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We propose a quantum algorithm for simulating dissipative waves in inhomogeneous linear media as
a boundary-value problem. Using the so-called quantum singular value transformation (QSVT), we con-
struct a quantum circuit that models the propagation of electromagnetic waves in a one-dimensional system
with outgoing boundary conditions. The corresponding measurement procedure is also discussed. Limi-
tations of the QSVT algorithm are identified in connection with the large condition numbers that the
dispersion matrices exhibit at weak dissipation.
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I. INTRODUCTION

First-principle (“full-wave”) modeling of linear waves
in inhomogeneous linear media is fundamental for var-
ious applications, for example, plasma heating in fusion
research [1–3]. However, it can be computationally expen-
sive, especially for waves with wavelengths that are orders
magnitude smaller than the characteristic inhomogeneity
scales. Such simulations can be facilitated by quantum
computing (QC).

Here, we focus on potential applications of future noise-
less error-corrected gate-based quantum computers. For
such computers, quantum algorithms have been proposed
for initial-value problems that involve purely Hermitian
interactions, such as the propagation of electromagnetic
(EM) waves in cold magnetized plasma [4] and also Lan-
dau damping of kinetic plasma waves [5]. However, prac-
tical applications are usually concerned with dissipative
waves and are set up as boundary-value problems, also
called antenna problems. The corresponding codes (Refs.
[6–8], to name a few) are often used to model EM waves in
fusion plasmas [9–11]. After discretization, such problems
can be represented as linear vector equations of the form

Aψ = b, (1)

where A of size N × N is generally a non-Hermitian invert-
ible matrix, b is a given vector, and the vector ψ represents
the field(s) of interest [12].

The first quantum method to solve Eq. (1), the so-
called Harrow-Hassidim-Lloyd (HHL) algorithm, was pre-
sented in Ref. [13]. This method was developed further in

*inovikau@pppl.gov

Refs. [14,15], where its scaling with the condition number
κ of the matrix A and the absolute error has been improved.
A thorough analysis of the HHL algorithm in application
to EM classical-wave problems was given in Ref. [16].
It was demonstrated there that the time necessary for a
single run of the corresponding HHL circuit to achieve
quantum advantage is comparable with the age of the
Universe (even without taking into account the costs of
encoding the matrix A into a quantum circuit). Hence, a
concern has emerged to what extent quantum algorithms
are actually applicable to boundary-value wave problems.

Here, we address this matter by developing a differ-
ent approach to solving Eq. (1) on a quantum computer,
namely, by using so-called quantum signal processing
(QSP). Although originally developed [17,18] for Her-
mitian matrices, the QSP has been recently extended to
general matrices using the quantum singular value trans-
formation (QSVT) [19,20]. The QSVT provides a near-
optimal dependence of the query complexity (the number
of calls to the subcircuit encoding A) on both the condition
number and the error, so it is considered as a promising
algorithm for solving linear equations.

We consider an EM wave propagating in an inhomo-
geneous one-dimensional dielectric medium with a source
and outgoing boundary conditions. In the first part of our
work, we construct a quantum circuit for the corresponding
matrix A using the QSVT, emulate quantum simulations
on a classical computer, and benchmark our results against
those of conventional classical simulations. The second
part of the work is concerned with extracting classical
information from quantum circuits using measurements.
In general, this step is computationally expensive, so
including it is necessary when assessing the efficiency of
quantum simulations [21]. We discuss how to perform
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relevant measurements in the wave problem and estimate
the necessary resources. Our finding is that even with the
measurement costs included, the overall quantum simu-
lations of dissipative waves based on the QSVT scale
favorably compared to classical simulations in multidi-
mensional systems. We expect the gain to be particu-
larly efficient in kinetic plasma problems, where the wave
modeling is done in phase space with six or even more
dimensions.

Our paper is organized as follows. In Sec. II, we briefly
describe the QSVT algorithm and the corresponding cir-
cuit. The QSVT scaling and its comparison with classical
methods are discussed in Sec. III. In Sec. IV, we outline
our one-dimensional wave system and describe its dis-
cretization. The encoding of the system into a quantum
circuit is discussed in detail in Sec. V. The classical mod-
eling of the system and its quantum simulation on a digital
emulator of quantum circuits are compared in Sec. VI.
There, we explore circuits for basic measurements of the
wave-number spectrum and the wave energy. Besides, an
algorithm is proposed to measure wave absorption power,
where the QSVT is used for both EM field computations
and emulation of the electrical conductivity. The efficiency
of the QSVT algorithm for simulations of classical waves
and the related challenges that remain are discussed in Sec.
VII. Auxiliary information and technical details are also
discussed in Appendices A and B.

II. QUANTUM SINGULAR VALUE
TRANSFORMATION

A. General idea

One of the ways to solve Eq. (1) is by calculating the
inverse of the matrix A. The polynomial approximation
Pinv(A) of this function with a Hermitian A can be found
on a quantum computer by using the QSP [17,18]. To
compute Pinv(A) of a non-Hermitian A, one can dilate
the matrix to make it Hermitian and then use the QSP.
Another possibility, which does not require the dilation,
is to apply the QSVT [19,20]. The idea of this approach
is based on a generalization of the classical singular value
transformation

A = ULSU†
R, (2)

where S = diag(s1, . . . , sN ) is a diagonal N × N matrix
with real non-negative (or strictly positive, if A is invert-
ible) diagonal elements si called singular values of A;
also, UL and UR are complex unitary matrices. The QSVT
operates with a matrix polynomial

PQSVT(A) = ULp(S)U†
R, (3)

where p(S) = diag[p(s1), . . . , p(sN )], and p(si) is a com-
plex polynomial of a scalar si. In particular, let us consider

the case when Pf is a polynomial approximation of some
given function f . If A is Hermitian, then UL = UR and,
clearly, PQSVT(A) = Pf (A). If A is not Hermitian, then
PQSVT(A) generally does not coincide with Pf (A), but it
still can be used to approximate Pf (A) if f is the inverse
function. This is seen as follows.

First, note that the QSVT allows one to find the Moore-
Penrose pseudoinverse A+ (which must not be confused
with the Hermitian adjoint A†). From the definition of
A+, and assuming that A†A is invertible, one has A+ =
(A†A)−1A†, so, by Eq. (2), one finds

A+ = URS−1U†
L. (4)

Now, let us consider PQSVT specifically with p(s) � s−1,
where the symbol � denotes a polynomial approximation.
By Eq. (3), one has PQSVT(A†) = URS−1U†

L, and by com-
paring this with Eq. (4), one finds that A+ = PQSVT(A†).
If the matrix A is invertible, then A+ = A−1 and therefore
one has

A−1 = PQSVT(A†). (5)

This shows that A−1 can be approximated with a QSVT
polynomial constructed for p(s) � s−1.

B. Block encoding

Because a quantum circuit can implement only unitary
operations, to decompose a matrix polynomial of a given
nonunitary matrix A, one first needs to encode it as a sub-
block of an auxiliary unitary UA. This procedure is called
block encoding and involves introducing additional ancilla
qubits. Specifically, UA acts as A when the ancillae are in
the zero state, |0〉a, so UA has a form

UA =
(

A ·
· ·

)
. (6)

For this, A must be normalized such that ς‖A‖max ≤ 1,
where

‖A‖max = max
k

∑
j

√
|Akj |2, (7)

and ς is related to the matrix sparsity as detailed in Sec.
V C. (We define the sparsity as the number of nonzero
matrix elements in a row maximized over all rows.) Other-
wise, A should be renormalized as follows:

A → A/(‖A‖maxς). (8)

C. Polynomials via matrix rotations

The sets of right and left singular vectors ur and ul,
which are columns of the matrices UL and UR, correspond-
ingly, form two orthogonal sets. Any other vector can be
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FIG. 1. Schematic of the QSVT circuit encoding a matrix real polynomial of order Npol, where Npol is odd, by using Npol + 1 angles.
For encoding a polynomial with even Npol, the gates in the dashed box should be removed. The circuit structure is described by
Eq. (13). The Pauli Z and Hadamard gates are introduced to extract the real part of the QSVT polynomial [22]. The gate UA is the
block-encoding oracle described in Sec. II B. The gates denoted as φk represent the controlled rotations exp(iφkZ�) shown in Fig. 2.
The upper (lower) qubit is the most (least) significant one. The ancilla qubits a and q are initialized in the zero state, |0〉a and |0〉q,
respectively. The “input” register is initialized with the state ψinit to be modified by the QSVT polynomial.

represented as a linear superposition of the vectors from
one of these sets. Therefore, to construct UA, it is suffi-
cient to define the action of this operator on the vectors ur
and ul. Assuming that ur and ul are associated with a given
singular value s, one obtains from Eq. (2) that

UA |0〉a |ur〉 = s |0〉a |ul〉 +
√

1 − s2 |⊥l〉 , (9a)

U†
A |0〉a |ul〉 = s |0〉a |ur〉 +

√
1 − s2 |⊥r〉 , (9b)

where |⊥l〉 and |⊥r〉 are vectors orthogonal to the subspace
that corresponds to the ancillae a being in the zero state.
Using that U†

AUA = 1, one obtains

UA |⊥r〉 =
√

1 − s2 |0〉a |ul〉 − s |⊥l〉 , (10a)

U†
A |⊥l〉 =

√
1 − s2 |0〉a |ur〉 − s |⊥r〉 . (10b)

The above equations indicate that UA maps the Hilbert
space spanned by |0〉a |ur〉 and |⊥r〉 to the space spanned
by |0〉a |ul〉 and |⊥l〉. Likewise, U†

A maps |0〉a |ul〉 and |⊥l〉
back to |0〉a |ur〉 and |⊥r〉. Note that all these spaces remain
invariant under the action of the projector �:

� =
(

1 0
0 0

)
. (11)

This property also extends to any function of�. In particu-
lar, the reflector Z� = 2�− 1 maps |0〉a |ur,l〉 to |0〉a |ur,l〉,
and |⊥r,l〉 to − |⊥l,r〉. By using the reflector, one can
compose an elementary block of the QSVT circuit:

W = U†
AeiφxZ�UAeiφy Z� , (12)

where φx and φy are real scalars that can be understood
as rotation angles. A sequence of copies of this operator
creates a complex polynomial PQSVT(A) of definite parity.
An odd polynomial of A with a degree not exceeding Npol

can be calculated as [19]

Podd
QSVT(A) = 〈0|q,a

⎛
⎝eiφ0Z�UAeiφ1Z�

(Npol−1)/2∏
k=1

Gk

⎞
⎠ |0〉q,a ,

(13)

where

Gk = U†
Aeiφ2kZ�UAeiφ2k+1Z� . (14)

The polynomial PQSVT is defined up to a global phase
and requires Npol + 1 classically precalculated angles φi
as explained in Sec. II D. In the spaces defined by Eqs.
(9a)–(10b) and spanned by |0〉a |ur〉 and |⊥r〉, as well
as |0〉a |ul〉 and |⊥l〉, the matrix polynomial becomes the
scalar polynomial p(s) of a real argument s. We are inter-
ested only in real polynomials, Re p(s), whose circuit
representation is shown in Fig. 1. (Real polynomials have
only real coefficients, but map complex domains into com-
plex images.) The ancilla register a is used to construct the
block-encoding oracle UA, and the ancilla qubit q is used
to construct the controlled rotations exp(iφkZ�) (Fig. 2).
The QSVT can be used to solve Eq. (1) in that it computes
|ψout〉 = |0〉q,a |ψx〉input + |· · ·〉 as

|ψx〉input = eiφglob

βscκQSVT
A−1 |b〉input , (15)

where |b〉input is the initial state of the input register (this
means |ψinit〉input = |b〉input in Fig. 1). The QSVT circuit
returns |ψx〉input in the input register when the ancilla reg-
isters a and q are output in the zero state. The rescaling
by the condition number κQSVT and the additional factor
βsc ensures that ‖ψx‖ ≤ 1, and φglob is an arbitrary global
angle. Equation (15) indicates that measurements of the
state |ψx〉 have the success probability O(1/κ2

QSVT).
Note that we distinguish the actual condition number κ

of the matrix A and the condition number κQSVT that is used
as a parameter in the calculation of the QSVT angles as
explained below. Throughout this paper, κ is defined as the
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FIG. 2. The circuit of the controlled rotation exp(iφZ�). Here,
Rz(2φ) ≡ exp(−iφZ), as in Eq. (A1c). The empty circles, called
here zero-control nodes, activate the X gates if the qubit a is in
the zero state. The ancilla qubits a and q are initialized in the zero
state, |0〉a and |0〉q, respectively.

ratio of the maximum and minimum singular values. The
QSVT algorithm properly approximates A−1 if κQSVT � κ .

For more details about the QSVT, see, for example, the
recent overview in Ref. [23].

D. Computation of the QSVT angles

To compute the angles φk necessary for the construction
of the QSVT circuit, one compares the polynomials Pf (s)
and p(s). The polynomial Pf (s) can be taken as a sum of
Chebyschev polynomials:

Pf (s) =
Nc∑

k=0

ckTk(s). (16)

The choice is justified in that the Chebyshev approxima-
tion is close to the minimax polynomial [24], which is
the best possible polynomial approximation yet requires
the application of the Remez algorithm [25], which can
be computationally expensive. But the coefficients ck can
also be computed without involving the Remez algorithm,
specifically, using the Fourier series

ck ≈ 2 − δk0

2Nq
(−1)k

2Nq−1∑
j =0

f [− cos(jπ/Nq)]ei(kjπ/Nq),

(17)

where the number of points Nq should be not less than
Nc. In our work, we use both algorithms, specifically, the
numerical implementation of the Remez algorithm as pre-
sented in Ref. [26] and also our GPU-parallelized version
of the Fourier-based algorithm [27].

The polynomial p(s) can also be represented as a linear
combination of Chebyschev polynomials with coefficients
depending on φk. The general algorithm to compute φk
involves comparing the polynomial coefficients in p(s) and
Pf (s). Usually, this requires arbitrary-precision arithmetic
[28,29]. In this work, however, φk are computed by mini-
mizing the difference between p(s) and Pf (s) as proposed
in Refs. [22,26]. This algorithm works with the standard
double-precision arithmetic.

To compute the polynomial for the inverse func-
tion s−1, one considers the interval s ∈ [−1, −1/κQSVT] ∪
[1/κQSVT, 1] and approximates the original function by an

auxiliary one that coincides with s−1 at the chosen interval
and is analytic within [−1/κQSVT, 1/κQSVT]. For instance,
one can take [30]

f (s) = 1 − e−(5sκQSVT)
2

s
. (18)

Then, one can use an odd polynomial to approximate f (s)
with some absolute approximation error εQSVT:

|f (s)− Pf (s)| ≤ εQSVT. (19)

Our calculations show that the polynomial approximation
of s−1 using the Remez algorithm works efficiently for
small condition numbers (κQSVT � 200) and, generally,
results in a smaller number of terms in Pf (s) than the
Fourier approach. For larger κQSVT, we use the Fourier
approach since the Remez algorithm fails to deliver the
coefficients of higher-order polynomials within a reason-
able time. (Further optimization of the Remez algorithm,
including its parallelization, might be possible but is not
considered in this work.) In both cases, though, the num-
ber of terms in Pf (x) grows linearly with κQSVT and
logarithmically with ε−1

QSVT.

III. SCALING

A. General scaling of the QSVT

Here, we consider the scaling of the QSVT algorithm
and compare it with classical methods for the matrix
inversion. Because it is difficult to assess how precondi-
tioning scales with the system size in the general case
[21], we consider only a conservative scaling of the prob-
lem without preconditioning. However, even in this case, a
polynomial speedup of the quantum method is possible for
high-dimensional problems.

According to Ref. [20], the query complexity of the
QSVT algorithm scales as O[κ ln(κ/εQSVT)], as also vali-
dated by numerical simulations (Fig. 3). Here, we assume
that the QSVT angles are computed using the parameter
κQSVT close to the matrix condition number, κQSVT ≈ κ .
During each query, the QSVT circuit addresses the block-
encoding oracle, which scales as O[ς ln(N )], where N
is the size of the encoded matrix A, and ς is the matrix
sparsity. According to Eq. (15), the probability of the zero-
ancilla state after inverting a given matrix using the QSVT
is O(1/κ2). Therefore, subsequent amplitude estimation,
which includes amplitude amplification as a subroutine,
requires O(κ) repetitions of the original QSVT proce-
dure to achieve the probability ≥ 0.5. Thus, the algorithm
complexity is

O
[
κ2ς ln(N ) ln

(
κ

εQSVT

)]
, (20)
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× ×
(a) (b)

QSVT

FIG. 3. (a) Query complexity, Nqueries, versus the QSVT
approximation error, εQSVT ∈ [10−3, . . . , 10−12], for various
κQSVT indicated by the colored numbers. (b) κ versus the number
of spatial points, Nx, for the systems described in Sec. IV B.

assuming that the initialization of the starting quantum
state is trivial, which is true in our case as explained in
Sec. V B.

B. Scaling of the algorithm for modeling classical
waves

In this paper, we are focusing on modeling wave dynam-
ics and consider measurements relevant to this problem.
Usually, in such problems, the spatial distribution of the
corresponding fields is discretized by a finite-difference
scheme or a finite-element method (FEM) over a grid with
N D

x points (assuming the resolution is the same along all
axes), where D is the number of spatial dimensions, and
Nx is the number of points in the spatial grid along a sin-
gle axis. This distribution is then encoded into N D

x Nfields
complex amplitudes of the state-vector elements (Sec. V),
where Nfields is the number of simulated variables (we
assume Nfields = 1).

If one measures, for example, the wave-number spec-
trum in a spatial domain with Nx points by applying the
quantum Fourier transform, one first needs to obtain the
state projection where this spatial domain is encoded. The
probability of this state equals the probability to extract
Nx elements from the set with N D

x elements (assuming
that the field amplitudes are comparable at all N D

x spatial
points), so it scales as 1/N D−1

x . To increase this probabil-
ity, the amplitude-amplification technique should be used,
which involves O(

√
N D−1

x ) repetitions of the whole QSVT
circuit. Hence, the whole algorithm scales as

O
[√

N D−1
x κ2ς ln(N D

x ) ln
(

κ

εQSVT

)]
. (21)

To eliminate the factor
√

N D−1
x from the above equation,

one can dilate the system by adding ηcopies ≥ 1 copies,

denoted as Fj , of the field amplitudes Fj0 at each posi-
tion j0 within the spatial domain of interest to the original
state vector. Correspondingly, it is necessary to supplement
the original system of equations [as the one presented in
Eqs. (36) and (38)] by ηcopies copies of the equation Fj −
Fj0 = 0 for Nx positions j0. By adding Ncopies = ηcopiesNx
additional equations, one increases the desired probabil-
ity up to (1 + ηcopies)N 1−D

x . If ηcopies ∼ O(N D−1
x ) (in other

words, if one doubles the size of the original matrix A,
N D

x → 2N D
x ), then the probability becomes O(1) and the

scaling (21) turns into

O
[
κ2ς ln(N D

x ) ln
(

κ

εQSVT

)]
. (22)

However, by adding ηcopiesNx equations we also increase
the number of operations in the block-encoding oracle as

O[ς ln
(
N D

x

)
] → O[ς ln

(
2N D

x

)
]. (23)

Furthermore, the condition number of the dilated system
increases as well. According to Theorem 3.1 in Ref. [31],
the condition number of FEM matrices scales as O(N 2/D

full )

for Nfull = N D
x . For instance, the condition number of our

one-dimensional system described in Sec. IV B scales even
better, as O(Nx), according to the numerical results shown
in Fig. 3. Thus, by doubling the matrix size, we change the
condition number scaling as O(N 2

x ) → O(22/DN 2
x ). As a

result, one obtains the following scaling of the QSVT for
the dilated matrix:

O
(

24/DN 4
x ς ln

(
2N D

x

) [ 2
D

ln 2 + ln
(

N 2
x

εQSVT

)])
. (24)

C. Comparison with classical iterative methods

The QSVT can be compared with the best-known
conjugate-gradient-based classical iterative methods for
the inversion of sparse matrices. These methods [32], such
as biconjugate gradient stabilized (BiCGSTAB) [33], gen-
eralized minimal residual (GMRES) [34], and transpose-
free quasiminimal residual (TFQMR) [35], which work
with nonsymmetric matrices, generally require precon-
ditioning to converge. Here, we assume that they scale
at least as the conjugate gradient method (which works
only with symmetric matrices). As shown in Ref. [36],
the number of iterations in this algorithm scales as
O[κ ln(1/εQSVT)], and each iteration, where the sparse
matrix-vector multiplication is the main operation, scales
as O(ςN D

x ). Thus, the scaling of the classical iterative
method is

O[ςN D
x κ ln(1/εQSVT)]. (25)

Here, we take the resulting absolute error in the classi-
cally calculated signal to be εQSVT. Taking into account
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the dependence of the condition number on the matrix size,
κ ∼ O(N 2

x ), the classical scaling becomes

O[ςN D+2
x ln(1/εQSVT)]. (26)

By comparing Eqs. (24) and (26), one can see that the
QSVT becomes more efficient than the classical methods
in high-dimensional problems, namely, those with D ≥ 3.
Examples of such (linear) problems include modeling of
the wave propagation in plasma that is described hydrody-
namically in three spatial dimensions or kinetically in six
phase-space dimensions.

Let us roughly estimate how many qubits are needed
for the QSVT to outperform the classical conjugate gra-
dient method. Specifically, we focus on the number of
qubits nx = log2 Nx that is determined by the system size.
According to Eqs. (24) and (26), the QSVT requires around
Cς24nx gates, and the classical method requires around
ς2nx(D+2) operations. (Logarithmic factors are omitted for
simplicity.) Here, C is a large constant factor that depends
on, to name a few, the implementation of the block-
encoding oracle, the (machine-specific) set of elementary
gates, and the mapping of the QSVT circuit to an actual
quantum computer. The QSVT can provide a quantum
speedup when ς2nx(D+2)/Cς24nx > 1, or in other words,
when nx(D − 2) > log2(C).

The QSVT scaling may be improved by reducing the
condition number by means of preconditioning like that
described in Ref. [37]. We also stress that the QSVT
algorithm currently has a bottleneck in that there are
no optimized methods for calculating the rotation angles
φk [used in Eq. (13)] for large condition numbers. This
problem is solved for our one-dimensional system, where
κ ∼ 500, by using the GPU-parallelized Fourier approach
described in Sec. II D. For more complex problems, one
may have to consider the method for computing φk that
was proposed in Ref. [30].

IV. THEORETICAL MODEL

A. Problem specification

We consider EM waves in a linear medium with a dielec-
tric permittivity ε. For simplicity, we assume the magnetic
permittivity equal to unity as is the case, for example, in
classical plasmas. Then, Maxwell’s equations governing
the waves can be written as

ε∂tE = ∇ × B, (27a)

∂tB = −∇ × E, (27b)

assuming units such that the speed of light equals unity.
We consider the simplest model that allows investigating
various measurement techniques of the wave spectrum and
wave energy. Specifically, ε will be assumed a piecewise-
constant function of the spatial coordinates, and we will be

interested in modeling the wave propagation across discon-
tinuities of this function. In the absence of surface current
and charge densities, the following boundary conditions
are satisfied on each discontinuity of ε:

EI ,t − EII ,t = 0, (28a)

BI ,t − BII ,t = 0, (28b)

εI EI ,n − εII EII ,n = 0, (28c)

BI ,n − BII ,n = 0, (28d)

where Et and Bt are the field components tangent to the
interface, En and Bn are the field components normal to
the interface between the two areas, I and II , with the
permittivities εI and εII , respectively.

We consider a one-dimensional problem where waves
propagate along the x axis. The magnetic and electric fields
are polarized along the z and y axes, respectively. Hence,
Eqs. (27) can be expressed in a simple form:

ε∂tE = −∂xB, (29a)

∂tB = −∂xE, (29b)

where we omit the subindices y and z in Ey and Bz. Also,
we introduce the spatial coordinate rx that changes from 0
to 1 and is defined as

rx = x/max(|x|). (30)

We assume a discontinuity of ε at rx,int = 1/2, so that we
have Nlayers = 2 dielectric layers of different permittivities:

ε =
{
ε0, rx < rx,int,
ε1, rx > rx,int.

(31)

A monochromatic source Q = Q0 exp(iωt) with constant
frequency ω and constant amplitude Q0 is placed at rx = 1.
Assuming a steady state, the corresponding electric and
magnetic fields have the form E(t, x) = E(x) exp(iωt) and
B(t, x) = B(x) exp(iωt), respectively. Then, the boundary-
value problem for their spatial profiles E(x) and B(x) is
given by

iωεLE(x)+ ∂xB(x) = 0, (32a)

iωB(x)+ ∂xE(x) = 0, (32b)

with the outgoing boundary conditions at rx = 0 and
rx = 1:

(iω − ∂x)E|rx=0 = 0, (33a)

(iω + ∂x)B|rx=1 = Q0, (33b)

and

E(rx,int)|layer 0 = E(rx,int)|layer 1, (34a)

B(rx,int)|layer 0 = B(rx,int)|layer 1, (34b)
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with L = [0, 1]. (Here, the square brackets [ileft, iright] indi-
cate a set of all integers from ileft to iright, including ileft
and iright. To denote the same set but excluding iright, we
use the parenthesis as in [ileft, iright). The same notation
will also be used to indicate open, (xleft, xright), and closed,
[xleft, xright], continuous intervals with real numbers xleft and
xright.) Note that the system is not conservative in that the
wave energy is lost through radiation on the left and right
boundaries and replenished by the source Q. In the left
half of the spatial domain, where rx < rx,int, the EM field
is a left-propagating wave. In the right half, the reflection
at the interface between the dielectric layers results in the
interference of left- and right-propagating waves and in the
formation of a standing wave. Also, the wave propagating
within the layer with the permittivity ε has a wave number
equal to

kx = √
εω. (35)

Below, we show how to develop a QSVT algorithm for
this boundary-value problem and perform quantum mea-
surements in the corresponding circuit to infer information
about the spatial spectrum and the wave energy.

B. Discretization

We discretize Eqs. (32) using the central finite difference
scheme as shown in Fig. 4. Separate staggered grids, each
having Nx = 2nx points, are used for E and B, and each
dielectric layer contains Mx = 2nx−1 spatial points. At the
bulk spatial points, the discretized Eq. (32a) is

iωεLEj + σ(Bj − Bj −1) = 0, (36)

where j = (MxL + k) with k = [1, Mx) for L = 0 and k =
[0, Mx) for L = 1. Also, σ = (2h)−1, where 2h is the
spatial cell size:

2h = xj +1 − xj , (37)

for all j . The discretized Eq. (32b) is

iωBj + σ(Ej +1 − Ej ) = 0, j = [0, Nx − 2]. (38)

The EM fields satisfy the outgoing boundary conditions
(33) expressed as

η+E0 + η−E1 = 0, (39a)

η−BNx−2 + η+BNx−1 = Q0, (39b)

η− = iω − h−1, (39c)

η+=iω + h−1. (39d)

Equations (36) and (38) with the boundary conditions (39)
can be represented as a set of linear equations (1) where

the vector ψ stores Nvars = 2 variables, E and B:

ψdNx+j =
{

Ej , d = 0,

Bj , d = 1,
(40)

with j = [0, Nx). The right-hand-side vector b in Eq. (1)
has dimension NvarsNx and encodes the source with the
amplitude Q0 = 1:

bdNx+j =
{

1, (dNx + j ) = 2Nx − 1,

0, otherwise,
(41)

with j = [0, Nx) and d = [0, 1]. The NvarsNx × NvarsNx
matrix A is represented as a sum of two matrices:

A = Abulk + Aedge, (42)

with

Abulk
kj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−1)lσ , j = k + Nx − l, k = [1, Nx),
(−1)l+1σ , j = k − Nx + l,

k = [Nx, 2Nx),
iω, j = k, k = [Nx, 2Nx − 2],
iωεL, j = k, k �= 0,

k = [MxL, Mx(L + 1)− 1],
0, otherwise,

(43)

and

Aedge
kj =

⎧⎪⎨
⎪⎩
η+, j = k, k = 0 and 2Nx − 1,
η−, j = k + 1 = 1,

j = k − 1 = 2Nx − 2,
0, otherwise,

(44)

where L = [0, 1], l = [0, 1], and k is the row index. The
matrix Abulk contains information about the system evolu-
tion in the bulk spatial points. The matrix Aedge describes
the boundary conditions.

V. ENCODING OF THE CLASSICAL SYSTEM
INTO A QUANTUM CIRCUIT

Various formulations suitable for the QC of Maxwell’s
equations were proposed in Refs. [37–41], which consid-
ered analytical descriptions and the algorithm complexity
but not actual circuits. Below, we show how to construct
quantum circuits for this problem explicitly.

A. Input registers

To map the problem on a quantum circuit, we introduce
two input registers. The first one, rd, consists of one qubit
and encodes the variable index: |0〉rd

for the electric field
and |1〉rd

for the magnetic field. The second register, rj ,
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FIG. 4. The spatial domain is discretized with two staggered
grids. Each grid has Nx points, and the spatial step h is defined in
Eq. (37). The magnetic field is defined on the upper grid shifted
by h to the right from the lower grid, on which the electric field
is defined. The source Q is placed at the right boundary of the
lower grid. The outgoing boundary conditions (33) on E and B
are calculated in the middle of the leftmost cell of the lower grid
and of the rightmost cell of the upper grid, respectively.

contains nx = log2 Nx qubits and encodes the coordinate
index on the spatial grid. (If Nx is such that nx is not integer,
one can use nx = �log2 Nx� qubits. Then, the dimension of
the vectors b and ψ and matrix A in Sec. IV B are deter-
mined by Ñx = 2nx instead of Nx.) The state amplitude
corresponds to the field magnitude at a given spatial point.
For instance, the amplitude of the state |1〉rd

|j 〉rj
stores the

magnitude of the magnetic field at xj , where xj is taken on
the upper spatial grid in Fig. 4. All indices are numbered
starting from 0.

B. Initialization

To solve Eq. (1) with the matrix (42) and the source (41)
using the QSVT, one needs to block encode the matrix A
into the unitary UA [Eq. (6)] and encode the vector b as the
initial state, denoted as |b〉. At the beginning, all qubits are
initialized in the zero state. Using the registers rj and rd,
the right-hand-side vector can be encoded as

|b〉 =
Nx−1∑
k=0

(α
(E)
k |0〉rd

|k〉rj + α
(B)
k |1〉rd

|k〉rj ). (45)

The coefficients α
(E,B)
k are determined from Eq. (41),

whence α(E)k = 0 for all k and α(B)k = δk,Nx−1. Because the
bit-string encoding the number Nx − 1 consists only of
units, the state |b〉 can be initialized by applying the X gate
to each qubit in the register rj . Also, the X gate is applied
to the qubit rd. Of note, the depth of the corresponding
initialization circuit, henceforth denoted “INIT,” does not
depend on Nx.

C. Block encoding of a non-Hermitian matrix

To block encode the matrix A, one should normalize
it first according to Eq. (8). Here, we normalize A in the
following way:

A → A/(d2
H‖A‖max). (46)

The origin of the factor dH = 2, where d2
H is close to the

actual sparsity of A, is explained in Sec. V E.
To block encode a non-Hermitian matrix, one usually

extends it first to a Hermitian one [13,37,42]:

Aext =
(

0 A
A† 0

)
. (47)

After that, one can use the standard state-preparation tech-
nique [4,43] to block encode Aext, where the oracle UA is
represented through unitary operators OF , OH , OM :

UA = O†
FOM OH OF . (48)

The circuit implementing UA operates with “input” qubit
registers (in our case, registers rj and rd) that contain ini-
tial and final (output) data, and also ancilla registers that
are initialized in the zero states and used for intermediate
computations. The operator OF reads a row index from the
input registers, calculates the column indices of all nonzero
elements of Aext at the given row and writes the computed
indices into the ancillae. The operator OH computes the
values of these nonzero elements and encodes them into
the amplitudes of the ancilla-qubits’ states. The operator
OM transfers the computed column indices to the input
registers so that UA could return the indices as an out-
put. After that, O†

F uncomputes (sets back to zero) the used
ancilla registers for the state encoding the matrix nonzero
elements.

In our implementation, we amend the above technique.
In order to shorten the circuit for UA, we avoid extending
A to a Hermitian matrix. Instead, we split OF into two ora-
cles Obulk and OF

edge, and the adjoint O†
F is replaced with

the product of O†
bulk and OB

edge. The index “F” in OF
edge

stands for “forward,” and the index “B” in OB
edge stands for

“backward.” The pair of oracles OF
edge and OB

edge encodes
the locations of the elements η± in Eq. (44). The ora-
cles Obulk and O†

bulk encode the positions of the matrix
elements in Eq. (43). Hence, the decomposition (48) is
replaced with

UA = O†
bulkOB

edgeOM OH OF
edgeObulk. (49)

Note that OB
edge = (OF

edge)
† for a Hermitian A but not

in general (Sec. V E). The decomposition (49) elimi-
nates the need for the supplemental ancilla used for
the extension (47), and one can also avoid additional
gates needed for the block encoding of A† in Eq. (47).
The circuit for UA is shown in Fig. 5. To describe the
action of each operator in the above product, we need
to consider the ancilla qubits used in the intermediate
computations.
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FIG. 5. The circuit implementing the oracle UA described in Eq. (49). The circuit for the operator OH is shown in Fig. 6. The
decrementor (Dec) and incrementor (Inc) are described in Eqs. (53), and their circuits can be found in Ref. [4]. The ancillae ad, aj , and
av are initialized in the zero state and described in Sec. V D.

D. Ancilla qubits

The matrix A of size 2Nx × 2Nx can be separated into
four blocks of size Nx × Nx each. We introduce the ancilla
qubit ad to address the first Nx columns of A when this
qubit is in the zero state and to the last Nx columns when it
is in the unit state. The input register rd described in Sec.
V A is used to address the first Nx matrix rows when it is
in the state |0〉rd

and the last Nx rows when it is in the state
|1〉rd

. Hence, any block can be addressed by using just the
qubits ad and rd.

Another ancilla, denoted av , is used to store the values
of the matrix nonzero elements, as explained in Sec. V F.

An additional qubit, aj , encodes the relative positions of
matrix elements with respect to the diagonal within each
block. The zero state of the qubit aj indicates a matrix ele-
ment on the diagonal of a given block. (The position of the
block itself in the matrix A is encoded by the qubits ad and
rd as described above.) Having aj in the unit state encodes
different information depending on the state of ad. If ad is
in the zero state, then |1〉aj indicates the matrix element
shifted by one cell to the right from the block diagonal.
If ad is in the unit state, then |1〉aj indicates the element
shifted by one cell to the left:

|0〉aj → ic = ir, (50a)

|1〉aj →
{

ic = ir + 1, if ad is in state |0〉ad
,

ic = ir − 1, if ad is in state |1〉ad
, (50b)

where ic, ir = [0, . . .Nx) are the column and row indices,
respectively, of a matrix element within a given block.

The dependence on ad is due to the fact that in the
upper and lower left blocks (corresponding to ad’s being
in the zero state), the matrix (42) has nonzero elements
only on the block diagonals and in cells shifted by one
cell to the right from the diagonals. In the upper and lower
right blocks (corresponding to ad’s being in the unit state),
we work only with block-diagonal elements and elements
shifted by one cell to the left.

E. Matrix structure

To explain the action of UA given by Eq. (49), let us
first ignore the effect of OH and consider an auxiliary
operator

OS = O†
bulkOB

edgeOM OF
edgeObulk. (51)

The purpose of introducing this auxiliary operator is to
explain the appearance of the factor d2

H in Eq. (46),
which is determined by the matrices entering Eq. (51)
but not OH .

The operators Obulk and OF
edge (Fig. 5) encode the col-

umn indices of nonzero elements to a linear superposition
of states of the ancillae ad and aj using a given row index
from the registers rj and rd. For instance, for the matrix
row with the index k = 1 (the second top matrix row
encoded as |0〉rd

|1〉rj ), one has

Obulk |0〉aj |0〉ad
|0〉rd

|1〉rj = (d−1/2
H |0〉aj |0〉ad

+ d−1
H |0〉aj |1〉ad

+ d−1
H |1〉aj |1〉ad

) |0〉rd
|1〉rj . (52)

Here, the first term in parenthesis encodes the position
of the element iωε0 on the main matrix diagonal in Eq.
(43) in the row with k = 1. The second and third terms
encode the positions of the elements (−1)lσ in Eq. (43) at
k = 1. Thus, the column indices are written to the states
of the qubits ad and aj . The various orders of the factor
dH introduced in Eq. (46) appear here due to the action of
Hadamard gates, because each Hadamard gate modifies the
state probability by 2−1/2.

As mentioned in Sec. V C, the oracle UA returns the state
encoding matrix column indices. To transfer the column
indices saved in the ancillae ad and aj to the input registers
rd and rj , we use the operator OM , where the decrementor
and incrementor (“Dec” and “Inc” gates in Fig. 5) map the
relative positions (encoded into the ancilla aj ) to the abso-
lute column indices and write them to the input register rj .
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These operators act on a given state |k〉 in the following
way:

Inc |k〉 = |k + 1〉 , (53a)

Dec |k〉 = |k − 1〉 , (53b)

and they are controlled by the ancillae aj and ad (as shown
in Fig. 5) to correctly perform the mapping described in
Eq. (50). Apart from that, OM transfers the absolute col-
umn indices stored in the ancilla ad to the input qubit rd by
swapping these qubits.

The oracle OB
edge is close to OF†

edge, but the control nodes
of the Hadamard gates in OB

edge are adjusted in such a way
that the operator OS returns the correct column indices of
the element η− in Eq. (44). The oracle OB

edge is found ad
hoc specifically to encode the non-Hermitian matrix (42).

To describe the oracle OH , note first that OS does not
only encode the column indices into rd and rj but also mod-
ifies the amplitudes of the corresponding quantum states as
demonstrated in Eq. (52). Specifically,

〈kc|rj 〈dc|rd
OS |dr〉rd

|kr〉rj

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d−1
H , dr = dc, kr = kc, l = [2, 2Nx − 3],

d−3/2
H , dr = dc, kr = kc,

l = [0, 1] ∪ [2Nx − 2, 2Nx − 1],
d−3/2

H , dr �= dc, kr = kc, l = [0] ∪ [2Nx − 1],
d−2

H , dr = dc, |kc − kr| = 1, l = [0] ∪ [2Nx − 1],
d−2

H , dr �= dc, kc = kr, kr = [1, Nx − 2],
d−2

H , dc = dr + 1, kc = kr − 1, kc = [0, Nx − 2],
d−2

H , dc = dr − 1, kc = kr + 1, kc = [1, Nx),
(54)

where l = drNx + kr = [0, 2Nx), dr = [0, 1], kr = [0, Nx),
and the ancillae ad and aj are assumed to be returned in
the zero states. The oracle OH must take into account the
values from Eq. (54) and output the correct amplitudes Akj
from Eqs. (43) and (44).

F. Operator OH

The operator OH encodes the values Akj into the state
amplitudes of the qubit av . This is done by applying the
rotation gates described in Appendix A. The correspond-
ing rotation angles are computed by taking into account the
target values from Eq. (42), denoted vdes, and the multipli-
cation factors from Eq. (54), denoted cd, that appear due to
the action of the operator OS. For instance, the value vdes
can be encoded in the state amplitude by using the standard
gate Rx(θ) acting on the zero state of the qubit av:

Rx(θ)
(
cd |0〉av |· · ·〉 + · · · )

= (
cd cos(θ/2) |0〉av − icd sin(θ/2) |1〉av

) |· · ·〉 + · · · ,
(55)

FIG. 6. The circuit implementing the operator OH . The sub-
circuits are described in Fig. 7. The rotation angles θ±π are
computed using Eqs. (A6).

where |· · ·〉 denotes states of other ancillae. The target
value vdes can be encoded to the amplitude of either the
zero state |0〉av or the unit state |1〉av . Since some of the val-
ues from Eq. (42) are purely imaginary, we choose the unit
state to store vdes, so vdes = −icd sin(θ/2). This requires
the following angle:

θ = 2 arcsin(−ιv|vdes|/cd) , (56)

where ιv = ±1 is the sign of Im vdes. The above transfor-
mation works only for purely real or imaginary values. To
encode a complex value, one can use the combined rotation
Rc(v) presented in Eq. (A4).

The circuit implementing OH is shown in Fig. 6, and its
individual blocks are detailed in Fig. 7. The rotation gates
of the oracle OH are controlled by the states of the ancillae
ad and aj and the input registers rd and rj to compute the
values of the matrix elements at the positions encoded in
these states. The calculation of the rotation angles for the
oracle OH is summarized in Appendix A.

Assuming availability of gates that can be controlled by
multiple qubits, the circuit depth of the oracle UA scales
as O(nx) due to the scaling of the decrementor and incre-
mentor operators (53). The number of ancilla qubits is
independent of nx. The main reason for this is that the
ancilla aj stores the relative positions of the matrix ele-
ments, but not the absolute column indices. (In the latter
case, the number of ancillae would be proportional to nx.)
If multicontrolled gates are not available, though, they
would have to be transformed into elementary gates. An n-
controlled single-target gate can be transformed into O(n2)

elementary gates using O(n) ancillae [44].

VI. COMPARISON WITH CLASSICAL
SIMULATIONS

A. Direct comparison without measurements

We solve the model equations (32) by computing the
inverse of the corresponding matrix (42) classically (by
applying the standard Gauss-Jordan elimination) and by
using the QSVT, whose quantum circuit is emulated using
our open-source code [27]. Two sets of parameters are
considered.
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FIG. 7. The subcircuits of the circuit for OH shown in Fig. 6. The operator Rc is described in Eq. (A4). The corresponding rotation
angles are computed using Eqs. (A6).

The first set is intended to test our scheme in the sim-
plest possible case of vacuum wave, ε0 = ε1 = 1, where
the wave propagates to the left from a source Q placed at
the right boundary. We choose the size of the simulated
domain, Lx, such that we would have enough wavelengths
in the simulated area to measure the wave-number spec-
trum. Specifically, we take Lxkx,0 = 20.0. The number of
points in the spatial grid, Nx, is chosen such that classical
simulations would converge. This corresponds to nx = 6.
Also, the corresponding matrix A had a condition number
κ ≈ 150, which is estimated as the ratio of the maximum
and minimum singular values. (This value varies depend-
ing on the method used for calculating κ , as discussed in
Ref. [16].)

The second set is intended to provide the simplest pos-
sible test of our scheme in application to inhomogeneous
media, where the wave number and the wave amplitude
can vary in space and reflection is possible. Like in the
first case, the wave propagates to the left from a source
Q placed at the right boundary. However, in this case we
place a dielectric-dielectric interface at the center of the
spatial domain [Eq. (31)] with ε0 = ε1/4 = 1. These val-
ues are chosen such that, albeit different from each other,
both ε0 and ε1 would be order one to avoid small wave-
lengths (which would have required using larger resolution
and more QSVT angles). When the left-propagating wave
(incident wave) excited by the source Q hits this interface,
the wave is partially reflected and partially transmitted to
the left half of the spatial domain (rx < rx,int). Hence, the
right half of the spatial domain (rx > rx,int) contains both
incident and reflected waves. Their interference changes
the field amplitude and the wave-number spectrum. (This
will be analyzed in Secs. VI B and VI C.) Because the wave

number in the right domain is larger than in the first case,
a larger number of spatial points is necessary. Hence, we
use nx = 7 instead of nx = 6. This results in a larger con-
dition number of the matrix A, κ ≈ 400, so larger κQSVT is
necessary to compute A−1 using the QSVT.

The comparison between the classical and QSVT sim-
ulations for these two cases is shown in Figs. 8 and 9,
respectively. The QSVT angles are computed using the
indicated parameter κQSVT and the approximation error
εQSVT. (The field profiles are obtained without taking mea-
surements into account, leveraging the fact that we emulate
the circuit on a classical computer. How to extract classical
information from actual quantum simulations is discussed
in the next sections.) Also note that the QSVT-calculated
fields in Figs. 8 and 9 are multiplied by κQSVT to account
for the normalization in Eq. (15).

As seen from Figs. 8 and 9, if the QSVT parameter
κQSVT is not sufficiently large, the calculation of the elec-
tric field using the QSVT does not converge. Also, as seen
from the magenta and gray lines in Fig. 10, if κQSVT is not
large enough, then the decrease of εQSVT does not improve
the precision of the modeled signal (i.e., the electric field
E). In other words, the parameter κQSVT, which determines
the number of the QSVT angles and their values, defines
the maximum achievable precision of the simulated sig-
nals. If κQSVT is sufficiently large [as mentioned in Sec.
III, log2 κQSVT scales as O(nx)], then the resulting error
changes linearly with εQSVT. For the QSVT of classical
systems with smaller nx (and thus, with smaller condition
numbers of the matrix A), smaller κQSVT suffice to avoid
the saturation in the numerical precision.

By comparing Figs. 3(b) and 10, one can roughly esti-
mate κQSVT for achieving the sought numerical precision.
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0.0 1.00.0 1.0

(a) (b)
QSVT QSVT

QSVT QSVT

QSVT QSVT

FIG. 8. Comparison of classical simulations (solid black lines)
with quantum computations (colored dashed lines) done on
an emulator [27,45] for ε0 = ε1 = 1 and nx = 6: (a) Re E(x),
(b) Im E(x). The global phase of the signals from the QC is
adjusted to that of the classical signal.

In particular, to guarantee that the error in the QSVT-
computed signal is around 10−4 (y axis in Fig. 10),
κQSVT = 200 is enough for nx = 4, where κ = 60. For
nx = 5 (κ = 80), one needs κQSVT = 300. For nx = 6 (κ =
150), one needs at least κQSVT = 500. Thus, κQSVT/κ � 3
is needed to guarantee the error 10−4. That said, for model-
ing a system with a different A, one might need to perform
a convergence test similar to that in Fig. 10 to estimate the
minimum κQSVT for given desired precision.

B. Estimation of the wave numbers

One can estimate the dominant wave number(s) of the
electric field using the quantum Fourier transform (QFT).
A possible circuit is shown in Fig. 11. If one needs to
measure the spectrum only in the left (right) half of the
spatial domain, then the X gate should be controlled also

0.0 0.01.0 1.0

(a) (b)

QSVT QSVT

QSVT QSVT

QSVT QSVT

FIG. 9. Comparison of classical simulations (solid black lines)
with quantum computations (colored dashed lines): (a) Re E(x),
(b) Im E(x). The parameters are 4ε0 = ε1 = 4 and nx = 7. The
black dotted vertical lines indicate the boundary where the
dielectric permittivity changes abruptly.

QSVT

QSVT

QSVT

QSVT
QSVT

QSVT

QSVT

QSVT

FIG. 10. The dependence of the maximum absolute differ-
ence between the electric fields calculated classically and by the
QSVT on the absolute error εQSVT for different values of κQSVT
and nx for ε0 = ε1 = 1.

by the zero (unit) state of the uppermost qubit in the reg-
ister rj . The zero-control node on the qubit rd entangles
the unit state |1〉m in the qubit m with the state returned
by the QSVT subcircuit encoding the spatial distribution
of the electric field. As seen from Eq. (15), the ampli-
tude of this state scales as O(1/κ). Thus, the state should
be amplified by using the amplitude amplification (AA)
procedure (“AAb”) [47] for an unknown amplitude that
requires O(κ) repetitions of the circuit Uprep presented in
Fig. 11. After the “AAb,” the probability to measure |1〉m
becomes not less than 1/2.

If the unit state |1〉m is measured, then the QFT, which
requires O(n2

x) quantum gates, is performed in the register

QSVT

FIG. 11. The circuit that measures the wave number of the sta-
tionary electric field E in the whole spatial domain. The register
aQSVT includes all ancilla qubits necessary for the QSVT circuit
(i.e., the registers ad, aj , av , and q). The QSVT circuit is pre-
sented in Fig. 1. The QFT is a well-known circuit in QC and
is described in detail in Ref. [46]. The amplitude amplification
procedure (denoted here as “AAb”) for an unknown amplitude
is described in Ref. [47]. Here, the QFT is performed only if the
qubit m is measured in the unit state, otherwise the whole circuit
should be restarted.
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rj . Specifically, the spatial distribution of the electric field
over the grid

x = j�x, j = [0, Nx), (57)

is transformed into its spectrum on the wave-number grid

kx = −kmax +�kj , j = [0, Nx), (58)

where kmax = π/�x, �x = 2h, �k = 2kmax/Nx, and Nx is
an even integer (Sec. IV B). More precisely, after the QFT,
the bit strings in the register rj encode the wave-number
grid, and the state amplitudes encode the corresponding
Fourier magnitudes. The measurement of the qubits in the
register rj outputs a bit string encoding a single wave num-
ber kx of a Fourier component with some amplitude Fkx .
The probability to measure a certain kx equals |Fkx |2.

Since the circuit shown in Fig. 11 is computationally
expensive to emulate classically, we compute it in parts
by modeling the INIT + QSVT circuit first and then trans-
ferring the computed QSVT state directly to the QFT as an
input. The comparison between the classical FFT and QFT
is shown in Fig. 12, where both FFT and QFT are defined
over the same wave-number grid (58). Specifically, shown
in Fig. 12 is the distribution of the probability with which
a measurement returns a given kx. According to the figure,
each measurement most likely returns the wave numbers
kx,0 or

√
ε1kx,0, which is in agreement with Eq. (35).

This QFT-based procedure is particularly useful when
the wave spectrum consists mainly of just a few domi-
nant modes, which can be identified with O(1) measure-
ments. A relevant application could be to the modeling
of radiofrequency modes in fusion plasmas [48], where
the local spectrum often consists of a mode launched by
an antenna and, possibly, few other modes generated by
reflection and (or) mode conversion [49]. The correspond-
ing wave vectors vary in space, and the above procedure
can be used to identify these wave vectors at a given
location of interest.

C. Amplitude estimation of the field energy

To measure the field energy summed over a chosen spa-
tial domain, we can use the so-called amplitude-estimation
(AE) procedure. For example, it can be implemented using
the standard algorithm described in Ref. [47]. The corre-
sponding circuit is shown in Fig. 13, where the register
ry has ny qubits. There, the subcircuit Uprep entangles the
unit state |1〉m with the superposition of states encoding the
spatial distribution of the electric field in the right domain
(rx > rx,int):

ψE = |1〉m

⎛
⎝|0〉rd

Nx−1∑
j =Nx/2

Ej |j 〉rj

⎞
⎠+ |0〉m (· · · ). (59)

0.0

0.0

1.0

(a)

(b)

P
P

FIG. 12. A comparison of the results obtained using classi-
cal FFT (solid blue lines and markers) and the QFT (dashed
red lines and markers): (a) ε0 = ε1 = 1, nx = 6, κQSVT = 500,
εQSVT = 10−5; (b) 4ε0 = ε1 = 4, nx = 7, κQSVT = 600, εQSVT =
10−7. The vertical black lines correspond to kx = ±kx,0. The
vertical green lines correspond to kx = ±√

ε1kx,0. Here, the
wave-number grid is normalized to kx,0 = ω.

[Here, we omit the register ry , which remains in the zero
state. We also omit the multiplication factor from Eq. (15)
and the QSVT ancillae.] The electric field energy can be
measured as the probability amplitude of the state |1〉m:

pm,1 =
Nx−1∑

j =Nx/2

|Ej |2. (60)

Instead of emulating the circuit from Fig. 13 directly,
which is computationally expensive, we emulate a simpli-
fied circuit shown in Fig. 14. There, the operator Uprep is
reduced to the one-qubit rotation Ry(θE), so

Usim |0〉m = cos(θE) |0〉m + sin(θE) |1〉m , (61)

where sin2(θE) = pm,1. [This defines θE up to a modulo
π , which is not significant since we are only interested
in sin2(θE).] More precisely, we emulate the actual circuit
Uprep to compute the state ψE , from which we calculate the
probability pm,1 numerically. As a result, we can find the
angle θE . After that, we model the circuit shown in Fig. 14
using Usim with the precomputed θE . To demonstrate the
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QSVT

FIG. 13. The circuit for measuring the electric field energy
in the right spatial domain by using the AE. The state ψE
is described in Eq. (59) and prepared by the subcircuit Uprep
indicated here by the dashed box.

operation of the AE, we also report emulation of the non-
simplified AE circuit (as in Fig. 13) for a Gaussian field
profile in Appendix B 2.

The bit string measured after the AE encodes an inte-
ger iy from which one can estimate the desired probability
amplitude [47]:

p̃m,1 = 1 − sin2
(
π iy
NAA

)
, (62)

where NAA = 2ny , and p̃m,1 is the estimated probability of
the state |1〉m. With a probability more than 0.81, the mea-
surement outcomes p̃m,1 with the following absolute error
[47]:

δ ≡ |pm,1 − p̃m,1| ≤ 2π

√
pm,1(1 − pm,1)

NAA
+ π2

N 2
AA

. (63)

Since pm,1 is unknown in advance, in practice one can
estimate δ by replacing pm,1 with p̃m,1 (obtained from mea-
surements) in the right-hand side of Eq. (63). Then, the
field energy stored in a given domain spanning Nx,area
points can be estimated as

Ẽ = (βscκ)
2

Nx,area

(
p̃m,1 ± δ

)
. (64)

FIG. 14. The circuit used for estimating p̃m,1. The subcircuit
Usim is a reduced version of the circuit Uprep shown in the dashed
box in Fig. 13. The circuit within the red dashed box corresponds
to the AE block in Fig. 13. The notation AAm denotes 2m−1

applications of the AA operator (Appendix B 2).

FIG. 15. The change of the estimated energy Ẽ with the num-
ber of qubits in the register ry . The AE of the energy integrated
over the full spatial domain in the case with ε0 = ε1 = 1 is
indicated by the blue markers. The AE of the energy summed
over the left domain rx < rx,int or the right domain rx > rx,int in
the case with 4ε0 = ε1 = 4 is indicated by the red and green
markers, respectively. The horizontal dotted lines indicate the
corresponding energies computed in classical simulations.

The AE circuit requires O(NAA) repetitions of the AA
operator, which is described in Appendix B 2 and includes
two calls to the QSVT. Because δ scales as O(1/NAA),
to measure the energy with an absolute error not larger
than δ, one needs O(1/δ) queries to the QSVT circuit.
Since the amplitude of the QSVT resulting state, where
the system fields are encoded, is O(1/κ), δ should also
be at least as small as O(1/κ). Thus, the AE requires O(κ)
queries to the QSVT circuit. Advanced AE methods [50]
can be used to reduce the number of ancillae in the AE
and possibly reduce the constant coefficient hidden in the
aforementioned scaling, but the scaling itself remains the
same.

The results of our emulations of the above AE procedure
are summarized in Fig. 15. By increasing the number of
qubits in the register ry , one can reduce the measurement
error δ so that the QSVT approximation error dominates
over δ. In turn, the QSVT error itself can be reduced by
increasing κQSVT and (or) decreasing εQSVT as described in
Sec. VI A.

We can also roughly estimate the number of qubits nec-
essary for the AE of Ẽ in a D-dimensional boundary-value
problem with Nv variables. To address each variable, one
will need nd = �log2 Nv� qubits in the register rd (Fig. 5).
To describe the spatial distribution of these variables, Dnx
qubits are required in the register rj . For the block encod-
ing, one will need nd additional qubits in the ancilla register
ad. Apart from that, similar to Eq. (50), each qubit in aj
will encode matrix column indices in a matrix sub-block
associated with a particular spatial axis, thus, the register
aj will have at least D qubits. If one increases the number
of points in the stencil of the difference scheme for spa-
tial derivatives, then the register aj will need more qubits,
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i.e., aj = Dnc, where nc = �log2 Nc� and Nc is the num-
ber of spatial points in the stencil [in our case, Nc = 2 as
one can see from Eq. (36) or Eq. (38)]. Also, we need
one supplemental qubit (the ancilla q in Fig. 1) to con-
struct the QSVT circuit. To estimate Ẽ with an absolute
error δ = O(Ẽ), one needs ny = log2(Ẽ−1) qubits in the
register ry [one can see it from Eq. (63)], and at least
one qubit in the register m in Fig. 13. To sum up, the
resulting number of qubits will be approximately equal
D log2 Nx + 2�log2 Nv� + D�log2 Nc� + 2 + log2(Ẽ−1).

D. Measurement of the absorbed wave power

Another useful parameter to measure in simulations of
stationary waves is the absorbed power. In a given region
(xB, xE), this power can be calculated as [48]

P = 1
2

∫ xE

xB

dx E∗(x)
∫ +∞

−∞
dx′σ(x, x′)E(x′), (65)

where σ is the conductivity at a given frequency, and the
symbol ∗ denotes the complex conjugation. The integration
over x′ can be replaced by integration over ζ = x′ − x:

P = 1
2

∫ xE

xB

dx E∗(x)
∫ +ζw

−ζw
dζσ (x, x + ζ )E(x + ζ ),

(66)

where the domain in the second integral can be finite and
arbitrary as long as it is much larger than the localization
scale of σ with respect to ζ at a given x. Let us also adopt,
for simplicity, that the interval (xB, xE) is small enough so
the dependence of σ on x on this interval can be neglected.
In other words, let us assume, say, σ(x, x + ζ ) ≈ σ(xC, ζ ),
where xC = (xB + xE)/2 is the center of the interval. [Fur-
ther, for simplicity, we omit xC and the bar in σ(xC, ζ ).]
Then, after discretization, Eq. (66) becomes

P = D
2NwNEB

, (67a)

D =
kE∑

k=kB

E∗
k

Nh,w∑
j =−Nh,w

σj Ek+j , (67b)

where the indices kB and kE correspond to the spatial points
xB, xE, respectively. The spatial interval has NEB = kE −
kB + 1 points, and the electric current σj Ek+j at the point
xk is induced by the electric field within the window of
Nw = 2Nh,w + 1 points centered at xk. To encode NEB and
Nw spatial points, one needs nEB = �log2 NEB� and nw =
�log2 Nw� qubits, respectively. Positive P corresponds to
the wave power absorbed by the environment, e.g., plasma.

In practice, σj depends on the given medium and is
supposed to be calculated analytically or numerically in

kinetic simulations [51]. Here, we assume that the con-
ductivity is a Gaussian function, σj = Gj , and rewrite Eq.
(67b) as follows:

D =
Nx−1∑
k=0

Nx−1∑
p=0

Mk,pE∗
k Ep , (68)

with a matrix

Mk,p = �k−kB�kE−kGp−k�p−(k−Nh,w)�(k+Nh,w)−p , (69)

and Heaviside functions �. The sum (68) has the form of
the inner product 〈E| M |E〉 and, therefore, its circuit repre-
sentation can be computed by applying the Hadamard test
[52,53], provided that the matrix M is encoded into a uni-
tary one. Yet, the block encoding of M into a unitary can be
difficult. Therefore, we propose an alternative way based
on the SWAP test [54] and quantum arithmetic operators.

The idea is to keep the simple vector form Gj of the con-
ductivity [instead of its matrix form Gp−k as in Eq. (68)].
Hence, we rewrite D in Eq. (67b) as

D =
NEB−1∑

k=0

E∗
kB+k

Nw−1∑
j =0

Gj EkB+k+j −Nh,w . (70)

Here, the Gaussian Gj depends on a single index and can
be calculated by the QSVT as explained in Appendix B 1.
However, now the electric fields are summed over differ-
ent spatial intervals and should be encoded into states on
two different registers, I and II . These intervals can be
set by applying various arithmetic operators described in
Appendix A 3. The coupling of the electric fields in Eq.
(70) through the index k can be implemented by using
a quantum subtractor that performs the transformation
|k〉 |p〉 → |k〉 |p − k〉.

The SWAP test computes the product of the form
|〈ψ |λ〉|2 of two quantum states |ψ〉 and |λ〉 calculated in
two separate qubit registers. In other words, one finds the
square of the sum

∑
j ψ

∗
j λj . To find the double sum as Eq.

(70), we introduce supplemental registers, rEB and rw, and
perform one SWAP test between the registers II and rEB,
and another SWAP test between I and rw. The circuit for
the computation of the double sum (70) is shown in Fig.
16, where the electric fields are computed using the QSVT
subcircuits denoted “MI.” (“MI” is the same QSVT circuit
as the one used in Figs. 11 and 13.) Further, we consider
the circuit shown in Fig. 16 step by step.

First of all, we compute the spatial distribution of the
electric fields and initialize the registers rw and rEB:

|ξ1〉 =
Nx−1∑
k=0

Ek |k〉II |φEB
{l} 〉

rEB

Nx−1∑
p=0

Ep |p〉I |φw
{i}〉rw

, (71)

where all other qubits are in the zero state, and the state
|ξ1〉 is indicated in Fig. 16. The registers rEB and rw encode
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FIG. 16. A possible circuit that can be used to compute p1,rswap [Eq. (78)], which is the probability to have both qubits rswap and rsel in
the unit state. All qubits are initialized in the zero state. The subcircuits “MI” and “GA” are the QSVTs to compute the electromagnetic
field E and the Gaussian, respectively. For clarity, we do not show here all the ancillae qubits necessary for the QSVT procedures
and the register d assuming that the “MI” outputs a state encoding only the electric field. The operators SI−rl and SkB are two types of
subtractors described in Appendix A 3. The adder Ai and comparator Ci (for some integer i) are also presented in Appendix A 3. The
qubit comI is not used by the subtractor SI−rl . To compute p0,rswap , the rightmost Toffoli gate must be controlled by the zero state of the
qubit rswap.

the following superpositions:

|φEB
{l} 〉 = ηEB

NEB−1∑
l=0

|l〉 , |φw
{i}〉 = ηw

Nw−1∑
i=0

|i〉 , (72)

with the constants

ηEB = 2−nEB/2, ηw = 2−nw/2. (73)

In Eqs. (72), the subindices indicating the qubit regis-
ters are skipped, since the states |φEB

{l} 〉 and |φw
{i}〉 will also

appear in other registers.
After that, the subtractor SI−rEB couples the indices in

the registers I and rEB:

|ξ2〉 = ηEB

Nx−1∑
k=0

Ek |k〉II

NEB−1∑
l=0

|l〉rEB

Nx−1∑
p=0

Ep |p − l〉I |φw
{i}〉rw

.

(74)

The expression in the rightmost sum can be recasted as
El+j |j 〉I by setting j = p − l, where j = [−l, Nx − l). The
subtractor SI−rEB uses the ancilla aI ,sign as a flag (or as a
sign bit), which is set into the unit state for negative values
of the index j . For simplicity, this ancilla is skipped in Eq.
(74). Later, the state of this ancilla are taken into account
to deal only with positive values of j .

The next step is to encode the electric field amplitudes
at the spatial points with indices [kB, kE] into the first nEB
least-significant qubits in the register II . To do that, we
apply the subtractor SkB to the register II . This opera-
tor subtracts the (unsigned) integer kB from the integers
encoded within the register II and entangles all indices not
less than kB with the zero state of the qubit aII ,sign. After
that, the comparator CNEB is applied to set the correct upper
limit in the sum

∑
k by entangling all indices k less than

NEB with the unit state |1〉comII .
Similar arithmetic operators are applied to the register

I to entangle the intervals [xkB+l−Nh,w , xkB+l+Nh,w] for l =
[0, NEB) with the state |1〉comI |0〉aI ,sign

.
After that, the QSVT circuit is applied to the first nw

least-significant qubits of the register I to multiply the
electric field by the Gaussian as described in Appendix
B 3. To center correctly the Gaussian within the win-
dow [xkB+l−Nh,w , xkB+l+Nh,w], one can use Eqs. (B3). The
resulting data are entangled with the unit state |1〉rsel

:

〈1|rsel
|ξ3〉 = |φE〉II |φEB

{l} 〉
rEB

|φG
l 〉I |φw

{i}〉rw
, (75)

where the following states are used:

|φE〉 =
NEB−1∑

k=0

EkB+k |k〉 , (76a)
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|φG
l 〉 =

Nw−1∑
j =0

Gj EkB+l+j −Nh,w |j 〉 , (76b)

and we are not interested in the state |0〉rsel
. Note that in

Eq. (75), the double sum
∑

l |l〉rEB

∑
j Gj EkB+l+j −Nh,w |j 〉I

is written as |φEB
{l} 〉

rEB
|φG

l 〉I , where the subindex l in |φG
l 〉

indicates the coupling to the state |φEB
{l} 〉.

To compute the absolute value of D from Eq. (70), we
perform the SWAP test:

〈1|rswap 〈1|rsel
|ξ4〉 = 1

2
(|φE〉II |φEB

{l} 〉
rEB

|φG
l 〉I |φw

{i1}〉rw

− |φEB
{p}〉II

|φE〉rEB |φw
{i2}〉I

|φG
p 〉

rw
). (77)

By applying the corresponding Toffoli gate, one can entan-
gle 〈1|rswap 〈1|rsel

|ξ4〉 with the unit state |1〉m and measure
its probability p1,rswap by using the AE. The probability of
the state (77) is

p1,rswap = η2
EBη

2
w

2
(|c0|2 − S), (78)

with an unknown |c0|2. The positive real value S is com-
puted as a product of the sum:

〈φEB
{p}|φE〉II 〈φG

p |φw
{i1}〉rw

=
NEB−1∑

p=0

EkB+p

Nw−1∑
i1=0

G∗
i1E∗

kB+p+i1−Nh,w
, (79)

with the sum

〈φE|φEB
{l} 〉rEB〈φw

{i2}|φG
l 〉I

=
NEB−1∑

l=0

E∗
kB+l

Nw−1∑
i2=0

Gi2EkB+l+i2−Nh,w . (80)

By comparing Eq. (70) with Eqs. (79) and (80), one can
see that S ≡ |D|2.

The constant |c0|2 can be eliminated by measur-
ing also p0,rswap , which is the probability of the state
〈0|rswap 〈1|rsel

|ξ4〉. Because this state is the same as Eq. (77)
but with the “+” sign in the brackets, its probability is

p0,rswap = η2
EBη

2
w

2
(|c0|2 + |D|2). (81)

Thus, the absolute value of the double sum (70) can be
calculated as

|D| = 1
ηEBηw

√
p0,rswap − p1,rswap . (82)

As mentioned before, the amplitude of the QSVT out-
put state (returned by “MI”) is O(1/κ). To compute the

sum (70), one launches the “MI” twice in parallel to com-
pute the product E∗E, which is O(1/κ2). Thus, to estimate
p0,rswap or p1,rswap , one will need O(κ2) queries to the QSVT
circuit. However, if NEB is comparable with the system
size, then the number of the queries can be reduced at least
to O(κ) for two- and three-dimensional spatial systems.

VII. CONCLUSIONS

In this paper, we propose a quantum algorithm for sim-
ulating dissipative waves in inhomogeneous linear media
as a boundary-value problem. Our algorithm is based on
the QSVT, which is a state-of-the-art technique that was
previously proposed for other problems but is applied
here to a boundary-value wave problem for the first time.
Specifically, we model an EM wave that is excited by a
prescribed source and propagates in a dielectric medium
with a piecewise-continuous dielectric function. We show
how to encode the corresponding non-Hermitian matrix
in a quantum circuit, calculate the field distribution using
this circuit, and perform measurements of the spatial spec-
trum, wave energy, and power dissipation for this and
similar wave problems. We emulate quantum simulations
of this circuit on a classical computer and show that the
numerical results are in agreement with theory and usual
classical simulations. Most of the quantum circuits pre-
sented in this paper are constructed and computed using
our computational framework [27].

We also show that the overall quantum simulations of
dissipative waves based on the QSVT scale favorably
compared to classical simulations in multidimensional sys-
tems. We expect the gain to be particularly efficient in
kinetic plasma problems, where the wave modeling is done
in phase space with six or even more dimensions. Still,
there are several potential problems for practical appli-
cations of the QSVT, which should be pointed out. First
of all, the encoding of the considered wave classical sys-
tem requires at least 4 + nx qubits and the resulting QSVT
circuit involves hundreds of calls to the block-encoding
oracle, even without taking into account the measurements.
Quantum hardware with such specifications is unlikely
to appear in the foreseeable future. Another issue is that
typical classical wave systems are characterized by matri-
ces with large condition numbers. Since the QSVT used
for the inversion of such matrices returns a state whose
amplitude scales as O(1/κ), the measurement of the state
requires O(κ) queries to the QSVT circuit. This can sig-
nificantly reduce the quantum speedup. Apart from that, to
invert a matrix with a large condition number, one needs
to precompute classically a significant number of QSVT
angles. This is difficult to do using the codes that are cur-
rently available for calculating such angles. In our case,
the GPU parallelization of the code responsible for the
polynomial approximation of the inverse function allowed
us to compute the QSVT angles only for κQSVT � 1000
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(Sec. II D). This means that quantum modeling of classi-
cal wave systems is limited and, in practice, will likely
require efficient preconditioning of the dispersion matri-
ces. (A similar problem is known for classical modeling of
large wave systems [55].) For instance, due to the spar-
sity of the matrices associated with the computation of
EM waves (such as those in cold plasmas [4]), a quantum
version of the sparse approximate inverse preconditioner
proposed in Ref. [37] may be useful.
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APPENDIX A: BASIC AND SUPPLEMENTAL
GATES

1. Rotation gates

The following rotation gates are used throughout the
paper:

Rx(θ) =
(

cos θ2 −i sin θ
2−i sin θ

2 cos θ2

)
, (A1a)

Ry(θ) =
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)
, (A1b)

Rz(θ) =
(

e−iθ/2 0
0 eiθ/2

)
. (A1c)

Each of these operators satisfies

Ra(β)Ra(α) = Ra(α + β), a = x, y, z, (A2)

and the same applies to

P(θ) =
(

1 0
0 eiθ

)
. (A3)

The rotation

Rc(v) = Ry(θv,2)Rz(θv,1), (A4)

can be used to compute a complex value, v =
|v| exp(i arg(v)), by acting on the zero state:

Rc(v) |0〉 = cos(θv,2/2)e−iθv,1/2 |0〉 + sin(θv,2/2)e−iθv,1/2 |1〉 ,
(A5)

where v can be encoded as a complex amplitude of either
the zero state, v = cos(θv,2/2)e−iθv,1/2, or the unit state,
v = sin(θv,2/2)e−iθv,1/2.

2. Parameters for the oracle OH

The rotations from Sec. A 1 are used in the oracle OH
(Figs. 6 and 7) with the following angles:

θω,εL = 2 arcsin(−ωεLdH ), L ∈ [0, 1], (A6a)

θω = 2 arcsin(−ωdH ), (A6b)

θω,ε0,e = 2 arcsin(−ωε0d3/2
H ), (A6c)

θω,e = 2 arcsin(−ωd3/2
H ), (A6d)

θη±,1 = −2 arg(η±), (A6e)

θη+,2 = 2 arcsin(|η+|d3/2
H ), (A6f)

θη−,2 = 2 arcsin(|η−|d2
H ), (A6g)

θ±σ = 2 arcsin(±σd2
H ), (A6h)

θ±σ ,e = 2 arcsin(±σd3/2
H )− θ±σ , (A6i)

θ±π = −θ±σ . (A6j)

For instance, the angles θω,ε0 are used in the oracle OH ,ω
shown in Fig. 7 to compute the elements iωε0 of the matrix
(43) at the rows with k ∈ [2, 2Nx − 3]. According to Eq.
(54), for these elements, the oracle OS returns the multipli-
cation factor d−1

H , which is taken into account in Eq. (A6a).
The elements iωε0 also appear at k = 1 and k = Nx − 2
in the matrix (43). However, for these indices, the oracle
OS returns d−3/2

H that is taken into account in the compu-
tation of the angle θω,ε0,e, where the subindex “e” stands
for “edge” (boundary). The same principle applies to the
calculation of the angles θω and θω,e, also θ±σ and θ±σ ,e.

3. Arithmetic operators

Apart from the incrementor and decrementor used in
Fig. 5 and described in Ref. [4], we use also a subtrac-
tor Sksub and a comparator Ckcom . The former operator (Fig.
17) subtracts the predefined unsigned integer ksub from the
integer(s) encoded in the nt target qubits t. Its implemen-
tation is based on the circuit described in Ref. [56]. In our
realization, the most significant (the uppermost) qubit is
used to store the sign of the resulting integer, and the abso-
lute value of the output integer is written back to the target
qubits.
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FIG. 17. The circuit for the subtractor Sksub for the case with nt = 3 target qubits, where the unsigned integer ksub is represented as
the bit string [bsub

3 bsub
2 bsub

1 bsub
0 ] (bsub

0 is the least significant bit). The operator subtracts ksub from the unsigned integer, ktarg, encoded as
the bit string |btarg

2 btarg
1 btarg

0 〉t into the target register t. The difference � = ktarg − ksub is written back to the register t, and the “sign”
qubit is inverted if the result is negative. Here, bsub

j Pk applies the phase gate P(2π/2k) [Eq. (A3)] if bsub
j = 1. The inner dashed box is

the adder, ktarg + ksub, where the “sign” qubit stores the carry bit of the sum.

By removing the X gates from Fig. 17, one obtains
the adder Aksub that adds the integer ksub to the integer(s)
encoded in the register t.

The subtractor is used to construct the comparator [56]
Ckcom that inverts the “com” ancilla qubit (Fig. 16) if the
predefined unsigned integer kcom is strictly larger than the
integer encoded in the target qubits. The comparator leaves
the target qubits and the “sign” qubit (used for the inter-
mediate computations within the comparator) untouched.
More details can be found in Ref. [56]. (Keep in mind
that the least significant qubit in all our circuits is the
lowermost one.)

As shown in Ref. [57], the circuit presented in Fig. 17
can be modified to subtract the integer ksub, which is not
predefined but encoded as a bit string in another register
rsub. For that, the phase gates Pk in the subtractor should
be controlled by the corresponding qubits of the register
rsub. This operator acts then on two registers, t and rsub,
and is denoted here as St−rsub . The resulting difference is
written back to the target register t.

The circuits for the subtractors and the comparator
require O(n2) quantum operations.

APPENDIX B: QSVT COMPUTATION OF A
GAUSSIAN FUNCTION

1. General algorithm

To calculate the absolute value of the absorption power
given by Eq. (70), one needs to compute the Gaussian
function G in the quantum circuit. This function can
be approximated by a polynomial by using the Fourier
approach, Eq. (17). The circuit for the polynomial is con-
structed by using the QSVT (Fig. 1). The QSVT finds the
polynomial as a function of singular values of some given
matrix M . If the matrix is diagonal, and the spatial coordi-
nate grid is placed at the diagonal, M = diag(x), then the
QSVT computes the polynomial of the coordinate x. After
that, M is block encoded into the unitary matrix UA, which

is used within the QSVT circuit as shown in Fig. 1. How-
ever, since the x grid, xj , is a linear function of the index
j , it is problematic to encode the x points directly into UA
by using quantum gates, which are more naturally suited
to represent rotations. Instead, one can encode ψ = sin(x)
and consider the Gaussian as a function of arcsin(ψ):

G(ψ) = βsc exp

(
−arcsin2(ψ)

2μ2

)
, (B1)

where βsc is a rescaling factor, μ is the Gaussian width. To
block encode ψj = sin(xj ), the circuit shown in Fig. 18 is
used. This circuit generates the sine of xj :

xj = α0 + j�x, j = [0, Nx), �x = 2α/Nx. (B2)

Similar to Sec. IV B, we have Nx = 2nx , and the register rx
in Fig. 18 has nx qubits. For the given integer j encoded
as a bit string in the register rx, the circuit returns sin(xj )

as the amplitude of the zero state of the ancilla a. It can
be shown using Eq. (A1b) that the x grid from −1.0 − xc
to 1.0 − xc for some real xc is generated by the following
parameters:

α0 = −1.0 − xc, α = Nx/(Nx − 1). (B3)

The Gaussian generated on this grid is centered at xc
(Fig. 19).

The Gaussian (B1) is approximated by a polynomial
of definite parity by using the Fourier approach (17), and
the QSVT angles are computed by using the minimization
procedure [22]. [By setting βsc < 1 in Eq. (B1), one can
speed up the calculation of the QSVT angles.] Since the
Gaussian is an even function, the resulting QSVT circuit
does not include the last three operators indicated by the
dashed box in Fig. 1. The QSVT circuit uses the oracle UA
shown in Fig. 18 to encode ψ(x). As shown in Fig. 19, the
number of the QSVT angles depends logarithmically on
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FIG. 18. The circuit implementing the matrix UA for the
encoding of the coordinate ψ = sin(x) according to Eqs. (B2).
Here, Rk = Ry(2α/2k).

εQSVT for small μ, and the dependence becomes polyno-
mial for μ � 0.25 (Fig. 19). If the Gaussian peak is narrow
(μ < 0.05) or becomes comparable with the length of the
spatial domain x = [−1.0, 1.0] (μ > 0.25), the number of
angles grows exponentially with μ for a fixed εQSVT.

2. Two Gaussians

To demonstrate this technique, we construct two Gaus-
sians by using the QSVT and integrate them in space by
using AE. This is an illustration of the “parallel” compu-
tation in quantum circuits: by applying the QSVT circuit
only once, we construct two Gauss functions at the same
time. The corresponding circuit is shown in Fig. 20, where
the x grid is prepared by creating a uniform superposi-
tion of states in the register rx and using the parameters
from Eqs. (B3). The QSVT circuit is applied only to the
first nx − 1 qubits of the register rx. Since the last qubit
(the most significant one) is in the superposition (|0〉 +
|1〉)/√2, the QSVT entangles one Gaussian with the zero
state of this qubit and another Gaussian with the unit state:

|ψG〉 = 2−nx/2(|0〉rx ,nx−1 |G(x)〉rx ,[0,nx−2]

+ |1〉rx ,nx−1 |G(x)〉rx ,[0,nx−2]), (B4)

where the state |ψG〉 is indicated in Fig. 20. The most sig-
nificant qubit in rx encodes the left spatial domain, x < 0,
if the qubit is in the zero state, and the right spatial domain,
x > 0, if the qubit is in the unit state. Therefore, the super-
position (B4) corresponds to one Gaussian in the domain
x = [−1.0, 0.0) and another Gaussian in x = (0.0, 1.0] as
shown in Fig. 21. Apart from that, if the original Gaus-
sian is defined according to Eq. (B1), then the resulting
Gaussians have widths μ/2. Also, due to the initialization
circuit (green box in Fig. 20), the Gaussians are multiplied
by the factor βinit = 2−nx/2.

The circuit shown in Fig. 20 integrates the Gaussians in
the second and third quarters of the spatial domain:

SG = pm,1/Nx, (B5a)

pm,1 = β2
init

∑
x=(−0.5,0.5)

|G(x)|2. (B5b)

The quantum state encoding the desired spatial interval is
entangled with |1〉m, and then pm,1 is computed by using
the AE. As explained in Sec. VI C, the AE consists of sev-
eral queries to the AA operator. In our case, the latter is
defined as

AA = Uprep REF0U†
prep REFG, (B6)

where Uprep is marked in Fig. 20 with the black dashed
box, REF0 is the reflector around the initial (in our case,
zero) state, REFG is the reflector around the state of interest
produced by Uprep. Here, the state of interest is |1〉m, thus,
REFG is represented by a single Pauli-Z gate at the qubit
m. The reflector REF0 is constructed as the sequence XZX
at the qubit m controlled by the zero states of the registers
rx, a, q, and “sum.”

The whole circuit shown in Fig. 20 is computed on an
emulator of quantum computers [27]. The AE of SG is

0.0 0.01.01.0

(a) (b) (c)

QSVT

QSVT

FIG. 19. (a) The Gaussian functions computed by the QSVT and centered around xc = 0.0 (solid blue line) and xc = −0.33 (dashed
red line). Here, βsc = 0.98, μ = 0.25, and nx = 6. The peak amplitude is downscaled by the factor 2nx/2 due to the initialization,
which is the same as in the circuit shown in Fig. 20. (b) The dependence of the number of the QSVT angles, Nangles, on the QSVT
approximation error εQSVT for various widths μ. (c) The dependence of Nangles on μ for εQSVT = 10−7 and εQSVT = 10−10.
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FIG. 20. The circuit for the construction of one Gaussian in
the left spatial domain (x < 0) and another Gaussian in the right
domain (x > 0) as shown in Fig. 21. The circuit also integrates
the function in the second and third quarters of the spatial area,
x = (−0.5, 0.5). The QSVT circuit uses the subcircuit presented
in Fig. 18 as the block-encoding oracle. The green box indi-
cates the initialization subcircuit. The blue box entangles the
unit state |1〉m with the spatial distribution of the Gaussians in
x = (−0.5, 0.5) by using the ancilla register “sum.” The most
significant qubit of the register rx is separated from the rest of
the register qubits to show correctly the location of the QSVT
subcircuit. The black dashed box indicates the circuit Uprep.

shown in Fig. 21 and compared with the value computed
classically.

3. Gaussian as a filter

The Gaussian constructed by the QSVT can be used as
a filter in real or Fourier space. In particular, to calculate

×

1.0 0.0

0.0

1.0 0.000

(a) (b)

P

FIG. 21. (a) Two Gaussians encoded in the intermediate state
|ψG〉 produced in the circuit shown in Fig. 20 (red dashed line)
and computed classically (solid blue line). Here, μ = 0.250 is
used in Eq. (B1), and the resulting width of each Gaussian is
μ = 0.125. (b) Probability distribution of measurement results
S̃G from the circuit shown in Fig. 20, where ny = 6. The shaded
area marks the interval where the analytical error is bounded as
described in Eq. (63). The vertical black dotted line corresponds
to SG computed classically using Eq. (B5).

FIG. 22. The circuit for the computation of the product
G(x)F(x), where G(x) is the Gaussian modeled by the QSVT
subcircuit “Gauss,” F(x) is the field, electric or magnetic, simu-
lated by the QSVT subcircuit “MI.” The qubits that pass above
the circuit “Gauss” are not used by it. The initialization “INIT”
is the same as discussed in Sec. V B.

the product of the EM fields F(x) with the Gaussian,
G(x)F(x), one can use the circuit shown in Fig. 22. Here,
the main question is whether it is possible to use the same
ancillae in the QSVT for the computation of F(x) (the
“MI” subcircuit) and in the QSVT for the Gaussian cal-
culation (the “Gauss” subcircuit). The computation shows
that one does not need to control the “Gauss” by the zero
states of the ancillae used in the “MI” (i.e., ancilla regis-
ters q, av , aj ), and the same ancilla ad can be used in both
QSVT subcircuits. However, for the Gaussian QSVT, it is
necessary to introduce another ancilla qG equivalent to the
ancilla q in the “MI.”

Since the “Gauss” subcircuit is not controlled by the
qubit rd, which is responsible for the choice between the
electric and magnetic fields, the circuit constructs the prod-
uct G(x)F(x) for both fields in parallel. The circuit shown
in Fig. 22 outputs the spatial distribution G(x)E(x) (entan-
gled with |0〉rd

) and G(x)B(x) (entangled with |1〉rd
) if

all ancillae are in the zero state. The signals G(x)F(x)
obtained from the emulation of this circuit are shown in
Fig. 23 and compared with classical simulations.

0.0 1.0

×

FIG. 23. The product of the Gaussian G with electromagnetic
fields simulated classically (CL, solid lines) and by using the
circuit shown in Fig. 22 (QC, dashed lines).
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