise. This effect increases the Allan deviation
by a factor χ with respect to the linear situation for long
integration times, according to Eq. (22). However, for short
integration times, the situation improves, because the res-
onator itself acts as a low-pass filter: it takes a settling time
Q/f0 before a thermal fluctuation in the force amplitude
appears as a fluctuation in the displacement amplitude to
be converted to a fluctuation in frequency. Thanks to this
effect, which starts to become prominent for τ < τc, the
Allan deviation reduces when decreasing τ , by a factor
of approximately τ/τc. For very small values τ � τc/χ ,
all effects of amplitude-to-frequency conversion are sup-
pressed by this filtering effect to a level below the Allan
deviation caused by thermal fluctuations in the force phase,
and one is left with the same Allan deviation as that of a
linear resonator, even though the resonator is driven in the
nonlinear regime. Thus, one might say that, at short τ , the
resonator itself filters out all the additional frequency fluc-
tuations due to amplitude-to-frequency conversion in the
nonlinear regime. Interestingly, the fact that the minimum
Allan deviation for τ < τc occurs at τ = τc/χ , with χ =
4/

√
3a2

x at the standard oscillation condition (φ = −π/2),
combined with the fact that the Allan deviation in the lin-
ear regime scales with 1/(ax

√
τ) [see Eq. (3)], results in

a minimum Allan deviation for short integration times that
is independent of the oscillation amplitude. The integration
time at which this minimum value is obtained can then be
tuned via the oscillation amplitude ax.

Let us now reflect on the underlying mechanisms behind
our findings. We have identified two main time constants

of importance. First, we have the constant τc, which is
very close to the characteristic time the linear resonator
needs to reach steady state, i.e., Q/f0. Second, we have
τc/χ , which characterizes the effect of increasing the dis-
placement amplitude ax. This time constant results from a
trade-off between a relative reduction of the input phase
noise when increasing ax and the enhancement of phase
noise by the amplitude-phase noise conversion due to the
nonlinear stiffness term (3/8)γ a2

x of Eq. (7). The combina-
tion of both contributions has a minimum at τ = τc/χ that
provides an optimal operation point for Duffing resonators
at the fast-sensing regime.

If a high acquisition frequency is not required, the oscil-
lation amplitude ax can be reduced, increasing τc/χ at
constant minimum Allan deviation. This can continue until
ax = ax|slow is reached, which presents the optimal situa-
tion for the slow-sensing regime and results in χ = √

2.
The remarkable fact is that if the acquisition frequency
is decreased further (fs < 1/τc) at constant displacement
amplitude ax, it no longer results in an increase in the Allan
deviation. Instead, the Allan deviation reduces proportion-
ally to f 1/2

s like in the linear regime. This behavior in the
slow-sensing regime might be explained by the fact that
the integration times are significantly longer than the char-
acteristic time constant of the resonator, Q/f0. All force
fluctuations at shorter time scales are averaged out, with
the resonator acting as a low-pass filter for the amplitude
and phase perturbations.

For completeness, it must be noted that the closed-loop
tracking system for the resonance frequency behaves as a
low-pass filter for the phase noise, and can be described
by additional time constants [17]. These are set by the
proportional-integral controller in a PLL, or by the ampli-
fier bandwidth in a DFO. Nevertheless, a prerequisite for a
closed-loop resonant sensor is that the resonance frequency
tracking must be faster than the sensor acquisition rate,
i.e., fs � 1/τcl, where τcl is the lowest time constant of the
closed-loop phase-space transfer function of the system.
Therefore, for a properly designed closed-loop system, the
controller dynamics can be disregarded when analyzing the
resolution limits [7].

The simulation results show, in accordance with the ana-
lytical model, that the minimum Allan deviation is reached
for a different curve of Figs. 5(a) and 5(b), i.e., differ-
ent amplitude, at each integration time in the fast-sensing
regime. On the contrary, for slow sensing, the minimum is
reached for each integration time by the same curve, i.e.,
same amplitude. Plotting the locus of these minima results
in the asymptotic behavior shown in Fig. 1(c). It follows
that increasing the quality factor of a Duffing resonator has
two beneficial effects. First, the resonator will ultimately be
more sensitive in the fast-sensing regime. Second, the inte-
gration time defining the fast-sensing regime will become
longer, enabling better Allan deviations over a larger range
of τ . The ultimate frequency resolution in the slow-sensing
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regime will be unaltered by the change in the quality
factor.

Another important consideration is that the minimum
Allan deviation limit found for fast sensing, σy|min(τ �
τc), can be reached for any integration time τ � τc (acqui-
sition rate fs � 1/τc) in a Duffing resonator, by tuning the
displacement amplitude according to Eq. (29). This means
that this frequency resolution can be achieved for arbitrar-
ily high sensing speeds, assuming that the controller can be
made fast enough. The higher the required speed (shorter
integration time), the higher the displacement amplitude
needed. In real resonators, nonlinear behaviors beyond the
Duffing model, such as nonlinear damping, will emerge for
high enough displacements, which will presumably limit
the sensing speed at which σy|min(τ � τc) can be attained.

Finally, mass sensing is an application of utmost impor-
tance for the mechanical resonator community. In this
context, the mass resolution δm can be related to the fre-
quency resolution (Allan deviation) through the expression
δm(τ ) = 2mσy(τ ) [1]. Then, the minimum mass resolution
for fast sensing can be obtained by using Eq. (26):

δm|min(τ � τc) =
4√3
ω0

√
kBTmγ

Q
. (32)

Likewise, for slow sensing, Eq. (27) gives

δm|min(τ � τc) =
√

12kBTmγ
ω3

0τ
. (33)

These two expressions can be applied to specific types of
vibration modes for which analytical expressions for γ can
be derived in order to optimize designs for best mass reso-
lution. In Appendix E, the specific case of doubly clamped
beams is analyzed.

VI. CONCLUSION

Previous knowledge suggested that the best frequency
resolution of a resonant sensor with Duffing nonlinearity
operated at resonance is that attained when the oscilla-
tion amplitude is set at the onset of nonlinearity. We
present evidence that operation at higher amplitudes leads
to lower frequency resolution at high acquisition rates fs �
1/τc. Whereas the resolution of resonant sensors in the
low-speed regime (fs � τc) can be theoretically improved
indefinitely by decreasing the acquisition rate, the resolu-
tion in the high-speed regime (fs � τc) is fundamentally
limited by a lower boundary independent of the acquisition
rate. In addition, we find that the ultimate frequency resolu-
tion in the fast-sensing regime improves when maximizing
the quality factor of the resonator.

The reported experimental results, analytical model, and
numerical analysis provide a roadmap for device opti-
mization and concept development to drive down the

performance limits of resonant sensors. This understand-
ing is expected to impact sensing applications requiring
extreme resolution and high measurement rates simultane-
ously, such as the mass characterization of biomolecules
with high throughput.
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APPENDIX A: MATERIALS AND METHODS

1. Device fabrication

For the fabrication of 2 × 2 mm2 nanomechanical mem-
branes, a 92-nm-thick Si3N4 film with 1.1-GPa tensile
stress is deposited by low-pressure chemical vapor depo-
sition on a silicon wafer. After this, the wafer is diced into
10 × 10 mm2 chips. On one of the chips, a square array
of circular holes with radius 0.75 µm and center-to-center
distance 3.5 µm in both x and y directions is created on the
Si3N4 film. A single hole with a radius of 10 µm is cre-
ated in the center of the pattern as a position indicator. The
holes are defined by using electron-beam lithography on
a positive tone photoresist (AR-P 6200), and subsequent
inductively coupled plasma (ICP) reactive ion etching
based on CHF3. The resist is then removed by dimethylfor-
mamide; next the organic residues are cleaned with piranha
solution (sulfuric acid to hydrogen peroxide 3:1; CAU-
TION: highly corrosive and dangerous to skin), and the
remaining surface oxides are removed with hydrofluoric
acid solution. The holes are then used to define and release
the membrane area by isotropically etching the Si substrate
using ICP etching based on SF6 at −120 ◦C.

2. Experimental setup

The silicon chip containing the membrane is placed
on a piezoactuator for the experiments. All the mea-
surements are performed inside a vacuum chamber at a
pressure of 2 mPa. Thanks to a glass window on the vac-
uum chamber, the vibrations are recorded by a Doppler
laser vibrometer (Polytec MSA400). The actuation sig-
nal is provided to the piezoactuator by a digital lock-in
(Zurich Instruments HF2LI). The same instrument is used
to record the displacement signal from the vibrometer. The
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PSD of the displacement is first recorded with no signal
applied to the piezoactuator [Fig. 2(c)]. Then, frequency
sweeps around the resonance are performed for various
voltage amplitudes applied to the piezoactuator [Fig. 2(d)].
The resonator’s transfer function, obtained through fitting
the data from these experiments, allows us to obtain the
conversion factor from voltage to force associated with
the piezo-actuator-chip assembly. For the Allan deviation
experiments, the digital lock-in is configured in PLL mode,
with a phase detector filter of order 8 and bandwidth 18
kHz. The proportional-integral controller is set with a pro-
portional constant of 1.8 × 103 Hz and an integral constant
of 5.4 × 103 Hz2, ensuring enough PLL bandwidth to char-
acterize integration times longer than 100 µs. The target
phase is set to the phase shift featured by the resonator
at the frequency of maximum amplitude when actuated in
the linear range, which corresponds to the theoretical point
φ = −π/2. Under these conditions, data series of the res-
onator phase and the drive frequency are recorded for 5
min with an acquisition rate of 7.2 kHz, while applying the
force amplitudes shown in Fig. 2(d). White noise with a
bandwidth of 9 MHz, provided by a waveform generator
(Agilent 33220A), is introduced in the digital lock-in and
superimposed to the actuation signal. For each force ampli-
tude, the dimensionless Allan deviation is calculated from
the drive frequency data in MATLAB.

3. Simulations

A DFO is simulated in MATLAB/SIMULINK including the
full nonlinear differential equation of a Duffing resonator.
The DFO is formed by the resonator and an amplifier-
phase shifter chain, which generates a force proportional
to the resonator’s displacement. The amplifier gain is set
such that the closed-loop gain of the system is slightly
above 1. From Eq. (10), this is achieved by an amplifier
gain of −k1/(Q sinφ). For stable oscillations, a saturation
element is included in the feedback to set the oscillation
amplitude to an arbitrary value ax. The phase shifter is
fixed to π/2, which ensures that the Barkhausen criterion
is met for a resonator phase φ = −π/2, and the oscil-
lation frequency is ωp . The amplifier, phase shifter, and
saturation are modeled as noiseless elements with infi-
nite bandwidth. To include the thermomechanical noise
affecting the resonator, a random force with white PSD in
accordance to Eq. (2) is superimposed to the force applied
by the feedback to the resonator. The phase of the res-
onator displacement is calculated through a phase detector
scheme and used to obtain the dimensionless Allan devia-
tion following expression A.23 in Ref. [6]. The simulated
time is 2 × 105 s and the time step is fixed to the inverse of
the linear resonance frequency divided by 100. The default
fixed-step solver of SIMULINK is used.

APPENDIX B: LINEARIZED MODEL OF THE
AMPLITUDE-PHASE SPACE OF A DUFFING

RESONATOR UNDER CLOSED-LOOP
OPERATION

System (6)–(8) can be linearized around a fixed point
defined by a pair of values ax = ax0 and φ = φ0, which
unambiguously define ag = ag0 and ψ = ψ0 according to
Eqs. (10) and (11). To express the linearized system in the
state-space representation, the states are defined as the per-
turbations of the amplitude and phase of the resonator’s
displacement, �ax and �φx, that coincide with the system
outputs. The system inputs are defined as the perturbations
of the amplitude and phase of the force acting on the res-
onator,�ag and�φg , respectively. This results in a system
defined by matrices D and E:

[
�̇ax˙�φx

]
=

[
D11 D12
D21 D22

] [
�ax
�φx

]
+

[
E11 E12
E21 E22

] [
�ag
�φg

]

(B1)

with the elements of the matrices given by

D11 = ∂ηa

∂ax

∣∣∣∣
ax0,φ0,ag0,ψ0

= −	, (B2)

D12 = ∂ηa

∂φx

∣∣∣∣
ax0,φ0,ag0,ψ0

= 	ax0

tanφ0
, (B3)

D21 = ∂ηφ

∂ax

∣∣∣∣
ax0,φ0,ag0,ψ0

= 3
4
γ ax0 − 	

ax0 tanφ0
, (B4)

D22 = ∂ηφ

∂φx

∣∣∣∣
ax0,φ0,ag0,ψ0

= −	, (B5)

E11 = ∂ηa

∂ag

∣∣∣∣
ax0,φ0,ag0,ψ0

= −sinφ0

2
, (B6)

E12 = ∂ηa

∂φg

∣∣∣∣
ax0,φ0,ag0,ψ0

= − 	ax0

tanφ0
, (B7)

E21 = ∂ηφ

∂ag

∣∣∣∣
ax0,φ0,ag0,ψ0

= −cosφ0

2ax0
, (B8)

E22 = ∂ηφ

∂φg

∣∣∣∣
ax0,φ0,ag0,ψ0

= 	. (B9)

This system can be represented in the Laplace domain to
obtain

[
Ax(s)
�x(s)

]
=

[
H11(s) H12(s)
H21(s) H22(s)

] [
Ag(s)
�g(s)

]
, (B10)

where Ax(s), �x(s), Ag(s), and �g(s) are the Laplace
transforms of �ax, �φx, �ag , and �φg , respectively.
The transfer function matrix can be found by setting
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H(s) = (sI − D)−1E, where I is the identity matrix of size
2 [27]. This yields

H11(s) = s(cos(2φ0)− 1)− 2	
P sinφ0

, (B11)

H12(s) = − 4s	ax0

P tanφ0
, (B12)

H21(s) = −4s cosφ0 + 3γ a2
x0 sinφ0

2Pax0
, (B13)

H22(s) = 	(4(s + 	)− 3γ a2
x0/tanφ0 + 4	/tan2 φ0)

P
,

(B14)

with P = 4(	 + s)2 + 4	2/ tan2 φ0 − 3	γ a2
x0/ tanφ0.

As discussed in the main text, a closed-loop control is
needed to keep the resonator at the fixed point. Its effect on
the amplitude and phase perturbations is accounted for by
a matrix B(s) in the feedback path, as depicted in Fig. 3(a).
For a PLL scheme as used in the experiments, the phase
perturbations are fed back by the phase detector-controller
chain [6]. For frequencies lower than the bandwidth of the
PLL transfer function, the dynamic behavior of the feed-
back path can be neglected [7]. This implies that the phase
perturbations are passed from the input to the output of the
controller with a gain of 1, as long as the PLL is faster than
the maximum sensing speed of interest. On the other hand,
the feedback controller of a PLL rejects the amplitude per-
turbations as it only detects the phase of the output signal.
This results in a feedback matrix

B(s) =
[

0 0
0 1

]
. (B15)

Alternatively to the PLL scheme, DFOs also provide a
means to keep a resonator oscillating at a desired fixed
point [24]. This type of system results from using an
amplifier and phase shifter to feedback the resonator’s
displacement into its force. The phase shift φ0 can be
controlled by offsetting the loop phase through the phase
shifter. As in the PLL case, the feedback path of a DFO
lets the phase perturbations pass with gain 1 for perturba-
tion frequencies lower than the bandwidth of the amplifier.
To control the amplitude of oscillation ax0, either a nonlin-
ear saturation block or an automatic gain control (AGC)
can be placed in the feedback path. The B matrix of a
DFO can be approximated by Eq. (B15) as long as the
amplitude control method used does not let the ampli-
tude perturbations pass. Therefore, an AGC must allow
for slow variations of the amplitude to allow the startup
of the oscillations, while stopping fast variations. That is,
it must behave as a low-pass filter for the amplitude pertur-
bations. For perturbations with frequencies higher than the
bandwidth of the AGC, the feedback effectively stops the

amplitude perturbations, and Eq. (B15) can be regarded as
valid. To summarize, the present analysis is also valid for
a DFO as long as the relevant frequencies of the ampli-
tude and phase noise are higher than the bandwidth of the
AGC but lower than the bandwidth of the amplifier. In
the context of sensing, this implies that the AGC must be
slower that the maximum integration time (minimum sens-
ing speed) of interest, while the amplifier must be faster
than the minimum integration time (maximum sensing
speed) of interest.

Given the H(s) and B(s)matrices, the closed-loop trans-
fer function matrix J (s) that governs the dynamics of
the amplitude and phase perturbations can be obtained by
using the feedback equation

J (s) = [I − H(s)B(s)]−1H(s), (B16)

which results in

J11(s) = − sinφ0

2(s + 	)
, (B17)

J12(s) = − 	ax0

tanφ0(s + 	)
, (B18)

J21(s) = −3γ a2
x0 sinφ0 + 4s cosφ0

8ax0s(s + 	)
, (B19)

J22(s) = 	(4s − 3γ a2
x0/tanφ0 + 4	(1 + 1/tan2 φ0))

4s(s + 	)
.

(B20)

For simplicity, ax0 and φ0 have been renamed as ax and φ,
respectively, in the main text as well as in the appendices
hereafter, unless noted otherwise.

APPENDIX C: BIAS OF THE ESTIMATOR FOR
THE RESONANCE FREQUENCY UNDER

CLOSED-LOOP OPERATION

The estimator defined by Eq. (12) is subjected to the
noise present in the drive frequency, resulting from the
amplitude and phase noise affecting the resonator. This can
be accounted for by substituting ω = ω0(1 + (3/8)γ a2

x +
	/ tanφ) and letting ax and φ be random variables:

ω̄0 = ω0
1 + 3γ a2

x/8 + 	/tanφ
1 + 3γ a2

x0/8 + 	/tanφ0
. (C1)

For clarity, subindex 0 has been introduced to denote the
fixed points, while ax and φ represent the random ampli-
tude and phase of the resonator. The statistical expectation,
denoted E(·), of the estimator is then

E(ω̄0) = ω0
1 + 3γE(a2

x)/8 + 	E(1/tanφ)
1 + 3γ a2

x0/8 + 	/tanφ0
. (C2)

The displacement amplitude ax follows a normal distribu-
tion with E(ax) = ax0 and variance kBT/k1 [22]. It follows
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that E(a2
x) = a2

x0 + kBT/k1. For simplicity, we analyze the
practical interesting case of φ0 = −π/2. With that choice,
φ follows a normal distribution with E(φ) = −π/2, and
the asymmetric nature of the tan−1 function with respect
to −π/2 results in E(tan−1(φ)) = 0. Substituting into Eq.
(C2) results in

E(ω̄0) = ω0

(
1 + kBT

k1(8/(3γ )+ a2
x0)

)
. (C3)

The bias of the estimator normalized to the resonance
frequency can be calculated as

B(ω̄0) = E(ω̄0)− ω0

ω0
= kBT

k1(8/(3γ )+ a2
x0)

. (C4)

For the resonator used in our experiments at room tempera-
ture, this bias is 5 orders of magnitude below the minimum
Allan deviation predicted by Eq. (26). The resonator would
need a quality factor of the order of 1 × 1015 for this bias to
be of the same order of magnitude as the minimum Allan
deviation predicted by our model.

APPENDIX D: PHASE NOISE AND ALLAN
DEVIATION OF A DUFFING RESONATOR

UNDER CLOSED-LOOP OPERATION

The PSD of the displacement phase noise for a closed-
loop Duffing resonator dominated by thermomechanical
noise is obtained from Eq. (19):

Sφx(ω) = |J21(iω̂)|2Sa|thm + |J22(iω̂)|2Sφ|thm. (D1)

The result can be expressed as

Sφx(f ) = G(f 2 + χ2f 2
c )

f 2(f 2 + f 2
c )

, (D2)

where f represents the frequency offset from the carrier
frequency, and the constants are given by

G = kBT
2π2mQω0a2

x
, (D3)

fc = f0
2Q

, (D4)

χ = 1
2

√
9γ 2Q2a4

x + 4/ sin2 φ − 12γQa2
x/ tanφ. (D5)

Factor χ accounts for the amplitude-phase noise con-
version arising from the Duffing characteristic or from
operating the resonator at φ 
= −π/2. A linear resonator
(γ = 0) operated at φ = −π/2 gives χ = 1, which results
in Sφx(f ) = G/f 2. Note that χ is real and larger than 1 for
φ ∈ (−π , 0).

Assuming strong noise conversion (χ � 1), three fre-
quency ranges can be defined in which the derived phase
noise is approximated by the asymptotes of Eq. (D2):

Sφx(f � fc) = Gχ2 1
f 2 , (D6)

Sφx(fc � f � χ fc) = Gχ2f 2
c

1
f 4 , (D7)

Sφx(f � χ fc) = G
1

f 2 . (D8)

Note that, for f � χ fc, there is no effect of the amplitude-
phase noise conversion, and the phase noise is the same as
for a linear resonator operated at resonance.

The Allan deviation σy can be obtained from the PSD of
the displacement phase noise through the integral expres-
sion [3]

σ 2
y (τ ) = 2

∫ +∞

0
Sφx(f )

sin4(π f τ)
(π f τ)2

df , (D9)

where τ is the integration time. Simplified expressions
for its evaluation at each of the frequency ranges defined
above can be found in Ref. [3]. The phase noise at each
frequency range can be converted to Allan deviation for
a corresponding integration time range. The phase noise
for high frequencies (f � χ fc) determines the Allan devi-
ation for short integration times below a certain value of
τc/χ . Therefore, by substituting Eq. (D8) into Eq. (D9),
we obtain

σy(τ � τc/χ) = 1
ax

√
kBT

mQω3
0τ

= σy0, (D10)

where σy0 is the Allan deviation of a linear resonator oper-
ated at φ = −π/2. Likewise, the phase noise for f � fc
dominates the Allan deviation for integration times longer
than τc. Therefore, by substituting Eq. (D6) into Eq. (D9),
we obtain

σy(τ � τc) = χσy0. (D11)

From the phase noise at intermediate frequencies, the Allan
deviation at intermediate integration times is obtained.
Therefore, by substituting Eq. (D7) into Eq. (D9), we
obtain

σy(τc/χ � τ � τc) = π√
3

f0τ
Q
χσy0. (D12)

By setting σy(τ � τc) = σy(τc/χ � τ � τc) and resolv-
ing for τ , we find that

τc =
√

3
π

Q
f0

. (D13)
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APPENDIX E: RESOLUTION LIMITS OF A
DOUBLY CLAMPED BEAM

We can particularize the mass resolution limits found
to the widely studied resonators based on doubly clamped
beams. For a rectangular beam of length l, width w, thick-
ness h, mass density ρ, and Young’s modulus Y, we
can express the Duffing coefficient associated with the
fundamental mode as [28]

γ = 2
h2 , (E1)

the linear stiffness as [14]

k1 = 16Ywh3

l3
, (E2)

and the fundamental resonance frequency as [29]

ω0 = λ2
0h
l2

√
Y

12ρ
(E3)

with λ0 = 4.73. By combining these expressions with Eq.
(26), we obtain

σy|min(τ � τc) =
4√3√
32

√
kBTl3

QYh5w
. (E4)

Doing the same with Eq. (27), we obtain

σy|min(τ � τc) = 1
2λ0

4

√
27ρ
Y3

√
kBTl5

h6wτ
. (E5)

We can also calculate the minimum mass resolution at both
regimes by setting δm = 2mσy with m = k1/ω

2
0:

δm|min(τ � τc) = 192 4√3ρ√
8λ4

0

√
kBTl5w
QYh3 , (E6)

δm|min(τ � τc) = 192 4√27
λ5

0

4

√
ρ5

Y3

1
h2

√
kBTl7w
τ

. (E7)

These expressions establish the ultimate mass resolution of
a doubly clamped beam due its geometrical nonlinearity, as
a function of the material properties, dimensions, quality
factor, and temperature.
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