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A single qutrit with transitions selectively driven by weakly coupled reservoirs can implement one of the
world’s smallest refrigerators. We analyze the performance of N such fridges that are collectively coupled
to the reservoirs. We observe a quantum boost, made manifest in a quadratic scaling of the steady-state
cooling current with N. As N grows further, the scaling reduces to linear, since the transitions responsible
for the quantum boost become energetically unfavorable. Fine-tuned interqutrit interactions may be used
to maintain the quantum boost for all N and also for not perfectly collective scenarios.
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I. INTRODUCTION

Beyond foundational questions, the study of quantum
systems is nowadays driven by applications of quantum
computation [1]. While, for these, background noise [2]
is usually detrimental, it can also be turned into some-
thing useful by considering energy-conversion processes
[3]. The ability of quantum systems to act as energy fil-
ters between reservoirs has fostered the whole field of
quantum thermodynamics, leading to numerous applica-
tions [4]. One of the most pressing questions in this area
is whether quantum heat engines can outperform their
classical counterparts in some aspects [5—8].

Already, on a much simpler setting, the collective super-
radiant evolution of quantum many-body systems [9—11] is
an example where quantum systems can easily surpass the
speed of classical ones. This can, for example, be exploited
in the collective charging of quantum batteries [12—14].
Also, finite-stroke quantum thermodynamic cycles have
been analyzed with collective quantum working fluids
[15-23]. These mimic classical thermodynamic cycles
such as, e.g., the quantum Otto cycle [24,25] and thereby
depend on classical control parameters. Experimentally,
such cycle implementations require a high degree of con-
trol that should not open additional decoherence channels
and at present dwarfs the work that can be extracted
(see, e.g., Ref. [26]). The study of autonomously operated
thermodynamic cycles [27—30] is so far limited to rather
low-dimensional systems, as it requires an understanding
of nonlinear dynamics.

In contrast, continuously operating heat engines [31]
operate while simultaneously coupled to two or more
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reservoirs at all times. Examples of such devices are
thermoelectric generators [32—35] or quantum absorption
refrigerators (QARs) [36,37]. With regard to collective
effects, the latter are particularly interesting [38], as QARs
require only reservoirs without particle exchange, for
which superradiance is well established. Proposals [39—41]
and actual realizations [42] for QARs exist and collective
couplings have also been implemented experimentally in
the past [43—45]. Therefore, in a previous work [46], a
superradiant QAR constructed from interacting qubits has
been analyzed. While superradiant cooling performance
could be observed at steady state, the device required fine-
tuned interactions between the qubits throughout and the
preparation of an entangled initial state.

In this paper, we consider a simpler realization based
on qutrits that—at least in the simplest variant—need not
interact directly and do not require an entangled initial
state. We start by introducing the model in Sec. II. We
then explain the methods in Sec. III and discuss our results
in Sec. 1V, before concluding in Sec. V. For the inter-
ested reader, technical background information is provided
in the appendixes. Throughout the paper, we use units
with A =1 and kg = 1, plot only dimensionless quanti-
ties, use an overbar to denote steady-state quantities, use
bold symbols to refer to the interaction picture, and use
{21, l§} = AB + BA to denote the anticommutator.

II. MODEL

Our generic starting point is a total Hamiltonian of the
form

H=Hs+) S'@B" +) hy, (1)

© 2023 American Physical Society
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FIG. 1. (a) Three-level cyclic systems performing refrigera-
tion (N = 1, even cycle in the lower panel and odd cycle with the
work and cold reservoirs exchanged in the upper panel). (b) For
larger qutrit numbers (here, N = 4), the 3V states are composed
in total of N!/[(N — M — m)!M!m!] states (numbers inside cir-
cles) with M large (along red arrows) and m small (along blue
arrows) excitations such that 0 <m + M < N. Ordering the
eigenstates in layers by the eigenvalue of Casimir operators,
the largest layer corresponds to the subset of permutationally
completely symmetric states, which hosts (N + 1)(N +2)/2
states. Subspaces of permutationally nonsymmetric states can
be grouped in additional layers (see Fig. 6) such that collective
couplings then admit only intralayer transitions.

which is composed of a system part Hs, different reservoirs
I:],; , and the corresponding interactions, written as prod-
ucts of bath operators B”, that couple to different system
operators S”. In this paper, we consider three reservoirs
v € {c, h, w} that we label the cold, hot, and work (hottest)
reservoirs, respectively. These reservoirs are modeled by
standard harmonic oscillator baths A} = Dok (ukvl;,tv@kv
throughout.

An introductory example for the system could be a sin-
gle three-level model (qutrit) with ground state |0), first
excited state |1), and most excited state |2), for which we
could write IEIS =A|2)(2|+8]|1) (1], where A > >0
are the excitation energies and we gauge the ground-state
energy to zero. We consider the case where the coupling
between the system and the reservoir drives the individual
system transitions exclusively, e.g., for the single qutrit via
§¢=T10) (1] + [1) {011, $" = [|0) (2] 4 12) (0[], and S =
[11) 2] +12) (1]] [cf. Fig. 1(a), lower panel]. In the appro-
priate regime (reservoirs held in thermal states with inverse
temperatures obeying 8. > B, > B, and the cooling con-
dition BA > B, (A —§) + B.68), the single-qutrit model
implements a quantum absorption refrigerator (QAR), a
device that implements stochastic cooling by, on average,
absorbing heat from the coldest (¢) and hottest (w) reser-
voirs and dumping the waste heat into the intermediate-
temperature (/) reservoir. We provide more details on the
working principles of this configuration and also for the
case where the work and cold reservoirs are exchanged [as
in Fig. 1(a), upper panel] in Appendix A.

In this paper, as the system we instead consider N
identical qutrits

IA‘]5= ANA+5N5, 2)

where Ny =YY, (12)@2); and N5 =Y, (1) (1))
count the total number of large and small excitations
present in the system and the introductory example is
reproduced for N = 1. The reservoirs are assumed to drive
individual transitions as before but the coupling to the
ith qutrit may, in principle, depend on its position. Thus,
we assume, as system coupling operators, the multiqutrit
operators

§e=Y [ (1) (O); + he] = 8548,

§ =3 [n @2 0h +he] =848, )
8" = Z [hzw (12) (11); + h.c.] = §i+§1v,

i

where 8V = (S’L’F)T. The dependence of the coupling on the
qutrit is encoded in the coefficients 4! € C and later we
denote the limit 4] — 1 as the collective limit, for which
we write J¥ = lim 8" and JY = lim S’i Analogous to
hy—1 hy—1
permutationally invariant many-qubit systems, where one
can generalize single-qubit Pauli matrices—the generators
of su(2)— to large spin operators (for potential applica-
tions, see, e.g., Ref. [47]), we can also define the collective
generalizations of the generators of su(3). We denote them
by subscripts,

. 1.
Jo =5y A, 4)
i=1

\S}]

where )A»;)‘ denotes the Gell-Mann matrix A% (with 1 <
o < 8) acting on the ith qutrit (with 1 <i<N). In
the collective limit, we can express the system cou-
pling operators by the large qutrit operators; specifically,
we have S'jt — J¢ =Js x i)y, Si — Jh =J, +iJs5, and
S’i — jd‘t” =J, i), (see Appendix B). To represent the
problem efficiently, it is advantageous to use common
eigenstates of ,73, ]g and the collective Casimir operators of
su(3), such as é‘z = 22:1 jj We provide some example
states in Appendix C.

The question that we address here is whether one also
can observe superradiant performance boosts [48], anal-
ogous to results for interacting qubits [38,46], for this
system of noninteracting qutrits.
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1. METHODS

We aim at the perturbative treatment of the system-
reservoir interaction (i.e., the BY operators) and a descrip-
tion of the system by master equations. Depending on the
microscopic implementation of Eq. (1), a nonperturbative
treatment may require modifications to the global Hamil-
tonianian [49]. As in Eq. (2), all qutrits are identical and
do not interact and the transformation into the interac-
tion picture is straightforward, as shown in Eq. (D2). This
facilitates the derivation of these master equations.

First, we consider the Redfield-II master equation [50]
(Lamb shift omitted; see Appendix D 1 for details):

p=—i|fs.p0)]
F R (5108 + [5052])
N Z @ ([87.082] +[320.8°]).

where y,(w) = I'y(w)[1 + n,(w)] = 0 is the product of
the reservoir spectral coupling density I',(w) and the
Bose distribution 7, (w) = [e?*® — 1]}, evaluated at the
system excitation frequencies Q. =8 > 0, 2, = A > 0,
and ©,, = A —§ > 0. Since we analytically continue the
spectral coupling density as an odd function I',(—w) =
—TI', (+w), it follows that y, (—2,) = I',(2,)n,(2,) > 0.
The generator in Eq. (5) need not, in general, preserve the
positivity of the density matrix [2] and need not be ther-
modynamically consistent [S1]. For example, it may not
exactly conserve the sum of all stationary energy currents
leaving the reservoirs for nonvanishing couplings—such
artifacts are, however, of higher order than the accuracy
of the Redfield approach (cf. Fig. 7 in Appendix D 1).
Nevertheless, for selective systems it has been shown to
approach the true quantum dynamics in the appropriate
regimes very well [52,53], such that we use it as our
benchmark approach here.

Second, we consider the Lindblad-Gorini-Kossakowski-
Sudarshan (LGKS) master equation [54,55] (Lamb shift
neglected; see Appendix D 2 for details):

p=—i [lilsap(f)]
+) Q) [Szpéi—% {A;Sg, p}}
i sz»[ S8 -2 [313, }} (©)

which unconditionally preserves all density-matrix proper-
ties and is also thermodynamically consistent for nonequi-
librium reservoirs [56].

Third, in the perfectly collective limit (S} — J?) and
for a completely symmetric initial state such as, e.g.,

) =10) ... @10)=10;0), %)

perfect permutational symmetry is preserved (i.e., for-
mally, the evolution is constrained to the subspace with
largest Casimir-operator eigenvalue). The other permuta-
tionally completely symmetric states of this subspace with
M large and m small excitations can be obtained by acting
with the collective raising operators on the vacuum state
|M;m) o< (J )M(J")’” |0; 0). This generates, e.g., the state
with N small and no large excitations |0; N) = [1...1) and
the state with N large and no small excitations |N ;0) =
|2...2), and many others in between [for detailed exam-
ples, see Fig. 1(b) and Appendix C]. In particular, the states
in this subspace are nondegenerate and thereby [2] their
populations obey a Pauli-type rate equation of the form

PMm == E RMm,M’m/PM/m/
M/m/

- Z RM/m’,MmPMm’ (8)

M'm’

where Py, = (M;m| p |[M;m) and the transition rate
from |[M';m') to |[M;m) is given by Ry =
N 2 A
S [ | M ml T2 (M) + (=) M5 m1
o, m')
obtained by evaluating Eq. (6) in the fully symmetric basis
|M ; m) (for details, see Appendix D 3). As Pauli rate equa-
tions can be obtained from microscopically derived LGKS
equations in special cases (they always result for nonde-
generate Hy, here applied to isolated subspaces), they also
obey their favorable properties, made manifest, e.g., in the
fact that the rates for every reservoir respect local detailed
balance [57]. To obtain the coefficients in Eq. (8), we
require the action of the collective ladder operators in the
symmetric subspace [cf. Fig. 1(b)]. They can be evaluated
by representing the symmetric subspace with two bosonic
modes by means of a generalized Holstein-Primakoff trans-
form (see Appendix E), which yields

> 0. This rate equation can be directly

JEIMim) =/ (N =M —m)(M + 1) M + 1;m),

TS IM;m) = (N =M —m)(m+ 1) IM;m + 1),

¥ \M;mYy = /(M + Dm M + 1;m — 1), o)
JMim)y =N =M —m+ DM [M — 1;m),
JEIM;m) = (N =M —m+ Dm|M;m— 1),

TV IMym) = VM(m+1)|M — L;m+1).
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Keepingm = 0and M =/, + N/2 forjj’:, or keeping M =
0 and m = j. + N /2 for J¢, or keeping M +m = N and
M —m = 2j, for jj[‘, we see that the transitions along the
red, blue, or green triangle facets in Fig. 1(b), respectively,
precisely reproduce the usual su(2) Clebsch-Gordan coeffi-
cients of the Dicke states with j = N /2. Accordingly, our
model also includes the Dicke superradiant relaxation of
two-level systems [9,10,58] if we couple to only one reser-
voir. These Clebsch-Gordan coefficients are largest when
j- = 0 (i.e., for one green, red, or blue bath, they become
maximal in the middle of the respective green, red, or blue
triangle facet in Fig. 1(b). Accordingly, triangles where
all coefficients are large have m ~ M ~ N /3. In Fig. 1(b),
such a central cycle is marked (shaded) and our main find-
ings are based on the properties of these most productive
cycles.

Finally, we also use a coarse-grained rate equation
[59] valid for infinite temperatures of the work reservoir
1, (A — §) — oo (for details, see Appendix D 4):

Qn = Z RZi/Qn/ - ZR;E%nQ"’
n n

Qn = ZPMm8M+m,na

M,m

(10)

where the mesostate probabilities O, are occupations of
states with the total number of n (small and/or large)
excitations and 874, denotes a Kronecker symbol. This
reduction is possible because in this limit, the transitions
along the green lines in Fig. 1(b) become predominant,
such that all populations connected by green transitions
become identical. The nonvanishing coarse-grained tran-
sition rates then become

DN —
R =[Te(l4n) + Tu(l + nh)]Wa

. DV 41—
RE = Mo+ ) EDE L0y

where I'), = I',(+,) and n, = n,(+2,), with 0 <n <
N — 1 in the first line and 1 < n < N in the second line,
respectively. The coarse-grained rate equation provides
a tremendous reduction of complexity by mapping our
system for n,, — 0o to a tridiagonal rate equation and
we provide analytical solutions for the cooling current in
Appendix D 4.

We are predominantly aiming at the steady-state solu-
tions to Egs. (5), (6), (8), and (10) in nonequilibrium sce-
narios. While it is straightforward to evaluate the energy
currents /I (f) entering the system from balances of the

system energy d/dt <I:IS> = >, Iy 5(®), we also introduce

microscopically derived counting fields in Appendix D,
from which we demonstrate how to obtain the energy

currents leaving the reservoirs, I, = —d/dt <ﬁl §>, and their

. .2
fluctuations Sy = d/dt |:<(H 5)2> - (H » > i| in Appendix F.

IV. RESULTS

In the collective and steady-state limits of the fully sym-
metric case (wWhere the stationary solutions of the LGKS
[Eq. (6)] and Pauli [Eq. (8)] equations are identical), we
can establish (see Appendix G) that the stationary currents
are tightly coupled,

- A—6§- - A
Iy =——1I¢, It=-=If, (12)
) )
and that the N-qutrit QAR is subject to the same cooling
condition as a single-qutrit QAR (see Appendix D 3):
BrA > Buw(A —8) + Bcd. (13)
Together with the inherent assumption 8. > B, > B,, this
defines an operational cooling regime. Due to the tight
coupling, we only quantify the cooling current below.

Our main result, however, is that, within appropriate
regimes, the collective features of our model can support
a quadratic scaling of the stationary cooling current with
the number of qutrits NV (see Fig. 2). There, we approach
the problem with methods of different complexity, such as

v
v"vv
103 N =80 w7
< vvv
’“|I_T 0 v
- 0 20406080-_vY 7
g 102 va e
= m_y -7
3 v -
5} V?V V¥ Coarse-grained rate equation
o
éo 10" ,“‘;3‘\ Full rate equation/Symmetric LGKS
= - _-] Symmetric Redfield
o = - X .,
o . Pitte @ Seccond-subspace LGKS
©) 0 ® '@»/’ <> Second-subspace Redfield
10 - ® Fullsystem LGKS
’/’é/ O Full-system Redfield
@
10° 10! 102 10°

Number of qutrits N

FIG. 2. A double-logarithmic plot of the dimensionless sta-
tionary energy current entering the system from the cold reservoir
(cooling current) versus the number of qutrits N using different
approaches and initial states (symbols; not all orange circles and
blue triangles are shown). The dashed violet curves represent the
analytical expressions for n,, — co from Eq. (D29) in the lim-
iting cases N < n and N > n. The dashed red line represents
the linear cooling current scaling generated by N independent
qutrits. Parameters: I'. =T, =T, = 0.16, A = 108, n. = 10,
n, = 1, and n,, = 100. Red pentagons correspond to averages
over 100 realizations (the resulting error bars are negligibly
small) with random-phase couplings such as Eq. (3) with z} =
¢ and randomly distributed ¢ € [-0.1,40.1].
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the full Redfield treatment, the LGKS treatment, the rate-
equation treatment, and the coarse-grained rate-equation
treatment. We see that all methods coincide for the case
N =1 (bottom left), where a simple rate-equation treat-
ment is sufficient (see Appendix A). For larger but still
small N, all methods applicable for a fully collective cou-
pling predict a faster-than-linear growth of the current with
the number of qutrits N, making manifest the quantum
boost of the working fluid. In Appendix H we empha-
size the quantum nature of this effect. This is seen both in
the LGKS (orange and green filled symbols) and the Red-
field (orange and green hollow symbols) approaches. The
perfect agreement of the LGKS and Redfield approaches
(solid versus hollow symbols) demonstrates that in the
considered weak-coupling regime, the effect is not just a
consequence of the secular approximation. Furthermore,
for collective couplings, we also see that the cooling cur-
rent in the fully symmetric subspace [orange symbols, gen-
erated with ladder operators from the state given in Eq. (7)]
is larger than that originating from a subspace with the
second-largest Casimir-operator eigenvalue (green sym-
bols), which we construct by acting with collective ladder
operators jj‘; on the representative state

1
VN
L4 2T =D/N |10...0>], (14)

|Wyep) = [eiZ”O/N 10...01) +¢>7/¥ 0. 010)

until no new orthogonal vectors are found (analogous to
the discussion in Appendix C).

As one may expect for quantum features, the quadratic
boost is fragile in some aspects. First, we observe, for
large N, a crossover to linear scaling (filled orange circles
and blue triangles), which we can link to the fact that for
fixed temperatures and increasing N, the most productive
cycles with m ~ M =~ N /3 are no longer populated signif-
icantly (the insets display stationary populations for N = §
and N = 80). Similar inhibitions of superradiant behav-
ior for large N have been observed elsewhere [18,60].
For the limit of an infinitely hot work reservoir (blue tri-
angles), this can even be understood analytically (dashed
magenta curves; see Appendix D 4). Second, a more severe
restriction appears when we relax the assumption of col-
lective couplings by allowing for random phases in the
coupling operators (red symbols). Then, the Liouvillian
no longer decouples the subspaces of different Casimir-
operator eigenvalues and already, for weak deviations from
the collective limit, the steady-state current no longer
scales quadratically. In this limit, the steady state is close
to a product of single-qutrit states (see Appendix H), such
that major parts of the steady state populate less productive
subspaces. When the deviations from the collective limit
are small, at least two time scales will emerge: a fast one

that describes the evolution within the subspaces of con-
stant Casimir-operator eigenvalue, while the slow one(s)
will describe the leakage between the subspaces of dif-
ferent Casimir-operator eigenvalues. Thus, initializing the
working fluid in a permutationally symmetric state such
as 10;0) and operating the device only for a finite time,
between these two time scales, may sufficiently populate
states near [N /3; N /3) and then still yield a quantum boost.
However, to stabilize the quantum enhancement at steady
state and to resist small perturbations, fine-tuned interac-
tions may be required, as exemplified at the end of this
section.

To analyze the device from the thermodynamic perspec-
tive, we note that LGKS and the derived rate equations
are thermodynamically fully consistent. At steady state,
the first law just implies that the stationary energy currents
add to zero—)_ I} = 0 [see Eq. (12)]—and the second
law implies that the stationary irreversible entropy produc-
tion rate is non-negative: 6; = — Y B,Ix > 0 [56]. As,
specifically, in the symmetric subspace the currents are
tightly coupled [see Eq. (12)], the coefficient of perfor-
mance of the device is given by x = (I5)/([})OUf) =
3/(A — 8)@(75). One can check that in the regions of
cooling functionality (& > 0), the coefficient of perfor-
mance is bound by its Carnot value via the condition that
o; > 0. Tighter bounds can be obtained by considering the
thermodynamic uncertainty relation [61-63],

S
Gt >0 (15)

Ip?

Given the fact that all currents are tightly coupled, we use
it to lower bound the fluctuations for, e.g., the cooling
current as

5T¢
BrA = Be8 — Bu(A —8)’

(16)

Sre >
Sie =

which proves that the fluctuations inherit the superexten-
sive scaling of the current (if present). As the eigenvalues
of the Pauli rate equation cannot scale faster than N2, we
also find that the fluctuations cannot grow faster than N2.

Therefore, the relative fluctuations [64] /SIE /1 & are also

affected by this bound. Numerically, we find that the fluc-
tuations approximately follow the scaling of the current.
Then, it follows that these are suppressed most strongly in
the regime of quadratic current and noise scaling. Due to
the tight-coupling relations in Eq. (12), we find the relative
fluctuations to be alike for all reservoirs [65].

Thus, if in practice one would like a device with a large
cooling power, a look at Fig. 3 suggests that our device
should be operated at B, Z . Likewise, one would like
to have a device with a small product of relative fluctua-
tions and overall entropy production, as quantified by the
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FIG. 3. A contour plot of the symmetric subspace cooling cur-
rent for N = 6 versus the inverse dimensionless temperatures of
hot 88, and cold 88, reservoirs. Cooling is achieved in the region
bounded by the outer solid lines, which represent the condi-
tion given in Eq. (13). Parameters: I'. = I', =T, and A = 104.
Solid contours, #n,, = 100; dashed contours, n,, — 0.

uncertainty quotient in Eq. (15). We find that this quotient
is smallest at the other boundary of the cooling region,
where B. < Bi(A)/8 — Buw(A —8)/8 (see Fig. 4). Thus,
our model recovers the usual trade-off between accuracy
and performance.

By adding specifically tailored interactions to the sys-
tem, we can energetically favor the maximally symmetric
subspace and also the cycle with the maximum current.
One example for such an interaction could be

2
Aﬁls=ac|:w—éz:|+0{p|:(]§—ﬁA>
No& > /N PRAYLEN
#(5-0) +(5-1) (3 5)],
(17)

with coefficients a¢ > 0 and ap > 0 penalizing the devi-
ation from the maximum Casimir sector and the central

TUR

%UO 6 relation

@ 0.6

6.5

)

205 6.0
S g 0.4 5.0
=g o3k 4.5
Qoo 0.3
SR 4.0

£ 02 3.5

—

< 0.1 — Full rate equation 3.0

= Coarse-grained rate equation 2.5

0.0 2.0

00_01 02 03 04 05 06
Hot-bath inverse temperature g ,0

FIG. 4. A contour plot analogous to Fig. 3 but showing the
thermodynamic uncertainty relation in Eq. (15) in the cooling
region. Parameters as in Fig. 3.

1000
E/s
500

FIG. 5. A visualization of Hs + AHg for N = 10 and within
the maximally symmetric subspace. The bottom plane depicts the
energy landscape in the absence of a penalty Hamiltonian and
the energetically most favorable triangle (red) is at the lowest
excitation numbers. The curved surface demonstrates the mini-
mal penalization of the most productive triangle (blue), the plane
defined by it being parallel to the plane without interactions.
Parameters: A = 108 and ap = 20§ (the curved surface has been
shifted upward for clarity).

triangle, respectively (all operators in square brackets are
positive semidefinite). For the case where N =3k + 1
with integer £ (for other configurations, one may adapt
the penalty Hamiltonian accordingly), the three states
of the maximum-symmetry sector, |k; k), |k;k+ 1), and
|k + 1; k), have the same minimal energy penalty (see the
blue triangle in Fig. 5). Therefore, it cancels out in the dif-
ference of energies and the corresponding transition rates
are the same as without any interaction. Provided that the
energy penalty is strong enough, B,ac/p > 1, the other
states with larger energy penalties can be omitted from
the considerations and we obtain the current for a sin-
gle QAR as discussed in Eq. (A1) but with boosted rates
I, — I, (N +2)/3)%, which result from the enhanced
Clebsch-Gordan coefficients [see Eq. (9)] in the central
cycle. Accordingly, for N qutrits, the cooling current will
be boosted,

- (N +2)\ -
7oV ~ (—3 ) e, (18)

compared to the current from a single QAR, fg’l. As we
scale all coupling constants, the fluctuations (and all higher
cumulants) will increase likewise, such that both 7§ oc N2
and Slg o« N2.
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V. CONCLUSIONS

We analyze an ensemble of N identical qutrits for its
suitability as a QAR using different approaches. The most
striking effect is a quadratic scaling of the output (cooling
current) with the number of qutrits for a permutationally
symmetric configuration and collective system-reservoir
couplings. This collective phenomenon can be understood
analogously to the Dicke superradiant decay of two-level
systems—here, put to use in an engine by means of col-
lective couplings. In contrast to quantum computers sub-
jected to decoherence, the performance of the QAR is
only reduced to linear (classical) scaling for too large N
(changing other parameters may increase the critical size)
or for a not perfectly collective coupling. For nonidenti-
cal qutrits, we would expect a similar breakdown [66].
Compared to a qubit implementation [46], we want to
summarize some advantages of collective qutrits. First,
the initialization in the proper subspace requires just a
permutationally symmetric state (no entangled states as
in Ref. [46]), such as, e.g., |0...0). Second, to see the
speed-up, we do not require fine-tuned interqutrit inter-
actions (although they can be used to stabilize the setup
against perturbations). Third, in contrast to the interacting
qubit system, the (noninteracting) multiqutrit system only
provides three transition frequencies, such that selective
driving appears easier to implement.

On the technical side, we confirm the effect by means
of a variety of methods. The use of a bosonization tech-
nique is helpful to compute the transition rates analyt-
ically. While the behavior of the collective limit can
be well understood with analytical approximations and
allows us to treat quite large systems, treating the non-
collective limit requires significant resources. We bench-
mark our results by also considering the non-LGKS Red-
field master equation. We find that the LGKS and Red-
field results do not differ much in the considered weak-
coupling regime. Beyond stronger system-reservoir cou-
pling strengths, one may also expect larger deviations
outside the tight-coupling regime, where the reservoirs no
longer drive the individual transitions.

As an outlook, we think it could be interesting to con-
sider laser-driven QARs [67,68] or investigate the fluctua-
tions of energy currents beyond the tight-coupling regime
[69] or for detuned levels [70] in greater detail. One may
also be tempted to address the strong-coupling regime
beyond phenomenological models [71], e.g., by using reac-
tion coordinates [72]. This, however, should be performed
while maintaining a lower spectral bound on the global
Hamiltonian for all coupling strengths and values of N, in
which case we expect modifications to Eq. (1) [49].
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APPENDIX A: A SINGLE THREE-LEVEL QAR

For the case of a single qutrit, N = 1, one may derive

a rate equation P = RP for the occupation probabilities
P = (Py,P1,P,)" of these states (Redfield, LGKS, and
Pauli rate equations then yield the same dynamics for these
probabilities).

For the normal configuration shown in Fig. 1(a, lower
panel), where the cold reservoir drives transitions between
the lowest two states |0) <> |1), the hot between the lowest
and highest |0) <> |2), and the work reservoir transitions
between the two excited states |1) <> |2), the rate matrix
becomes

R(TO FCe(T+no)  Th(l +nyp)
R=[rm.  RL maaam|. @D
thh 1_‘wnw R;Z

where n, = n,(R2,) and the negative diagonal elements
are fixed by demanding vanishing of the column sums
(this implements overall probability conservation). In the
rate matrix, we can clearly distinguish the contributions
of the individual reservoirs. From this, the energy cur-
rent entering from, e.g., the cold reservoir can be obtained
by standard techniques. One may compute the current via
Ip(H) = Zl] (E; —E; )R;,CP]» (), where RY = R*|r,—r, =0
is the cold-reservoir rate matrix. Alternatively, one may
introduce energy-counting fields Rt — R*(x) by replac-
ing I.(1 +n.) — Ce(1 + n.)e % and Tene — Tengetox
in the off-diagonal elements of the rate matrix and com-
pute the current via I5(f) = —i(1, 1, 1)(8,R* (x)) | =oP(?)
(see also Appendix F). With this formalism, it is possi-
ble to compute also higher cumulants of the distribution
of energy transfers [73]. In the limit of n, — oo, the
long-term (stationary) current reduces to

jl?io _ Fcrha(nc - nh) . (AZ)

LCe(1+3n) + Tp(1 + 3n,)

For the case where the cold and work reservoirs are
exchanged, £y = 0, £; = A — §, and E; = A, depicted in
Fig. 1(a, upper panel), the rate matrix is given by

R(;() I‘w(l +nw) 1_‘h(l +nh)

Fwnw Rl_l rc(l + nC)
I'.n. R5,

R = (A3)

yny,

and an analogous calculation leads, in the case of n,, —
00, to a slightly different cooling current:
Z¢,00 L yé(ne — nyp)

16 = : (A4)
FC(Z + 3nc) + Fh(2 + 31’1/,)
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Both currents have the same cooling condition,

ne > Ny < ,Bc < ﬁhA/a’ (AS)
which—together with B, > B,—defines an operational
window for cooling the coldest reservoir. This is a
sufficient and necessary condition for n, — oo and
N=1

For finite n,, the calculations are a bit lengthier but
fully analogous. For both configurations, one obtains the
sufficient and necessary cooling condition

Buw(A —8) + s < BrA, (A6)
which reduces to the previous condition as f,, — O.
Together with the underlying assumption 8. > Sy, this also

defines the bounds on the window of cooling for larger N
(cf. Fig. 3).

APPENDIX B: COLLECTIVE SPIN
REPRESENTATION

For a single qutrit, we can express the system Hamilto-
nian as

5)i3 +(A+9) A +(A+6)1
2 23 3’

il =(a (B1)

where the A3/ are the two diagonal Gell-Mann matrices.
Using the collective qutrit operators given in Eq. (4), we
can write the system Hamiltonian as

N A 1 ~ N
Hg = (A —68)J3 + —=(A + 8)Js + g(A +48)1. (B2)

V3

Furthermore, we define collective raising and lowering
operators:

N
Jh= S5 =0y s,

N
Je =Y "k, =Je ki, (B3)

Jy=> "k, =J ik,

for which we find interaction-picture dynamics analogous
to Eq. (D2).

In the collective limit (where S Jv = jji +Jv), it
follows that the quadratic and cubic Casimir operators of

the su(3),
8
-y
a=1
B EAVAVNS

afy

(B4)

will be automatically conserved, to all orders in the system-
reservoir interaction Hamiltonian. Depending on the initial
conditions, this strongly reduces the Hilbert-space dimen-
sion that needs to be treated explicitly. For example,
assuming that our system is prepared, e.g., in the collective
ground state of Eq. (7), we can constrain ourselves to the
subspace of (N + 1)(N + 2)/2 permutationally symmetric
states, which is significantly less demanding than treating
3% basis states [74,75].

We label these states analogously to the maximum-
angular-momentum Dicke states (known from collective
two-level systems) by [M;m) with 0 < M large and 0 <
m small excitations such that 0 < M + m < N: specific
examples are provided in Appendix C. These states are
eigenstates of N and Nj (or alternatively J; and Jg) and
the Casimir operators. In particular, we have

Na |M;m)y = M |M;m), Ny |M;m)=m|M;m),

n M —m

JsIM;m>=[ ]IM;m),

R J3 N

Js IM;m) = | —(M — — | IM;

g [M;m) [2( )~ |M;m), (B5)
NN +3

C2|M ) ( 3 )|M>m>5
NN +3)2N + 3

&Mz my = 1)§ ) \Mimy.

Clearly, they are also eigenstates of the system Hamilto-
nian Hg |M;m) = (M A + md) |M; m).

APPENDIX C: EXAMPLE STATES FOR FINITE N

In total, the Hilbert-space dimension for N qutrits is D =
3N, This can be decomposed by counting the number of
states with M large and m small excitations

N!
Ny = , (CD)
(N —M —m)!M'm!
N N-M
and indeed we have 3% = Y > Ny,,. However, the
M=0 m=0

subspace of completely symmetric states under permuta-
tions has only

N+ DN +2)

> (C2)

N, symm —
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elements, which are closed under the action of J2. This
subspace is characterized by the largest Casimir-operator
eigenvalues. Therefore, many states belong to subspaces
that are not symmetric under permutations: see below for
N = 2and N = 3, where we adopt the convention of label-
ing the local eigenstates of the single-qutrit Gell-Mann
matrices 2> and A° as |0), 1), and |2).

1. Example states for N = 2

For N = 2, we have six out of the 9 = 3? states in total
belonging to the completely symmetric subspace

10;0) = 100), 10;2) =11}, [2;0)=122),
1 1
0;1) = —[|01) +[10)], [1;0) =—= [|02) + [20)],
10; 1) ﬁ[l ) +HI10)], 11;0) ﬁ[l ) +120)]
1
L 1) = —[21) +112)], C3
1) ﬁ[l )+ 112)] (©3)

and due to the complete permutational symmetry of the J?,
the evolution of these six states is closed under collective
couplings. These states are eigenstates of C; and C3, with
eigenvalues 10/3 and 35/9, respectively. Trivially, cyclic
permutations leave these states invariant. The two-boson
representation from Appendix E with N, =2 and N, =0
suffices to represent this subspace, with M and m represent-
ing the eigenvalues of N, and Nj, respectively. One can
check the action of the ladder operators in Eq. (9) among
them.
Additionally, we have the three antisymmetric states

1
W7) = —[|01) — |10
|¥7) ﬁ[l ) —110)],

1 n
W) = 5 [121) — [12)] = J" |¥7),

1
|Wo) = —=[102) —

/2

the evolution of which is also closed under collective
couplings. These states are eigenstates of the Casimir
operators C, and Cs, with eigenvalues 4/3 and —10/9,
respectively. Cyclic permutations of the qutrits equip these
states with a phase factor of —1 = ¢2"/2, In the four-boson
representation |M,m, Q,q), with N, =0 and N, = 1, we
would identify them with the states |\W;) = |0,0,0,0),
[Wg) =10,0,1,0), and |¥g) = —|0,0,0, 1) [cf. Eq. (E2)].

(C4)

120)] = JY |W5),

2. Example states for N =3

For N =3, we can build the completely symmetric
subspace by starting from the representative state |W) =
|0;0) = |000) (all atoms in the ground state) and we can
generate, e.g.,

1
0;1) = —=T[]001) 4 010) + [100)],
10;1) ﬁ[l ) +1010) 4 [100)]

1 4
= —J10;0),
N

1
—[ |201) 4 |012) 4 |120)

L =—=
+|O21)+|210)+|102)]
— Tk,
V2t

1
1;2) = —[]211) +112) + 121
11;2) ﬁ[l )+ 1112) +121)]

| P
=—=J{111),

7 (C5)

and further states. In that way, we obtain (3 + 1)(3 +
2)/2 = 10 completely symmetric states and we can check
the coefficients between them, given in Eq. (9). These are
eigenstates of the Casimir operators C, and C3, with eigen-
values 6 and 9, respectively, and can be represented by two
bosonic modes |[M;m), with 0 <M +m <N,=N =3
and N, = Q = ¢ = 0. Arbitrary permutations leave these
states invariant (in other words, they equip them with a
phase of 1).

In addition to these, we have states with the same num-
ber of excitations as |0; 1) but that are orthogonal to each
other and also to |0; 1). From these, we can also build fur-
ther sets by acting with the ladder operators. For example,
starting from |\, ), which is orthogonal to |0; 1), we obtain
in total seven states,

1 ) )
|W1) = —= [1001) +€*"/* [010) +€""/3 |100) ],

V3

N el . .

JE W) = —=[110) 4™ [101) +€™*3 011)],
V3

R V2 . .

T 1wy = —[ 1201) +¢27/3 1012) +€*/3 [120)
V6
+1021) +€'27/3 |210) +€47/3 |102) ]

. 1

Ty W) = = [1002) 42771020} 7/ 1200)],
eir[

JETC W) = [|112> +e™ 23 [121) +€™7 211)],

JETY W) = [|220> +e%3 202) +e™*3 022)],

JETh W) = = [1221) 4273 212) +€47/3 122)] .

(Co)

sl &l 8]
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Cyclic permutations equip these with a phase of e27/3.
Further states can be generated when starting from |W3),

which is orthogonal to [¥;;) and |0; 1):

|Wis) = 7 [1001) +€"772 [010) +¢™ 1100)],

~ el]‘[ . .

JS Wis) = — (1110) +€™*2 [101) +et727 011)],
V3

. V2 ‘ .

T W) = —[ 1201) +¢743 [012) €723 120)
V6
+1021) +€743 1210) +€7%/3 1102) ]

. 1

TE W) = 7= [1002) +¢™43 1020) +¢"7>* 1200)],
eirr

T |Wig) = [|112) +e™3 121) +e ™23 211)],

JET Wg) = [|221) +e™3 212) +€7% |122)],

JETY W) = —= [1220) +€™4/3 202) +€™2/ [022)].

(€7

sl bl 8l

Under cyclic permutations, these obtain a phase of e!+7/3.
We have two additional states with exactly one small and

one large excitation that are orthogonal to |1; 1), J ﬁ [Wyy),

and jf |Wg) and to each other, and that have similar
behavior under cyclic permutations. These are as follows:

1 . ‘
|Wys) = —[ 1201) +€'72/3 |012) +€74/3 |120)
NG
—1021) —e™2/3 |210) —e'™*/3 |102) ]
1 . _
W) = %[ 1201) 4+¢74/3 |012) 46723 [120)

—1021) —&™*3 1210y —&™2/3 102) ] (C8)

The first one obtains a phase ¢>"/3 under cyclic permu-

tations and the second the phase ¢'*"/3. Additionally, one
can see that the states J/ |¥y;) and J" |Wig) are symmet-
ric under the state-conditional permutation 0 <> 2, whereas
the states |Wys) and I\IJ26) are antisymmetric. One can get
to |Wys), e.g., via J WJ ¢ |Wq;) and subsequent orthonormal-
ization. Analogously, |Wy6) can be reached by JJ_VJ ¢ [Wisg)
and subsequent orthonormalization. Thus, the 16 = 2 x
8 states |Wi1),...,|Wy) are closed under the action of
a collective reservoir: they have eigenvalues of Casimir
operators @2 and 6‘3 of 3 and 0, respectively. In the bosonic
four-mode representation |M,m,Q,q), the eight states
for this Casimir subspace and the given behavior under

cyclic permutations can be constructed from the subspaces
with N, =1 and N, = 1. Formally, via (M, m), (Q,q) €
{(0,0), (0, 1), (1,0)}, the bosonic four-mode representation
yields nine (six nondegenerate and three degenerate) pos-
sible states in total but one superposition of the three
degenerate states, |0,0,1,0), 10,1,0,1), and |1,0,0,0)
has a different Casimir-operator eigenvalue and can be
decoupled.
Finally, the last state is

1
W) = —[ 1012) + 120) + |201)

NG

—1021) — [210) — [102) ] (C9)

It is annihilated by JY, has the smallest eigenvalue 0 of

both Casimir operators Ci, and is also inert under cyclic
permutations. It is fully antisymmetric under the exchange
of any two qutrits and it corresponds in the bosonic four-
mode representation to the state |0,0,0,0), with N, =0
and N, = 0.

We note that in the collective limit, states such as |W»7)
remain fully inert: they are dark states [76,77]. From
the combinatorics of states, we may expect dark states
with m = M = N/3 for any number N divisible by 3.
These dark states will then have minimum, i.e., vanish-

ing, Casimir-operator eigenvalue <@2> = 0. In particular,

since the case N = 6 already hosts more than one dark
state, superpositions of these could be used to form, e.g., a
decoherence-protected logical qubit in the presence of all
possible collective system-reservoir interactions.

3. States for N =4

For N =4, we may consider Fig. 1(b) as the largest
(top) layer of all states that can be grouped in a pyramidlike
structure as shown in Fig. 6.

APPENDIX D: DERIVATION OF THE
EVOLUTION EQUATIONS

1. Redfield master equation

For multiple weakly coupled reservoirs, the dissipators
act additively, such that for a single-coupling operator per

reservoir A} = $" ® B", the Redfield-II master equation
[53] can be readily written as

p=— fow dt Y Cy(+1) [S‘V(z),S“’(t - ‘L’)p(l)]
— /Ooo dr 3 Co(~1) [,o(t)&“(t - t),S’"(t)] . (D)

where we denote the interaction picture by bold symbols
and introduce the reservoir correlation function C,(7) =
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M ,
28 =
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§ 3&/4_ﬁ-‘>273
s

FIG. 6. A map of all 3* = 81 collective basis states for N = 4
versus small and large numbers of excitations (horizontal direc-
tions) and versus the Casimir-operator G eigenvalue. The top
layer corresponds to the 15 nondegenerate states from the com-
pletely permutationally symmetric subspace with the largest
Casimir-operator eigenvalue, as shown in Fig. 1(b). It evolves
independently from the other states for fully collective tran-
sitions. The other levels are grouped according to decreasing
Casimir-operator eigenvalue, with the numbers close to the
symbols indicating the degeneracy.

Trg {e“Hz;’f?”e_iHEfB”ﬁg . In particular, for the nonin-
teracting system Hamiltonian in Eq. (2) and the coupling
operators in Eq. (3), the transformation into the interaction
picture can be made very explicit:

+iflgt &e —iHgt __ _+idt Qe
e Sie =e S,

e+1HStS§l:e—1H5t — eilAl‘Sflt, (D2)

e+1HstSIele5t — eil(A*S)l‘S:\/ﬁ.

Thus, writing the Redfield equation in the Schrodinger
picture, we obtain (cf., e.g., Ref. [78])

p=—i|fs.p0)] —; /0 T arC (o) [5".8* =000
= Z fo " drCy (=) [p@8*(0),5"]
= —i [ﬁ]g,p(t)] — Xv: /000 Cy(+1)e 7 g [S’”,S’ip]

-3 [ curnetitna 375
v 0

- Z /00 C,(—1)e 74y [pS‘i,S"’]
0
' o
— Z/o Cy(—1)et 7 gr [p:S’K,:S’“] )

To simplify this expression, one may express the inte-
gral prefactors by inserting the Fourier transform of the
correlation function C,(r) = 1/27 f Yo(w)e “Tdw and
subsequently invoking the Sokhotskij-Plemelj theorem,

(D3)

1

) (D4)

T = —P—,
¢ 2 @ 2r o

where P denotes the Cauchy principal value. This allows
to write the integrals in terms of Hermitian (real) and anti-
Hermitian (imaginary) parts, e.g.,

> +iQy T 1 1
CU(+T)6 vtdt = EV\)(""QV) + EOU (+Qv)a
’ (D3)

= . 1 1
/ Co(=1)e™ ™ dr = Sy (—Q,) — 20, (—2),
A 2 2

and analogously for the terms with Q, — —Q,. In the
above equations, the functions on the right-hand side are
then the even and odd Fourier transforms of the reservoir
correlation functions:

Yo(@) = f Cy(v)et dr,
(D6)
o, (@) :/Cv(r)sgn(r)e+i“”dr.

The Lamb-shift parts o, (££2,) are negligible in compari-
son to Hg, such that it is common practice to neglect them.
Eventually, this transforms Eq. (D3) into Eq. (5). The
Redfield equation conserves trace and Hermiticity but not
necessarily the positivity of the density matrix. For gen-
eral operators O, one can rewrite it in terms of expectation

values:
10)=+i{[#0])
S (0]
+(32[0.5°])]
S (0]
o)

Thus, it is easy to see that the above equation conserves
all operators that commute with both Hg and S”, i.e., if

(D7)
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[0, Fs] = [0,5"] = 0, one also has Tr {ép} — 0. This is

the case in the collective limit, where S J v, e.g., for
the Casimir operators 0 — é'[.

Apart from the Lamb-shift terms, the spectral coupling
densities of the reservoirs are always evaluated at their
transition frequencies, §, A, and A — §, respectively. Thus,
for our calculations in the main text (where the Lamb
shift is neglected), the actual form of the spectral coupling
density is not relevant. To confirm that the Lamb-shift
contributions are indeed negligible, we employ a special
model for the spectral coupling density. Using

4
1) 3,

M@=r2 %
@) =T ey s

(D8)

the correlation function C,(t) as well as the Lamb-shift
contribution,

oy (w) = i,P/ W(w )/da)’,
w—w

may be computed analytically (although this yields
extremely lengthy expressions). To compare with our cal-
culations in the main text, we use resonant reservoirs with
€. =36,¢, = A,and ¢, = A — § and compute the Redfield
current in Fig. 2 with Lamb-shift corrections included (set-
ting &, = €,). For the other parameters chosen as in Fig. 2,
we find the effects of the Lamb-shift contributions to be
negligible.

Similar to the rate-equation discussion in Appendix A,
the cold-reservoir energy current may now be computed
using different options. Adopting the systems perspective,
one may obtain it by computing the system energy balance
from Eq. (5). The energy current entering from the cold
reservoir then becomes

(D9)

IE,S — %Tr {I:Is ([S'ip,gc] + [Sﬁ,oS'i])}

R (505« [50.5])
(D10)

and analogously for the other reservoirs. Alternatively,
we may microscopically derive energy-counting fields
[53,78,79], which adopts the perspective of energy
leaving the reservoir and yields a tilted Liouvil-
lian £ — L(x). In Eq. (5), this would effectively

lead to the replacements ([:9", ,03’1] =+ [3‘_ ,0,3’"]) —
(S‘“pgie*i‘sx + 8¢ pSce—idx — pS‘j’r:S'“ — S"Si,o), and the
analogous one ([S‘jrp,gc] + [:9", ,OS'iD — (SjrpS‘Ce*i‘;X
+ §¢p8¢ etiidx — S"“Si p— p3‘0_3'0>_ The current (and noise)

10° f e
3 _ B0V
T~ 10 21 X’XXXX
+ < S
< Q| 4 /><"/
: = 10 o
N
o R X7
™~ 6 XX
10 X ¢ Refrigelfator with N = 6 qutrits
[l — — ~ (/) line
></ 1 1
10! 1072
T/

FIG. 7. A double-logarithmic plot of the sum of all stationary
Redfield energy currents leaving the reservoirs versus the cou-
pling strength I for N = 6 qutrits. The apparent violation of the
first law scales as I'? (dashed line), which is beyond the accu-
racy of the Redfield equation. Parameters: ' =T, =T, =T,
A =108, n. =10, n, = 1, and n,, = 100.

can then be computed using the methods in Appendix F.
For the current leaving the cold reservoir, this yields

T.5(1+n,
If = _M]}{
2

Scp§i+§ip§"}

I'.dn,
+

Tr {Sipﬁ" n Scpﬁi} . (D11)

In general, we have Iy # Iy ¢ for the Redfield equation.
Moreover, while by construction the stationary currents for
the system add to zero, Y 1, ».s = 0, this is only approxi-
mately true in the Redfield approach for the energy cur-
rents leaving the reservoir. In Fig. 7, we plot the sum
of energy currents leaving the reservoirs (i.e., the devi-
ation from the first law at steady state) versus the cou-
pling strengths to the reservoirs (assumed equal). One can
see that the deviation from energy conservation becomes
smaller when the coupling strength is reduced. Moreover,
it scales with I"? (the Redfield approach is accurate to order
I'), such that this apparent violation can be considered as
a truncation artifact and does not indicate a violation of
the first law in the weak-coupling regime, where, for our
model, the Redfield and LGKS solutions agree.

2. Secular master equations

Under a secular approximation, Eq. (D3) simplifies to
0 . A A
pA— Z/ drCy(+1)e [Sz,sip(r)]
0
v

) Z /(;oodtcu(_l_t)e—o—iﬂuf [gijip(t)]
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-y / " drCy(—ryet [p(z)Si,Si]
—Jo

— Z/OO drCy(—1)e T [p(z)Sv S_]
0

GU u)’\u v u(+ ) v ow

= - Z[ 88 4 2—5 8, }
Al 1 (~ &
+ ijyv(mv) [SKpSi—E {S;sz,p}]
+Y (=) [Sipﬁi—% {Si&i,p}] . (D12)

Back in the Schrodinger picture, we thus have

+ Z V() [Svpiv:—% {S;Sz, p}]
+2n Q)[ pS”——{S”S“,p}], (D13)

which upon neglecting the Lamb shift ¢,(£2,), reduces
to Eq. (6). This equation is of LGKS form and thermalizes
the system when all reservoirs are at the same equilib-
rium temperature. Furthermore, when evaluating only the
populations of p in the system energy eigenbasis for situ-
ations where the system Hamiltonian is nondegenerate (at
least within a conserved subspace), we obtain the simple
Pauli-type rate equation as exemplified in Appendix D 3.

In the collective limit, the associated effective non-
Hermitian Hamiltonian,

/] 1 Tv v v v
Har = fls = Z [Fv(l + nv)J+J_+FUan+J_] ,

(D14)

is diagonal in the maximum-symmetry subspace Hes
M ;m) = Ay IM;m). Its eigenvalues can be calculated
analytically via Eq. (9) and their imaginary part—related
to the waiting-time distribution [80] between any two
jump events [81]—indicates that for fixed thermal reser-
voirs n, and coupling strengths I'),, the waiting time is
minimized for M ~ m ~ N /3 (maximum engine activity).
Specifically, from the imaginary part of

iN (N
A%% = —(A +4) — 33 (; + 1) [Xv: I, (1 +2nv):| )
(D15)

we can conclude that the lifetime of the states participating
in the central cycle scales as T o« N 2.

The currents can now be computed by analogy with
Sec. D 1, i.e., either by the energy flowing into the system
from the cold reservoir,

~ ~ ~ 1~ ~
It =Tl +n)Tr {HS [SipSi—z {SiSi,p}“
~ ~ ~ 1 (~ -
+ Tun, Tr {HS [Sfr,oSc—E {ScSi,,o}:“ . (D16)

or by assessing the energy flow out of the cold reservoir
with counting fields $¢ pS‘i — 8¢ pS’fre*i‘SX and S’fr,oS"’_ —
S‘fr,ogi et and then using the methods of Sec. F. The
current leaving the cold reservoir can then be obtained via
I = —iTr {E’(O) o (t)} and becomes

IS = T.én,Tr {Sfrpgi} sl + nC)Tr{ < pse }
(D17)
In contrast to the Redfield case discussed above, we find

Iy = I 5, such that we can unambiguously write the first
law of thermodynamics as

iTr {ng} Zl”(t)

Using Spohn’s inequality [82], one can also establish the
second law of thermodynamics:

(D18)

d
—Tr{—pInp}

. (D19)

- Y Bl =0,

These equations bound the coefficient of performance of
the QAR by its Carnot value.

3. Pauli rate equation

For the fully symmetric case, the derivation of a rate
equation becomes particularly simple. We can formally
insert a diagonal density matrix in the fully symmetric
subspace

p = Pum|M;m) (M;m|

M.,m

(D20)

into Eq. (6), which, with the help of Eq. (9), yields

Prim = ve(=8)(N — M — m + DYmPy; 1
= Ye(=8)(N =M — m)(m + )Py m
+ Ve(F)N =M — m)(m + 1) Py i1
—Ye(HFO)WN — M — m+ 1)mPyy
+ Vv (=A)YN =M —m+ 1)MPy—1
= (=A)YN =M —m)(M + )Py

034023-13



DMYTRO KOLISNYK and GERNOT SCHALLER

PHYS. REV. APPLIED 19, 034023 (2023)

+ (AN =M —m)(M + D)Pyry1m
— Y(+FAYN — M —m + D)MPyy

+ Yw(=A + )M m + )Py i1

— Yw(—=A + )M + D)mPy

+ Yw(+A = )M + D)mPyri1,m—1

— Yw(+A =M (m + 1) Py . (D21)
This is precisely the Pauli-type rate equation [Eq. (8)],
where we note that rates outside allowed states do natu-
rally vanish. In particular, we can identify the transitions
that increase the system energy as

Rotmavy,aumy =Tene - (N =M — m)(m + 1),
Rovsvmy,oamy = Tanpy - (N — M —m)(M + 1), (D22)
R(M+1,m—1),(M,m) =T'yn, - m(M + 1):

while transitions that decrease it are always a bit larger due
to local detailed balance:

Rotmy,mmety =Te(l +n0) - (N =M —m)(m + 1),
Rotmy,ot+1my =Th(l +n0p) - (N =M —m)y(M + 1),

Rotmy,m+1m—1y = D1 +ny,) - m(M 4 1).
(D23)

Currents can be obtained by analogy with the case N = 1
discussed in Appendix A. One may compute them via the
energy balance of the system, which, for a system subject
to the rate equation P; = le > [RZ P — Rj“,.P,-], with R},
denoting the transition rate from system energy eigenstate
j to system energy eigenstate i triggered by reservoir v,
generically yields the expression Iy =}, (E; — E;)R; P;.
Alternatively, one may also insert counting fields (or use
the ones from the LGKS description), which effectively
corresponds to the replacement I'.n. — I'en.e™®% and
(1 +n.) = Te(1 4+ n.)e % in the off-diagonal matrix
elements of the rate matrix and then use the methods
of Appendix F. As with the previous section, these two
approaches are equivalent and thermodynamically consis-
tent.

For multiqutrit systems, the exact computation of the
steady state is already cumbersome for the collective limit
and the Pauli rate equation [Eq. (8)], such that we do
not provide analytical results for the currents. However,
in Appendix G, we perform a cycle decomposition to
establish tight-coupling relations between the currents.

4. Coarse-grained rate equation

For the case where the work reservoir is infinitely hot,
n,, — 00, the associated green transitions in Fig. 1 become
predominant and along these transitions (with m + M =
const) the populations become approximately equal (but

still remain conditioned on the total number of excitations).
This allows us to coarse grain [59,83] the populations
by summarizing all states with the same total number of
excitations,

Qn = Z 8M+m,nPM,m~ (D24)

M,m

As the states connected by work-reservoir transitions equi-
librate much faster in this limit, we have, for their condi-
tional probability,

1
= . D25
n+1 ( )

. P M,m
lim
Tlyy—> 00 Qn

M+m=n

Summing over the respective states of Eq. (8) allows us to
obtain a coarse-grained one-dimensional Markovian rate
equation:

PM,mfl

0,=Y 8M+m,n|:yc(—3)(N — M —m+ Dm Q-1

M n—1

PM,m
On

PM,m+1

—Ye(=8)N =M —m)(m + 1)

On

+ Ve (F)N =M —m)(m + 1)

Qn+l

n+1

On

PM,m
On

PM—l,m

— Ye(+N =M —m+ Dm

+ (AN —-—M —m+ )M

Qn—l

n—1
Py
m Qn
On

PM—H,m

—(=DWN =M —m)(M + 1)

+i(FAOWN —M —m)(M + 1) Ont1

n+1
Py
sm Qn
O
Pyr—1mt1
On
Py
sm Qn
0

n

— Y (+AYN =M —m + DM

+ V(A +8)M(m+1) O

— (A +8HM + )m

Piritm
F V(A — M + Hm—LEL g,

On

Pg "0,]

— Yw(+A = )M(m+1)

n

Ny—>00

cg cg
~ Rn,n+1Q”+1 —i_Rn,n—IQ”—1

= R, + R0 (D26)

where n € {0,1,...,N} denotes the total number of exci-
tations and we insert the conditional probabilities. In the
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coarse-grained rates, the mesostate-internal transitions due
to the work reservoir cancel out, whereas the other reser-
voirs determine the transitions between mesostates:

5M m,n
R =20 [Te1+nOO = M = m)@n+ 1)
M,m

+ Tu(l +m)(V = M = m)M + 1],

é
RE = 3 P Con (N = M = m+ Dm
M, m

4 Ty (N — M —m + I)M], (D27)

which evaluate to Eq. (11). Note that the case R(c)’g_1 =0
has to be treated separately, as the state with zero excita-
tions does not need to be coarse grained. As a sanity check,
we remark that for N = 1, the proper coarse-grained rates
(which one obtains by applying an procedure analogous to
the rate matrices in Sec. A) for a single QAR are repro-
duced. We note that the resulting effective rates for cold
and hot reservoirs no longer obey local detailed balance,
which allows energy to flow out of the cold reservoir. The
simple tridiagonal form of this effective rate equation has
the advantage that the stationary state can be computed
analytically, since it obeys

cg cg
~ R Rn 1,n—2

-1 —Nn—
Qﬂ= ::l;;n cg, chO’ ZQn_l
Rn—l,n Rn—Z,n—l

(D28)

Making the ratios explicit with Eq. (11), we can
determine Qy from the normalization condition and
from that write the stationary cooling current with
n= (Lenc+ Tpnp)/(Te +Tp), 05 = n/(n+ 1), and R}; =

cg .
Ry’ Iry—o0:

Iy = SX;RM 10 5N2;RM+1QH1
~ Ff XN: [+ 25V = min.
i
—n(N —n+ D + nc)]Qn
% — mp)fn (n),

g (@) + o T hy ()
Atl—ad ™2 +a+NY
gv(m) =2(N =3n)(n+ 1),
hy(it) = N* 4 (5 4 4i)N + 6(7 + 1)

In(n) =

(D29)

In the current, only the term (n.— n,) can turn nega-
tive, such that we recover the original cooling condi-
tion for n, — oo given in Eq. (AS). Apart from that,
the scaling factor fy(n) > 0 can be analyzed for various
limits. First, we have fj(n) = 2/(1 + 3n), which yields
the same current as Eq. (A2). Second, for very large
N > n, we can drop the terms with powers of «; <
1, such that fy(n) — 2N, and the current will even-
tually just scale linearly: I¢ ~ (I'.I';8)/(T; + T (n, —
ny)N. Third, for N < n, we have fy(n) — (N(N + 3))/6n
and we maintain a quadratic scaling for the current:
I ~ (Uclpd(ne — np)) /(12(Cene + Tpnp) IN(N + 3). The
crossover system size N* between these regimes can
be found by simply equating the limits and it yields
N* =12n — 3. These limits can be seen well in Fig. 2
(dashed magenta curves). The crossover between two scal-
ing regimes is thus quite analogous to previous results for
collective qubit systems [60]. We can see that the current
becomes maximal when n, — 0 (which can be reached
by A — oo and then implies n. — (I'c + ') /(To)n).
Then, we can numerically maximize (n. — np)fy(n) —
(Ce 4+ T'y) /(T o)nfy (n) as a function of 7 only. For large N,
the position of this maximum is roughly at » &~ N /6 and
the current scales quadratically in NV at this maximum.

5. Interacting Pauli rate equation

Pauli rate equations can also be derived for interactions
present in the system Hamiltonian Hy. If these interactions
can be expressed by the permutationally symmetric oper-
ators 6’2, Ns and Ny (or, equivalently, by ", jj, 33, and
Js), as in Eq. (17), it follows that the same eigenstates
can be used for the representation of the problem and that
only the eigenvalues change. Labeling the eigenstates of
H s with the multi-index i, the Pauli rate equation will then
generically have the structure [2]

=Y [mr-re).

:

(D30)

R =, (i 8" 1)

The inherent local detailed balance for the transition
rates then exponentially suppresses excitations into unde-
sired Casimir subspaces and undesired excitation numbers,
whereas relaxation from the excited eigenvalues down to
the desired most productive cycle is still possible. Thus, for
N =3k + 1 with integer k and sufficiently large penalty
parameters B,cc/p > 1, we can neglect the excited states
and constrain our considerations to the states from the
maximum-symmetry (Casimir) sector with (@2) =N +
3)/3: |k; k), |k;k+ 1), and |k + 1;k). These three states
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then have the energies
Ey=k(A+68) 4+ ap/3,
Ey=kA+ (k+1)§ + ap/3,
=k+ DA+ kS + ap/3,

(D31)

such that the penalty ap cancels out in their differ-
ences. As the eigenstates |M;m) remain the same, the
quadratic enhancement from Eq. (9) is preserved and
we obtain the current equation [Eq. (A2)] with ', —
r,(N+2) /3)2, leading to the corresponding enhance-
ment given in Eq. (18).

APPENDIX E: BOSONIZATION

The eight operators {33,jg,jf_, jf, jj, jﬁ,.}f, le} inherit
a closed algebra from the associated single-qutrit versions:

5 5] j—fl- T Je 1 Tw w
e e E S e B
IR 3Jh J‘
2] = 52, ] = 55
_jﬁajﬁ_ :\/ng +t}39 I:jj.a']i] :ﬁjg_j3a (El)
[jf,-}‘f- =2J3,
Jge| =ay, [ ] = -,
e, g =
[+ | +

Other independent commutators (which do not follow from
Hermitian conjugation) just vanish.

1. Four-mode Holstein-Primakoff transform

The above commutation relations can be realized with
four bosonic modes with annihilation operators aa, ds, ba,
and b, obeying the usual bosonic commutation relations
by using a generalization [84] of the Holstein-Primakoff
transform:

8 spg PPN 1/ At Ny

3 = babg + EbAbA + E (CZTACIA agaa) - 73

N \/_AT N, Nb
Js = bl b (AT ala ) L,
I B AV W

jfr \/N —axan —a5a5 —I—bJr by,

AL A

J¥ = ahas — Z)j;\/Nb — bbby — blb,. (E2)

Here, the integer numbers N, > 0 and N, > 0 determine
the physically admissible states, i.e., they have to be
adjusted to match the behavior of the collective qutrit
operators such as, e.g., the Hamiltonian:

, 4n  ~en N—N,—2N
Hy= A [&QaA + b8 ba + Bl by + —b}

Ata AR

+34 |:a5a5 —blb, +

N_Na+Nbi|- (E3)

3

In particular, the Fock states |M,m, Q, ¢), with M, m, Q,
and g denoting the eigenvalues of &TA& A, &j;_&(;, bTAb A, and

~

bl by, respectively, are physically admissible when
[(Ne =M +m) v (Q=0)]A

[Ny = 0 +q) vV (M = 0)]A
[(g=0) Vv (m=0)].

(E4)

For example, the special case O =¢q = N, =0 fulfills
these conditions and admits an even simpler representa-
tion of the algebra with just two bosonic modes, which we
discuss below, and that corresponds to the fully symmetric
subspace discussed in the main text. For the subspace with
the second-largest Casimir-operator eigenvalue, one has to
use the four-boson representation instead. As one always
has N, + Ny <N and 0 <M +m <N, as well as 0 <
0+ g < N, it follows that largest Clebsch-Gordan coef-
ficients (and therefore the largest currents) may originate
from the fully symmetric subspace.

2. Two-mode Holstein-Primakoff transform

When Q =g =N, =0, the transformation requires
only two bosonic modes [76,85] with a non-negative
integer N,:

y (ES)
JL = aA\/N (aAaA—i—aBa(g)

JS = aT\/Na — (@haa + i),

Jv = dlas,

and analogously for the lowering operators. It turns out that
the fully symmetric subspace can be covered by the choice
N, = N (the number of qutrits). Then, the fully symmetric
states discussed in the main text are equivalent to the Fock-
state representation with just two bosonic modes |M; m) =
|M,m,0,0).
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The system Hamiltonian in Eq. (E3) then simply
assumes the form Hg = Adhaa +8a)as. As a sanity
check, representing the Casimir operator in terms of the
bosons, we obtain the maximum eigenvalue valid for the

fully symmetric subspace <€'2> = (N(N + 3))/3. From the

bosonic properties, it is then straightforward to compute
the Clebsch-Gordan coefficients, given in Eq. (9), of the
symmetric subspace discussed in the main text.

3. Master equation for large N
The master equation given in Eq. (6) can, in the sym-
metric subspace and for large N such that <aiau> & N, be
simplified by expanding the roots in Eq. (ES), which yields

p=—i [A&L&A +3&j§a5,p]
a at L [ata
+ NT.(1 +n.) a(gpaa—i {asa,;,,o}
UV N P
+ NTcn. |agpas — 3 {agaa,p}
PRI B PN
+ NI, (1 4+ ny) aA,oaA—z {aAaA,p}

At A L. .
+ NTyny, |:aTA,oaA 3 {aAaTA,,o}:|

ata ata L[t s ata
+ I, +ny,) [agaApaLag -3 {ala[;a;aA,p”

At A ATA I (atn ata
+ I',n, [alagpajsaA —3 {azaAaTAag,p” . (E6)

In the absence of the work reservoir I',, — 0, we find that
relaxation to the steady state therefore scales with Nz,

(alas) = NPe MM (1 = e, (ET)

and analogously for the hot reservoir. The above also
makes manifest superradiant decay, as the relaxation time
is inversely proportional to N. However, the above mas-
ter equation is only valid in regimes where (azav> &N,

such that we cannot use it to describe the regime of boosted
cooling power.

APPENDIX F: FULL COUNTING STATISTICS

The starting point for the determination of currents and
their fluctuations is a generalized (or tilted) Liouvillian (or
rate matrix) equation of the form

p=LX)P, (F1)
where p is the vectorized part of interest of the density
matrix (this could be the complete system density matrix or

just the populations of a relevant subspace) and L(x) is the
matrix representing the corresponding part of the Redfield
or LGKS dissipator or of the rate matrix that depends on
the counting field x. In the vectorized space, the trace is

computed via Tr{p} = iT - p and trace conservation then
implies that Tr {£(0)o } = 0 for any operator o.

The moments of the conjugate variable » to the counting
field can be obtained by taking derivatives of the moment-
generating function,

M(x,t) =Tr{e“Wpy}, (F2)
via (n%); = (—19,)*M (X, )|y=0. Analogously, one may
obtain cumulants from the cumulant-generating function
C(x,t) =InM(x,t) by acting with the corresponding
derivatives on it. In the long-term limit and for sys-
tems with a unique stationary state, one can show that
C(x,tH) = A(x)t, where A(x) is the dominant eigen-
value of L(x) (the one with largest real part, that ful-
fills A(0) = 0). We are interested in the long-term limit
of the lowest two cumulants of the current, i.e., in
the current I = lim,_, o, d/dt (n), = —i)\/(0) and the noise
S; = limo d/dt [(n?), — (n);] = —1"(0). Unfortunately,
for our problems, the dominant eigenvalue is not analyt-
ically known. Second-order perturbation theory for non-
Hermitian matrices is rather nontrivial [86] and for larger
numbers N numerical differentiation [78] is not stable.
Therefore, to compute the stationary current and noise, we
use a different approach [53], derived from the counting
statistics of time-dependent conductors [87]. Trace conser-
vation implies that the stationary current can be obtained
via

I =—iTr {L£'(0)p}, (F3)
where p is the solution to the equation £(0)p = 0, normal-
ized to Tr{p} = 1 (i.e., the steady state). With that, we can
also compute the stationary noise

Sy =-Tr{L"(0)p} — 2iTr {L'(0)5 }, (F4)
where the auxiliary variable ¢ is the solution to the
equation  L£(0)6 =iL'(0)p +1p, normalized to
Tr{o} =0.

APPENDIX G: TIGHT COUPLING OF ENERGY
CURRENTS
The Pauli rate equation [Eq. (8)] has the form P; =
202 (R;P] - R};P,-), where the P; are the occupation

probabilities of energy eigenstate i (which in our state
corresponds to the state |M; m) of the fully symmetric sec-
tor) and v € {c, h, w} labels the reservoirs. We can split
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the stationary populations into the contributions from the
individual cycles that couple to state i,

P=Y P,
C

where, e.g., in Fig. 1(b), the corner states take part in just
one cycle, states on the facets take part in three cycles,
and states in the interior take part in six cycles. Then, the
steady-state condition can be rewritten as

Z ZZ( chc

and fulfilling it for every cycle obviously fulfills the com-
plete steady-state condition. The individual conditions for
a normally oriented (+) cycle read as follows:

(GD)

RC Pc) , (G2)

0=T5 +m)PS +T6(1 +n)PS —
0 =TS +n,)P5 +Tn PS5 —
0 =Tn, P + T, PS —

(T ny+ Tén,) P,
(TSny + TS (1 +n.)) PY,

(TS +ny) + U5 (1 +ny)) PS,
(G3)

where the I'C are cycle dependent, as they are given by the
bare ', rates multiplied by the squared Clebsch-Gordan
coefficients from Eq. (9). Analogous equations can be writ-
ten down for the negatively oriented (—) cycles. A solution
to these equations exists, as these are just the steady-state
conditions for a single QAR (see Appendix A) without the
normalization constraint.

A fully analogous decomposition applies to the energy
currents,

Il = Z(E — E)R; P,

= Z Z(E E)R;CPY,

and we obtain, for the individual currents, the cycle-
resolved expressions (for positively oriented + cycles)

(G4

It =8 [MncP§ — TS +n)Pf],
c

=AY [T§mB§ — T+ m)BS],

C

Iy = (A=8))  [Tin.P{ —TE( +ny)PS].

(G5)

By eliminating one of the probabilities using Eq. (G3)
and comparing the terms in square brackets, we can thus
confirm the tight-coupling relations given in Eq. (12). Fur-
thermore, the cooling condition /5 > 0 then also implies

Iy > 0and/, g < 0, such that from Eq. (GS5), we obtain the
conditions n.P§ > (1 +n.)PS, (14 ny)P§ > nyP§, and
n,P§ > (1+n,)PS. Multiplying these conditions then
eventually eliminates the dependence on the steady-state
occupations:

nc(l + nh)nw > (1 + nc)nh(l + nw)’ (G6)

which is equivalent to Eq. (13). Alternatively, Eq. (13) may
also be obtained from the positivity of the entropy pro-
duction rate 6; = — Y. B,I% > 0 and the tight-coupling
relations between the currents. Departing from the tight-
coupling limit will also alter the cooling condition [88].

APPENDIX H: STATIONARY CURRENT IN THE
NONCOLLECTIVE LIMIT

In the case that the stationary state is a classical
one, i.e., a product state of mixtures without coherences,

p =@, [P5(10) 0D, + P (1) (1D, + P5 (12) 21),]. it is
straightforward to see that the cooling current (cf. Sec. F),

If =Ten Tr{S;8p} —
—rcnthChf*Tr (1) (01); (10) <11); 4}

Te(1+n)Tr{ScS5p}

= Te(l+n0) YK Te{(0) C1D); (1) (0D); 5}
i
(H1)

will be additive in the number of qutrits. For such a steady
state, in the above formula only the terms with i = can

contribute under the trace, such that for |hf|2 =1 (cf. the
red symbols in Fig. 2), the current would be linear in the
number of qutrits N. On the contrary, a superlinear scaling
of the current indicates a deviation from this classical limit.

Numerically, we find that for 4 = ¢! as considered in
the main text, the stationary state of Eq. (6) is close to the
product state

p ~ Q) [Po (10) (01); + Py (1) (1)), + P2 (12) (2]),],
14
(H2)

with normalized probabilities Py + P; + P, = 1 corre-
sponding to the steady-state solution of a single QAR.
Thus, we can link the near-linear scaling of the cooling
current, which is what we observe in Fig. 2 (red symbols
and dashed red line), to the near-product form of the sta-
tionary state, which would also be obtained for completely
independent qutrits.
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