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Automated Reconstruction of Bound States in Bilayer Graphene Quantum Dots
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Bilayer graphene is a nanomaterial that allows for well-defined, separated quantum states to be defined
by electrostatic gating and, therefore, provides an attractive platform to construct tunable quantum dots.
When a magnetic field perpendicular to the graphene layers is applied, the graphene valley degeneracy
is lifted, and splitting of the energy levels of the dot is observed. Although bilayer graphene quantum
dots have recently been realized in experiments, it is critically important to devise robust methods that
can identify the observed quantum states from accessible measurement data. Here, we develop an efficient
algorithm for extracting the model parameters needed to characterize the states of a bilayer graphene
quantum dot. Specifically, we put forward a Hamiltonian-guided random search method and demonstrate
robust identification of quantum states on both simulated and experimental data.

DOI: 10.1103/PhysRevApplied.19.024015

I. INTRODUCTION

Atomically thin nanomaterials provide an exciting plat-
form for quantum technologies [1–4]. Bilayer graphene
has specifically drawn great attention [5–9] and it was
shown that bilayer graphene is a promising host for gate-
defined quantum dots [10]. Quantum dots are one of
the prime candidates for scalable and highly controllable
quantum devices [11–14]. Quantum dot technology has
benefited from the advances in material science and has
led specifically to the fabrication of high-quality bilayer
graphene devices, which provide a range of benefits for
quantum dot applications [15–18].

The two dominant sources of decoherence for spin
qubits in quantum dots are spin-orbit coupling and hyper-
fine coupling of nuclear and electronic spins, both of which
are expected to be largely suppressed in graphene [19–22].
Moreover, it is possible to control the size of the gap in
bilayer graphene via a vertical electric field [23,24], which
has been successfully used for charge carrier confinement.

An overarching goal of quantum dot engineering is the
design of qubits that can be used for quantum information
processing. While spin qubits are straightforward to engi-
neer in silicon and have achieved high-fidelity quantum
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operations [25–27], they do not yet meet the demands
of scalable quantum devices. Modern approaches to the
design of semiconductor qubits therefore utilize theoreti-
cal knowledge of the internal state structure of quantum
dots in order to define qubits with longer coherence times
[28–30]. While bilayer graphene has excellent electronic
properties, the theoretical understanding of the band struc-
ture of multilayer graphene in the presence of electric
and magnetic fields is not yet fully developed. However,
such an understanding is critically needed to design and
define qubits with optimal coherence properties. Currently,
simple models of graphene quantum dots already cap-
ture many physical aspects of these devices [31–33], but
the question of how to reconcile these predictions with
experimental observations remains a challenge.

In this work, we address the challenge of connect-
ing transport measurements in bilayer graphene quantum
dots (BGQDs) [10] to an underlying theoretical descrip-
tion of quantum states that a spin can occupy inside a
bilayer graphene quantum dot. First, we introduce a com-
putational framework for the interpretation of transport
measurements in terms of a detailed bilayer graphene
quantum dot bound state characterization. We then apply
this framework to both simulated data and experimen-
tal measurements of the bilayer graphene quantum dots.
Our algorithm, Hamiltonian-driven random search (HRS),
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leverages a combination of adjoint methods and global
optimization to navigate the complex structure of the
multiparameter optimization landscape with the ultimate
goal of identifying an optimal model describing the mea-
sured data. Specifically, our HRS framework combines
the Hellmann-Feymann theorem applied on a candidate
Hamiltonian and controlled random search, ultimately tak-
ing advantage of exact model-based gradients to confine a
well-defined region for the random search, thus leading to
higher accuracy.

This manuscript is organized as follows. In Sec. II we
review a low-energy theory for the description of bound
states in a bilayer graphene quantum dot. In Sec. III we
present the Hamiltonian-guided random search algorithm.
In Sec. IV we demonstrate HRS performance on numer-
ically generated data based on the low-energy theory
and benchmark it against standard non-Hamiltonian-driven
random search methods. Additionally, we apply HRS on
experimentally measured data to obtain a complete wave-
function characterization of the measured states. We dis-
cuss assumptions and limitations of our work in Sec. V.
Finally, we present a conclusion, a discussion, and an out-
look on future applications of our method in experimental
settings in Sec. VI.

II. BILAYER GRAPHENE QUANTUM DOTS

In what follows, we introduce a simple theory descrip-
tion that is able to predict the structure of the single-particle
bound states in bilayer graphene together with the structure
of the respective energy levels. Our theory description is
based on the energetically most favorable [34] (and there-
fore experimentally most relevant) structure of the bilayer
graphene, where the individual graphene layers are in the
AB or Bernal stacking geometry. The model we consider,

introduced in Ref. [31], also allows us to include the effect
of the external voltages applied through electrostatic gates
as well as the effect of the external magnetic field. Because
of its simplicity, this model does not include effects related
to the spin of the particle and also assumes perfect cylindri-
cal symmetry of a quantum dot. Here, our goal is not to find
the most physically exhaustive description of the bilayer
graphene quantum dots, but rather, to build a compact
effective model that can be scalably fitted to experimental
data and decisively determine the underlying bound state
structure in the quantum dot.

In bilayer graphene quantum dots, the energy of bound
states is defined via an interplay of two dominant energy
scales. First, the energy is dominated by the interlayer hop-
ping strength, which has typical values of about 400 meV
[6]. Second, a gapping potential V, which results from
an interlayer electrostatic potential asymmetry, opens an
energy gap in the spectrum. Recent experiments [10] deter-
mined a typical value of this energy gap of about 60 meV.
For (bilayer) graphene, the Fermi energy is of the order of
about 7.5–9 eV. Notably, the low-energy bound states are
expected to have energies that are smaller than the energy
gap and thus also much smaller than the Fermi energy.
Therefore, we expect the bound states to have momenta
close to the Dirac points of graphene such that we can lin-
earize the dispersion relation around these points to obtain
an effective description of the system in this low-energy
regime.

A semianalytically solvable theoretical description of
bilayer graphene quantum dots was put forward in
Ref. [31]. The combination of the abovementioned phys-
ically motivated linearization of the dispersion relation, a
tight-binding approximation, and specific restrictions on
the symmetry of the quantum dot yields the following
Hamiltonian in first quantization:

H =

⎛
⎜⎝

U(r) + τV/2 px + ipy t⊥ 0
px − ipy U(r) + τV/2 0 0

t⊥ 0 U(r) − τV/2 px − ipy
0 0 px + ipy U(r) − τV/2

⎞
⎟⎠ . (1)

Here U, V are the confining and gapping voltages (see
Fig. 1), respectively, r =

√
x2 + y2 is the radial coordinate

for the potential U, τ is the valley quantum number, t⊥
is the energy associated with interlayer hopping (we use
t⊥ = 400 meV), and the pi are the momentum operator
components.

Under the assumption of a perfectly circularly fabri-
cated quantum dot, we can enforce cylindrical symmetry

of the wave spinor that yields the factorization of the wave
function into radial and orbital parts

�(r, ϕ) = eimϕ

√
r

⎛
⎜⎝

1 0 0 0
0 e−iϕ 0 0
0 0 1 0
0 0 0 eiϕ

⎞
⎟⎠�1(r), (2)
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(a)

(b)

FIG. 1. (a) Illustration of confining potential U [U0 = U(R)]
and gapping potential V for a quantum dot realized in bilayer
graphene. (b) Visualization of the bound state wave function for
m = 0, τ = 1, U = 60 meV, V = 50 meV (top). The projection
of the wave function is shown in the bottom part of the plot with
the gray cylinder indicating the edge of the quantum dot. The
red circle indicates the edge of the quantum dot in the projected
plane.

where �1(r) is the radial contribution of the spinor and m
is an angular momentum quantum number.

Recher et al. [31] further assumed a continuity of
the wave function on the boundary of the quantum dot
(assumed to be at R = 20 nm from the dot centre through-
out this work), which reduces the eigenenergy problem to
a set of linear equations for the components of the spinor
�1(r). The solution of the system of linear equations can be
formulated as a zero-determinant condition. We describe
details of this solution in Appendix A.

In Figs. 2(a) and 2(b) we show examples of the deter-
minant values for the eigenvalue problem associated with
the Hamiltonian in Eq. (1) as a function of energy E and
magnetic field B. The darkest blue lines correspond to the
points where the determinant values are zero and therefore
correspond to energy eigenvalues of the problem. These
lines thus also determine the theoretical prediction of the
energies that are accessible via transport measurements of
the dot in the perpendicular magnetic field B. The exact
values of the eigenenergies are depicted as black dashed
lines.

By reformulation of model (1) into the determinant
condition shown in Figs. 2(a) and 2(b) we unveil a cer-
tain amount of information about the physics of the sys-
tem. Specifically, using an existing clustering technique,

(a) (b)

(c)

(d)

(e)

Extracted
states

Smoothened
From experiment

FIG. 2. Difference between information content of the theoret-
ical model and the experimental measurement. (a), (b) Values of
the determinant det|A(E, B)| as a function of energy E and mag-
netic field B with m = 0, τ = −1, U = 53 meV, V = 54 meV for
panel (a) and m = 2, τ = 1, U = 50 meV, V = 51 meV for panel
(b). Black dashed lines represent extracted energy states and cor-
respond to the experimentally accessible information. Panel (c)
shows the t-SNE clustering applied on the set of determinant
maps like those shown in (a) and (b). Each cluster corresponds
to a distinct pair of angular momentum, m, and valley, τ , quan-
tum numbers. Panel (d) shows the result of t-SNE clustering on
the eigenenergy lines as highlighted by the dashed lines in (a) and
(b). Panel (e) displays the preprocessed experimental data for one
of the measured dot systems (gray) and the resulting smoothened
data used within the Hamiltonian parameter reconstruction (red).
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the t-distributed stochastic neighbor embedding (t-SNE)
[35], on a set of determinants generated for various
configurations of discrete quantum numbers, m and τ , and
various potential values, U and V, we find that all pos-
sible combinations of the quantum numbers are clearly
distinguished [see Fig. 2(c)].

Applying the same clustering on the subset of the data
that is accessible experimentally [the dashed eigenenergy
lines in Figs. 2(a) and 2(b)], we obtain a two-dimensional
embedding shown in Fig. 2(d). We observe that distinct
clusters of possible quantum number pairs are no longer
identifiable. In Appendix B we describe in more detail
the low-dimensional embedding of the model output, and
in Appendix C we provide a further discussion and other
methods for extracting the wave function and Hamiltonian
parameters from the gradient profile of the determinant
maps.

In Fig. 2(e), we show an example of experimental data
used in our study as resulting from the transport measure-
ment of the sample presented in Ref. [10]. In the experi-
ment, the quantum dot is defined and tuned through elec-
trostatic gates deposited on top of a stack of h-BN–bilayer
graphene–h-BN. The energy levels of the quantum dot
are extracted from peaks in the conductance through the
area of the device where the quantum dot is defined. An
essential difference to the data presented in Ref. [10] is an
additional postprocessing step we performed. Specifically,
we average over the spin degree of freedom in the mea-
sured data. The reason for this is that the simplified model
of Eq. (1) depends only on the valley degree of freedom
and not on the spin. This averaging results in two degener-
ate states (at zero magnetic field) per energy corresponding
to two valley states τ = ±1. We explain our treatment of
the experimental data in detail in Appendix D.

Up to this point, we have demonstrated that even if
we radically simplify the description of our system to
only capture its main characteristics, the reconstruction of
this description from accessible experimental data only is
potentially demanding. In the following, we introduce a
hybrid optimization method that straightforwardly allows
for the inference of the Hamiltonian parameters and wave
function based on transport measurement data, even in the
case of extremely challenging optimization landscapes.

Throughout the text, we abbreviate the full set of
Hamiltonian parameters as ρ = (m, τ , U, V). We further
distinguish the Hamiltonian parameters resulting from
the optimization process ρopt = (mopt, τopt, Uopt, Vopt) and
ground-truth, sought-after parameters ρGT = (mGT, τGT,
UGT, VGT). More specifically, ρGT can denote either
ground-truth values used in the theoretical model (1) or
the underlying (assumed) values of experimental data
we aim to approach by the ρopt set. The parameters
ρGT are known in the case of simulated data and they
are unknown in the case of experimentally measured
data. Moreover, where relevant we distinguish increasing

(decreasing) energy states by superscript s = + (−). When
talking about experimental data, it will be necessary to
label multiple pairs of approaching states as B → 0 T
[see, e.g., Fig. 2(e)]. In such a case, we add an inte-
ger index to the above notation. For example, ρ+

opt,0 =
(m+

opt,0, τ+
opt,0, U+

opt,0, V+
opt,0) denotes optimal (found) Hamil-

tonian parameters for an increasing (+) branch of lowest
energy state pair (i = 0).

III. HAMILTONIAN-GUIDED OPTIMIZATION

We aim at solving the following optimization task. We
want to infer the four unknown Hamiltonian parameters
such that the zero-determinant dashed line in Figs. 2(a)
and 2(b) will fit the measured energies shown in Fig. 2(e).
However, the parameter landscape exhibits a series of
neighboring shallow local minima with very small differ-
ences in energy distributed in a confined domain of the
parameter space [see Fig. 3(a)]. This type of landscape
immediately excludes any local, gradient-based optimiza-
tion method. The series of shallow adjacent minima is
extremely adversarial for systematic exploration—the gra-
dient methods get systematically stuck in one of the local
minima. At the same time, the precision of gradient-free
methods suffers from the size of the multidimensional
parameter space.

Here we want to note the advantageous interplay
between the structure of our model and complexity of the
optimization landscape. The four-parameter Hamiltonian
in Eq. (1) can be written as 4 × 4 matrix and provides
a controllable toy model that allows us to benchmark
our optimization method without too high computational
overhead. At the same time, this comparatively simple

(a) (b)
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FIG. 3. (a) The U-V optimization landscape with model-based
target state mGT = 0, UGT = 78 meV, VGT = 58 meV, τGT = 1.
The narrow valley defining the search domain of the global opti-
mization algorithm is visible. (b) Search domain transformation
scheme for the global optimization subroutine. Once the con-
fined domain for the global optimization is found (light blue), this
domain is aligned with the coordinate along U and V (dark blue),
and the global optimization algorithm (CRS LM) is applied.
Afterwards, the domain is transformed back.
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model exhibits an optimization landscape complexity that
is challenging for gradient methods.

We begin by dividing the task of inference of the under-
lying system parameters into two parts: (i) the determina-
tion of the continuous confining and gapping potentials U
and V, and (ii) the determination of the discrete quantum
numbers m and τ .

An example of the optimization landscape for the regres-
sion of the potentials U, V is shown in Fig. 3(a). One
can observe a long, shallow valley of local minima with
the white square representing the global optimum at the
ground-truth values UGT, VGT. This shallow minimum
structure exhibiting noisy features prevents gradient-based
optimization methods from working effectively. Thus, a
global optimization method is needed. While global meth-
ods work well in landscapes without a clear dominant
gradient profile, they can be computationally expensive
and often do not perform optimally over large connected
domains within the full optimization space [36].

We formulate the combination of a global and a local
method that retains the advantages of the global search
but uses the local optimization subroutine to alleviate the
computational cost of the global method. Specifically, we
use our knowledge of the Hamiltonian in Eq. (1) to dra-
matically restrict the domain of the global method into
the shallow minimum and there enhance its precision and
efficiency.

Generally, to identify the valley of local minima in the
energy landscape (in our case parametrized by gapping and
confining potentials), we employ the mean squared error
loss defined as

lm,τ (U, V) = 1
Bmax

∫ Bmax

0
(Em,τ − Em,τ

GT )2dB. (3)

Here, Em,τ is the energy as a function of the applied mag-
netic field B for fixed m, τ , and generic potential values
U, V; Em,τ

GT denotes the desired energy we wish to optimize
for: it can either be extracted from the simulated data using
the determinant condition or directly experimentally mea-
sured. The loss lm,τ (U, V) measures the difference of the
optimized and ground-truth energies across the range of
magnetic field.

The computation of derivatives of the loss function in
Eq. (3) with respect to the parameters U, V is required in
order to implement a local, gradient-based subroutine that
identifies the region of shallow minima. Such derivatives
could in principle be approximated using numerical differ-
entiation, which, however, suffers from floating-point and
truncation errors. We can avoid numerical differentiation
altogether through the application of adjoint methods [37]
on the problem Hamiltonian.

Specifically, we derive the gradients with respect to U
and V analytically using the Hellman-Feynman theorem

[38]. For Q ∈ {U, V}, we obtain

∂lm,τ (U, V)

∂Q
= ∂lm,τ (U, V)

∂Em,τ

∂Em,τ

∂Q

= 1
Bmax

∫ Bmax

0
2(Em,τ − Em,τ

GT ) 〈�|∂H
∂Q

|�〉 dB,

(4)

where � is a wave spinor as defined in Eq. (2).
Once we identify the boundaries, using the gradient-

based method, of the shallow minima shown in Fig. 3(a),
we can initialize the global optimizer on a much better
confined domain. Based on state-of-the-art benchmarks of
global optimization algorithms [39] and the profile of our
landscape, we choose the controlled random search with
local mutations as our global optimizer [40]. This opti-
mization method comprises the following steps. Starting
from the initialization of a set of random points, a simplex
is constructed from a subset of the random points with the
associated smallest loss function values; see Eq. (3). New
trial points are then generated upon reflections with respect
to the simplex. The local mutation implies that unsuit-
able points are not discarded but modified via a specific
mutation condition. We provide a detailed description of
the algorithm in Appendix E 1. In our work, we use the
implementation within the NLopt package [41].

The optimization domain is most natural to work
with when aligned with coordinate axes. Therefore, we
transform the original domain [highlighted light blue in
Fig. 3(b)] to be centered at zero and aligned with the
U, V axes [highlighted dark blue in Fig. 3(b)] during the
optimization. Throughout the optimization, we apply the
corresponding inverse transformation to retrieve the orig-
inal domain in order to perform boundary checks and
to store the results (see Appendix E 2 and the link in
Ref. [42]).

The HRS algorithm thus represents a computationally
efficient modification of the global CRS method for land-
scapes manifesting shallow minima profile. This modi-
fication is possible due to our knowledge of the candi-
date Hamiltonian model. This knowledge allows for the
physics-guided implementation of the gradient-free global
method. Ultimately, as we show using our numerical
results in the next section, this method materially reduces
the average error of the reconstructed parameters.

In the algorithm description so far, we optimized the
continuous parameters U, V while assuming that the dis-
crete parameters m, τ are arbitrary but fixed. Fortunately,
the discrete parameters present only a small set and thus
little added optimization complexity. We proceed by deter-
mining all relevant candidate pairs (m, τ) and rerun HRS as
described above for all these pairs. Comparing the gradient
of measured data and theoretical simulation of single-
particle energy lines, we conclude that it is sufficient to
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explore momenta m = {−3, −2, . . . , 3} for both positive
and negative valley numbers τ .

Specifically, to fit the discrete parameters, we need to
minimize the total cost function for all states we are fitting.
This is done in order to find the unique combination (m, τ)

for each state being fitted that leads to the smallest mean
squared error, i.e.,

(m±
opt,j , τ±

opt,j ) = argmin
m∈Z\{0}
τ∈{±1}

N∑
i=1

∑
s∈{±}

lms
i ,τ s

i
(Us

opt,i, Vs
opt,i). (5)

Here, j ∈ {1, . . . , N } and lms
i ,τ s

i
(Us

opt,i, Vs
opt,i) denotes the

loss defined in Eq. (3) evaluated for the continuous param-
eters Us

opt,i, Vs
opt,i, which results from the HRS optimization

in the U-V plane given a discrete pair (ms
i , τ

s
i ). The inner

sum is performed over N different s = ±, where we sum
over the valley-splitted pair of states. Because of time-
reversal symmetry [31], the quantum numbers for each
such pair fulfill m+

i = −m−
i and τ+

i = −τ−
i . Note that this

symmetry constraint restricts the total number of possi-
ble combinations of discrete quantum numbers. The outer
sum then corresponds to the summation over all N pairs of
energy lines (i.e., 2N lines in total).

IV. RESULTS

We now test the HRS algorithm on both numerically
generated and experimentally measured data. A summary
of the results of the application of the method on the
numerically generated data is shown in Fig. 4. To sim-
ulate the measurements based on the low-energy theory
introduced in Sec. II, we compute the determinant maps
as shown in Figs. 2(a) and 2(b) with respect to the Hamil-
tonian in Eq. (1) for 11 sets of parameters {U, V, m, τ } [see
Fig. 4(a)] and extract the energies E for which the deter-
minant is zero as a function of the magnetic field B [as
shown by the dashed lines in Figs. 2(a) and 2(b)]. After
applying HRS on this data set, we calculate the average
relative error ε = (1/n)

∑n
j =1 εj of the U, V optimization

shown in Fig. 4(b) as a mean of the relative errors εj =
|Qopt − QGT|/QGT with Q ∈ {U, V} of n = 11 test opti-
mization runs. We obtain the final value of ε = 2 × 10−3

(or 0.2%) for U and V estimation, while the maximum
obtained error is 1%. The error for each of the n individual
runs for specific fixed pairs of discrete quantum numbers
(mGT, τGT) is shown in Fig. 4(c).

As a comparable (but unguided by physics knowl-
edge) random search benchmark, we choose controlled
random search with local mutation (CRS LM). The CRS-
LM approach yields an average error of U and V search
reaching 2% while the maximum error obtained is 8%. A
graphical summary of the CRS-LM results can be found
in Fig. 15 in Appendix F. In addition, we observe that
our Hamiltonian-guided ansatz HRS provides an order-of-
magnitude precision improvement.

(a) (b)

(c)

True values
Opt. results

Left bar:
Right bar:

FIG. 4. Testing of the HRS algorithm on the simulated data.
We choose 11 different ground-truth states fully characterized by
parameters (mGT, τGT, UGT, VGT) and use HRS to search for opti-
mal values Uopt, Vopt for all chosen states, while considering m
and τ to be known. (a) Ground-truth values (crosses) and the
resulting values from the optimizer (triangles) for U and V. (b)
The relative error of the U and V optimization averaged over 11
independent test runs. (c) The relative error of U and V for each
of the test runs, which average to the value present in panel (b).

We need to address an important distinction between
simulated and experimental data when applying HRS to
the experimental data. While the theoretical model intro-
duced in Sec. II provides single-particle states on the
absolute energy scale, for the experimental data, the energy
axis is determined relative to the lowest-lying state mea-
sured in the particular experimental realization. Thus, the
absolute energy scale is not defined a priori. Therefore,
when deploying the algorithm on experimental data, we
first need to determine where the states lie on the abso-
lute energy scale of the model. Then, we can launch the
Hamiltonian search procedure described above.

We determine this scale by fitting the two lowest-lying
(τ = ±1) states for each quantum dot. For this task, we
need to use a different approach as we are prevented from
fitting the energy lines E(B) directly without knowing
the absolute energy scale. However, without the absolute
energy scale, the previously explained benefit of incor-
porating physical knowledge into the optimization via
the Hellman-Feynman theorem is no longer available to
us. Hence, we apply the standard CRS-LM global search
(which we previously used as a benchmark for HRS) on
the gradient of the measured data and optimize parameters
UGT, VGT of the theoretical model. Once the energy scale
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of the measured data is determined by fitting the parame-
ters of the lowest-lying state pair with CRS LM, we can fit
all higher-lying states (of both simulated and experimen-
tal data) using our hybrid HRS approach the same way as
shown above for simulated data.

Using the available estimate of experimentally relevant
values, we narrow the U-V domain for the lowest-lying
pair to 50–70 meV [10]. To obtain a sufficient resolution,
we divide this domain into 25 subdomains and perform a
global search via CRS LM on each of them for all rele-
vant combinations of m and τ . The use of CRS LM leads
to lower fitting precision for the lowest-lying states as
opposed to the rest of the spectrum.

As an illustration of the fitting of the lowest-lying
state, we show the accuracy of the procedure for various
discrete quantum numbers in Fig. 5 using simulated tar-
get states resulting from the theoretical model given in
Eq. (1). Figure 5(a) shows the value of the loss function,
Eq. (3), for a combination of the five best candidates of
the discrete quantum number pairs m and τ as a func-
tion of the respective ground-truth values used to compute
the energies. We see that the smallest loss value after
the optimization indeed corresponds to the ground-truth
parameter pair in each case. It can be observed that, for
some ground-truth states in Fig. 5 [namely, target state
(mGT, τGT) = (∓1, ±1)], the best candidate is not substan-
tially better than the other candidates. To investigate the
robustness of these minima, we carefully analyze the fea-
tures in their immediate neighborhoods. We average over
M = 1000 points of the small neighborhood of each iden-
tified minima. We identify no overlap in the standard
deviation intervals by comparing mean values and their

(a)

(b)

FIG. 5. (a) Mean squared error loss of five parallel runs
for each of five target states characterized by the respective
(mGT, τGT) pair shown on the x axis. The five different bar colors
correspond to the five best candidates tested. (b) Relative errors
of confining and gapping potentials U, V for the five target states.

standard deviations. The differences in the loss function
values while small are robust and well separated.

Figure 5(b) shows the relative estimation error of U, V
averaged over the discrete quantum numbers of the lower
and upper states that appear as a consequence of the valley
splitting. Specifically, εQ = 1

2

∑
s∈{+,−} |Qs

GT − Qs
opt|/Qs

GT.
For the numerically generated data, we are able to estimate
the continuous variables with a precision of 3%–7% for
the two lowest-lying states while reliably determining the
discrete variables.

Above, we discussed the HRS method and its perfor-
mance on the numerically generated data. Now, we move
forward to apply the method on experimentally measured
data. In our experimental realization, we have measured
three separate bilayer graphene quantum dots (QD1, QD2,
and QD3, respectively). The performance of our algorithm
applied on these experimental measurements from the
individual quantum dot systems is shown in Fig. 6.

For the lowest-lying states, we consistently find
m+

opt,0, τ+
opt,0 = (0, 1) for the increasing and (m−

opt,0, τ−
opt,0) =

(0, −1) for the decreasing valley-splitted branches of the
state across all three samples. Here, index 0 denotes the
lowest-lying couple of the measured energy states that
we use to fix the energy scale. For all the remaining
states, we performed HRS considering each feasible com-
bination of m, τ and domain Qs

i ∈ {Qs
opt,0 − 5, Qs

opt,0 + 45}
meV, where i denotes the state pair index, i ∈ {1, . . . , N }.
These domain boundaries are physically motivated by the
measured energy range we observed. We use the mean
squared error function, Eq. (5), to determine the optimal
assignment of the discrete quantum numbers for the energy
ladder.

Let us specify how we compute the statistical accuracy
of the estimation of the continuous parameters. In the case
of two lowest-lying states and CRS-LM search on 25 sub-
domains of the U-V plane, we perform ten parallel runs to
find the optimal discrete parameters. For all the remaining
states and HRS optimization, five parallel runs are exe-
cuted for the best quantum number candidates (due to the
increased number of possible parameter combinations and
results consistency, we restrict ourselves to five parallel
runs per combination). We then calculate the mean and
standard deviation of these estimates via

Qs
opt,i = 1

p

p∑
j =1

Qs
optj ,i

and

εQs
opt,i

=
√√√√ 1

p

p∑
j =1

(Qs
optj ,i − Qs

opt,i)
2.

Here, Qs
optj ,i is the optimized value of the potential Qs ∈

{Us, Vs} for the ith spectral line pair, index j denotes the
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(a) (b)

(c) (d)

(e) (f)

Smoothened data
Raw data

FIG. 6. Performance of the HRS algorithm on the experimen-
tal data consisting of single-particle states for three different
bilayer graphene quantum dots. In panels (a), (c), and (e), gray
dots represent the measured energy E as a function of the modu-
lated magnetic field B, dashed lines correspond to smoothened
data, and colored solid lines display best fits obtained up to
B = 1.2 T computed by the HRS (and CRS LM for the lowest-
lying energy pair) algorithm. Panels (b), (d), and (f) illustrate
the extracted single-particle energy ladders at B = 0.1 T fully
resolved by differing angular momenta m and valley numbers τ .

respective parallel run, and the total number of the runs is
denoted by p .

In Fig. 7, we visualize the results for the estimation
of U and V for QD3. Equivalent studies for the two

(a)

(b)

FIG. 7. Values (a) and statistical errors (b) of confining U and
gapping V potentials for QD3 based on the HRS (and CRS LM
for the lowest-lying energy pair i = 0) optimization routine. The
notation Q±

opt,i comprises potential Q ∈ {U, V} of increasing (+)
and decreasing (−) spectral lines from the ith spectral couple
consisting of degenerated states at B = 0 T.

remaining dots QD1 and QD2 can be found in Figs. 13
and 14 in Appendix F. We conclude that the estimation
error for the confining and gapping potentials on exper-
imental data has a statistical error of approximately 5%.
In addition, we summarize the parameters of each fitted
single-particle state together with the associated statistical
errors of the continuous parameters for all three quantum
dots in Table II in Appendix F.

Finally, we analyze the robustness of the discrete vari-
able search by averaging over the number of points, k, for
which the loss function lm,τ attains the smallest value. This
is motivated by the fact that the measured data are sub-
ject to small fluctuations, and we want to avoid finding an
optimum having such a nonsystematic origin. Therefore,
we also need to investigate several next-to-optimal con-
figurations and compare them between respective (m, τ )
choices. Taking k → 0 (approaching the optimal config-
uration) could not be sufficient to reliably eliminate such
fluctuation effects while at too large k we deviate signif-
icantly from the optimum found (the second can be seen
as an abrupt increase of loss values for larger k in Fig. 8).
Therefore, we experimentally choose k = 60 to avoid both
limiting cases described. We show the loss lm,τ of all (m, τ)

candidates for state pair i = 4 and QD2 averaged over the k
best configurations as a function of k in Fig. 8 (solid lines).
The two-dimensional (2D) optimization in the U-V plane
is performed for each relevant combination of discrete
parameters m4 and τ4 and optimal continuous parame-
ters Us

opt,i=4, Vs
opt,i=4 are found by minimizing Eq. (3). The

square loss lm4,τ4 = 1
2

∑
s∈{±} lms

4,τ s
4
(Us

opt,4, Vs
opt,4) refers to

the loss attained after the optimization, i.e., the individual
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FIG. 8. Robustness of the optimization procedure of the dis-
crete numbers m, τ for higher-lying energy states visualized for
the fourth (experimentally measured) spectral line pair. On the
x axis we show the number of smallest-loss (U, V) configura-
tions, k, which we average over when constructing the average
square loss shown on the y axis (mean value in solid, standard
deviation as shaded regions). Different colors refer to different
discrete quantum numbers assumed in the optimization process
for potentials U and V.

contributions to the total cost function of the inner sum
in Eq. (5). The standard deviations of obtained lm4,τ4 are
represented by light-shaded regions. We see robust differ-
ences between the best discrete variable candidate pairs as
the loss averages stay well detached for a sufficient amount
of averaged points.

V. DISCUSSION AND FUTURE WORK

Let us discuss the limitations and perspectives of our
work. In the present analysis, we have used a minimal
model, which is the simplest model at our disposal to cap-
ture the low-energy physics of bilayer graphene quantum
dots. The following set of assumptions characterizes this
model:

(i) the model relies on a physically motivated lineariza-
tion of the dispersion relation in currently experimentally
most relevant BGQD structures with AB stacking;

(ii) a tight-binding approximation;
(iii) restrictions on the symmetry of the quantum dot;
(iv) continuity of the wave function on the boundary of

the quantum dot;
(v) no additional spin degree of freedom;

(vi) a description of the electron bound state occupy-
ing the BGQD based on the solution of the one-particle
Schrödinger-like equation.

While the model does not explicitly include every aspect
of bilayer graphene quantum dots, the choice of model has
the consequence that all free parameters are readily inter-
pretable, and a semianalytical solution of the model exists.
Therefore, we can generate large data sets that allow us to
rigorously benchmark our method against other techniques
at low computational cost (see Appendices B and G).
Despite its simplicity, we have found that our model can
well describe the experimental data of three quantum dots
by fitting its parameters. In particular, the energy gaps
between and the slopes of low-energy bound states agree
almost perfectly with the experimental data.

As expected from the assumptions, higher-lying excited
states are not perfectly described by our model, as can be
seen in Fig. 6. For example, the mismatch between our fit
and the highest-lying energy state in Fig. 6(e) is caused by
the fact that the energy state is approaching the gap bound-
ary. One of the mentioned approximations made is the
assumption about the dot symmetry and a straightforward
extension of the model would be to include perturbations
of the cylindrical shape of the dot. However, as we do not
possess information about the exact shape of the potential,
one can include this as an additional free parameter to be
fitted.

For future considerations, one can analyze the role of the
nondimer atom sites tunneling, causing trigonal warping
or electron-electron exchange interactions [43,44], both
neglected in our theory assumptions. In fact, it would
be very interesting to combine the most recent available
experimental data [44,45] with the most advanced theory
description [43,46], through the algorithmic methodology
introduced here.

As for the methodology, an exciting direction for future
research is the additional customization of the global
optimizer used in our algorithm. Specifically, one could
develop mutations within the CRS method tailored to the
structure and physics of the problem at hand to decrease
the number of test points the algorithm needs to consider
and, therefore, further boost the efficiency of the optimizer.

VI. CONCLUSIONS

We have introduced the hybrid optimization algorithm
HRS to fit the Hamiltonian and wave-function parameters
from bilayer graphene quantum dot transport measure-
ments. We have tested our method on computer simula-
tions and experimental measurements of bilayer graphene
quantum dots and obtained consistent results. We are able
to reconstruct the wave function and Hamiltonian parame-
ters with a statistical error of approximately 5% in the case
of experimental data and relative estimation error of 0.2%

024015-9



JOZEF BUCKO et al. PHYS. REV. APPLIED 19, 024015 (2023)

(3%–7%) for the excited (ground) state of the simulated
data.

Our method opens an avenue towards precise wave-
function reconstruction from noisy experimental data,
specifically in situations when the optimization landscape
manifests a large number of local minima that are hard
to distinguish. Such a large number of local minima is
the situation one frequently faces in the case of trans-
port measurements used for the characterization of quan-
tum devices. HRS incorporates the initial knowledge of
the physics of the problem to radically confine the opti-
mization search domain such that powerful gradient-free
but computationally demanding global methods become
feasible.
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APPENDIX A: EIGENENERGIES AND
EIGENSTATES FOR AXIALLY SYMMETRIC

BILAYER GRAPHENE QUANTUM DOTS

In this appendix, we provide details regarding the zero-
determinant solution introduced in Ref. [31]. The Brillouin
zone of the bilayer graphene quantum dot system has four
sites, which we label A1, A2, B1, B2 (with A and B referring
to different graphene layers and we assume Bernal stacking
with B1, A2 being the closest interlayer sites). We define

the full four spinor

� =

⎛
⎜⎝

�B1
�A1
�A2
�B2

⎞
⎟⎠ (A1)

of the bilayer graphene quantum dot system. Because of
axial symmetry of the system at hand, it is natural to work
in polar coordinates (r, ϕ) in which one can easily factor-
ize the four spinor into radial and angular parts. In what
follows we define �1 as

�(r, ϕ) = eimϕ

√
r

⎛
⎜⎝

1 0 0 0
0 e−iϕ 0 0
0 0 1 0
0 0 0 eiϕ

⎞
⎟⎠ �1(r). (A2)

Therefore, �1 includes most of the radial dependence of
the original spinor �. Additionally, we denote �2 to be a
vector related to the radial spinor part �1 via

�1(r) =

⎛
⎜⎝

φs
m 0 0 0

0 φs
m−1 0 0

0 0 φs
m 0

0 0 0 φs
m+1

⎞
⎟⎠ �2. (A3)

Radial dependence in the above formula is present in
φ functions and thus �2 depends only on the model
parameters. The φs

m functions are proportional to conflu-
ent hypergeometric (Kummer’s) functions and apart from
the dependence on angular momentum m, they bear infor-
mation about the orientation of a perpendicular magnetic
field with respect to the graphene layers s ∈ {±1}.

Thanks to a complete set of commuting observables and
thus the existence of a common eigenbasis, we can solve
the first-order equation using Kummer’s functions, to cast
the problem into the shape of the homogeneous equation

A�2 = 0, (A4)

where the 4 × 4 matrix A reads

A =

⎛
⎜⎝

τV/2 − ε(r) −ias
1/

√
2lB t⊥ 0

−ias
2/

√
2lB τV/2 − ε(r) 0 0

t⊥ 0 −τV/2 − ε(r) −ias
3/

√
2lB

0 0 −ias
4/

√
2lB −τV/2 − ε(r)

⎞
⎟⎠ . (A5)

Here, ε(r) = E − U(r). Evidently, to have a nontrivial �2,
the determinant of A in Eq. (A4) must be zero, such that the
four spinor can be straightforwardly computed. However,

we have to fix two remaining free parameters, namely
κ defined as H0�1 = −iκ�1/

√
2lB entering the model

equations via as
i functions and E. The condition on the
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singularity of A yields the following relation between κ

and E:

κ2
<,>

2l2B
= s

l2B
− ε2

<,>

− V2

4
±

√
t2⊥

(
ε2
<,> − V2

4

)
+

(
ε<,>τV − s

l2B

)2

.

(A6)

Here we have introduced the notation <, > to distinguish
quantities inside and outside of the dot. Let us suppose that

U(r) =
{

0, r ≤ R,
U0, r > R,

(A7)

and, therefore, ε< = E, ε> = E − U0, which fixes the
parameter E. The continuity of the four spinor at the
boundary of the dot allows us to fix the remaining degree
of freedom, κ . In both cases (inside and outside), we have
two values of κ and thus also two solutions �+

2 and �−
2 .

This implies that the full solution inside, �1,<, and outside,
�1,>, the dot reads

�1,< = A�+
1,<+B�−

1,<, (A8)

�1,> = −C�+
1,>−D�−

1,>. (A9)

We find the energy of the respective state �1 by matching
these two states from Eqs. (A8) and (A9) at r = R. This
finally corresponds to solving for the zero determinant of

A(E|r = R) = (�+
1,<(E) | �−

1,<(E) | �+
1,>(E) | �−

1,>(E)).
(A10)

APPENDIX B: UNSUPERVISED LEARNING

In Sec. II, we demonstrated the extraction of discrete
quantum numbers (angular momentum m and valley num-
ber τ ) based on numerically generated 2D determinant
maps concerning bilayer graphene quantum dots described
by Hamiltonian (1). To this end, we used the t-SNE [35],
which is a nonparametric visualization and dimensional
reduction technique. In this technique, a spatial distribu-
tion of data points in a high-dimensional space is modeled
by Gaussian kernels, whereas the positions of the data
points embedded in a low-dimensional space are expressed
via Student-t kernels. The latter distribution has a heavy
tail, which helps to account for far-separated points in the
high-dimensional space. The low-dimensional probability
distribution is then found by minimizing the Kullbeck-
Leibler divergence between the spatial distributions of the
data points in the high- and low-dimensional spaces. For
more details, we refer the reader to Ref. [35] and the
references therein.

The results of t-SNE applied on the bilayer graphene
quantum dot model data are shown in Fig. 2(c) in Sec. II.
Figure 2(c) contains altogether 4410 (21 values for both
U, V from range 50–70 meV with step 1 meV for ten com-
binations of m and τ ) data points that are well separated
in ten distinct classes defined by unique combinations of
m and τ values. Each data point represents a single 2D
determinant map provided by the bilayer graphene quan-
tum dot model for fixed parameters m, τ , U and V. We
use a resolution of 360 × 360 = 129 600 px for the maps.
We determined this resolution by the trade-off between
having a smooth and well-defined determinant profile and
computational feasibility.

Nevertheless, the application of t-SNE, as outlined
above, is not appropriate as a convenient pipeline for an
efficient prediction of the ground-truth discrete quantum
numbers, as t-SNE is not reusable for changing input data.
To circumvent this computational issue, we introduce ker-
nel principal component analysis (PCA) as a preprocessing
step. In contrast to t-SNE, kernel PCA is a parametric
method, and thus after training, kernel PCA can be directly
reapplied on new input data. Therefore, we combine t-SNE
with kernel PCA to engineer a much faster tool, as com-
pared with t-SNE on its own, while showing an almost
identical clustering as in Fig. 2(c).

The dramatic reduction of computational effort may be
attributed to the small number of required principal com-
ponents in kernel PCA in our setting. Investigating the
explained variance ratio of kernel PCA applied on our
generated data set, we observe that 30 principal compo-
nents are sufficient to capture 90% of the data variance, as
shown in Fig. 9. Therefore, once the weights of kernel PCA
are trained to map the data of the 129 600-dimensional
space into the reduced 30-dimensional space (while keep-
ing most of the variance), t-SNE may also be efficiently

Cumulative sum

FIG. 9. Cumulative sum of explained variance ratio for ker-
nel PCA (red) applied on 4410 determinant maps of the bilayer
graphene quantum dot model. The chosen cutoff of 30 prin-
cipal components corresponding to approximately 90% of the
explained variance is indicated by the black dashed line.
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used on new data after the application of the kernel-PCA
module.

Based on the combined usage of kernel PCA and t-SNE
for the prediction of m, τ , it is conceptually straightfor-
ward to estimate the remaining continuous parameters
U and V based on pretrained convolutional neural net-
works, as described in Appendix C. Thus, this represents
an alternative, sequential routine for the accurate predic-
tion of all parameters of the bilayer graphene quantum dot
Hamiltonian (1).

APPENDIX C: DIRECT USAGE OF NEURAL
NETWORKS FOR THE PREDICTION OF

CONTINUOUS HAMILTONIAN PARAMETERS

In the main text, we demonstrated that we can retrieve
the discrete quantum numbers, mGT and τGT, from the
numerically generated 2D determinant maps using the t-
SNE algorithm; see also Appendix B. However, we also
showed that the experimental data (or the plain energy
lines) do not contain a sufficient amount of information,
such that mGT and τGT can be inferred. Thus, we introduced
another approach to extract both discrete and continu-
ous parameters in what followed. For completeness, we
show in this section that the continuous parameters U, V
may also be inferred from 2D determinant maps based on
convolutional neural networks (CNNs).

In this regard, we trained an individual CNN, but
with fixed architecture, for each considered combination
of quantum numbers m, τ in a supervised manner with
determinant maps labeled by their ground-truth values of
UGT, VGT. The CNN architecture is sketched in Fig. 10,
which takes a determinant map as an input and outputs esti-
mates Uopt, Vopt of the continuous parameters U and V. The
associated hyperparameters of the CNN are summarized in
Table I.

Based on the t-SNE clustering as described in Sec. II and
the resulting values of the discrete parameters, we select
the respective CNN to predict the values of U and V. We
plot the predictions of the CNN based on fixed values of

FIG. 10. Sketch of the CNN architecture used for the predic-
tion of the continuous parameters based on 2D determinant maps.
Employed hyperparameters are listed in Table I.

TABLE I. Hyperparameters of the CNN used for inference of
the continuous Hamiltonian parameters (see Fig. 10 for a sketch
of the CNN).

Input channels 3 (RGB, each 360 × 360 px)
First convolution Feature maps: 16

Kernel: 5 × 5
Stride: 1
Padding: (2, 2)

Activation: ReLU
First pooling Kernel: 5 × 5

Stride: (5, 5)

Type: max pooling
Second convolution Feature maps: 32

Kernel: 3 × 3
Stride: 1
Padding: (1, 1)

Activation: ReLU
Second pooling Kernel: 3 × 3

Stride: (3, 3)

Type: max pooling
First dense Type: linear

Size: 250
Activation: ReLU

Second dense Type: linear
Size: 50
Activation: ReLU

Output layer Type: linear
Size: 2
Activation: none

Dropout Before first dense (p = 0.5)
Optimizer Type: Adam

Learning rate: 0.001
Loss Mean squared error
Epochs 150
Batch size 100

m = 0 and τ = 1 in Fig. 11. We conclude that both contin-
uous parameters can be inferred with about 1% precision
using this approach based on CNNs.

APPENDIX D: EXPERIMENTAL DATA AND
ENERGY MEASUREMENTS PREPROCESSING

In this appendix, we present the experimental data used
in our study. The experimental design of transport mea-
surements was briefly discussed in Sec. II of the main text.
From the measured data, we extract the energy dependence
on the magnetic field perpendicular to the graphene sheets
for three different quantum dot systems QD1, QD2, and
QD3 as shown in panels (a)–(c) of Fig. 12, respectively.

As we discuss in the main text, our theoretical model
based on Hamiltonian (1) does not incorporate the spin
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FIG. 11. Application of the trained CNN to predict confining
(a) and gapping (b) potentials in the case of fixed discrete quan-
tum numbers m = 0 and τ = 1. The solid black line represents
the identity function depicting the ideal predictions. The brown
shaded region shows the 5% relative error interval with respect
to the ground-truth value.

degree of freedom that, except for the valley degener-
acy, is responsible for additional twofold degeneracy of
the measured energy states [16]. Altogether, we observe
quadruplets of energy lines converging to a similar energy
value as B → 0. As different valleys can be clearly dis-
tinguished by looking at the overall line shape (increasing
lines originate from one valley and decreasing from the
other valley), one can easily target the degenerate lines
due to the spin degree of freedom. To account for the fact
that we do not distinguish spins within our framework, we
average over the spin degree of freedom. Thus, we effec-
tively reduce the number of lines being fitted by a factor
of 2.

However, there is one caveat in the described proce-
dure. We have to assign the measured spectral lines into
the quadruplets degenerate by valley and spin freedom.
This is an easy task once the energy scales within and
between the lines of proposed quadruplets at zero mag-
netic field are different [see, e.g., Fig. 12(c)], in other
words, if the quadruplets are significantly detached from
each other. On the other hand, there are two cases in our
data where the distinction is not clear enough [purple and
green lines in panels (a) and (b) of Fig. 12]. In such a
case, we end up with four increasing and four decreasing
lines without a clear way of composing two quadruplets
out of them. Therefore, in these two cases, we average
over all four increasing and decreasing lines bearing in
mind that we need to allocate twice as many discrete
(and also continuous) Hamiltonian parameters to the aver-
aged lines and thus provide two fits for such lines with
two different fitting parameter sets. This explains why the

(a)

(b)

(c)

FIG. 12. Experimental data as obtained from the transport
measurements on three quantum dot systems QD1, QD2, and
QD3. (a) Single-particle energy lines as a function of the per-
pendicular magnetic field B for the QD1 system. Panels (b) and
(c) show the same quantity for QD2 and QD3, respectively. The
line coloring corresponds to the averaged energy lines displayed
in Fig. 6. Gray-colored data above B = 1.2 T are not used in our
fitting.

purple and green fitted lines in panels (a) and (b) of Fig. 6
belong to only a single experimental data line pair. At
the very end of preprocessing, we perform data smoothing
using the Savitzky-Golay filter [47] to reduce the effects of
experimental noise.
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APPENDIX E: TECHNICAL DETAILS OF THE HRS
ALGORITHM

1. Controlled random search with local mutation

Controlled random search is an instance of a global opti-
mization algorithm. Several variants of the algorithm have
been proposed and benchmarked on different test problems
with respect to other global optimizers [39]. Inspired by
the findings of Ref. [39], we adapt CRS LM [40] for our
purposes. In what follows, we provide a (rough) step-by-
step description of CRS LM, as implemented in the NLopt
package [41].

Let us assume an n-dimensional parameter space sub-
jected to an optimization problem with loss function l.
Then, the algorithm consists of the following steps.

(1) Initialization. Randomly choose N 
 n initial
points from the n-dimensional optimization domain (in our
case n = 2). Specifically, N = 10(n + 1) are chosen in the
adapted implementation.

(2) Points ranking. Let S denote the set consisting of N
points as defined above. The points in S are ranked accord-
ing to their loss value and let xb be the best point in the set
(with smallest loss value l) and xw the worst point in the set
(with largest loss value l).

(3) Generating the trial point.
(a) Select n points x2, x4, . . . , xn+1 from S at random

and take x1 = xb. The chosen points span a simplex in the
n-dimensional space and the new trial point x̃ is defined as
a reflection of the last point xn+1 through the centroid of n
remaining points

x̃ = 2G − xn+1 (E1)

with G = 1/n
∑n

i=1 xi being the average of first n points.
(b) If the trial point falls outside the optimization

domain, return to step (3)(a).
(c) If the trial point x̃ is worse than the worst point in S

[l(x̃) > l(xw)], go to step (4); otherwise, go to step (5).
(4) Local mutation.
(a) The trial point chosen in step (3) is worse than xw,

but instead of being discarded (as in standard CRS), here
a local mutation is performed by coordinatewise reflection
of the trial point through the best point xb. This reflection
is defined as

ỹi = (1 + ωi)xbi − ωix̃i, (E2)

where i denotes ith coordinate and ωi is chosen randomly
from interval [0, 1].

(b) If ỹ is not better than the worst point in S [l(ỹ) >

l(xw)], no replacement is performed and the algorithm
returns to step (3).

(5) Update of S . Conditioned on whether coming from
step (3) or (4), x̃ or ỹ takes the place of the worst point xw

in S (thus, the actual xw is replaced by x̃ or ỹ). The set is
updated and the algorithm returns to step (2).

(6) Steps (2)–(5) are iterated until a stopping criterion
is fulfilled. In our case, the algorithm is stopped once the
relative tolerance in changes of the loss between two sub-
sequent iterations is smaller than 10−4. This choice may in
general be very problem specific. For example, other com-
mon choices are the absolute tolerance in changes of the
parameter vector or limiting the number of loss function
calls.

2. The (hybrid) HRS algorithm

In this section, we describe the HRS algorithm to infer
the continuous parameters U and V of Hamiltonian (1).
Let us suppose that the target state denoted by UGT, VGT
is always chosen from the confined optimization domain

D = (Umin, Umax) × (Vmin, Vmax). (E3)

We introduce the HRS algorithm as a combination of a
local and a global optimization algorithm to leverage the
structure of the optimization landscape.

(i) Gradient descent. First, we aim at finding the nar-
row loss valley characterizing the bilayer graphene quan-
tum dot optimization landscape [see Fig. 3(a)] by means
of standard local optimization algorithms. We find that
plain gradient descent is sufficient to identify this valley.
We compute the required gradient by using the Hellmann-
Feynman theorem; cf. Sec. III. The gradient descent is ter-
minated when the relative loss improvement between two
consecutive epochs is under 2%. Ultimately, the (approx-
imate) direction of the valley is defined by two points
P1, P2 from two distinct gradient descent runs, which form
a line specifying the direction of this confined loss region.
In accordance with the relevant literature, we refer to the
distinct gradient runs as “walkers.”

(ii) Convergence criteria and initialization of the walk-
ers. To have a meaningful approximation of the direction,
we ensure that

(a) the two walkers do not end up too close to each
other; otherwise, a small error in the walkers’ final posi-
tion results in a large misalignment between the predicted
and actual valley directions;

(b) if a walker terminates prematurely, i.e., without
reaching the valley, a new walker is launched;

(c) a walker remains within the optimization domain D
in Eq. (E3).
Therefore, we define a set I of candidate initial positions
of the walkers,

I = {c1, c2, c3, c4, s1, s2, . . . , sns},

where c1–c4 are the corners of the full rectangular
optimization domain D in Eq. (E3) and s1–sns are
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(pseudo)random inner points of this domain. We use
Sobol sequences (implemented in Ref. [48]), which cover
the landscape more efficiently than purely random dis-
tributed numbers. Then, ns denotes the length of the Sobol
sequence that we set to ns = 15.When the energy line E(B)

touches the gap boundary or crosses it, i.e., when E(B) is
not entirely placed within the gap, a walker will terminate
prematurely, because the energy dependence on the mag-
netic field is not well defined in such a case. Consequently,
we restart the gradient descent on a new position of the
set I .

(iii) Determination of the confined (valley) domain.
Once two walkers fulfill the criteria of step (ii), i.e., the
two points P1, P2 have been determined and the direction
of the valley may be estimated, as explained in step (i),
then, the restricted optimization region (used later within
the global optimization algorithm) is defined as a rectan-
gle. The dimensions of this rectangle are given by the line
segment between P1 and P2 and a margin of 4 meV [2
meV to each side of the valley line; see the illustration in
Fig. 3(b)].

If there are more than ns + 4 = 19 gradient descent
attempts without success to determine the valley direction,
the original domain D in Eq. (E3) is used for the global
optimization algorithm.

(iv) Transformation of the optimization domain. The
adapted global optimization routine [41] uses domains
aligned with coordinate axes. Thus, we rotate the optimiza-
tion domain, see Fig. 3(b), in the case that the confined
valley is found accordingly.

(a)

(b)

FIG. 13. Fitted values (a) and associated statistical errors (b)
of confining U and gapping V potentials for QD1 as a result
of the application of the HRS (CRS-LM) optimization routine.
Here Q±

opt,i denotes the potential Q ∈ {U, V} of the increasing (+)

and decreasing (−) spectral lines from the ith spectral couple
consisting of degenerated states at B = 0 T.

(a)

(b)

FIG. 14. Fitted values (a) and associated statistical errors (b)
of confining U and gapping V potentials for QD2 as a result
of the application of the HRS (CRS-LM) optimization routine.
Here Q±

opt,i denotes the potential Q ∈ {U, V} of the increasing (+)

and decreasing (−) spectral lines from the ith spectral couple
consisting of degenerated states at B = 0 T.

(v) Global optimization. Finally, we use CRS LM to
find the Hamiltonian parameters, U and V, over the respec-
tive (confined) optimization domain.

(a) (b)

(c)

True values
Opt. results

Left bar:
Right bar:

FIG. 15. Testing of the CRS-LM algorithm on the numerically
generated target states from Hamiltonian (1). (a) Target states
(crosses) and computed continuous parameters (triangles) in the
U-V plane. (b) Relative average error of the associated contin-
uous parameters U and V. Panel (c) depicts how the relative
errors are distributed among the discrete quantum numbers of
the respective target state.
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TABLE II. Confining and gapping potentials, U and V, of single-particle quantum states distinguished by angular momenta m and
valley numbers τ for three different quantum dots, QD1–QD3, as provided by the HRS and the CRS-LM (for cases with m = 0)
algorithms. The given statistical errors are computed based on repeated, independent optimization runs.

m±
opt τ±

opt U±
opt (meV) V±

opt (meV) Optimizer

QD1 0 −1 (53.7 ± 2.7) × 10−1 (69.1 ± 6.5) × 10−1 CRS LM
0 1 (60.3 ± 8.7) × 10−1 (50.6 ± 6.8) × 10−1 CRS LM

−2 −1 (60.6 ± 2.0) × 10−4 (70.3 ± 9.4) × 10−5 HRS
2 1 (53.9 ± 4.3) × 10−2 (57.6 ± 6.8) × 10−2 HRS
1 −1 (81.7 ± 1.9) × 10−4 (53.1 ± 1.1) × 10−4 HRS

−1 1 (79.5 ± 4.3) × 10−2 (52.0 ± 3.4) × 10−2 HRS
−1 −1 (54.6 ± 5.7) × 10−2 (50.2 ± 8.7) × 10−2 HRS
1 1 (47.1 ± 2.5) × 10−2 (50.2 ± 1.2) × 10−2 HRS

QD2 0 −1 (62.0 ± 2.1) × 10−1 (50.1 ± 9.9) × 10−2 CRS LM
0 1 (61.3 ± 9.6) × 10−1 (51.3 ± 8.9) × 10−1 CRS LM

−2 −1 (59.4 ± 6.7) × 10−2 (69.8 ± 2.7) × 10−2 HRS
2 1 (55.3 ± 3.4) × 10−4 (68.4 ± 1.4) × 10−4 HRS
1 −1 (82.5 ± 2.7) × 10−1 (63.2 ± 2.4) × 10−1 HRS

−1 1 (87.6 ± 1.2) × 10−2 (61.2 ± 7.6) × 10−2 HRS
−1 −1 (55.4 ± 4.3) × 10−3 (56.2 ± 1.1) × 10−2 HRS
1 1 (55.2 ± 2.2) × 10−3 (54.2 ± 4.9) × 10−4 HRS

−3 −1 (62.0 ± 6.6) × 10−3 (70.0 ± 3.6) × 10−2 HRS
3 1 (54.7 ± 1.9) × 10−3 (64.9 ± 2.0) × 10−2 HRS

−2 1 (57.6 ± 8.5) × 10−3 (51.5 ± 1.5) × 10−2 HRS
2 −1 (70.3 ± 3.4) × 10−2 (50.2 ± 2.4) × 10−2 HRS

QD3 0 −1 (60.1 ± 2.4) × 10−1 (50.1 ± 1.4) × 10−1 CRS LM
0 1 (61.3 ± 1.3) × 10−1 (51.6 ± 1.6) × 10−1 CRS LM

−2 −1 (68.4 ± 1.7) × 10−4 (50.0 ± 7.7) × 10−5 HRS
2 1 (68.7 ± 2.9) × 10−4 (50.2 ± 1.2) × 10−4 HRS
1 −1 (75.0 ± 1.5) × 10−2 (50.5 ± 1.9) × 10−2 HRS

−1 1 (79.9 ± 2.3) × 10−2 (52.3 ± 2.5) × 10−1 HRS
−1 −1 (59.2 ± 1.5) × 10−1 (50.3 ± 2.0) × 10−1 HRS
1 1 (60.2 ± 1.0) × 10−4 (50.2 ± 4.4) × 10−5 HRS

−3 −1 (54.1 ± 2.6) × 10−5 (61.8 ± 1.9) × 10−4 HRS
3 1 (56.3 ± 1.0) × 10−6 (50.0 ± 1.0) × 10−6 HRS

Our code for the HRS algorithm is open source [42].

APPENDIX F: FITTING PARAMETERS FOR
ADDITIONAL QUANTUM DOT MEASUREMENTS

In the main text, we showed the final fitted energy states
for all three quantum dot systems in Fig. 6 and opti-
mization details from a continuous parameters search for
the case of QD3 in Fig. 7. We present the optimization
results analogous to those shown in Fig. 7 for systems QD1
and QD2 in Figs. 13 and 14, respectively. In these, we
show the resulting potential values including their statis-
tical errors of the inferred, continuous parameters U and V.
By and large, we reach a comparable precision in all cases.
Moreover, the recovered quantum numbers are in good
agreement for all three dot systems and potential values
remain within the expected value of approximately 50–80
meV. For completeness, we present all fitting parameters
of the three quantum dots in Table II and show results of

performance test for CRS LM algorithm in Fig. 15 (see
Sec. IV and Fig. 4 for comparison to HRS performance).

APPENDIX G: GROUND-STATE QUANTUM
NUMBERS WITH DEEP NEURAL NETWORKS

1. Motivation

In Sec. IV of the main text, we described the procedure
to obtain the Hamiltonian parameters for the lowest-lying
energy line couple (m±

opt,0, τ±
opt,0). Because of the unknown

energy scale shift between experimental and model-based
data, we had to rely on the plain CRS-LM algorithm. We
note that fixing this energy scale also plays a crucial role as
an initial step when fitting the excited states. In this section,
we introduce an alternative approach to infer the discrete
quantum numbers of the lowest-lying energy line couple
based on a supervised neural network classifier for varying
continuous parameters U and V. Since the energies are not
directly accessible, we explore the corresponding gradients
and correlations thereof as input features.
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2. Data set creation

To create the training data set, we use the bilayer
graphene quantum dot model, introduced in Sec. II, that
allows us to compute energy lines E(B). Based on the
physical assumption that the lowest energy couple will not
possess a very high angular momentum, we limit ourselves
to the five smallest momenta values m ∈ {−2, −1, 0, 1, 2}.
In a similar spirit, we use valley numbers τ ± 1 and we
consider potentials U, V in the range {50, . . . , 70} meV
[10]. We discretize these ranges by 90 steps, generate 912

determinant maps for each of the ten classes defined by
all combinations of m and τ , and extract all spectral lines
from the generated maps. As only the gradient informa-
tion can be used, we transform the resulting lines into their
gradients approximated as

E(Bi) → E(Bi+1) − E(Bi),

where Bi is the ith grid point along the B axis. Here, we
omit �B as our grid is evenly spaced.

As we have discussed in Sec. IV, we fit the energy states
in couples composed of (time-reversal) symmetric states,
i.e., we require m+

i = −m−
i and τ+

i = −τ−
i for the ith state

couple. Therefore, a single data point of our data set gen-
erally contains energy gradients from both the decreasing
∇E− and increasing ∇E+ lines composing a symmetric
couple. Additionally, we include the cross-correlation of
the respective lines

Corr∇E−,∇E+(k) =
L∑

l=1

∇E−
l ∇E+

l+k,

anticipating that the correlation between such two lines
represents a powerful feature, which the network should
consider to make predictions that generalize well to unseen
data. Here, L is the length of the gradient vectors and k runs
from −L + 1 to L − 1. In total, we have a single data point
xi of our data set composed from three vectors:

xi = (∇E−, ∇E+, Corr∇E−,∇E+).

Finally, our training data set consists of about 145 000 vec-
tors of the above structure representing the lowest-lying
energy couples for ten different discrete quantum number
candidates.

3. Architecture, optimization, and results

We employ a simple feed-forward network with two hid-
den layers and choose the rectified linear unit (ReLU) as
an activation function. The hyperparameters specifying the
deep neural network (DNN) architecture are summarized
in Table III.

Most of the network hyperparameters are defined empir-
ically. However, to determine the learning rate lr and the

TABLE III. Hyperparameters of the DNN to predict the dis-
crete quantum numbers of the lowest-lying energy state couple,
based on the approach introduced in Appendix G.

Input data Shape (144 856, 173)

First dense Type: linear
Size: 800
Activation: ReLU

Second dense Type: linear
Size: 800
Activation: ReLU

Output layer Type: linear
Size: 5
Activation: Softmax

Early stopping 30 epochs
Optimizer Type: Adam

Learning rate: 0.0182
Loss Cross entropy
Epochs 60
Batch size 200
Regularization coefficient 3.08 × 10−7

regularization strength α, we use the Bayesian optimiza-
tion and hyperband (BOHB) method [49]. BOHB employs
the successive halving method and improves random con-
figuration picks with model-based ones resulting from the
Bayesian model being fitted on the run. The optimization
landscape with all random and model picks are shown in
Fig. 16. We split the data set into a training (80%), a val-
idation (10%), and a test set (10%). Moreover, we use the

Optimum
Model
Random

FIG. 16. Optimization of the learning rate lr and regularization
strength α using BOHB. Random (triangles) and model (circles)
picks as well as the optimal found configuration (black square)
are displayed.
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FIG. 17. Confusion matrix for the testing of the DNN trained
to predict the discrete quantum numbers of the lowest-lying
energy state couple. Overall, the DNN reaches an accuracy of
about 92.5%.

classification accuracy

pvalid/test = nvalid/test(ypred = ytrue)

nvalid/test

as the validation or test loss, respectively.
Within this setup, we train ten randomly initialized

DNNs independently. In all cases, we reach a test accuracy
of about 92.0%–92.5%.

The experimental data (a single lowest-lying energy
couple per quantum dot) is also preprocessed according
to the steps outlined in Sec. G 2. For all three dots, we
obtain the prediction (m+ = 0, τ+ = 1, m− = 0, τ− = −1)
across all ten trained networks with >99% confidence,
which agrees with the result in the main text. For com-
pleteness, we show the test confusion matrix for one of
the trained networks in Fig. 17. In summary, we thus have
an additional, independent approach to predict the discrete
quantum numbers of the lowest-lying energy couple that is
consistent across all three quantum dot measurements.
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