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Alternatively to the full reconstruction of an unknown quantum process, the so-called selective and
efficient quantum process tomography (SEQPT) allows estimating, individually and up to the required
accuracy, a given element of the matrix that describes such an operation with a polynomial amount of
resources. The implementation of this protocol has been carried out with success to characterize the evo-
lution of a quantum system that is well described by a trace-preserving quantum map. Here, we deal with
a more general type of quantum process that does not preserve the trace of the input quantum state, which
naturally arises in the presence of imperfect devices and system-environment interactions, in the context
of quantum information science or quantum dynamics control. In that case, we show with the aid of a
priori information on the losses structure of the quantum channel that the SEQPT reconstruction can be
adapted to reconstruct the non-trace-preserving map. We explicitly describe how to implement the recon-
struction in an arbitrary Hilbert space of finite dimension d. The method is experimentally verified on a
superconducting quantum processor provided by IBM Quantum services, by estimating several non-trace-
preserving quantum processes in dimensions up to d = 6. Our results show that it is possible to efficiently
reconstruct non-trace-preserving processes, with high precision, and with significantly higher fidelity than
when the process is assumed to be trace preserving.
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I. INTRODUCTION

Characterizing the temporal evolution of quantum sys-
tems is a crucial task not only used to quantitatively
describe naturally occurring processes, but also for cer-
tifying the correct functioning of any device that per-
forms quantum information protocols, like those designed
for quantum computing and cryptography, among others
[1–5]. The different strategies to achieve this task are usu-
ally known as quantum process tomography (QPT) proto-
cols [6–8]. Given that quantum channels are linear maps,
standard QPT schemes based on a linear inversion method
[9] are conceptually simple but inefficient in practice, as
they require an amount of resources that scales exponen-
tially with the size of the system under study. However,
protocols that are both selective (they allow partial infor-
mation about the channel to be obtained without the need
to completely reconstruct it) and efficient (the number of
required measurements increases with the desired preci-
sion but does not depend on the size of the system) have
been theoretically developed [10,11] and experimentally
tested [12–15]. These protocols make use of particular
sets of states known as uniform 2-designs [16]. One easy
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way to construct such a set is from the elements of a
complete set of mutually unbiased bases (MUBs) [17,18],
which are only known to exist in Hilbert spaces whose
dimension is the power of a prime number [19–21]. More
recently, selective and efficient quantum process tomogra-
phy (SEQPT) protocols that, by making use of complete
sets of MUBs in auxiliary Hilbert spaces, can be easily
implemented in any dimension were presented in Ref. [22],
while its experimental utility has been shown on a photonic
platform [23].

All the protocols named above are designed to describe
quantum processes that preserve the trace of the quan-
tum input state, but, in general, one has to deal with
open quantum systems, where the evolution is not nec-
essarily described by a trace-preserving quantum map.
Even when the quantum process we intend to describe is,
theoretically, a trace-preserving map, real-world quantum
channels or devices have inherent losses. Thus, a general-
ization of the previous schemes to reconstruct non-trace-
preserving processes is required. As an example, in Ref.
[24], we can observe the need to resort to QPT methods for
non-trace-preserving maps, to characterize quantum algo-
rithms implemented in a four-qubit superconducting quan-
tum processor. In other cases, the quantum algorithms are
implemented in a probabilistic platform. This is the case
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of the Knill-Laflamme-Milburn linear-optic quantum com-
puting scheme [25,26], where the inherent probabilistic
nature of the implementation makes the complete process
a non-trace-preserving one [27,28].

In this work, we show that, when some a priori infor-
mation about losses in a given channel is at hand, a
generalization of the SEQPT protocols to reconstruct such
a non-trace-preserving channel can be obtained. Addi-
tionally to a detailed description of the proposed scheme
that works for Hilbert spaces of arbitrary finite dimen-
sion, we test its validity by performing the experimental
reconstruction of non-trace-preserving quantum processes
in dimensions d = 3 and d = 6 in ibmq_lima (a five-qubit
quantum processor) provided by IBM Quantum services
[29]. To this end, we propose an encoding that embeds the
d-dimensional Hilbert space in the n-qubit-based proces-
sor. Namely, we codify the quantum systems of dimen-
sions (qudits) d = 3 and d = 6 into a two-qubit (dimen-
sion 22 = 4) or a three-qubit system (dimension 23 = 9),
respectively, using the remaining subspace to introduce a
controlled loss. While there are several examples of quan-
tum algorithms implemented in a qubit-based supercon-
ducting quantum processor [30–32], including quantum
tomography schemes and a recent SEQPT implementation
for trace-preserving maps [15], we show that these plat-
forms are also suitable to implement and validate quantum
algorithms and tasks for qudits of arbitrary dimensions.

The paper is organized as follows. In Sec. II we start
by reviewing the standard formulation of the SEQPT (Sec.
II A). In Sec. II B we introduce the proposed generaliza-
tion of the method when the process to be characterized
does not preserve trace. The details of our experimental
implementation on an IBM quantum computer for different
quantum processes acting on systems of dimensions d = 3
and d = 6 are presented in Sec. III. In Sec. IV we show and
discuss the obtained results, and finally we conclude with
the outstanding aspects of the work in Sec. V.

II. FORMALISM

We start this section by briefly reviewing the formalism
to describe a quantum process, followed by the standard
formulation of the SEQPT protocol introduced in Refs.
[10,11]. It is said that this is selective, in the sense that
it allows a particular coefficient of the process matrix χ
to be obtained without having to perform the full QPT,
and efficient, since such a coefficient can be determined
with subexponential resources. Then, we present its gen-
eralization to reconstruct non-trace-preserving quantum
processes.

A quantum process can be mathematically represented
by a linear and completely positive map E , from the set
of density operators into itself [9]. The effect of this map
on a quantum state ρ can always be written as a Kraus
decomposition E(ρ) = ∑

k AkρA†
k , where {Ak}k is a set of

linear operators that acts on a Hilbert space H, and satis-
fies the relation

∑
k AkA†

k ≤ I [33]. This restriction implies
that 0 ≤ Tr[E(ρ)] ≤ 1 for any ρ, which guaranties that E
represents a physical quantum process. In order to relate
the decomposition of the map with measurable parameters,
one can choose a convenient basis of operators {Ei, i =
0, . . . , d2 − 1} with d the dimension of the quantum sys-
tem, and write each operator Ak in this basis. Therefore, the
action of the process is expressed as E(ρ) = ∑

ij χ
i
j EiρEj

with χ a Hermitian and positive d2 × d2 matrix, where
we have adopted the convention Ej ≡ E†

j . Now, the trace
condition is given by the inequality

∑

ij

χ i
j Ej Ei ≤ I, (1)

and it is said that the evolution of the system, under the
considered process, is described by a trace-preserving or
a non-trace-preserving map, depending on whether or not
the equality is fulfilled. Hence, determining all the coef-
ficients χ i

j is equivalent to completely characterizing the
process.

A. SEQPT for trace-preserving maps

Let us review the standard SEQPT protocol for trace-
preserving maps. The key quantity for selectively recon-
structing the process matrix χ is the average survival
probability F̄(E i

j ), which can be defined as

F̄(E i
j ) =

∫

H
dψ 〈ψ |E(Ei|ψ〉〈ψ |Ej )|ψ〉, (2)

and it is directly related to the coefficient χ i
j by the

expression

χ i
j = d + 1

d
F̄(E i

j )− 1
d2 Tr

[( ∑

μν

χνμEνEμ

)

EiEj

]

. (3)

Since the equality in Eq. (1) is fulfilled, the second term in
the previous expression is reduced to δi

j /(d + 1) when the
summation is performed, and we arrive at the uncoupled
equation

χ i
j = F̄(E i

j )
d + 1

d
− δi

j

d
, (4)

which allows any matrix coefficient χ i
j to be related to the

determination of a single average survival probability.
In order to experimentally estimate F̄(E i

j ), the integral
can be replaced with an average over a particular finite set
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FIG. 1. Circuit schematic for measuring the survival probabil-
ity of state |ψ〉 through the modified channel E i

i . By sampling
over |ψ〉 in the state 2-design X , we can estimate the diagonal
element χ i

i , corresponding to the process matrix of E .

of states known as a uniform 2-design [34]:

F̄(E i
j ) = 1

N

N∑

m=1

〈ψm|E(Ei|ψm〉〈ψm|Ej )|ψm〉. (5)

Note that the term on the right-hand side of Eq. (5) has a
clear experimental interpretation: it represents the survival
probability through a modified channel E i

j , averaged over
X . For example, the diagonal coefficient χ i

i can be obtained
by preparing all the states in X , one by one, and measuring
their survival probabilities through the modified channel
E i

i , as schematized in Fig. 1. In the nondiagonal case, the
modified channel E i

j is not physical, but the coefficient χ i
j

can still be obtained from the outputs of at most four of
those circuits (see Appendix A).

The problem of finding a state 2-design is easily solved
when the dimension d of the system is the power of a
prime number. In this case, it is always possible to con-
struct a complete set of MUBs [20] that automatically
constitutes an uniform 2-design [18]. In other cases it
is not trivial to compute the integral in Eq. (2) as an
average over a finite set of states, and thus the protocol
becomes impractical. However, the generalization of the
MUBs-based SEQPT protocol to quantum processes in a
Hilbert space of arbitrary dimension d has been devel-
oped in Ref. [22], and experimentally implemented in Ref.
[23], for the case of trace-preserving maps. The approach
exploits the fact that tensor products of 2-designs can be
used to approximate a state 2-design [35]. Then, since an
arbitrary dimension d can always be factorized into power-
of-prime numbers, i.e., d = pn1

1 pn2
2 · · · pnN

N with {pi}N
i=1 all

different prime numbers, the tensor product of maximal
sets of MUBs in Hilbert spaces of dimensions D1 = pn1

1 ,
D2 = pn2

2 , . . . , DN = pnN
N provides a good approximation

for integration purposes.
To fix ideas, we briefly describe the bipartite case,

where the dimension of the Hilbert space is factorized
as d = D1D2, but the extension to any other multipartite
case is straightforward [22]. A more thorough explana-
tion, already presented in Ref. [22], can be followed in
Appendix B. We start by expanding the map E over
H (H = H1 ⊗ H2), in a basis that is a tensor prod-
uct of operators acting on H1 and H2, being D1 =
pn1

1 = dim(H1) and D2 = pn2
1 = dim(H2), respectively.

This basis can be chosen as tensor products of two orthog-

onal operator bases {Ej1j2 ≡ Ej1 ⊗ Ej2}
j2=0,...,D2

2−1

j1=0,...,D2
1−1

, where

FIG. 2. Circuit schematic to perform SEQPT when the dimen-
sion of the Hilbert space can be factorized as powers of two
prime numbers. By sampling over the product 2-design X⊗, with
the survival probability of state |ψ〉 = |ψ1〉 ⊗ |ψ2〉 through the
modified channel E i1i2

i1i2 as output, we can estimate the diagonal
element χ i1i2

i1i2 corresponding to the process matrix of E .

each element Eji (i = 1, 2) is a unitary matrix. Hence, we
are able to rewrite E as

E(ρ) =
∑

μ1μ2ν1ν2

χμ1μ2
ν1ν2

Eμ1μ2ρEν1ν2 (6)

for some coefficients χμ1μ2
ν1ν2 . Furthermore, we can easily

define a uniform 2-design X1 (X2), based on MUBs, for the
Hilbert space H1 (H2).

Now, the survival probability is evaluated, experimen-
tally, for states belonging to X⊗ = {|ψ1〉 ⊗ |ψ2〉 for |ψ1〉 ∈
X1, |ψ2〉 ∈ X2}, that is, the set of all tensor products of an
element of X1 and an element of X2. Although the average
with this sampling scheme does not directly yield F̄(E i1i2

j1j2 ),
it allows us to estimate three related average quantities,
F̄⊗(E i1i2

j1j2 ), F̄1(E i1i2
j1j2 ), and F̄2(E i1i2

j1j2 ) (see Appendix B), that
can be exactly related to the average survival probability:

F̄(E i1i2
j1j2 ) = 1

d + 1

{

F̄⊗(E i1i2
j1j2 )(D1 + 1)(D2 + 1)

+ 2
d

Tr
[( ∑

μν

χνμEνEμ

)

EiEj

]

− F̄1(E i1i2
j1j2 )(D1 + 1)− F̄2(E i1i2

j1j2 )(D2 + 1)
}

.

(7)

An example circuit for this case is depicted in Fig. 2.
This measurement corresponds to the reconstruction of a
given diagonal coefficient χ i1i2

i1i2 . Here, an arbitrary state
|ψ〉 = |ψ1〉 ⊗ |ψ2〉 in X⊗ is prepared and its survival prob-
ability through the modified channel E i1i2

i1i2 is obtained as
output. Finally, as in the case of the power-of-prime dimen-
sion, if a trace-preserving map is assumed, from Eq. (7),
an expression for any χ i1i2

j1j2 totally uncoupled to the other
elements of the process matrix is obtained.

B. SEQPT formulation for non-trace-preserving maps

The assumption of the trace-preserving property of map
E is essential to achieve selectivity in the tomographic
method. If we drop this assumption, Eq. (3) can no longer
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be decoupled to obtain Eq. (4). Thus, each matrix coeffi-
cient χ i

j is coupled to all the others, and of the order of
about d4 circuits, like that in Fig. 1, should be performed to
solve the resulting equation system. However, with some
a priori information about the process to be character-
ized, this issue could be overcome. Indeed, it can be done
by defining a semidefinite positive Hermitian operator P ,
given by

P =
∑

ij

χ i
j Ej Ei. (8)

This operator was originally introduced in Ref. [36], in the
context of standard quantum process tomography (SQPT)
for non-trace-preserving maps. It encodes the losses of the
system, so that, given an input state ρ, the probability of
obtaining an output state after process E (probability of
success of the process) is

Tr[E(ρ)] = Tr[Pρ]. (9)

The meaning of P becomes clear when it is analyzed in
its diagonal form: let us write P = ∑

i γi|γi〉〈γi|, where the
|γi〉 are the eigenstates and 0 ≤ γi ≤ 1 the corresponding
eigenvalues. Hence, state |γi〉 has a probability of suc-
cess equal to γi. For a trace-preserving map, γi = 1 for all
i and P = I. Otherwise, we have a non-trace-preserving
process with state-independent (γi = γ < 1 for all i) or
state-dependent (at least one γi < 1 and different to the
others) success probability. For example, in a photonic
experiment, this decrease in the trace value may be associ-
ated with a global loss, when P = γ I, or to different losses
in each path of the setup, in another case. Then, provided
that we can have a description of P as an a priori infor-
mation of the process, which is possible in many realistic
scenarios, Eq. (3) now reduces to

F̄(E i
j ) = d2χ i

j + Tr[PEiEj ]

d(d + 1)
, (10)

and any element χ i
j can be independently computed from

the corresponding average fidelity F̄(E i
j ). In the particu-

lar case in which P is a multiple of the identity operator,
Eq. (10) returns to Eq. (4) but modified by an addi-
tive factor (1 − γ )δi

j /d. So, this derivation also includes
trace-preserving maps where γ = 1.

In the bipartite case, the uncoupled expression for
element χ i1i2

j1j2 is (the complete derivation is given in
Appendix C)

χ
i1i2
j1j2 = F̄⊗(E i1i2

j1j2 )
(1 + D1)(1 + D2)

d

+ 1
d2 Tr(PEi1i2Ej1j2)− F̄1(E i1i2

j1j2 )
1 + D1

d

− F̄2(E i1i2
j1j2 )

1 + D2

d
. (11)

In general, a possible shortcoming of a non-trace-
preserving formulation is that previous knowledge of the
P matrix is needed. However, there are several use cases
where that requirement is available. For example, when the
losses of each individual building block of a quantum cir-
cuit are characterized, P could be estimated a priori for
each particular configuration of the full circuit. Therefore,
the implementation of the SEQPT scheme is suitable to
certify the correct implementation and the performance of
the algorithm of interest (see, for example, Ref. [24]). In a
similar way, the implementation of nondeterministic quan-
tum gates [25,26,37] could be tested by the method that we
present in this work.

It should be mentioned that, if the reconstruction of
the quantum map is carried out assuming, incorrectly, that
the trace is preserved, the fidelity will drop with respect
to the reconstruction, assuming that the trace is not pre-
served (see our results in Sec. IV B), and this difference
tends to increase with losses [36]. Furthermore, the topic
of QPT schemes for non-trace-preserving maps is seldom
treated in the literature. The SQPT method works off the
shelf [36,38] but lacks efficiency, given that it requires a
number of measurements that grow exponentially with the
dimension of the system. Other approaches are (i) direct
characterization of quantum dynamics [7], which requires
an ancillary state, (ii) the use of coherent states [27], and
(iii) QPT via weak values [39]. In that regard, the gen-
eralization of SEQPT to non-trace-preserving processes
raises the possibility of performing efficient and selective
tomography for this type of map.

Finally, it is important to mention that if we have no
knowledge of P , Eq. (9) can be used to gain partial infor-
mation about it, by measuring the probability of success in
some selected basis. For example, by just sampling states
of the 2-design, all the diagonal elements of the P matrix
can be estimated. We think that, as future work, it is worth
exploring whether this partial information of P can be
combined with optimization methods, or even with varia-
tions of SEQPT that simultaneously estimate any diagonal
coefficient of the process matrix χ , not a single one (gener-
alization I in Ref. [11]), to perform a selective and efficient
tomography even in the absence of information about P .

III. EXPERIMENTAL REALIZATION ON AN IBM
QUANTUM COMPUTER

To experimentally validate the non-trace-preserving for-
mulation of the SEQPT method, we use the supercon-
ducting quantum computer ibmq_lima. This is a freely
available quantum processor of five qubits that can be
programmed with the open-source PYTHON framework
Qiskit [40]. We implement the SEQPT to characterize a
non-trace-preserving quantum process for both d = 3, a
dimension with a known 2-design, and d = 6, the minimal
dimension in which the bipartite extension is non trivial.
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A. Reconstruction of quantum processes in d = 3

To represent a three-dimensional quantum system
(qutrit) on a qubit-based quantum computer, we use two
qubits of the processor, with

|00〉 ≡ |0〉3, |10〉 ≡ |2〉3,

|01〉 ≡ |1〉3, |11〉 ≡ |�〉,
︸ ︷︷ ︸

loss state

(12)

where B = {|q1q0〉}qj =0,1 is the computational basis for the
two-qubit system and B′ = {|k〉3}k=0,...,2 is the canonical
basis for the three-dimensional Hilbert space H(3). It is
important to mention that, since there is one more state
in the basis of a two-qubit system, this extra state should
be discarded. We take advantage of this to simulate losses
in the qutrit evolution. That is, any unitary transforma-
tion that couples subset {|00〉, |01〉, |10〉} to the remaining
element |11〉 ∈ B will represent a non-trace-preserving
process on the Hilbert space defined by B′.

The target qutrit process, E (3), to be implemented and
reconstructed is based on a Hadamard gate extended as a
qutrit quantum operation [41]:

H01 = 1√
2

⎛

⎝
1 1 0
1 −1 0
0 0

√
2

⎞

⎠ . (13)

As can be seen, H01 maps the basis states |0〉3 →
(|0〉3 + |1〉3)/

√
2 and |1〉3 → (|0〉3 − |1〉3)/

√
2, and leaves

state |2〉3 unchanged. However, since we are interested
in the non-trace-preserving process, we include a beam-
splitter-like loss of 50% affecting state |2〉3, which results
in a Kraus decomposition with a single unitary operator,
E (3)(ρ) = A(3)ρ(A(3))†, where

A(3) = 1√
2
(|0〉〈0| − |1〉〈1| + |2〉〈2|

+ |0〉〈1| + |1〉〈0|).

Hence, losses in the qutrit evolution will correspond to a
coupling between state |2〉3 and the discarded two-qubit
state renamed as |�〉. In basis B, this coupling can be
performed by a controlled-Hadamard gate on the target
qubit 0, controlled by qubit 1. Figure 3 shows the equiv-
alent circuit that implements such a loss in the IBMQ
processor (LOSS 50%). The percentage of loss, r × 100,
can be set to a different value by changing the angle of
rotation of some of the Rz gates: this allows simulating
non-trace-preserving channels, with arbitrary losses, with-
out increasing the depth of the circuit. The schematic of
the circuit to implement a general beam-splitter-like gate
is discussed in Appendix D. Then, it is easy to see that in

FIG. 3. Circuit to implement a beam-splitter-like loss affecting
state |10〉 ≡ |2〉3. This state is coupled to the discarded two-qubit
state |11〉 ≡ |�〉 with a 50% probability.

basis B′ the loss operator P corresponding to process E (3)
has a diagonal matrix form, i.e.,

P =
⎛

⎝
1 0 0
0 1 0
0 0 1

2

⎞

⎠ , (14)

that is, γ0 = γ1 = 1 and γ2 = r = 1
2 . This is the informa-

tion that we consider (a priori) known to reconstruct the
process.

At this point, we describe our implementation of the
SEQPT protocol in the two-qubit processor. As an exam-
ple, Fig. 4 shows the schematic circuit, which closely
resemble that in Fig. 1, to sample a particular element of
the 2-design X through the modified channel E i

i . As a state
2-design, we choose a complete set of MUBs that in d = 3
has exactly 12 elements. The first stage of the circuit in
Fig. 4 corresponds to the preparation of the selected input
state |ψm〉 ≡ |ψJ

M 〉, modified by operator Ei, where J (J =
0, . . . , d) indicates the MUB and M (M = 0, . . . , d − 1)
refers to a particular state in that J MUB. Because of the
selected basis of operators, the resulting state is an element
of the same J MUB: |ψJ

M ′ 〉 (see Appendix E). The second
stage corresponds to the circuit that implements process
E (3), while the last stage performs a measurement in the J
MUB, required to estimate the survival probability of the
sampled state [Eq. (5)]. In the presented example, as the
projection is on the canonical basis BJ=0, there is no need
for a change of basis prior to detection of each qubit.

B. Reconstruction of quantum processes in d = 6

To represent a six-dimensional quantum system (qudit),
at least three qubits of the IBMQ computer are needed.
Furthermore, to implement the bipartite version of the
SEQPT, we must factorize H(6) as H1 ⊗ H2, with d =
D1D2 = 2 × 3. A suitable alternative is to consider simi-
lar decompositions to those in Eq. (12) to expand H2, and
add an extra qubit for H1:

|000〉 ≡ |0〉6 = |0〉2 ⊗ |0〉3, |100〉 ≡ |3〉6 = |1〉2 ⊗ |0〉3,

|001〉 ≡ |1〉6 = |0〉2 ⊗ |1〉3, |101〉 ≡ |4〉6 = |1〉2 ⊗ |1〉3,

044065-5



PEARS STEFANO, PERITO, and REBÓN PHYS. REV. APPLIED 19, 044065 (2023)

Id

Id

FIG. 4. Example of a circuit that samples an element of the
2-design X , in a Hilbert space of dimension d = 3, through the
modified channel E i

i . I. In this particular case, the sampled ele-
ment, after being modified by the corresponding Ei operator, is
|ψJ=0

M ′=1〉. II. The process E corresponds to a LOSS 50% followed
by the operation H01. III. In the measurement stage, an uni-
tary transformation (the identity in this example) represents the
change of basis from BJ to the canonical one (BJ=0), followed
by the measurement of the state of each qubit.

|010〉 ≡ |2〉6 = |0〉2 ⊗ |2〉3, |110〉 ≡ |5〉6 = |1〉2 ⊗ |2〉3,

|011〉 ≡ |�1〉, |111〉 ≡ |�2〉
︸ ︷︷ ︸

loss states

(15)

with B′′ = {|q2q1q0〉}qj =0,1 the computational basis for the
three-qubit system and B′′′ = {|k〉6}k=0,...,5 the canonical
basis for H(6). It is worth noting that in this case we have
used two states (|011〉 and |111〉 ∈ B′′ renamed as |�1〉 and
|�2〉) to simulate losses in the evolution of the qudit. For
this purpose, the same circuit as in Fig. 3 is programmed
to implement a beam-splitter-like loss with a 50% chance
of coupling |2〉6 and |5〉6 to the lost states |�1〉 and |�2〉,
respectively.

The target process that we implement for its subse-
quent reconstruction can be decomposed as E (6)(ρ) =
A(6)ρ(A(6))† with

A(6) = |0〉〈0| + |3〉〈3| + eiπ/3(|1〉〈1| + |4〉〈4|)

+ 1√
2
(|2〉〈5| + |5〉〈2|). (16)

This corresponds to a phase shift of ϕ = π/3 affecting
states |1〉6 and |4〉6, a swap operation between states |2〉6
and |5〉6, and losses that also affect these two states,
SWAP25 + LOSS 50%. For this non-trace-preserving
process, the diagonal form of the P matrix is

diag(P) = (
1, 1, 1

2 , 1, 1, 1
2

)
, (17)

that is, γi = 1 for i ∈ {0, 1, 3, 4}, while γi = r = 1
2 for i ∈

{2, 5}.
Finally, with the encoding election for a qudit [Eqs.

(15)], the SEQPT protocol in the three-qubit processor is
implemented by programming the schematic circuit shown
in Fig. 5, which resembles the circuit for the bipartite case
depicted in Fig. 2. In this example, an element |ψm〉 ≡
|ψJ1

M1
〉 ⊗ |ψJ2

M2
〉 in the product 2-design X ⊗ is sampled

through the modified channel E i1i2
i1i2 and projected to esti-

mate its survival probability [Eq. (B1) in Appendix B].
Both 2-design states, X1 and X2, are chosen to be complete
sets of MUBs, so that |ψJ1

M1
〉 and |ψJ2

M2
〉 are the M1 and M2

elements of the J1 MUB in D1 = 2, and the J2 MUB in
D2 = 3, respectively, giving a total of 72 elements in X⊗.
In the first stage, state |ψm〉 is prepared and modified by
operator Ei1i2 that, analogously to the case d = 3, gives, by
construction, another element of X⊗. Thus, the experimen-
tal implementation of the modified channel only requires
the preparation of elements in X⊗ as input states of chan-
nel E (6), which corresponds to the second stage of Fig. 5,
while the last stage performs a projective measurement on
the tensor product of J1 and J2 bases.

It is important to mention that, as we will seen in Sec.
IV, the particular choice of MUBs as state 2-designs,
together with the operator bases used in this work, results
in a significant reduction in the number of circuits to be
implemented to carry out the SEQPT. An explicit construc-
tion of the 2-designs and the operator bases are discussed
in Appendix E.

IV. RESULTS AND DISCUSSION

In this section we show the main experimental results
obtained when using the SEQPT method in the reconstruc-
tion of non-trace-preserving quantum maps. They corre-
spond to quantum circuits with losses for two different
dimensions: d = 3 (power-of-prime dimension) and d = 6
(nontrivial example of arbitrary dimension). In the case of
d = 6 we also explore, in detail, the selective and efficient
properties of the method.

A. Process matrix reconstruction: case d = 3

To assess the viability of the SEQPT in the case of non-
trace-preserving quantum maps, we first use the method to
perform a full tomography of the target channel E (3). To
this end, all of the 9 × 9 = 81 coefficients of the expected
theoretical process matrix χtheo are reconstructed, by sam-
pling for each coefficient the 12 elements in the state
2-design X . Because of the particular relation between
the selected operator basis and the 2-design (Appendix
E), many of the circuits needed to perform that sampling
are repeated. Thus, the full tomographic reconstruction
requires the implementation of only 36 different circuits
like that in Fig. 4, out of a total of 81 × 12 × 4 = 3888
circuits. This shows the importance of an adequate choice
of the basis of operators for a given state 2-design, in order
to avoid redundancy. Each circuit is repeated 8192 times
(shots) to estimate the frequency distribution of the out-
comes and thus infer the corresponding survival probabili-
ties F̄(E i

j ). Since an important source of error in the circuit
evaluation comes from the measurement stage, an error
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Id

Id

FIG. 5. Example of a circuit that samples an element of the product of 2-designs X⊗ = X1 ⊗ X2 in a Hilbert space of dimension
d = 6, through the modified channel E i1i2

i1i2 . Subspace H1, whose dimension is D1 = 2, coincides with the third qubit. I. The sampled

element, after being affected by operator Ei1i2 , is |ψJ1=1
M ′=0〉 ⊗ |ψJ2=0

M ′=1〉. II. Process E corresponds to a LOSS 50% followed by the
Rz and controlled-NOT gates that implement a SWAP25. III. Finally, a unitary transformation is applied to change the basis from
BJ1=1 ⊗ BJ2=0 to the canonical one (BJ1=0 ⊗ BJ2=0), followed by the measurement of each qubit.

mitigation routine is used to postprocess the frequency dis-
tribution. This routine, ignis.mitigation.measurement,
is provided by the Qiskit framework module, and relies
on an initial calibration measurement, performed on the
superconducting quantum computer, of the qubit state
prepared in the computational basis.

As in most tomographic methods, due to the effect of
statistical and systematic errors, the reconstructed channels
are not physical [42,43]. For that reason, after a first esti-
mation of matrix χtheo we solve the convex optimization
problem [44]

min
χopt

‖χraw − χopt‖F (18a)

such that χopt ≥ 0, (18b)

0 ≤ Tr
( ∑

ij

χ i
j opt

Ej Ei

)

= Tr(P) ≤ d, (18c)

where χraw is the process matrix experimentally recon-
structed using the SEQPT method and χopt the resulting
optimized matrix. This optimization is similar to that used
in Ref. [15], where the optimized matrix is the clos-
est matrix, in the sense of the Frobenious norm, to that
estimated by the tomographic method, subject to the con-
straints of physicality. These constraints are as follows:
(i) the matrix must be semidefinite positive, which in turn
implies that the quantum map is complete positive [43]; (ii)
the condition on the trace, which ensures a nonincreasing
trace map, whose value must be equal to the trace of the P
matrix, is a priori known. For lossless evolution, we have
P ≡ I, and the last constraint reduces to the usual one for
a trace-preserving quantum map, Tr(

∑
ij χ

i
j opt

Ej Ei) = d.
Figure 6 shows the bar plots representing the real

and imaginary parts of the reconstructed process matrix,

χexpt ≡ χopt for the channel HO1+LOSS 50%. For com-
parison reasons, we also show the real and imaginary parts
of χtheo (see the upper insets in Fig. 6). As a figure of
merit of the reconstruction process, we use the normalized
process fidelity

F ≡ F(χtheo,χexpt) = Tr[
√√

χtheoχexpt
√
χtheo]√

Tr[χtheo]
√

Tr[χexpt]
. (19)

This definition acts as a geometric distance in the space
of density matrices and, due to the Choi-Jamiołkowski
isomorphism [8], it can be used as a geometric distance
measure between quantum processes. It should also be
noted that the normalization factor is included so that
it is F = 1 for identical processes, even when they are
non-trace-preserving [24,36].

The resulting fidelity value for process E (3) is FSEQPT =
0.956. For completeness, we also reconstruct the process
under the SQPT method. Briefly, the SQPT that is con-
ducted on the IBMQ superconducting quantum processor
consists of preparing about d2 states that are a combination
of states in the d-dimensional canonical basis: |k〉, |k〉 +
|k′〉, and |k〉 + i|k′〉, with k = 0, . . . , d − 1 and k′ = (k +
1), . . . , d − 1. Each of these states is then reconstructed,
after being affected by the quantum process, through a
standard quantum state tomography (QST). The circuits
are implemented using the state_tomography_circuits
function, provided by the Qiskit Ignis library. As the QST
method provided by this framework works for n-qubit
states, we then project the resulting reconstructed state
onto the three-dimensional subspace of interest. Finally,
the linear relation between the prepared and reconstructed
states is inverted to obtain the process matrix. The exper-
imental estimation of χtheo under the SQPT results in a
process fidelity FSQPT = 0.974, which is slightly higher
than that obtained with the SEQPT. However, it should
be noted that the implementation of SQPT requires 81
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FIG. 6. Comparison of the real (left panel) and imaginary
(right panel) parts of matrix χexpt, experimentally obtained
through SEQPT and a convex optimization. This is the matrix
that characterizes process E (3). Upper insets show the corre-
sponding values of the target matrix χtheo.

circuits, in contrast with the 36 circuits required by our
SEQPT implementation.

To better qualify the performance of the proposed
method (SEQPT) for the reconstruction of non-trace-
preserving maps, in comparison with the standard accepted
one (SQPT), and also to understand the origin of possible
errors that are later reflected in fidelity values below 1, we
reconstruct the trace-preserving version of E (3), where the
50% loss subprocess is removed. In addition, other simple
processes for d = 3, both trace-preserving and non-trace-
preserving, are reconstructed: ID (the identity process),
ID+LOSS (a 50% loss coupled to the identity process),
and the qutrit Hadamard gate H12 and its version with
losses H12+LOSS (see Appendix F for the explicit math-
ematical description of these processes). Table I compares
the values of the fidelity of reconstruction for the studied
three-dimensional quantum processes. As to highlight, the
reconstruction of non-trace-preserving processes through
the SEQPT differs by less than 3% from reconstruction
using SQPT. Besides, the reconstruction of non-trace-
preserving processes results in a slightly lower fidelity than
the reconstruction of their trace-preserving counterparts (in
the absence of the LOSS subprocess). This drop in the
fidelity value could be attributed to the additional number
of gates needed to implement the loss of the target process.

B. Process matrix reconstruction: bipartite case d = 6

The advantages of the SEQPT method with respect to
the SQPT become more evident in higher dimensions. In
that regard, we experimentally study the reconstruction
of channel E (6). In this dimension (d = 6), we can also

TABLE I. Summary of the fidelities of reconstruction for
different non-trace-preserving processes (NTP) and their trace-
preserving (TP) counterparts in d = 3.

Process fidelity TP process NTP process

SEQPT SQPT SEQPT SQPT

d = 3 ID 0.971 0.982 0.958 0.964
H01 0.970 0.981 0.956 0.974
H12 0.953 0.973 0.934 0.954

assess the viability of the non-trace-preserving version of
the SEQPT for the general case, when the dimension of the
Hilbert space is not a power of a prime number.

We start by performing the full reconstruction of the
selected target channel, on the IBMQ processor. For this,
the 36 × 36 = 1296 coefficients of the χtheo matrix are
estimated by sampling all the elements in the tensor prod-
uct of 2-design X⊗ = X1 ⊗ X2. As in the case d = 3, due
to the particular relation between the selected basis of
the operator and the product of the 2-design, many of
the circuits to perform the sampling are repeated. Thus,
with this choice, the full reconstruction under the SEQPT
method requires the implementation of only 432 differ-
ent circuits, like that in Fig. 5, out of a total of about
36 × 36 × 72 × 4 = 373 248 that would certainly lead to
redundancy of measurements. Finally, the statistics over
8192 repetitions of each circuit is collected to obtain the
required survival probabilities F̄⊗(E i1i2

j1j2 ).
The bar plots in Fig. 7(a) indicate the absolute values

of the coefficients of the theoretical matrix χtheo (left) and
the experimentally reconstructed one χexpt (right). Besides,
in Fig. 7(b) we show gray-level map detail of the 11 × 11
nonzero elements in χtheo, comparing the real (upper pan-
els) and imaginary (lower panels) parts of its coefficients
(left panels) with the corresponding coefficients of χexpt
(right panels). In this case, we obtain a value for the pro-
cess fidelity FSEQPT = 0.913, while for the same process
reconstructed with SQPT, which requires a total of 972 cir-
cuits, we obtain a slightly lower fidelity, FSQPT = 0.871.
Besides, if the process is assumed to be trace preserving,
the standard SEQPT method results in a reconstruction
fidelity of only 0.838.

Given that the a priori information of the P matrix is
used to experimentally estimate, individually, any coeffi-
cient of matrix χtheo of the non-trace-preserving target pro-
cess E (6), it is important to check that the obtained results
are compatible with that initial assumption. In Fig. 8(a),
we show a color map representing the values of the coeffi-
cient of the P matrix in its diagonal form, and in Fig. 8(b),
the corresponding values obtained after the full reconstruc-
tion from Eq. (8). It can be seen that some elements in the
diagonal are slightly greater than 1 (up to 14%), which
indicates that the process is not physical. Even so, there
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(a) (b)

FIG. 7. (a) Comparison of the absolute values of the elements of χtheo and χexpt for the NTP process E (6), measured on a five-qubit
computer from the IBMQ network. (b) Detail of the first 11 basis elements. These elements correspond to the nonzero block in the
theoretical matrix [upper left block in the theoretical plot of (a)]. The gray-level map shows the real and imaginary parts for the
theoretical and experimental reconstructed matrices.

is a clear similarity with the P matrix of the target pro-
cess. Finally, in Fig. 8(c), we show the P matrix obtained
from the postprocessed data, i.e., after convex optimization
[see Eqs. (18)]. Although the constraint in the optimiza-
tion stage is on Tr(P), the value of each of its elements is
very close to that of the nominal process (less than a 4%
difference).

For a wider analysis of performance, we also implement
and experimentally reconstruct the trace-preserving coun-
terpart of E (6), where the loss subprocess is removed, and
other simple processes in d = 6: PHASE (a phase shift
of π/3 on the elements |1〉 and |4〉) and PHASE+LOSS
(similar to PHASE, but with an additional 50% loss). The
explicit Kraus operators for these processes are presented
in Appendix F. The comparison of both reconstruction

(a) (b) (c)
(0,0)

(1,1)

(2,2)

(3,3)

(4,4)

(5,5)

FIG. 8. Comparison between the diagonal form of the nominal
P matrix and the experimentally reconstructed one. (a) Diagonal
of the P matrix for the nominal process E (6). (b) Full P matrix
obtained for the process reconstructed by the NTP version of the
SEQPT method. (c) The P matrix for the process postprocessed
by the convex optimization routine.

methods, summarized in Table II, shows that the difference
in the fidelity values is, in all these cases, less than 1%.

C. Efficiency

As mentioned in Sec. I, a remarkable feature of the
SEQPT method is that it is both selective and efficient. This
makes the protocol ideally suited for reconstructing quan-
tum channels that have only a few nonzero elements in its
matrix χ . For example, if χ has K nonzero elements, it
is possible to reconstruct only these elements (selectivity),
and with a number of evaluation circuits that scales with K ,
independently of the dimension d of the Hilbert space (effi-
ciency) [22]. In contrast, the SQPT method reconstructs
the entire matrix for which it requires a number of circuits
that quickly grows with the dimension as about d4.

To perform an efficient reconstruction of the matrix ele-
ment χ i

j , one must appeal to the fact that the mean fidelities
F̄⊗(E i

j ) and F̄k(E i
j ) (k = 1, 2) can be estimated by averag-

ing the survival probabilities of a random subset of states

TABLE II. Summary of the fidelities of reconstruction for
different NTPs and their TP counterparts in d = 6.

Process fidelity TP process NTP process

SEQPT SQPT SEQPT SQPT

d = 6 ID 0.950 0.947 0.930 0.938
PHASE 0.949 0.945 0.930 0.939

SWAP25 0.906 0.908 0.913 0.871
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FIG. 9. Process fidelity between the nominal quantum process
E (6) and the reconstructed one for an increasing number of shots.
Each thin solid line corresponds to a different random sampling
of elements in X⊗. The sampling is performed to reconstruct
the 25 nonzero elements of the target process matrix χtheo from
SEQPT. The thick solid line corresponds to the mean process
fidelity among those ten different samplings, while the shaded
area represents one standard deviation. For comparison, the mean
process fidelity and standard deviation for ten realizations of the
SQPT full reconstruction are displayed.

in X⊗, through the modified channel E i
j , instead of per-

forming the complete sum in Eqs. (B1)–(B3) in Appendix
B. At each sampling step m, an element |ψm〉 of X⊗ is
randomly chosen (with replacement), the corresponding
circuit to estimate the survival probabilities of this quan-
tum state is executed once (one shot), and the outcome is
used to update the values of F̄⊗(E i

j ) and F̄k(E i
j ). These esti-

mates improve iteratively as the number of sampling steps
m grows. In this way, we carry out the reconstruction of
the 25 nonzero elements of the target matrix χtheo, which
we previously reconstructed completely (Fig. 7).

Figure 9 shows the process fidelity F between the tar-
get and the reconstructed processes, as a function of the
total number of shots for both the SEQPT method and
the traditional SQPT method. Each thin line represents a
realization of this SEQPT protocol, i.e., the reconstruc-
tion of the 25 nonzero elements of χtheo from a particular
random sampling of m elements in X⊗ (m ≤ 240 × 103,
or about 10 × 103 shots per nonzero matrix element). The
thick solid line and shaded area represent the mean value
of FSEQPT resulting from ten realizations, and its stan-
dard deviation, respectively. To compute this fidelity, the
remaining elements of the experimental matrix, not mea-
sured in this case, are assumed to be zero in accordance
with what is expected theoretically, and the resulting pro-
cess matrix, χraw, is optimized to ensure its physicality
according to Eqs. (18). The inset of Fig. 9 displays the

results from a larger sampling (m up to 600 × 103, or
24 × 103 samples for each nonzero matrix element).

On the other hand, the thick dashed line and shaded area
in Fig. 9 represent the mean value of FSQPT for the SQPT
method, resulting from ten realizations and its standard
deviation, respectively. For a given realization, each of the
972 required circuits is executed an increasing number of
times, and the corresponding fidelity FSQPT is updated with
the increasing statistic.

In the SEQPT reconstruction we can see that the mean
fidelity value increases quickly with the number of sam-
pled states, reaching a stable value of 0.889. Ideally, this
value should be about 1, if only statistical errors are con-
sidered. However, the readout fidelity of the ibmq_lima
quantum computer, which accounts for the readout error, is
estimated to be only 0.938. It should also be noted that the
limit value that reaches the mean fidelity is slightly lower
than the fidelity value obtained when a full reconstruc-
tion of the process is done by the same method (FSEQPT =
0.913). As described in Sec. IV A, in that case the readout
error can be mitigated, after a calibration in the canonical
basis, by postprocessing the distribution probability of the
outcomes of each circuit. In the present case, we run each
circuit only one time: since an individual shot does not rep-
resent the complete probability distribution for the circuit,
it cannot be mitigated with the standard routine provided
by the Qiskit framework module. In the future, an iterative
scheme, where the probability distribution of each circuit
is estimated with every new shot, could be envisioned to
improve the reconstruction quality.

Finally, we can see that an m up to 30 × 103 (about 1200
samples per nonzero matrix element) is enough for a pro-
cess fidelity whose value differs within 2.5% of its stable
value. For comparison, in the SQPT at least 50×3 total
shots are needed to achieve a fidelity value within 2.5% of
its stable value. To contextualize this difference, for such
precision, the total running time in the IBMQ processor
is 9 s for the SEQPT, i.e., it is 67% faster than SQPT,
which takes 15 s. Furthermore, what is more important,
in sharp contrast to the SQPT, is that the execution time of
the SEQPT method will not increase when the dimension d
increases, since to fix precision, m should be increased only
if the number of nonzero elements in the process matrix is
greater [13,22].

V. CONCLUSIONS

In this work, we present a generalization of the SEQPT
protocol for non-trace-preserving maps. The proposed
method, which works for arbitrary dimensions, uses the a
priori information of the loss matrix to reconstruct individ-
ual elements of the process matrix. To test this scheme, we
realize an experimental implementation of the method on
a five-qubit superconducting IBM quantum processor. We
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successfully reconstruct several processes both in prime-
power dimension (d = 3) where a state 2-design is known,
and in dimensions where this does not occur (d = 6).

On the one hand, we show that it is possible to efficiently
reconstruct non-trace-preserving processes, with high pre-
cision, within the readout error of the current quantum
computers. Since quantum processors are very sensitive
to the environment, we have to deal with noisy devices,
which makes it relevant to have methods for the recon-
struction of quantum processes that save resources and
have the ability to account for non-trace-preserving stages.

On the other hand, the implementation of such processes
in a superconducting quantum processor is made possible
by using the discarded Hilbert subspace to introduce con-
trolled losses, generalizing the type of quantum processes
that can be implemented and tested on these computers. In
addition, this shows a way to use the qubit-based quantum
processor as a test bench for quantum circuits in dimen-
sions that are different from 2N (N ∈ N ), that is, for qudit
spaces of arbitrary dimension d.
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APPENDIX A: MODIFIED CHANNEL AND
SURVIVAL PROBABILITIES

In order to make the protocol experimentally clear, we
describe how to interpret the action of the modified chan-
nel E i

j in terms of the physical channel E . It should be
noted that, regardless of the peculiarities of the experi-
mental setup, this is a general description of the circuits
that must be implemented to obtain the coefficients of the
process matrix χ .

(i) Diagonal case. For i = j , the effect of the modified
channel E i

i on a given state |ψ〉 is

E i
i (|ψ〉〈ψ |) = E(Ei|ψ〉〈ψ |Ei) = E(EiPψEi), (A1)

and the probability that |ψ〉 survives E i
i can be obtained

by a projective measurement onto |ψ〉. This procedure is
implemented by the circuit described in Fig. 10(a), whose
output estimates the value of Tr[PψE(EiPψEi)].

(ii) Nondiagonal case. For i = j , the resulting modified
channel is nonphysical. In fact, its effect on a given state

(a)

(b)

(c)

FIG. 10. Schematic of the circuit for measuring the survival
probability of state |ψ〉 through the modified channel E i

i [panel
(a)] or E i

j [panels (b) and (c)]. By sampling these circuits over
|ψ〉 in the state 2-design X , we can estimate any element χ i

j ,
corresponding to the process matrix of E .

|ψ〉 corresponds to

E i
j (|ψ〉〈ψ |) = E(Ei|ψ〉〈ψ |Ej ) = E(|α〉〈β|) (A2)

with |α〉 = Ei|ψ〉 and |β〉 = Ej |ψ〉. This is equivalent to
the action of the original channel E on matrix |α〉〈β|,
which is not a density matrix, and therefore does not rep-
resent a physical state. However, this matrix can always be
expressed as a linear combination of at most four matri-
ces, each corresponding to one projector. If |α〉 and |β〉
are orthonormal, E(|α〉〈β|) = E(|+〉〈+|)+ E(|−〉〈−|)−
[(1 + i)/2](E(|α〉〈α|)+ E(|β〉〈β|)) with |+〉 = (|α〉 +
|β〉)/√2 and |−〉 = (|α〉 + i|β〉)/√2. Even if they are not
orthonormal, a similar decomposition exists. Then, the lin-
earity of E ensures that we can compute the action of the
modified channel E i

j over any state |ψ〉 as a linear combina-
tion of the action of the original channel E over a suitable
choice of pure states. This implies that an additional oper-
ation must be performed on the input state |ψ〉, as sketched
in Figs. 10(b) and 10(c).

Finally, the extension to the bipartite case, where the
action of the modified channel on state |ψ〉 = |ψ1〉 ⊗
|ψ2〉 ∈ X⊗ is

E i1i2
j1j2 (|ψ〉〈ψ |) = E(Ei1i2 |ψ〉〈ψ |Ej1j2)

= E(|α〉〈β|) (A3)

with |α〉 = Ei1i2 |ψ〉 = Ei1 |ψ1〉 ⊗ Ei2 |ψ2〉 and |β〉 = Ej1j2

|ψ〉 = Ej1 |ψ1〉 ⊗ Ej2 |ψ2〉, follows from (i) if i1 = j1 and
i2 = j2 or (ii) if i1 = j1 or i2 = j2, but considering circuits
of the type shown in Fig. 2.

APPENDIX B: AVERAGE SURVIVAL FIDELITIES
ESTIMATION IN THE BIPARTITE CASE

In the bipartite case, instead of estimating directly the
average survival probability F̄(E i1i2

j1j2 ), we first estimate

F̄⊗(E i1i2
j1j2 ) = 1

|X⊗|
∑

|ψ〉∈X⊗
〈ψ |E i1i2

j1j2 (|ψ〉〈ψ |)|ψ〉. (B1)
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The magnitude F̄⊗(E i1i2
j1j2 ) is the average survival proba-

bility over the tensor product of 2-design X⊗ ≡ {|ψ1〉 ⊗
|ψ2〉 for |ψ1〉 ∈ X1, |ψ2〉 ∈ X2}, and |X⊗| represents the
number of elements in the set.

As shown in Ref. [22], the integral that defines F̄(E i1i2
j1j2 )

can be expressed as

F̄(E i1i2
j1j2 ) = 1

d + 1

{

F̄⊗(E i1i2
j1j2 )(D1 + 1)(D2 + 1)

+ 2
d

Tr
[( ∑

μν

χνμEνEμ

)

EiEj

]

− F̄1(E i1i2
j1j2 )(D1 + 1)− F̄2(E i1i2

j1j2 )(D2 + 1)
}

,

(B2)

where the values of F̄1(E i1i2
j1j2 ) and F̄2(E i1i2

j1j2 ) can be seen
as the reduced survival probabilities, averaged over the
2-design states X1 and X2, respectively:

F̄k(E i1i2
j1j2 ) = 1

Dk′ |Xk|
∑

|ψk〉∈Xk

Tr[(Pψk ⊗ Ik′)E i1i2
j1j2 (Pψk ⊗ Ik′)]

(B3)

with k, k′ = 1, 2 and k = k′.
Thus, the selectivity of the method is given by the fact

that a particular element χ i1i2
j1j2 can be determined by cal-

culating the three mean fidelities F̄⊗, F̄1, and F̄2, over the
modified channel E i1i2

j1j2 .

APPENDIX C: DERIVATION OF THE SEQPT
PROTOCOL FOR NON-TRACE-PRESERVING
MAPS IN THE BIPARTITE CASE X⊗ = X1 ⊗ X2

Let us consider a product Hilbert space H ≡ H1 ⊗ H2
of dimension d. We start by defining the average over the
Haar measure of the product of two operators A and B as

〈A, B〉 ≡
∫

H
dψTr[PψAPψB], (C1)

where Pψ ≡ |ψ〉〈ψ | and the integral is performed using
the Haar measure over H. We also define the product
average

〈A, B〉⊗ ≡
∫

H1

∫

H2

dψ1dψ2Tr[Pψ1ψ2APψ1ψ2B], (C2)

where Pψ1ψ2 ≡ Pψ1 ⊗ Pψ2 = |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|, and
the integrals are performed over the Haar measure of each

subsystem. Besides, the reduced averages are defined as

〈A, B〉1 ≡
∫

H1

dψ1Tr
{

Pψ1Tr2

[

A
(

Pψ1 ⊗ I2

D2

)

B
]}

, (C3)

〈A, B〉2 ≡
∫

H2

dψ2Tr
{

Pψ2Tr1

[

A
(

I1

D1
⊗ Pψ2

)

B
]}

, (C4)

where, for k = 1, 2, Ik indicates the identity operator acting
on Hk, Trk is the partial trace over subsystem Hk, Dk is the
dimension of Hk, and the integrals are performed using the
Haar measure of the corresponding Hilbert space.

On the one hand, we take into account the expression
developed in Refs. [22,45], which relates the four averages
defined above:

〈A, B〉 = 1
d + 1

[

(D1 + 1)(D2 + 1)〈A, B〉⊗+2
d

Tr[AB]

− (D1 + 1)〈A, B〉1 − (D2 + 1)〈A, B〉2

]

.

(C5)

On the other hand, we consider the average fidelity of a
channel E , defined as

F̄(E) ≡
∫

H
dψTr[PψE(Pψ)], (C6)

as well as the average product fidelity

F̄⊗(E) ≡
∫

H1

∫

H2

dψ1dψ2Tr[Pψ1ψ2E(Pψ1ψ2)], (C7)

and the average reduced fidelities

F̄1(E) ≡
∫

H1

dψ1Tr
{

Pψ1Tr2

[

E
(

Pψ1 ⊗ I2

D2

)]}

, (C8)

F̄2(E) ≡
∫

H2

dψ2Tr
{

Pψ2Tr1

[

E
(

I1

D1
⊗ Pψ2

)]}

. (C9)

Recalling the expansion in Eq. (6), and given that each
average 〈·, ·〉ξ is bilinear in its arguments, we can write

F̄ξ (E i1i2
j1j2 ) =

∑

μ1μ2
ν1ν2

χμ1μ2
ν1ν2

〈Ei1i2Eμ1μ2 , Eν1ν2Ej1j2〉ξ , (C10)

where ξ codifies which of the four fidelities defined in
Eqs. (C6)–(C9), and which of the four averages in Eqs.
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(C1)–(C4), we are referring to. From this identity and the
relation in Eq. (C5), we obtain

F̄(E i1i2
j1j2 ) = 1

d + 1
[(D1 + 1)(D2 + 1)F̄⊗(E i1i2

j1j2 )

+ 2
d

Tr(PEi1i2Ej1j2)

− (D1 + 1)F̄1(E i1i2
j1j2 )

− (D2 + 1)F̄2(E i1i2
j1j2 )]. (C11)

Resorting to Eq. (10), the left-hand side of the above
equation can be related to the matrix coefficients, to arrive
at the desired result:

χ
i1i2
j1j2 = F̄⊗(E i1i2

j1j2 )
(1 + D1)(1 + D2)

d

+ 1
d2 Tr(PEi1i2Ej1j2)− F̄1(E i1i2

j1j2 )
1 + D1

d

− F̄2(E i1i2
j1j2 )

1 + D2

d
. (C12)

Finally, bearing in mind that each fidelity on the right-hand
side of Eq. (C12) is quadratic in Pψ1 , Pψ2 , or Pψ1ψ2 , and
defined as a Haar integral over Hilbert spaces with dimen-
sions D1 and D2, when such dimensions are powers of a
prime number, they can be computed by averaging the inte-
grand over the corresponding 2-designs X1 or X2, or over
the tensor product 2-design X⊗ = X1 ⊗ X2, respectively
[see Eqs. (B1) and (B3)].

APPENDIX D: BEAM-SPLITTER-LIKE CIRCUIT
FOR SIMULATING LOSSES

The loss implemented by the beam-splitter-like gate,
which is shown in Fig. 3, can be parameterized through
the angle of rotation of the Rz gates. Figure 11 shows the
most general form of such a circuit. An argument of π + φ

in both of the red colored Rz gates results in the equivalent
unitary matrix:

Ubs =

⎛

⎜
⎝

1 0 0 0
0 1 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ

⎞

⎟
⎠ . (D1)

This can be interpreted as a beam splitter matrix with
transmissivity t = cos2(φ) and reflectivity r = sin2(φ). It
should be noted that this circuit couples the two-qubit state
|10〉 ≡ |2〉3 to the discarded 2-qubit state |11〉 ≡ |�〉, with
a probability equal to r.

APPENDIX E: BASIS OF OPERATORS AND MUBS

To expand each of the channels E studied in this work,
we have chosen, as bases of unitary operators, the well-
known Sylvester bases [46,47], which, for any dimension

FIG. 11. Circuit to implement a general beam-splitter-like loss
affecting state |10〉 ≡ |2〉3. A phase π + φ in both of the red
colored Rz gates results in a loss r = sin2(φ) (beam splitter
reflectivity).

D, can be written as

En ≡ Ekl =
D−1∑

m=0

ωml|m ⊕ k〉〈m|, (E1)

where k, l = 0, . . . , D − 1, ω = exp(2π i/D) is a root of
unity, and “⊕” is the addition modulo D.

For the case D = D1 = 2, the four operators are the
Pauli operators together with the identity operator

E00 = I2, E01 = σz, E10 = σx, E11 = iσy ,
(E2)

from which we can obtain three Abelian sets of two ele-
ments each: {E00, E01}, {E00, E10}, and {E00, E11}. The three
bases that diagonalize each of these sets, formed by eigen-
vectors of the Pauli operators, not only give a complete set
of MUBs for D1 (and, hence, an appropriate 2-design for
H1) but also have the property that the action of any of the
four operators, Ekl, over any of the elements in the 2-design
gives another element within the same MUB basis, except
for a global phase. In fact, if |ψJ

M 〉 is one of the D elements
within the J MUB, the following property is verified:

Ekl|ψJ
M 〉 = eiα(k,l,M ,J )|ψJ

M ′ 〉. (E3)

Analogously, in the case that D = D2 = 3, we can obtain
a 2-design by extracting four Abelian subsets from the
nine operators Ekl. The first of them, {E00, E01, E02}, is
diagonalized by the canonical basis

B0 = {|0〉, |1〉, |2〉} ≡ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. (E4)

The next set, {E00, E10, E20} is diagonalized by

B1 =
{
(1, 1, 1)√

3
,
(1,ω,ω2)√

3
,
(1,ω2,ω)√

3

}

, (E5)

where ω = exp(2iπ/3), ω2 = ω∗, and ω3 = 1. It is clear
that B0 and B1 are mutually unbiased. Moreover, by choos-
ing B2 and B3 as the bases that diagonalize the sets
{E00, E11, E22} and {E00, E12, E21}, respectively, we get four
MUBs in D = 3 and hence a 2-design in the correspond-
ing Hilbert space, H2. Again, it is easy to check that the
property given by Eq. (E3) holds for the nine operators Ekl.
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APPENDIX F: KRAUS DECOMPOSITION OF THE
IMPLEMENTED PROCESSES

All the processes implemented in this work correspond
to a Kraus decomposition with a single unitary operator
(E(ρ) = AρA†). We start by listing those of dimension
d = 3.

(a) H01: A = (|0〉〈0| − |1〉〈1| + √
2|2〉〈2| + |0〉〈1| +

|1〉〈0|)/√2.
(b) H01 + LOSS 50%: A = (|0〉〈0| − |1〉〈1| + |2〉〈2| +

|0〉〈1| + |1〉〈0|)/√2.
(c) H12: A = (

√
2|0〉〈0| + |1〉〈1| − |2〉〈2| + |1〉〈2| +

|2〉〈1|)/√2.
(d) H12 + LOSS 50%: A = |0〉〈0| + |1〉〈1| − |2〉〈2| +

|1〉〈2| + |2〉〈1|)/√2.

Below, we list the unitary operators corresponding to the
processes in d = 6.

(a) ID + LOSS 50%: A = |0〉〈0| + |1〉〈1| + |3〉〈3| +
|4〉〈4| + |2〉〈2| + |5〉〈5|)/√2.

(b) PHASE: A = (|0〉〈0| + |3〉〈3|)+ eiπ/3(|1〉〈1| +
|4〉〈4|)+ (|2〉〈2| + |5〉〈5|).

(c) PHASE + LOSS 50%: A = (|0〉〈0| + |3〉〈3|)+
eiπ/3(|1〉〈1| + |4〉〈4|)+ (|2〉〈2| + |5〉〈5|)/√2.

(d) SWAP25: A = (|0〉〈0| + |3〉〈3|)+ eiπ/3(|1〉〈1| +
|4〉〈4|)+ (|2〉〈5| + |5〉〈2|).

(e) SWAP25 + LOSS 50%: A = (|0〉〈0| + |3〉〈3|)+
eiπ/3(|1〉〈1| + |4〉〈4|)+ (|2〉〈5| + |5〉〈2|)/√2.
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