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Optimally Band-Limited Noise Filtering for Single-Qubit Gates
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We introduce a quantum control protocol that produces smooth, experimentally implementable control
sequences optimized to combat temporally correlated noise for single-qubit systems. The control ansatz
is specifically chosen to be a functional expansion of discrete prolate spheroidal sequences, a discrete
time basis known to be optimally concentrated in time and frequency, and quite attractive when faced
with experimental control hardware constraints. We leverage the filter function formalism to transform the
control problem into a filter design problem, and show that the frequency response of a quantum system
can be carefully tailored to avoid the most relevant dynamical contributions of noise processes. Using
gradient ascent, we obtain optimized filter functions and exploit them to elucidate important details about
the relationship between filter function design, control bandwidth, and noise characteristics. In particular,
we identify regimes of optimal noise suppression and, in turn, optimal control bandwidth directly propor-
tional to the size of the frequency bands where the noise power is large. In addition to providing guiding
principles for filter design, our approach enables the development of controls that simultaneously yield
robust noise filtering and high-fidelity single-qubit logic operations in a wide variety of complex noise

environments.
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I. INTRODUCTION

The ability to perform fast and robust operations on
multiqubit quantum systems is a necessity for realiz-
ing reliable quantum computation [1]. Unfortunately, the
inevitable interaction between a quantum system and its
environment presents an obstacle for achieving such oper-
ations. Unwanted system-environment interactions lead to
noise processes that cause quantum gates to deviate from
their intended evolution, consequently leading to a loss of
coherence and computational errors. Quantum control is an
approach that seeks to address this challenge through the
design of control protocols that implement desired quan-
tum operations, while simultaneously achieving robustness
against noise [2]. Quantum control can be particularly
advantageous for combating spatiotemporally correlated
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noise, which is known to be detrimental to quantum error
correction [3—7].

Various control techniques have been developed to carry
out robust quantum gates in the presence of systematic and
environmental noise sources. Pulse-based techniques such
as dynamically corrected gates [8,9] leverage features of
dynamical decoupling [10,11] to effectively average out
noise while implementing a logical operation. Despite their
ability to account for practical limitations, such as bounded
control amplitudes, they are limited to static noise mod-
els. Smooth control methods based on quantum optimal
control theory, such as open-system gradient ascent pulse
engineering (GRAPE) [12], extend beyond the traditional
closed system GRAPE approaches [13—15] to enable the
construction of quantum gates in the presence of time-
dependent noise. Open-system GRAPE performs local
updates to the control waveform in accordance with typical
GRAPE approaches, however, and requires averaging over
dynamical simulations of quantum trajectories to optimize
control waveforms in the time domain.

The filter function formalism (FFF) offers an alternative
perspective on optimized quantum control in the presence
of time-dependent noise processes. Capable of accommo-
dating a wide range of spatiotemporally correlated noise
models, the FFF captures a quantum system’s sensitivity
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to noise in the frequency domain via control-dependent fil-
ter functions (FFs) [16—18]. Within the FFF, gate fidelity
can be expressed in terms of an overlap integral between
the FFs and the noise power spectral densities (PSDs). This
relationship gives rise to a highly intuitive perspective on
robust quantum gates, namely, minimizing spectral overlap
between the FFs and noise PSDs is essential for realizing
noise-optimized gates.

Minimization of the overlap integral has become a guid-
ing principle for gate optimization via FF design. Proposed
approaches have made direct use of the overlap integral as
an objective function [19,20], where a priori knowledge
of the noise PSD is assumed, or focused on the mini-
mization of the FF over a specified low-frequency band
[19,21]. In practice, both objective functions require esti-
mation of the noise PSD [e.g., through quantum noise
spectroscopy (QNS) [22-24]], with the latter potentially
requiring only knowledge of the noise cutoff frequencies.
Regardless of the choice of objective function, a majority
of the approaches have been numerically oriented, utiliz-
ing either gradient [20] or non-gradient-based optimization
[19,21]. While analytical solutions for optimal FFs are dif-
ficult to ascertain due to the nonlinear relationship between
the control and FF, numerical approaches have offered lit-
tle intuition into the design of optimal FFs. Furthermore,
questions remain regarding the interplay between con-
trol parameters, such as bandwidth and amplitude, noise
parameters (e.g., noise cutoff frequencies), and optimal FF
design.

In this work, we provide analytical insight into FF
design and introduce an optimization protocol that sheds
light on the relationship between control, noise, and opti-
mal FFs. With focus on a single-qubit system subject to
additive dephasing, we show that relatively simple con-
trol schemes can provide FF tunability in both single- and
multiaxis noise scenarios. Moreover, we show that such
schemes can be straightforwardly designed based on the
properties of the noise PSD. Analytically designed controls
are used to inform the initialization of a FF optimization
approach we refer to as filter gradient ascent in function
space (FGRAFS). As an extension of the GRAFS method
[25], FGRAFS seeks to minimize the spectral support of
the FF within a specified frequency band while simultane-
ously performing a nontrivial quantum gate. FGRAFS is
shown to be highly versatile and adaptable to a variety of
multiaxis noise scenarios, including nonuniform high-pass
and band-pass gates. Furthermore, it proves to be a valu-
able tool for examining the dependence of FF design on
control and noise parameters.

Following the GRAFS approach, we utilize the dis-
crete prolate spheroidal sequences (DPSSs) or so-called
“Slepians” [26-31] as a functional basis for expressing
the control waveform. The DPSSs possess intrinsic band-
width tunability that enables the study of optimized FFs as
a function of control bandwidth. Additionally, the DPSSs

bases constitute an optimal description of the subspace
of functions limited in both time and bandwidth. Using
the DPSSs as a functional basis restricts the controls to
the space of physically realizable functions, while sub-
stantially reducing the dimensionality of the optimization
problem. It is through the use of FGRAFS in conjunction
with the DPSSs that we arrive at conditions on the opti-
mal control bandwidth for filter design. In particular, we
find clear indications that the optimal control bandwidth
is lower bounded by twice the size of the frequency band
over which the FF is to be suppressed. Interestingly, this
result generally holds for both single- and multiaxis noise.

Together, our analytical and numerical results provide
a relatively comprehensive guide for FF design in a vari-
ety of relevant noise scenarios. Figure 1 summarizes the
FGRAFS workflow. First, the region of frequencies where
the noise is strongest is identified. Then, this information is
used to construct the DPSSs basis and tailor initial condi-
tions, both key ingredients in the gradient-based optimiza-
tion. The manuscript is organized as follows. In Sec. 11 we
describe the relevant background necessary to understand
the numerical optimization, namely the system models and
the FFF. We also describe the DPSSs, their definition, and
main properties. In Sec. III, we introduce the FGRAFS
method, defining the optimization problem and explicitly
computing the gradients. Section IV presents the main
results. Here, we describe analytical control schemes used
to initial FGRAFS. We then showcase optimized control
waveforms and FFs obtained from FGRAFS for various
control and noise scenarios. FGRAFS is then employed to
examine the connection between control parameters, noise
characteristics, and optimal FF design. We conclude in
Sec. VI with a summary of the main results and an outline
of future investigations.

II. BACKGROUND

We begin by describing the theory necessary to under-
stand and implement FGRAFS. First, we define the control
and noise Hamiltonians relevant to this study. Then, we
describe the FFF, the framework used to study the system
dynamics in the frequency domain.

A. System model

We consider the problem of controlling a single-qubit
system in the presence of temporally correlated additive
dephasing noise. The dynamics of the system are governed
by a Hamiltonian H (¢) that can be partitioned as

H(t) = He(t) + Hy (D), (1

where Hc(f) denotes the control contribution that acts
solely on the system and Hy(f) encapsulates the contri-
butions of the noise processes. In the reference frame
rotating with the frequency of the qubit, and under the
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FIG. 1. FGRAFS workflow exemplified for single-axis noise and the control case. (a) A CNB is defined from the PSD S(w) and
a fractional power € as the region where the noise is the strongest. (b) Using the maximum frequency wy = max,, B3, the initial
conditions are defined as constant drive. (c) The size of the CNB is used to define the control bandwidth of the Slepian basis. (d) The
initial condition is projected onto the Slepian basis, and optimized to minimize the objective function I"(T), improving the cancelation

of the noise by several orders of magnitude.

rotating-wave approximation, the control Hamiltonian is
given by (in units of h = 1)

Q:(0) o, + Q,0 -

Ho(h) = 5 5 -

)
Motivated by a variety of system architectures [32—34],
we consider control functions along the axes transverse
to the quantization direction. While the control Hamilto-
nian defines amplitude control along the Pauli operators
oy and o, one can move from Cartesian to polar coor-
dinates to express the control functions in terms of the
time-dependent amplitude and phase. We focus on the for-
mer representation, yet note that our approach is effectively
agnostic to the choice in control representation. Formally,
the controls are assumed to be expressed as a weighted sum

Q) =) i gi(0). 3)
k

Here o, are real expansion coefficients and ¢(f) are
weight basis functions. At this stage, we assume @i (?) to
be arbitrary and more concretely specify them in Sec. 11 C.

The single-qubit system is subject to semiclassical noise
generically described by the Hamiltonian

Hy(t) = B(1) - 5, (4)

where E () = (Bx(®), By(1), B-(1)) and the Pauli operators
are given by 6 = (oy, 0y, 0;). Each noise component g, (¢)

defines a random Gaussian process considered to be wide
sense stationary with zero mean, (8,(#)) =0, u =x,y,z,
where (-) denotes classical ensemble averaging. In addi-
tion, the functions B, (¢) are characterized by two-point
correlation functions (B,(#)B,(¢)), related to the noise
PSD S,.,(w) via a Fourier transform:

1 [ 4
(ﬁu(r)ﬂu(t’»:E /0 Sun(@)e®dw.  (5)

As will be discussed below, the frequency domain repre-
sentation provides a convenient language for analyzing the
dynamical contributions of the noise to the time evolution
of the qubit. This representation gives rise to a power-
ful framework known as the FFF. Capturing the effective
dynamics of a quantum system in terms of the spectral
properties of the noise and the control-driven frequency
response of the system, the FFF has been employed in
settings such as quantum noise spectroscopy [22—24] and
noise mitigation [19,33,35,36]. In the following section,
we review this formalism, following closely the work of
Green et al. [17].

B. Filter function formalism

Because of the time dependent nature of the noise,
Hamiltonian (1) will in general not commute with itself at
different times [H (£), H(¢')] # 0 if ¢ # ¢, and therefore the
time evolution it induces will be given by the time-ordered
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propagator

t
U(f) = 7, exp [—i/ H(s)dsi|, (6)
0

where 7 is the time-ordering operator. In general, for an
arbitrary Hamiltonian H (¢), the time propagator U(¢) will
not be analytically tractable and hence we will not have
access to a closed analytical description of the time evo-
lution. Instead, by moving to the interaction picture with
respect to the control, and assuming that the control is
dominant with respect to the noise, the noise dynamics can
be treated as a time-dependent perturbation.

Moving into the rotating reference frame with respect to
the control propagator Uc(f) = 7, exp(—i fot Hc(s)ds), the
time evolution operator U(¢) can be expressed as U(f) =
Uc(9) Uy (7). The rotated-frame error propagator Uy (t) =
T, exp(—i fot Hy (s)ds) is generated by

Hy(t) = ULOHy (OUc(t) = Y Bu(ORuw B0y, (7)

v

Since SU(2) is homomorphic to SO(3), the rotated-frame
Hamiltonian can be written in terms of the control matrix
components R,,(f). Each component can be expressed
using the Hilbert-Schmidt inner product as

R (t) = ITt{UL(0)0, Uc(t)o, ). (8)

Using a perturbative Magnus expansion [37], it is conve-
nient to parametrize the error propagator

U (1) = exp[—id(1) - 5] ®

in terms of the error vector a(t) = Y 1o, a®(#). In gen-
eral, a closed form for a(f) does not exist; however, when
the noise is sufficiently weak and the time scale of the
dynamics is sufficiently short, one can truncate the expan-
sion [17,24]. Under these conditions, the error vector can
be approximated to leading (first) order such that a(r) ~
al (¢), where

t
0 =3 [ ds BuRw () (10)
0
i

with u,v =x,y,z.

The error vector representation proves to be convenient
for examining the efficacy of a control protocol via the
average operational fidelity

F(T) = LT (UEUMD)P). (11)

This particular measure utilizes the Hilbert-Schmidt inner
product to quantify how well a given (noisy) propagator

U(T) approximates a target gate Ug after a total controlled
evolution time 7. In the case where Uc(T) = Ug, this
measure can be expressed as

Fn(D) =51+ D), (12)

where x (T) = (|a(T)|?) [17]. Typically, x(7) is referred
to as the overlap due to its frequency domain representa-
tion. More specifically, x (7) can be generically expressed
as a sum of products of integrals, where each integral is
defined as a product between noise PSDs and the FFs. In
the weak noise limit, x (7) ~ (|a'V(T)|?) and the overlap
conveniently reduces to

1 o
xM~— 37 /0 Su(@)Fy(w, Ndo.  (13)

W=x.y,2

The FFs are defined as

Fu(@,T) =Y [Ruv(o, DI, (14)
v
where the frequency domain control matrix elements are

T
Ruv(w,T) = /0 R, (1) dLt. (15)

Note that in this formulation it is assumed that cross-
correlations are neglected; thus, S, (w) = S, (@)8,..

The FFF offers an alternative perspective that can be
exploited for characterization and control problems. For
example, in the case of optimized control, the objective
is to find control functions €2, (¢) that minimize the over-
lap [Eq. (13)], and, thus, maximize the operational fidelity
[Eq. (12)]. This is the overarching principle leveraged by
FGRAFS to tailor FFs and achieve an optimized gate.

C. Time-band-limited sequences for quantum control

Generally speaking, there is no designated protocol
for choosing a parametrization of the control function
Q,(¢). In GRAPE approaches, the control profiles are typ-
ically assumed to be piecewise constant in time [13]. The
optimization proceeds by locally updating each control
amplitude for each time step such that the overall profile
generates a controlled evolution that converges towards
the desired operation. This approach becomes increasingly
computationally expensive as the number of time steps
increases. Furthermore, GRAPE methods typically require
additional bandwidth and amplitude constraints to enforce
physical limitations in control hardware or low-pass filter-
ing to generate smooth control [15].

Functional expansions of the control waveform offer
advantages over piecewise control. When expressed as
a weighted sum of basis functions, control optimization
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algorithms focus their attention on optimizing the basis
function weights, rather than the individual control ampli-
tudes. This alternative approach leads to global as opposed
to local updates to the waveform. While GRAPE-based
methods [38] and other non-gradient-based methods [21]
have sought to leverage functional expansions for opti-
mized control, basis selection is to some degree unmoti-
vated.

In this study, we employ a functional expansion
parametrized by the DPSSs [31]. With their rich history in
classical signal processing, DPSSs offer an optimal com-
promise to the time-bandwidth uncertainty relation. More
specifically, they form a basis with optimal spectral con-
centration for time-limited signals. From a control perspec-
tive, DPSSs are attractive for designing optimized control
that inherently accounts for physical limitations of control
hardware. Timing resolution and control bandwidth pre-
clude the basis generation. As a result, intrinsic bandwidth
constraints are imposed within the basis prior to optimiza-
tion rather than as an additional constraint appended to the
objective function.

As discrete analogs of prolate spheroidal wave func-
tions, DPSSs are parametrized by the sequence length N
and the dimensionless bandwidth parameter W € (0,0.5).
A kth-order Slepian sequence {v® (N, W)} _/ is generated
as a solution to the Toeplize matrix eigenvalue equation

N-1 .
sin2x W(n — m)
Yo PN, W) = N, P (N, ),
o w(n—m)

(16)

where k,n =0,...,N — 1. The DPSSs form an orthonor-
mal basis of the vector space of real numbers RV, sat-
isfying Y v N, WyvD (N, W) = 8. The eigenval-
ues {A:(NV, W)} determine the order k& of the DPSSs and
increase monotonically with &, such that 0 < Ao(N, W) <
MWN, W) <--- <Ay_1(N,W). Moreover, {A,(N, W)} are
a measure of the spectral concentration of DPSSs within
the frequency band (—27 W/5t, 2w W/5t), where §t = T/N
designates the time resolution of the control. DPSSs of
order k < 2NW are the most spectrally concentrated, pos-
sessing eigenvalues very close to unity. In contrast, DPSSs
with k£ > 2NW are characterized by A;(N, W) =~ 0. This
property has previously been used to establish an approxi-
mate dimension K of the space of band-limited functions:
K = |2NW]. Lastly, we note that the order & of the DPSSs
determines its number of zero crossings and characterizes
even-odd symmetry of the sequence about the midpoint.
Below, the DPSSs are used to parametrize the space of
control functions available to the optimization algorithm.
The size of the basis is dictated by K and, therefore, the
timing resolution and bandwidth parameter. However, as
we will discuss, leveraging the spectral information con-
tained within the DPSSs eigenvalues, we can consider

a basis smaller than K to introduce additional control
constraints, e.g., endpoint constraints. We further exploit
the DPSSs to establish a relationship between the band-
width W and the noise suppression characteristics of our
optimized gates.

III. FILTER GRAFS

FGRAFS is a gradient-based optimization method for
constructing noise-robust quantum operations via the FFF.
Inspired by our previous work on closed system optimized
control [25], FGRAFS utilizes a functional expansion of
the control in terms of DPSSs. Below, we further elabo-
rate on FGRAFS, providing detailed information about the
objective function, gradient expressions, and optimization
procedure.

A. Optimization problem

FGRAFS is designed to engineer noise-optimized con-
trol profiles that minimize the distance between a target
gate Ug and a noisy controlled evolution described by the
unitary U(T) = Uc(T) U(T). This is accomplished by cast-
ing the optimized control problem as a constrained opti-
mization problem. The objective function aims to mini-
mize the spectral overlap between the noise PSDs and FFs,
while the constraint works to enforce a targeted fidelity
for the logic gate. Formally, the FGRAFS optimization
problem is defined as

min I'(7)
73] (17)
such that Fg(T) > 1 — €g,

where I' quantifies the spectral leakage of the FFs within
the frequency bands B;. The constraint is defined relative
to the ideal gate fidelity F(T) = }‘lTr[Ug Uc(T)]|?, which
determines how well Uc(T) approximates the desired tar-
get gate within an infidelity tolerance €.

The spectral leakage is dictated by the spectral null
bands (NBs) of the noise PSDs and the FFs resulting from
candidate control profiles. The NBs are defined as the
regions By, u = x,y,z, where the fractional noise power
is small. More rigorously, for a desired fractional noise
power €, < 1, the NB is defined according to

fBu S, (w)dw

fooo S, (@)dw < €. (18)
It is sufficient to consider equivalent fractional powers
across all Pauli channels, and, therefore, €, = € will be
assumed throughout the remainder of this study.

In general, the NB is selected based on three guidelines.
(1) The NB should achieve maximum connectedness, i.e.,
minimize the number L of disjoint sets that compose the
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NB: B = U’Ji:o B,.. (2) The size of the NB |B| should be
maximal. As we will discuss later in this study, the con-
trol bandwidth requirements decrease with |B|. (3) The
NB should be chosen to maximize the presence of high-
frequency contributions. In practice, most time-correlated
noise processes are characterized by PSDs that are concen-
trated at low frequency. A choice of € will then determine
a high-frequency cutoff wy, producing B = [wy, 7 /81),
within which the noise is sufficiently weak.

It is within the NBs that the FFs would ideally reside.
Thus, an optimized control scheme strives to maximize
the FF support within the NB, or, equivalently, minimize
the leakage of the FFs within the complement of the NBs
(CNBs) B,,. The FGRAFS approach operates within the
context of the latter, seeking to minimize the spectral
leakage

1
(=37 3 5 [ FuoDdo. (19)

H=x.y,2

Here we have introduced the estimated weight of the noise
power in the uth direction p,; see Appendix A for further
details. Observe that we have included a factor of 1/37 to
normalize I'(7) with respect to the total power of the FFs.
Each component FF possesses a total power of 7, while the
factor of 3 appears due to the presence of noise along all
three single-qubit Pauli channels.

While our focus will be on the spectral leakage, we
show that there is a connection between the minimization
of I'(T) and the size of the CNB. Formally, we define the
size of the CNB |B| as the integral

(20)

Each integral is bounded between 0 and /3¢ and, thus,
0 < |B| < 3mw/8t. The lower bound is saturated in the
noiseless case, while the upper bound is achieved in the
white noise case. In Sec. IV, the size of the CNB will
emerge as an important quantity in the discussion of
optimized spectral leakage and optimal control bandwidth.

The FGRAFS optimization problem is solved via
sequential least squares programming (SLSQP) [39].
In practice, we find that SLSQP offers faster conver-
gence rates than alternative numerical optimizers, such
as the interior point method [40], when solving Eq. (17).
Variants of this optimization problem, for example uti-
lizing an effective “leakage fidelity” Fr(7) = %[1 +
exp(—PTT(T)/8w)], where P =3 15 Su(@)dw is the
total power, leads to improved convergence for both the
interior point method and L-BFGS-B method [41]. How-
ever, the latter approach requires knowledge of the total
power and therefore more detailed estimates of the noise
PSDs. This is in contrast to the spectral leakage, which

may only require rough estimates of noise PSDs to deter-
mine CNBs. For this reason, and its simplicity, we utilize
Eq. (17) for filter design and gate optimization.

While presented in a rather axiomatic fashion, the opti-
mization problem given in Eq. (17) can be shown to
be related to the global phase-invariant metric between
unitaries [42—45]. This metric is defined as

D(Us, UD) = mi 1Uge"™ — UMDl

[0,27]

- \/1 — rruLunl, 21)
where ||4||, = +/Tr(4%4) is the Frobenius norm. As a
distance metric, D naturally satisfies the properties of sym-
metry and the identity of indiscernibles. In addition, D
satisfies the triangle inequality, which can be used to estab-
lish the following upper bound on the average squared
distance:

(D(Ug, U(D))?*) < ((D(Ug, Uc(T)) + D(1, U(T)))?)

<2 —=Fa(D) = Fr(D) + K(T) + O(e).
(22)

The term KC(7) is a function of Fg, Fy and goes to zero
as these quantities approach unity. The last term signifies a
dependence on the fractional power in the NB. Note that,
as long as € can be kept sufficiently small, the bound on D
is effectively minimized by minimizing I"(7) subject to an
€c < 1. Additional details regarding the derivation of the
bound can be found in Appendix A.

Lastly, we address the potential practical advantage of
defining the objective function in terms of NB and CNB
regions as it pertains to reducing overhead required by
QNS protocols. Noise characterization techniques, like
QNS, are used to provide estimates of noise spectra by
utilizing the quantum system as a dynamical probe. Such
estimates can be critical to the design of noise-informed
gates, as the noise suppression characteristics of the con-
trol are directly related to the spectral overlap between the
FFs and the noise PSDs. Thus, in general, one requires rea-
sonably sufficient characterization of the complete noise
PSD in order to design gates to minimize the overlap
described in Eq. (13). However, we find this condition
to be too stringent and argue that it is sufficient to only
require knowledge of key features, such as noise cutoff
frequencies, in order to define CNBs and estimates of
the fractional power. Unconcerned with knowledge of the
complete PSD, but rather just the “flavor” of the noise,
this approach potentially reduces the overhead required to
provide sufficient estimates of noise PSDs via QNS.

B. Gradients

In this section, we derive analytical gradient expressions
for the objective function in Eq. (A11) and the ideal gate
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fidelity F (7). Our derivation makes use of gradients orig-
inally introduced in Ref. [25] for closed system DPSSs-
based-optimized control. Note that similar analytical FF
gradients have also been derived in Ref. [20].

Under the parametrization of Eq. (3), where the DPSSs
are selected to form the functional basis, the pure control
evolution Uc(f) is piecewise constant. The control pro-
files resulting from the DPSSs expansion inherit properties
of the basis, namely, they are discrete sequences. Thus,
for a given control sequence of N time steps, each of
duration §t, the control amplitude will take constant val-
ues 2, (t) = Q,,, where ¢ € [, t,11) and t, = nét for n =
0,1,...,N — 1. Equivalently, projecting into the DPSSs
basis,

Q= Zavkv“) (23)

where we have dropped the explicit dependence on N and
W for the DPSSs. The piecewise-constant control assump-
tion permits the control propagator Uc(?) to be written as
the product

Uc(t) = Uc(t,ty) - - - Uc(ta, 1) Uc(t1, 0), (24)

where n = [#/8t]. Each constituent propagator Uc(#;, 1)
implemented over the jth time step is generated by the
control Hamiltonian [Eq. (2)],

Uy, 1) = ™75 12 (25)

forj =0,1,...,N — land @ = (Q,,,2,)).

FGRAFS optimizes the control waveform via optimiza-
tion of the expansion coefficients {«,}. As a result, the
coefficients are updated according to

(r+l) (r) —y
o, Kk u,k
awr lal)

(26)

at the (» + 1)th iteration of FGRAFS. The initial values
oei?,z can be chosen randomly or tailored to the noise charac-
teristics, as we discuss in detail in Sec. IV. The parameter
y is the learning rate that is determined adaptively by the
SLSQP algorithm.

The gradient of the objective function is proportional to
the gradient of the FFs. The controls are finite duration
and bounded by construction, and therefore the integral in
Eq. (A11) converges. Hence, the derivatives with respect
to the expansion coefficients commute with the integral

over frequencies and can be applied directly to the FFs as

oF, (a)) aRuv(w) N 8Rl*w(a))
ey —Z Ty R @)+ R (@) =2

27

for w,v,n € {x,y,z,}. Note that we have dropped the
explicit dependence on T for brevity. By virtue of Eq. (15)
and, subsequently, Eq. (8), the derivatives propagate from
the frequency-domain representation of the control matri-
ces to its time-domain counterpart according to

ORw (1) _ Tr(aU}(t)

Uc(Ho,
30(n,k Ou C( )0)

+ Tr(UTC(t)aM aaUC(t) ou>.

dop i

(28)

.k

Employing the chain rule, and noting that 02, ,,/0c, s =
v®3§, ., we arrive at the derivatives

0Uc(t) _ g BUct) 29
Doty = 92

for the control propagator. We can again exploit the
piecewise-constant control assumption to determine the
derivative of the control propagator with respect to the
control amplitude. Letting

Qn:m = UC(tn+ls tn) te UC(tm-i—l, tm)

denote the partial control propagator, the derivative can be
expressed as

aUc(1)
02,

= QN—lzn+1< UC(tn+1:tn)>Qn—l:0- (30)

0%,

Finally, each derivative of the controlled evolution dur-
ingt € [t,,t,—1) can be computed via exact diagonalization
[46], where the matrix elements of

d

" —ist(A+sB) 31
7€ (31)
are given by
ae—iﬁt(A+sB)
b
as
—i8t(A|B|A) e for A = A/,
— —idth __ ,—idt\ (32)
St MBIV fora # W,

A=A

where {|A), A} is the eigensystem of matrix 4.
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The final expression required is the gradient of the ideal
gate fidelity F(7). Using Egs. (29) and (30), we find that

076(D) :Re{Tr[UTGUC(T)]*Tr[Uga;]%D“. (33)

aav,k v,k

Together, the spectral leakage and ideal gate fidelity gradi-
ent expressions are used by FGRAFS to generate controls
for specified gate operations with tailored FFs. Below, we
showcase the capabilities of FGRAFS for a variety of noise
and control scenarios.

IV. NOISE-OPTIMIZED GATES

In this section, we demonstrate FGRAFS’s ability to dis-
cover noise-optimized controls in two different control and
noise scenarios. First, we consider the case of single-axis
control along o, and dephasing noise only along o,. In the
second case, we study the more complex case of multi-
axis control along o, and o, with dephasing noise along
0., b =x,y,z. In each subsection, we illustrate how to
initialize FGRAFS based on analytical expressions that can
be tuned to the specifications of the CNB. Subsequent opti-
mization is then used to produce optimized controls that
simultaneously provide significant suppression of the FFs
within the CNB and high-fidelity nontrivial single-qubit
operations. Lastly, we explore the relationship between the
DPSSs bandwidth parameter and the post-FGRAFS resid-
ual spectral leakage. This analysis provides key insight
into the interplay between the control bandwidth and the
characteristics of the noise PSD.

A. Single-axis control and dephasing

We begin by studying a system driven via single-axis
control applied in the x direction and subject to time-
correlated dephasing noise along the z axis. This scenario
is compatible with the highly asymmetric case where the
fractional power estimates are p, = 1 andp, = p, = 0. At

the Hamiltonian level, we impose €2, () = 0 and B (1 =
(0,0, B.(9)) in Egs. (2) and (4), respectively. Control along
o, and noise along o, gives rise to two control matrix com-
ponents R,. and R.. that ultimately contribute to F(w),
the only nontrivial FF for this case. The objective function
[Eq. (A11)] therefore reduces to a single integral focused
solely on the spectral leakage of F.(w) within the CNB
B.. Below, we consider two types of CNBs defining two
distinct gate types: (1) high-pass gates, where the noise is
assumed to be low frequency and the CNB is described by
a properly chosen high-frequency cutoff dependent upon
the characteristics of the dephasing noise PSD S, (w), and
(2) band-pass gates, where the noise PSD possesses both
low- and high-frequency components. In the latter case,
the CNB is determined by multiple cutoff frequencies to
adequately capture the characteristics of S, (w).

1. Analytically informed initial conditions

The FF design problem constitutes a nonconvex opti-
mization problem that strongly depends on the initial con-
ditions used for the gradient-based optimization procedure.
One approach is to randomly initialize the expansion coef-
ficients «, x; however, as we show in Appendix C, we find
that this typically results in unstable solutions and unnec-
essarily large control amplitudes. We overcome this issue
by utilizing primitive controls with straightforwardly and
intuitively tunable FFs as initial conditions.

In particular, we employ constant drive (CD) control
as an initial guess for the optimized control waveform.
Known in noise characterization [47] and quantum signal
detection [48], CD represents a simple control scheme in
which the system is driven at a constant rate Q2 (f) = € for
atime 7. The amplitude 2 dictates the center frequency of
the FF, while the total duration of the drive determines the
spectral width; see Fig. 2(a) below for example. Function-
ally simplistic, the CD FF F(w,T) o T'sinc((w £ 2p)),
and in the limit 7 — oo, this FF converges to delta func-
tions centered around 2. The tunability and localization
of the CD FF are key features that we exploit to initialize
the FGRAFS optimization.

Upon construction, the initial control waveform is
projeced into the DPSSs basis and then optimized via
FGRAFS. First, the amplitude of the CD initial condi-
tion is determined by the CNB, while 7 is dictated by the
desired gate time. The subsequent (initial) control Q% (¢) is
then projected into the DPSSs basis, where the expansion
coefficients

(0) ZQ(O) ® st (34)

xnn

are determined via the DPSSs orthogonality relation
SV v®u® s = 8, 1. FGRAFS proceeds by optimizing
these coefficients to reduce the spectral leakage of the FFs
outside of the NB. CD affords some spectral concentra-
tion and reduced spectral leakage; however, as we show
in Sec. IVA 2, FGRAFS can further lessen residual leak-
age while abiding by the desired bandwidth constraints of
the control.

2. Optimized control waveforms and filter functions

Here, we illustrate the utility of FGRAFS for con-
structing high-pass and band-pass gates using single-axis
control. Figure 2 serves as the focal point of this discus-
sion, where we consider a 7 rotation about the x axis
of the Bloch Sphere, Uc(T) = X,;, as a representative
case. Control profiles are displayed in the left column,
while the right column shows the corresponding FFs and
CNBs (shaded regions). Each row indicates a different
control and/or noise scenario. We begin with a discus-
sion focused on how the initial conditions are informed
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FIG. 2. Control profiles generating X, gates (left) and their
associated FFs (right) for single-axis control and noise. The CD
initial conditions with amplitude Q(¥) = wy = 0.01 x 27 /8t
and boundary conditions €2(0) = Q(7) = 0 are shown in (a) and
(b). High-pass-optimized control obtained from FGRAFS and its
associated FF are shown in (c) and (d), respectively. The DPSSs
basis is specified by K = 2NW, where W = 2wy x §t/2mw and
the CNB is B = [0, wy). Similar results are shown in (e) and
(f) for an optimized waveform with endpoints near zero ampli-
tude. The DPSSs basis size is K’ = 2NW — 4, where W = 2W.
Band-pass-optimized controls are shown in (g) and (i), with their
associated FFs shown in (h) and (j). The passband is determined
by B = B; U B,, where By = [0, w¢) and B, = (wy + Aw, wpy).
The low-frequency cutoff is given by w, = 0.004 x 27 /5¢, the
spectral width of the passband is Aw = 0.01 x 27 /§t, and the
high-frequency cutoff of B, is wy = 0.018 x 27 /8¢. Panels (g)
and (h) use a DPSSs of size K and bandwidth W = 2|B| x §t/2x,
while panels (i) and (j) utilize K’ DPSSs and W' = 2W to impose
near-zero control boundary conditions. All scenarios described
above use a total number of N = 1000 time steps. In all cases, the
optimized FFs attain several orders of magnitude improvement in
cancelation within the CNB regions over CD.

by the CNB and then move to examining the optimized
controls and FFs resulting from FGRAFS. Optimizations
are performed assuming a tolerance of 10~'° that typically
requires O(100) iterations of the SLSQP algorithm.

The amplitude of the CD initial condition is set by either
the high-frequency cutoff or the center frequency of the
passband. When the noise PSD predominately resides at
low frequencies, the CNB is defined according to the high-
frequency cutoff wy: B = [0, wy). Note that the size of a
low-frequency noise CNB equals its high-frequency cutoff,
ie, |Bl = [, do = wyy. Consequently, the amplitude of
the CD is set to Q) (f) = wy to center the FF at the edge
of the NB; see Fig. 2(b). Note that any Q) (¢) > wy would
suffice; however, centering a CD FF at higher frequency
comes at the cost of higher amplitude controls. Further-
more, in practice, we find Q% () = wy to be a sufficient
initial condition for achieving an optimized control within
approximately 100 iterations of FGRAFS.

A similar approach is used when defining initial condi-
tions for band-pass gates. Noise PSDs that have significant
support at both low and high frequencies require CNBs
to be defined as unions of disjointed regions in frequency
space. For simplicity, we consider the case where there are
two such regions: one at low frequency B and another
at intermediate frequencies B,. The passband existing
between these CNBs can be defined according to a lower
end w, and noiseless band of width Aw. In terms of these
parameters, the CNB is given by B = B; U B,, where
Bi =[0,w¢) and By = (w¢ + Aw, wy). Initial conditions
defined from B are dependent upon the lower cutoff fre-
quency of the passband, where Q) (r) = w, can be used to
initialize the optimizer.

FGRAFS offers improved suppression of the FF over
CD within the CNB. In Figs. 2(c) and 2(d), the result-
ing FGRAFS-optimized control and FF are respectively
shown for a high-pass gate. The normalized bandwidth of
the DPSSs basis is set to W = 2wy x 6¢/2mw. This choice
is based on a bandwidth analysis of the FF suppression
within the CNB; see Sec. IV A 3 for further details. Com-
paring Figs. 2(a) and 2(c), we observe that, while the CD
offers some initial suppression of the FF within the CNB,
FGRAFS further reduces the FF contributions by approx-
imately 4 orders of magnitude. Interestingly, the control
profiles required to achieve this enhancement are quali-
tatively similar to the CD control. The distinctions lie in
the high-frequency oscillations centered about the CD-like
control profile and the control boundaries €2 (0) and 2 (7)
that differ from zero.

Through the DPSSs basis, conditions on the endpoint to
maximum control amplitude ratio can be imposed intrinsi-
cally, bypassing the need to append additional constraints
to the objective function. From a practical perspective,
control boundary conditions are desirable for ensuring the
creation of viable optimized control profiles that abide
by control hardware slew-rate limitations. Such conditions
can be included in optimized control schemes via addi-
tional constraints [15] or by analytically enforcing the con-
straints prior to optimization [38]. The FGRAFS approach
essentially straddles the two approaches by imposing con-
straints on the DPSSs basis elements prior to the opti-
mization. More specifically, control boundary constraints
can be indirectly enforced by imposing a minimum tol-
erance on the DPSSs eigenvalues described in Eq. (16).
The highest order DPSSs within K < 2NW are the least
spectrally concentrated and have nonzero amplitudes at
the boundaries [25]. By enforcing a spectral concentration
constraint of A; > n, where 1 is the desired tolerance, one
can circumvent this issue and impose approximate bound-
ary conditions on the DPSSs basis. In order to maintain the
same number of basis functions, the bandwidth # must be
artificially increased from Wto W'.

In practice, we find that boundary conditions can be
sufficiently maintained by demanding 99% concentration

014062-9



YASUO ODA et al.

PHYS. REV. APPLIED 19, 014062 (2023)

(n = 0.99). Basis cardinality is preserved by doubling the
normalized bandwidth W' = 2W, and taking the first K’ =
2|NW'| — 4 DPSSs to form the new basis. An example of
the control profiles and FFs resulting from the truncated
basis optimization are shown in Figs. 2(e) and 2(f) for
the high-pass filter case. FF suppression within the CNB
is comparable to the results shown in panels (c) and (d).
The control endpoint amplitudes are €2(0) = 0.01 x wy
and Q(7) = 0.05 x wy, compared to 2(0) = 1.13 x wy
and Q(7) = 1.32 x wy obtained without the eigenvalue
concentration constraint. Furthermore, we observe an
improvement in spectral concentration. Controls obtained
from the truncated basis with bandwidth W possess greater
than 99% concentration within (— W, W), while optimized
control waveforms constructed with a DPSSs basis of
bandwidth W typically achieve between 70%—90% con-
centration. Thus, FGRAFS is able to achieve similar noise
suppression capabilities, while approximately satisfying
boundary conditions and attaining improved spectral con-
centration. Note that the endpoints can be further reduced
by increasing spectral tolerance—and increasing band-
width, if one wishes to preserve basis cardinality.

FGRAFS supports band-pass gate design for more com-
plex noise scenarios. In Fig. 2(g), the FGRAFS-optimized
controls are displayed for the X, gate and the CNB B =
B U B,, as described earlier in this section. The spec-
tral width of the passband is Aw = 0.01 x 27 /8¢ and
the high-frequency cutoff of B, is wy = 0.018 x 27/6t.
The control bandwidth is set to W = 2|B| x 8t/2m, where
|B| = wy — Aw. This choice is based on an analysis of the
spectral leakage in the CNB as a function of bandwidth;
see Sec. IV A 3 for further elaboration. Noise suppression
afforded by the optimized controls is depicted in Fig. 2(h),
where the FF is shown to have spectral nulls within the
CNB regions. In comparison to the CD initial condi-
tion, the FGRAFS solutions achieve greater FF suppres-
sion: approximately 4 orders of magnitude improvement.
Similar performance characteristics are observed when
leveraging a truncated basis to satisfy control boundary
conditions; see Figs. 2(i) and 2(j).

3. Optimal control bandwidth for single-axis noise

The connection between control bandwidth and noise
characteristics plays an important role in achieving noise-
robust quantum gates. Control hardware is often subject to
constraints on amplitude and bandwidth. In Sec. IV A 1, we
alluded to the dependence of the FF on control amplitude
when selecting initial conditions. Namely, the spectral cut-
offs of the noise determined the control amplitude. Here,
we examine the dependence of the FF on control band-
width. In particular, we exploit the intrinsic tunability
afforded by the DPSSs to study the optimized spectral leak-
age in the CNB as a function of the DPSSs bandwidth W.

In Figs. 3(a) and 3(b), the spectral leakage I'(T) is
shown as a function of bandwidth W for the high-pass
and band-pass cases, respectively. Data points represent
different combinations of control bandwidth and noise
parameters averaged over five different Xy rotations, where
0 € [0,]. The high-pass comparison shown in panel (a)
includes CNB sizes in the range |B| = wy € (0,0.16] x
27 /8¢, resulting in a total of 2200 configurations. Panel (b)
conveys similar results for the band-pass scenario, where
|B| = wy — Aw € (0,0.08] x 278t for the same W range.
A total number of 9000 configurations are included in the
band-pass comparison. The significant increase in con-
figurations results from the increased complexity of the
band-pass scenario that in turn leads to a greater breadth
in the possible noise and control configurations one may
consider. Data points are supplemented by the median of
the data (black line) calculated using a bandwidth window
of 0.1.

Numerical experiments indicate a uniform dependence
of T'(T) on control bandwidth for both high-pass and
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FIG. 3. FGRAFS-optimized spectral leakage I'(7) as a func-

tion of the control bandwidth W for single-axis control and noise.
Two noise scenarios are shown: (a) high-pass gates and (b)
band-pass gates. Each colored data point corresponds to a dif-
ferent combination of W and noise parameters, each averaged
over five Xy gates, where 6 € [0, ]. In the high-pass case, the
CNB size varies according to |B| = wy € (0,0.16] x 27/8t. The
band-pass case is specified by a CNB of size |B| = wy — Aw €
(0,0.08] x 27r/8t. The number of different noise, control, and
gate configurations totals (a) 2200 and (b) over 9000. In both
cases, a transition occurs at the critical bandwidth W, = 2|B| x
8t/2m. For bandwidths W < W,, the performance improves as
W increases, whereas for W > W,, the performance of the opti-
mization saturates to the gradient tolerance of (a) 10~'2 and (b)
10713, The solid black line represents the mean of the colored
data points over bandwidth windows of size 0.1.
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band-pass gates. Both gate types exhibit a distinct phase
transition in spectral leakage at the critical bandwidth
W, = 2|B| x §t/2x. Control bandwidths below the crit-
ical bandwidth result in significant spectral leakage. In
contrast, we observe convergence in I'(7) for W > W,
likely due to saturation of the designated optimization
tolerance. Despite potential optimizer-dependent features
at high control bandwidth, the emergence of the criti-
cal bandwidth generally appears to only be dependent on
the size of the CNB. This seemingly universal behav-
ior suggests that, for a single qubit subject to single-axis
control and dephasing, the optimal control bandwidth
is W..

Establishing an analytical justification for this relation-
ship between W, and properties of the noise is challenging.
This is primarily due to the nonlinear relationship between
the control and the FFs. That said, it is worth noting
that the expression of W, is strongly reminiscent of the
Nyquist-Shannon sampling theorem [49]. This theorem
states that in order to effectively reconstruct a signal of a
given bandwidth B, it suffices to sample at a frequency of
fs = 2B. Without further constraints imposed on the sig-
nal, the theorem determines that this sampling frequency
is both sufficient and necessary. It is within this context
of classical signal reconstruction that we propose the fol-
lowing intuition. Rather than considering FGRAFS as a
method for optimally filtering noise, let us treat it as an
approach for finding the controls required to “reconstruct”
an ideal FF that optimally filters noise within the CNB 5.
According to Fig. 3, such a reconstruction requires a mini-
mum control bandwidth of W, = 2|B| x §¢/27 in units of
27 /8t. This value is, in turn, also that needed to sample
and reconstruct a signal of bandwidth |B|. This suggests
that the problem of filtering noise with a CNB of size | B|
is equivalent (in the sense of resources needed) to sam-
pling and performing signal reconstruction of a function of
bandwidth |B|.

The results obtained from FGRAFS allow for an alterna-
tive interpretation, in terms of the Landau-Pollak theorem
[27]. This theorem states that the dimensionality of a sig-
nal of bandwidth W (in units of hertz) and total duration
T is 2WT, or 2NW as expressed in the present units and
quantities. This is obtained by showing that the DPSSs can
optimally approximate any time and band-limited function
of bandwidth W with a DPSSs basis of only 2NW elements.
Through FGRAFS, we find that the optimal DPSSs basis
uses a bandwidth W, and 2NW, elements. This basis is
capable of approximating any time and band-limited func-
tion of bandwidth W, as well, and FGRAFS shows that
the controls capable of noise filtering belong to this set of
functions. This seems hardly a coincidence: the amount of
resources (degrees of freedom) needed to filter noise with a
CNB of size | B] is the same as that required to approximate
a signal of bandwidth 2|B|, with effective dimensional-
ity 4N'|B| as given by the Landau-Pollak theorem. Let us

reiterate that this signal of bandwidth 2|B| is that capable
of filtering noise with CNB size |3|.

Based on these arguments, we claim that the FFs bridge
the gap between the noise and the controls. Based on the
sampling theorem, classically one could think that if the
noise functions B(#) reach a maximum bandwidth wy >
|B|, the frequency 2wy > W, would have to act as an abso-
lute minimum for the control functions bandwidth. The
results from FGRAFS show that the nonlinear FF transfor-
mation is able to capture the essential degrees of freedom
of the noise needed for cancelation, compressing it into a
space of dimension 2NW,, with W, = 2|B| x 8t/2x.

B. Multiaxis control and dephasing

In situations where noise contributions are not limited
to a single axis, FGRAFS can be employed to simulta-
neously suppress noise along multiple axes. We illustrate
this feature by considering two axis controls, €2,(?) #
0, v =x,y, and noise along all three Pauli axes: 8(¢) =
(B:(D), By (1), B-()). We assume cylindrical symmetry and
therefore require that B, (t) = B, (1) = By, (¢). To simplify
the analysis, in the present section we consider the sym-
metric case, where the fractional power estimates are
equal, p, =p, =p, = 1/3, and vary the relative sizes of
the CNBs.

In the absence of cross-correlations, six control matrix
components give rise to three unique FFs F, (w) and PSDs
S, (w), p =x,y,z. The objective function [Eq. (All)]
now contains three contributions over CNBs Bxu Below,
we investigate the efficacy of FGRAFS for arbitrary single-
qubit gates in both the high-pass and band-pass cases.

1. Analytically informed initial conditions

The increased complexity in the control, FFs, and
desired gate operations poses new challenges for the
FGRAFS optimization problem in the multiaxis setting.
In particular, the ability of the algorithm to converge on
viable solutions is strongly dependent upon the initial
conditions. In many cases, random initial conditions are
not sufficient. Hence, we take an approach similar to the
single-axis case and rely on analytically informed initial
conditions to improve algorithmic stability and conver-
gence.

Initial conditions for multiaxis control optimization
are constructed from the high-pass filtering scenario.
More specifically, we consider the case where B, = B, =
[0, w,,) and Ez = [0, w,). Initial conditions are derived
based on a simplistic control ansatz: CD along one axis and
a square wave along the second control axis. This approach
is inspired by the single-axis case and canonical dynamical
decoupling sequences [11,50] that leverage rapidly fluc-
tuating control to mitigate noise. Despite its simplicity,
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this control ansatz proves to be amenable to more general
scenarios beyond the conditions under which it is derived.

The analytical form of the initial conditions is most
conveniently expressed in polar coordinates. The con-
trols are thus represented as Q(¢f) = Q(cos ¢ (¢),sin P (£)),
where ¢ () = ¢ps,(f). The modulation function s; () =
+1 defines a square wave with unit amplitude and control
frequency A = 27 /T.. Here T, is the control period, and it
satisfies T = MT, for some positive integer M. An exam-
ple of this control is given in Fig. 4(a). The values of the
control parameters required to filter low-frequency noise
up to w. =n.dw and w,, = n,dw are found by setting
M, 6 as defined below and solving the following system
of equations:

M = n. + n,, (35a)
0 =2mn./M, (35b)
sin®(6)
m = cos“(6/4), (35¢)
QT
£ = AP (35d)
tan’ ¢ = —& cot(£). (35¢)

Solving the third equation numerically using standard opti-
mization libraries, one finds a family of potential parameter
choices. Motivated by an efficient use of resources, we
select the solution that minimizes & and, as a consequence,
the control amplitude. Note that much like the single-
axis case, this control ansatz affords intuition in parameter
selection. Namely, the control amplitude is proportional to
the sum of the noise cutoff frequencies M, up to a fac-
tor determined by &. Furthermore, the single-axis initial
control ansatz can be recovered by setting w,, = 0, which
in turn yields ¢ = 0 and single-axis CD control. Further
details on the derivation of the system of equations (35)
can be found in Appendix C 2.

An example of initial conditions for the controls and
their associated FFs are shown in panels (a) and (b) of
Fig. 4, respectively. Note that €2, (¢) is chosen to drive the
single-qubit system according to a CD, while €2,(f) uti-
lizes the fluctuating square wave. Results are shown for
W, = wy, = 0.02 x 27/8¢. For this specific case of noise
parameters, ny, = w,, /6w = n. = w./dw = 8. This yields
control parameter values of M = 16 and 0 = w. Addi-
tionally, we obtain the smallest value of & &~ 1.937 after
solving Eq. (35¢) and ¢9 ~ 0.711 after inverting Eq. (35¢).

2. Optimized control waveforms and filter functions

FGRAFS-optimized control waveforms and FFs for the
multiaxis case are displayed in Fig. 4. The left column con-
tains the controls, while the right column shows the FFs.
All cases perform the optimization of the same arbitrary
single-qubit gate using N = 1000 time steps. We illustrate
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FIG. 4. FGRAFS-optimized controls and FFs for multiaxis

control and noise. The left column conveys control profiles,
where each panel shows control waveforms for €2, (¢) (blue line)
and €2, (7) (orange line). The right column depicts the correspond-
ing FFs, with the top half of the panel displaying F,, (o, T) =
Fy(w,T) + F,(»,T) and the bottom half containing F.(w, 7).
The analytical initial conditions are shown in (a) and (b) for A =
w; + w,, = 0.04 x 27 /8t. FGRAFS-optimized (c) controls and
(d) FFs for the high-pass case are shown for B, = [0, wy,) and
B. = [0, 2wy,), where wy, = 0.02 x 27/8¢. Similarly, FGRAFS-
optimized (e) controls and (f) FFs for the band-pass case are
shown for By, = [0, w,) and B, = B.; U B.,. The CNBs for the
band-pass regions are B = [0, wy,) and B.; = (0, + Aw, w,).
Here wy, is the same as in the high-pass case, while Aw = w,,
and @, = 4w,,. In all cases, N = 1000 time steps are used and
the control bandwidth is W = 2|B| x 8¢/2m. As in the single-
axis noise case, the resulting optimized FFs are suppressed by
several orders of magnitude with the CNBs.

the utility of FGRAFS in two scenarios: the fully high-pass
case and a hybrid band-pass—high-pass case. The former
showcases FGRAFS’ ability to uniquely tailor FFs based
on distinct CNBs and therefore noise properties. The latter
further conveys this message with a more complex noise
scenario.

Here, we show that FGRAFS can provide signifi-
cant suppression of multiaxis, nonuniform low-frequency
noise. Prior to optimization, the initial conditions are
set according to the procedure described in the previ-
ous section. Thereafter, the controls are projected into
the DPSSs basis using a control bandwidth W = 2|B] x
8t/2mw. We elaborate on this choice in bandwidth in
Sec. IVB3. In Figs. 4(c) and 4(d), we show FGRAFS-
optimized controls and FFs for a particular nonuniform
high-pass gate scenario. Panel (d) includes F, (@, T) =
Fy(w,T) + F,(w,T) in the top half of the plot, while the
lower half displays F.(w,T). The example scenario is
described by a CNB B,, = [0, w,,) with w,, =0.02 x
25 /5t, and B, = [0, w.) with w. = 2w,,. Optimized con-
trol profiles maintain much of the qualitative features
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of the initial conditions. Yet, through small, optimized
fluctuations in the controls, the FGRAFS controls yield
many orders of magnitude improvement in FF suppression
within the CNBs.

Lastly, we explore the hybrid case where optimized con-
trols generate both high-pass and band-pass FFs. We con-
sider the case where B,, = [0, wy,) and B, = B.; U B.,,
thus requiring high-pass filtering along o and o,, and band-
pass filtering along o,. The CNB Exy is bounded by w,, =
0.02 x 27 /6t, with the low-frequency CNB for the o,

channel also being determined by wy,: B.; = [0, @y,). The

passband is chosen to reside between B, and B,,, where
B, = (wy, + Aw,.). The high-frequency CNB is char-
acterized by the width Aw = w,, and high-frequency cut-
off w. = 4w,,. Upon optimization, we find that FGRAFS
offers substantial FF suppression within the CNBs; again,
approximately 10 orders of magnitude.

In examining the optimized control waveforms in
Figs. 4(c) and 4(e), a notable observation is the apparent
resemblance between €2, (¢) and a sinusoidal function. As
we discuss in Appendix C2, one can consider an alter-
native initial control ansatz, where the square wave is
replaced with a sine function: Q,(f) = 4, + B, sin(Af).
Although lacking an analytical proof of its effectiveness,
it can be numerically shown to perform equally as well as
the initial conditions presented in Sec. IV B 1.

3. Optimal control bandwidth for multiaxis noise and
control

Here, we investigate the relationship between the prop-
erties of multiaxis noise and the control bandwidth. In
Fig. 5, the spectral leakage I'(7) is shown as a func-
tion of normalized control bandwidth. We consider 13 000
high-pass gate scenarios using nonuniform CNBs and the
Clifford+T gate set S = {I,X,Y,Z,H, S, T} as the desired
operations. As in the single-axis case, a strong relation-
ship between control bandwidth and the high-frequency
cutoffs is observed. More specifically, I'(T) decreases with
increasing bandwidth, where the most rapid decline occurs
near the critical frequency W, = 1.5 x |B| x 8t/2m, where
|B| = w. 4+ 2w,,. The abrupt transition thereafter mani-
fests due to the saturation of the optimizer to the specified
gradient tolerance. Note that this critical proportionality
factor of 1.5 between W and |B| x 8¢/27 is lower than
the critical value of 2 found in Sec. IV A3 for the case
of single-axis noise and control.

We conjecture that the reduction in the optimal band-
width condition is due to the additional degree of freedom
in the control. As such, we investigate the dependence
of I'(T) on W by reducing the noise degrees of freedom
to single-axis dephasing along o, and maintaining multi-
axis control. The initial conditions for multiaxis control
are determined by the properties of the noise and return
to the single-axis CD case along o, when n,, = 0. Despite

0.15

&
-2
10 %
0.11 =
1074 X
g 6 15 20 0.08 \g
— 1074 W/|B| x 27 /6t ®
1078 0.04 S
: Z
10-10] £ » 0.01 &
1 2 3
Control bandwidth W/|B| x 2r /6§t
FIG. 5. FGRAFS-optimized spectral leakage I"(T) as a func-

tion of the control bandwidth  for multiaxis control and noise.
Plot depicts results from a high-pass scenario parametrized by
spectral cutoffs w,, and w.. As a result, the size of the CNB is
given by |B| = o, + 2w,,. Each colored data point corresponds
to a distinct combination of / and noise spectral cutoffs, result-
ing in the CNB varying according to |B| € (0,0.16] x 27 /ét.
Data points are averaged over the seven Clifford+7 gates for a
total of over 13000 different noise and control configurations.
Note that a transition occurs at the critical bandwidth W, =
1.5 x |B| x 8t/2m. For bandwidths W < W,, the performance
improves as W increases, whereas for W > W,, the performance
of the optimization saturates to the gradient tolerance below
10719, The solid black line represents the mean of the colored
data points over bandwidth windows of size 0.1. Inset: single-
axis noise configurations with w,, =0, solved with multiaxis
control FGRAFS. Colored crosses (black dots) represent the
mean (minimum) values of optimized I"(7) over the Clifford+7T
set.

the single-axis initial condition, the optimizer has freedom
to activate the control along o,. Optimized y control is in
general nonzero, but typically remains smaller in ampli-
tude than optimized x control. The inset in Fig. 5 shows
the results of the FGRAFS optimization for the single-
axis noise and multiaxis control setting using the S gate
set. Black dots represent the minimum spectral leakage
over the gate set, while the crosses represent the mean val-
ues. Interestingly, the mean values revert to the single-axis
noise and control critical bandwidth with a proportion-
ality factor of 2, with minimum values being consistent
with a proportionality factor of 1.5. Examining the control
profiles, we find that the optimized controls more closely
resemble single-axis-optimized control along oy, with a
small fluctuating component along o,,.

Control power remains relatively constant despite the
additional control degree of freedom. A reduction in con-
trol bandwidth could imply an increase in an alternative
control resource, such as control power. In order to elimi-
nate this possibility, we investigate the dependence of the
optimized control power on control bandwidth. We find
that no distinguishing features appear for W > W,.. Fur-
thermore, the power of the optimized controls remains
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close to those of the initial conditions. This suggests that
the improvement in performance is not provided by an
increase in control amplitude, but rather due to the addi-
tional availability of control along o,; see Appendix D 1
for further details.

Although the increased degree of control appears to
play a role in determining the critical control bandwidth,
there are other factors within the optimization problem that
can also alter .. The FGRAFS optimization problem is
parameterized by the noiseless gate fidelity tolerance €g.
While W, does not appear to vary with €¢ in the single-axis
control case, we observe dependence on this parameter
in the multiaxis case. In particular, increasing € in the
SLSQP optimization facilitates a reduction in W, from 2
to 1.5 times the size of the CNB for the multiaxis con-
trol and single-axis noise scenario. The magnitude of the
spectral leakage does not suffer from the lower fidelity tol-
erance, and degradation in ideal gate fidelity appears to be
rather negligible. Thus, we suspect that the critical band-
width coinciding with the single-axis control is due merely
to the optimizer rather than being an intrinsic property of
the control problem.

An additional interesting feature of the multiaxis con-
trol setting is that ¥, is gate dependent. By adjusting the
fidelity tolerance, one can achieve a near-1.5 proportional-
ity for single-axis noise for a subset of gates in S. Among
the gates that typically require bandwidth closer to twice
the CNB is the identity. An adjustment of the initial con-
ditions can yield reductions in critical bandwidth for the
identity gate as well as other gates; however, the subset
of gates that convey bandwidth improvements is predomi-
nantly initial condition dependent. This behavior indicates
that, while the initial conditions shown here possess intu-
itive features, they are not universally favorable for all
gates.

C. On optimal bandwidth and reachability

The relationship between the characteristic timescales
of the control and noise has been key to understanding
the effectiveness of a control strategy in quantum control.
For example, in pulse-based dynamical error suppression,
the typical statement is: the interaction between the sys-
tem and its environment can be effectively averaged out by
utilizing pulses with interpulse delays much shorter than
the characteristic timescale (or, equivalently, the inverse of
the high-frequency cutoff) of the noise [10,51,52]. Albeit
qualitatively instructive, this guiding principle is quite
nebulous in that it is specific to ideal, instantaneous, pulse-
based schemes and does not encompass more generic,
smooth control. Moreover, it does not speak to optimal-
ity when striving to minimize control resources (such as
bandwidth and power) while maximizing the effectiveness
of the control.

The numerical studies in Secs. IV A 3 and IV B 3 address
these issues and provide quantitative insight into the inter-
play between control bandwidth and the spectral properties
of the noise. Empirical bounds enable the identification
of optimal control bandwidth conditions for a variety of
single- and multiaxis control and noise scenarios, includ-
ing those where the noise has significant spectral support at
low and high frequencies. As a result, we supplement gen-
eral criteria for pulse-based error suppression with explicit
conditions that apply to a wide range of smooth control
strategies and complex noise environments.

Furthermore, our numerical analysis of optimal band-
width speaks to notions of reachability when subject to
limited control resources. In control theory, reachability
refers to the ability to drive a system from a given initial
state to a set of final states, i.e., a reachable set. Equivalent
notions of reachability have been developed in the quan-
tum domain, where the reachable set can be described by a
set of achievable unitaries [53—57]. Gate fidelity measures
such as Eq. (11) are commonly used to quantify distance
between the target and controlled unitaries and determine
reachable sets that can be achieved within a specified tol-
erance [54,58]. The connection between Eq. (11) and the
spectral leakage via the FFF suggests that I'(7) can act as
a proxy for investigating reachability. It is within this con-
text that we associate the minimum spectral leakage with
attaining the reachable set. Thus, we find empirical evi-
dence for saturation in reachability for control bandwidths
beyond W, in both the single- and multiaxis control set-
tings. The reachable set for single-axis control corresponds
to arbitrary X rotations, while S serves as the reachable
set for multiaxis control. Note that in the latter case, by
the Solovay-Kitaev theorem [59], the reachable set pro-
vides access to the full SU(2) group and, therefore, speaks
to notions of controllability with limited control resources
as well. Lastly, we note that while this approach does not
supply rigorous analytical insight, it can be quite informa-
tive for identifying regimes where one expects to achieve
a reachable set of logic operations with high fidelity when
subject to control bandwidth constraints and a variety of
control and noise scenarios.

V. FGRAFS EFFICACY IN SIMULATIONS

In Sec. III A, the FGRAFS optimization problem is
defined through the spectral leakage as opposed to a dis-
tance metric. However, we argue that solving the FGRAFS
problem can be viewed as optimizing the upper bound
on the phase-invariant distance D(Ug, U(T)) in Eq. (22).
We substantiate this claim in this section by comparing
the upper bound calculated through the FGRAFS objec-
tive function to full dynamics simulations of a noisy
single-qubit driven by optimized control.

The efficacy of FGRAFS is examined for a single
qubit subject to multiaxis additive dephasing. Each noise
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component S, (f), u =x,y,z, is defined as a Ornstein-
Uhlenbeck (OU) process. The PSD of the OU process is
given by

20%y

Sou(w) = m,

(36)

where o denotes the standard deviation and the parame-
ter y is effectively related to the correlation time of the
noise T ~ 1/y. For simplicity, we assume uniform noise
along all three Pauli channels, i.e., 8,(f) is generated by
a process with an equivalent standard deviation and corre-
lation time for all . Note that cross-correlations are not
permitted by construction, a condition enforced through-
out this study. Each noise process is simulated by 8, =
(1 — y8H)B, + o/2yw,, where w, and B, are drawn from
normal distributions, with variances +/8¢ and o, respec-
tively. The parameter §¢ again denotes the resolution of the
control.

The control bandwidth and CNB are determined by the
spectral features of the noise. The OU process defines a
Lorentzian spectrum that is primarily concentrated at low
frequency. As such, the objective of FGRAFS is to engi-
neer high-pass gates with minimal spectral support in the
CNB B, =[0,wy), # = x,y,z. A relationship between
the high-frequency cutoff wy and y can be determined ana-
lytically through explicit integration of the PSD. Denoting
the total noise power as P(o) = fooo Sou(w)dw = wo?,
it can be shown that the fractional power in the CNB
fgu Sou(w)dw/P =1 — € can be used to derive wy =
ytan[(1 — €)mr/2]. We demand that 99% of the noise
power be concentrated within the CNB and therefore
choose € = 0.01 for the optimization. Note that the speci-
fications of wy also dictate the optimal DPSSs bandwidth
W = 2|B| = 6wy used in this example.

Confirmation of the upper bound for FGRAFS-
optimized controls is displayed in Fig. 6. Full dynamics
simulations are averaged over 1000 noise realizations and
the single-qubit Clifford+7" gate set. The solid lines cor-
respond to the averages of the phase-invariant distance,
computing U(T) [Eq. (6)] from simulations. Dashed lines
denote the upper bound from Eq. (22) computed using
the FGRAFS minimized spectral leakage. The discrep-
ancy between the curves, and therefore the tightness of the
bound, is dictated by omitted contributions from both K(T)
and the 1% leakage outside of the CNB; see Appendix A
for further insight.

The upper bound is maintained over a wide range of
noise powers, justifying the FGRAFS approach. As a sur-
rogate objective function for the phase-invariant distance,
the spectral leakage (subject to an ideal gate constraint)
proves to be sufficient for designing temporally correlated
noise-robust gates for single-qubit systems. Furthermore,
the upper bound supports the use of NBs and CNBs rather

1071 Upper bound

10754 —}— Simulation
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,\5 10—9<
=
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Noise standard deviation o x T'/2w
FIG. 6. Comparison between the upper bound informed by

FGRAFS and full dynamics simulations for multiaxis control
and noise. Solid lines indicate simulations of noise filtering
using Lorentzian noise created by an OU process and opti-
mized control functions generated by FGRAFS. Results are
shown for uniform noise along all three Pauli channels var-
ied from low- and high-frequency regimes according to y =
[0.1,1] x 2/T, with ¢ € [1075,107'] x 27/T controlling the
noise power. The CNBs EM = [0, wy) are determined by wy =
y tan((1 — €)7/2), where € = 0.01 is chosen to allow only 1%
spectral leakage of the noise outside of the CNB. Dashed lines
denote the upper bound [Eq. (Al)] using FGRAFS-optimized
controls. Control waveforms are chosen to have N = 128 time
steps. FGRAFS optimization is performed with a gate fidelity
tolerance € = 10~!3 and gradient tolerance 1072,

than the complete noise spectrum. This observation pro-
vides an alternative perspective and potential focus for
quantum noise spectroscopy protocols that may substan-
tially reduce the typical cost of estimating the full noise
PSD.

VI. CONCLUSION

In summary, we have introduced a method for opti-
mizing control in the presence of temporally correlated
noise based on the FFF. Known as FGRAFS, this approach
seeks to simultaneously tailor FFs to minimize spectral
overlap with a noise PSD and achieve nontrivial single-
qubit operations. Motivated by the need for improved
FGRAFS algorithmic convergence, we develop analytical
control ansatzes that are intuitively tunable based on the
spectral cutoffs of the noise PSD. Their structure, albeit
simplistic, is highly versatile and applicable to a variety
of multiaxis noise scenarios. Furthermore, these analytical
control schemes prove to be key to achieving fast FGRAFS
algorithmic convergence.

FGRAFS accommodates practical limitations in control
hardware through the use of the DPSSs basis. Charac-
terized by an intrinsic bandwidth parameter, the DPSSs
provide a natural approach to constructing optimized con-
trols that inherently abide by control hardware restrictions.
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We show that FGRAFS can produce optimized control
waveforms that significantly reduce spectral support of
the FFs in designated frequency bands, while maintaining
spectrally concentrated control.

Together, FGRAFS and the DPSSs basis provide key
insights into the connection between control parameters,
noise characteristics, and optimal FF design. We lever-
age the intrinsic tunability of the DPSSs to examine the
noise suppression capabilities of optimized control proto-
cols as a function of the DPSSs bandwidth. We show that
in both single- and multiaxis noise scenarios there exists an
identifiable optimal bandwidth proportional to twice and
one-half the size of the region over which the FF is to be
suppressed, respectively.

Follow-on work would focus on providing an analytical
understanding of the optimal control bandwidth condition
and extending FGRAFS to the multiqubit regime. The
nonlinear relationship between the control and FF poses
challenges for analytically deriving the optimal bandwidth
condition. However, an analytical proof may shed light on
key features of optimal control in the presence of tempo-
rally correlated noise processes. Extensions of FGRAFS
beyond the single-qubit case could aid in expanding and
generalizing the relationship between optimal control and
the spectral properties of the noise.

Lastly, as an open-loop optimization method, FGRAFS
is sensitive to inaccurate knowledge of the system param-
eters. In order to overcome this challenge, an exper-
imental implementation of FGRAFS may utilize the
present open-loop method to produce an initial guess.
This initial solution can then be used as input to a
subsequent closed-loop optimization on the experimen-
tal hardware, e.g., a stochastic gradient-based closed-loop
optimization.
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APPENDIX A: OBJECTIVE FUNCTION

In this section, we derive the FGRAFS objective func-
tion. As described in the main text, to quantify the perfor-
mance of the optimized gates, we use the phase-invariant
distance given in Eq. (21). Taking the square and using
the triangle inequality, the following upper bound on the
average squared-distance can be established:

(D(Ug, Uc(T)) + D(1, U(1)))?)

(D(Ug, UD)?) < {
<2—Fe(D) — Fn(D) + K(T). (Al)
Here (-) denotes an average over noise realizations and
IC(T) is the cross term resulting from expanding the square.
We now focus our attention on the average noise fidelity
Fn (T) and relate it to the spectral leakage Fr- (7). Through
Eq. (12), Fy(T) can be related to the overlap x (7). As seen
in Eq. (13), x (T) is defined as the overlap integral between
the PSDs and the FFs, summed over all axes u = x, y, z:

Z /(; Sy (w)F, (w)dw

H=X,y,Z

— Z </ +/ )Su(a))FM(a))dw
By By

W=X.,2

= > < Yo+ )SM,nFM,,,aw. (A2)

H=Xyz SpeNy,  neNu

mx(T) =

In the last line, we have imposed the restriction that, since
the total pulse time 7 is finite, the frequency domain will
be discretized in steps of dw = 27 /T. In going from the
first line to the second line, we have separated the fre-
quency domain into two disjoint regions: the NB I3 and its
complement (CNB) B. As described in the main text (see
Sec. III A), the NB is defined as the largest (not necessarily
connected) subset of frequencies over which the PSD has
fractional powers in the NBs ¢, < 1, i.e.,

1
> > Sunbo =€y, (A3)

M ey,

where P, =) N UN, Sunde is the power along the
uth channel. The NB and CNB are normalized and dis-
cretized into their discrete versions N, N, = | B, /dw],
|B,./6w]. The sets N, N, are disjoint subsets of natu-
ral numbers satisfying N}, UN, = [0,...,N — 1], where
N = T/ét is the number of time steps for the control func-
tions. The time step 6z depends on hardware limitations.
The discretized FFs F,, are defined as the averages over
the frequency windows [réw, (n + 1)dw) of the filter func-
tions F,, =8~ ! [WF (w)dw for n=0,...,N —
1. A similar statement can be made for the discrete PSD
Spn-
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Interpreting the sums (or integrals in the continuous
case) over frequencies as 1-norms || - ||} =), |- | for
some subset of integers X, we can use Holder’s inequal-
ity [Ifgll1 < |1 1l21lgl]2 [60] to bound these expressions,
where the 2-norm is || - ||, = /D,y | - [>. Additionally,
since in practice these are finite-dimensional spaces, we
know that the sum of a positive sequence f,, will satisfy
the triangle inequality Y, f,> < (3_,/»)*. Consequently,
we have

1= [D 20 <) fise'? =0 I,
neX neX
(A4)

where the summation is performed over the discretized fre-
quency regions X = {N,, N ,,}. We can use this inequality
to bound the sums over {N,,, /,} as follows:

> SpanFunbeo <80 Y Sun Y Fum

neNy, neNy meNy,

< 8w 'e,P,T. (A35)
Additionally, we have used Z;V;Ol Fu.d0 =T, ie., the
integral of the FF over all frequencies is equivalent to the
total time. Note that in the optimal case, where all of the
spectral weight of the PSD is in the CNB (¢, = 0), these
terms in Eq. (A5) all converge to zero.

Similarly, using Eq. (A4), we bound the integral over the
CNB

> SunFunbe <80 Y Sun Y Fum
neN, neN, meN

< 8w (1 —€,)P,TT,(T) (A6)

with [, (T) = T~! Y e, Fundw, where the factor of 7~ 1
is added explicitly to keep the functions I', dimension-
less. Combining the bounds from Egs. (A5) and (A6) and
requesting the same level of noise spectral concentration
along all axes, i.e., €, = € for all u, we find that

M=) ( Yo+ )Sﬂ,nFM,naw

W=XYZ S ey, neNy

LS Rl -orm e

L=Xy,Z

_8a)

PT
= T (T) + Oe). (A7)
Sw

Here, we have used the fact that P = > yi=xyzPn and
introduced

F(T)—— D Pu ) Fun

H=XYZ peN,

(A8)

where p,, = P, /P. This implies that, to zeroth order in the
fractional power, the noise fidelity is bounded by

14 e 1D

2
| + ¢~PIT(D/s0
>
- 2
Fr(I) + O(e).

Fn(T) =

4+ O(e)

(A9)
Finally, the distance will be bounded by

(D(Ug, U(T))?) <2 — Fo(D) — Fr(T) + K(T) + O(e),
(A10)

which, as long as € can be kept small, justifies I'(7) in
Eq. (A11) as our choice of objective function. In practice,
the gate fidelity F(7) can be kept as close to 1 as desired
by setting it as a constraint in a constrained optimization
using an optimizer such as SLSQP. In the main text, we
show in simulation how this assumption yields good noise
filtering controls.

In the bound above, F-(7) is dependent upon the frac-
tional noise power within the CNB, which can place
additional requirements on noise characterization proto-
cols. The spectral leakage in Eq. (AS8) is composed of a
sum of terms, each weighted by the power weights in the
wuth direction p,,. While refined estimates of noise power
may require more QNS resources than those required to
determine spectral cutoffs, even rough estimates of noise
PSDs can provide sufficient information to identify dom-
inant noise channels. We denote these estimates as p,
within the FGRAFS objective function

F(D~— > Pu ) Fua

H=XyZ  neN,

1

o > pM/ F(w)dw, (A11)
U=xX,p,2

where the final expression denotes the continuous fre-
quency representation.

Two distinct scenarios arise from this definition. In the
case when such estimates reveal a highly asymmetric noise
scenario, one can approximate the spectral leakage by the
FF corresponding to the dominant noise source. We denote
this configuration as the single-axis noise case. In the main
text we discuss the case where noise is dominant along
the z direction, i.e., p. ~ 1 and p, ~ p,, =~ 0. On the other
hand, the symmetric case can be considered, where the
noise power along all channels is nearly equivalent, i.e.,
p, ~1/3 for all p=x,y,z. In the main text we refer
to this noise configuration as the multiaxis noise case. In
practice, the fractional noise estimates will lie in between
0 and 1, with the condition that } | p, = 1.
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Lastly, one could consider choosing an alternative
objective function when a reliable estimate of the total
power of the noise is available. When this is the case, it
is possible to use the combined fidelity

®(T) = Fo(I) + Fr(T)

as an objective function instead of I'(T). The gradient
can be computed following the same steps as described in
Sec. III B and using the chain rule. The combined fidelity
allows us to optimize without constraints, for example
utilizing an optimizer like the L-BFGS-B optimizer. See
Appendix B for further information on the choice of
optimization methods.

(A12)

APPENDIX B: OPTIMIZER COMPARISON

The FGRAFS optimization algorithm described in
Sec. III B can be executed using different gradient descent
methods. In this section, we compare the SLSQP, L-BFGS-
B, trust-region constrained (TRC), and Nelder-Mead (NM)
algorithms. We study the performance of each algorithm
as a function of wall time. Algorithmic performance is
examined using ®(7) or I'(7) as an objective function,
the latter being only applicable for SLSQP and TRC.
Algorithms using ®(7) are defined as unconstrained, e.g.,
unconstrained SLSQP. Similarly, algorithms utilizing I (7)
are defined as constrained, e.g., constrained SLSQP.

In Fig. 7, we present a summary of our results for
single-axis (left) and multiaxis (right) noise and control.
Here, we see that the constrained SLSQP (blue), L-BFGS-
B (green), and unconstrained TRC (purple) methods are

Single-axis noise

the only algorithms that consistently achieve the desired
levels of objective function reduction within the expected
timeframe. In the single-axis case, the L-BFGS-B and
unconstrained TRC methods are indistinguishable within
error bars, and present only a slight advantage with respect
to constrained SLSQP. In the multiaxis case, L-BFGS-B is
the fastest method by approximately a factor of 3, while
unconstrained TRC and constrained SLSQP are indistin-
guishable within error bars. From this, it can be concluded
that the fastest method to optimize ®(7) is L-BFGS-B, and
should be used if knowledge of the total noise power is
available. On the other hand, constrained SLSQP performs
the best for the constrained optimization of I"(7) subject to
Fe(T) > 1 — ¢ for some €5 < 1.

APPENDIX C: INITIAL CONDITIONS AND THE
CONTROL ANSATZ

1. Single axis: constant drive

The convenience of utilizing CD as an initial condition
for the optimization can be seen by analytically computing
the associated FF. For the present analysis, we consider the
scenario with single-axis control along x with dephasing
noise along z. In this case, the FF takes the form

2
+

2

>

T
/ sin O (e~ dt
0
(C1)

T
F(w,T) = ‘ / cos O (He ™ dt
0

where 7 is the total time. CD control is achieved by setting
Q1) = Qp, from where we obtain O() = fot Q(s)ds =

Multiaxis noise
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~ —— (-SLSQP
™ 1074 U-SLSQP
& —— L-BFGS-B
e 10—8, — C-TRC
| —— U-TRC
— — NM

10711_

0.0 0.5 1.0 15 2.0 0.0 25 5.0 7.5 10.0

Wall-clock time (min)

FIG. 7.

Wall-clock time (min)

FGRAFS performance of different optimization methods as a function of optimizing time, averaged over different imple-

mented high-pass gates under single-axis (left) and multiaxis (right) noise cases. In the former, each curve represents the average over
eight X rotations uniformly distributed in [0, 277), and the Clifford+7 gates in the latter. The shaded regions represent the standard error
over these averages. In both cases, the high-frequency noise cutoff is set to wy = 0.08 x 27 /§¢. The single-axis cases undergo only
dephasing (z axis) noise and x-axis control, while the multiaxis cases undergo x, y, z noise and x, y control. For all methods considered,
optimizations using ®(7) are performed [unconstrained SLSQP (U-SLSQP), L-BFGS-B, U-TRC, NM]. For the methods that allow
for constrained optimizations, additional optimizations using I'(7) as the objective function (C-SLSQP, C-TRC labels) and treating
the gate fidelity as a constraint are studied. In the single-axis case, it is clear that the methods achieving the best performance are
the constrained SLSQP, L-BFGS-B, and unconstrained TRC methods. In the multiaxis case, the L-BFGS-B method presents the best
performance. All runs are performed with an Intel® Core™ i7-10510U CPU @ 1.80—2.30-GHz processor.
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Qot. Using O(¢) in Eq. (C1), it is possible to compute the
integral explicitly, obtaining

F(o,T) 2
2 T(0? - QD)
x [(@* + 2§)(1 — cos(wT) cos(27T))
— 2w sin(wT) sin(2¢7)]

T2 180+ Q0) + 8(0 — Q0)), (C2)
where in the second line we consider the infinite-7 limit. It
is straightforward to see that in this limit, the FF converges
to delta functions centered around 2, normalized such
that 6 (0) = 1. From Eq. (C2), it follows that Eq. (13) leads
to an overlap x (T) = TS(€2y), where we used the fact that
semiclassical noise PSDs are even around @ = 0. In order
to minimize the overlap, the driving frequency should be
tuned to the minimum of the PSD, i.e., Q¢ = argmin,S(w).
It is worth studying the case of monotonically decreasing
S(w), e.g., 1/f noise, where no global minima exist. In
order to reduce the overlap between the FF and the PSD,
2 should be chosen as large as allowed by hardware, pro-
vided that it does not violate additional constraints on the
control.

An additional argument in favor of the CD con-
trol ansatz comes from noting that CD is the solution
with minimum power for a given rotation angle ®(7) =
fOTQ(t)dt = QoT. Suppose that another control function

Q@) produces the same rotation angle, i.e., fOT Qt)dt =
®(7), then the power of this new control is

T T
/ Q)’dt = / [Q0 + Q) — Q) ]dt
0 0
| T T 5
@ / Q2dr + / Q@) — QolPdt
0 0

@ (T
> / Q(1)%dt.

0

(C3)

In equality (1) we used the assumption that the area of
the difference is zero, fOT[fZ(t) — Q]dt = 0, to cancel the
cross term appearing from expanding the quadratic func-
tion in the integrand in the first line. Inequality (2) comes
from the fact that fOT[Q(t) — QoJ?dt > 0, and implies that

the power of Q(t) is larger than that of CD control.

Lastly, we can see in Fig. 8 that using CD (dashed lines)
as an initial condition of FGRAFS provides a qualita-
tive advantage over random initialization (RN; solid lines).
Each curve represents the values of the objective function
['(T) as a function of the optimization steps. The opti-
mizations produce high-pass filters implementing identity
gates, with high-frequency cutoffs of wy = 0.02 x 27 /6t
(blue) and 0.04 x 27 /5t (orange). While CD initialization

1041
|
1
< 8 1
r, 107°1 1

‘ IC, wy x 0t/2m

1 — RN, 0.02

107124 1 — = CD, 0.02

1 RN, 0.04

! CD, 0.04

0 200 400
Optimization step n
FIG. 8. Comparison of objective function I'(7) as a func-

tion of the optimization step n, which we denote I',,, between
random initial conditions (RN, solid lines) averaged over 20
different realizations and constant drive (CD, dashed lines) ini-
tial conditions for single-axis noise and control. The shaded
regions represent the standard error at each step of the ran-
domly initialized optimizations. For the blue lines, the CNB is
B =10,0.02) x 27 /8t, while the orange lines possess a larger
CNB of B = [0,0.04) x 27/8t. The tolerance on the objective
function gradient is set to |T",; — I',| = 10713, For these opti-
mizations, the L-BFGS-B method is used with Eq. (A12) as
the objective function. Note how, for the lower noise cutoff, the
optimization using CD as an initial condition improves exponen-
tially until it stops before step 50 at about I',, = 10~!#, while the
optimizations using random initial conditions averaged over ten
realizations converge to similarly good solutions but take about
150 steps. For the higher noise cutoff, the random initial condi-
tions are not able to find good noise filtering solutions in average.
This shows how CD can correct the instability of choosing ran-
dom initial conditions, adding robustness, while at the same time
improve the running time, since it not only satisfies the toler-
ance earlier, but it also does not require selecting from multiple
realizations.

is run once, random initializations are averaged over 20
different realizations. For the lower frequency noise, we
see that CD finds a solution with I'(7) < 10~'* in approx-
imately 30 steps. Random initial conditions, on the other
hand, take about 150 steps. For the higher cutoff case,
CD initialization reaches the desired solution in about 200
steps, while RN is not capable of converging within 1000
steps. This example highlights the importance of using
CD in minimizing the computational cost of the FGRAFS
optimization.

2. Multiaxis noise and control
a. Derivation of initial conditions

In the multiaxis control and noise scenario, the quality
of FGRAFS solutions varies extensively when employing
random initial conditions. In order to get consistent can-
celation over the CNB and therefore improve algorithmic
stability, it is necessary to narrow down the search space.
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Although CD control is an effective solution for the single-
axis case, any combination of CD in the x and y axes
will lead to FFs with nonzero direct current (DC) contri-
butions. The multiaxis CD condition is given by Q(¢) =
(24, £2,,0) = Qo(cos ¢g, sin gy, 0), where the amplitude
Qo and phase ¢, correspond to the control representation
in polar coordinates in the x-y plane. The presence of the
DC component can be more easily interpreted in the case
where noise is symmetric along the x and y axes, implying
that Sy (w) = S, (w). In this case, the two resulting FFs are

T 2
F.(0,T) = ‘/ cos(Qt)e " dt
0

2
+

b

T
/ sin(Qot)e ' dt
0

Fy(0,T) + Fy(0,T) = F.(0,T) + T* sinc® (wT/2) .
(C4)

Here, F,(w, T) is the same as in the single-axis case, but
the longitudinal FFs Fy(w, T), F), (w, T) have an extra term
involving a sinc(x) function. Note that this combination
of FFs is independent of the angle of ¢y and depends
only on the amplitude €2y. The reason behind this is that
multiaxis CD control, although acting on both axes simul-
taneously, is still a single-axis control along the rotated
direction given by ¢o. As shown in Appendix C1, it is
possible to choose the value of €2 such that F,(w, T) does
not present relevant low-frequency contributions. On the
other hand, the sinc® (w7/2) term in Fy(w, T) + F, (o, T)
is concentrated around w = 0 and is independent of the
control. Consequently, there is no choice of multiaxis CD
parameters that provides DC filtering along the x and y
axes simultaneously. This DC component makes multiaxis
CD alone a poor choice for initial conditions when noise
exists along multiple directions.

Another single-axis solution for low-frequency noise
that provides an intuitive way of shaping the FFs is oscil-
lating control 2 (f) = 2 cos(Af), where A can typically be
chosen as the high-frequency cutoff wy. These controls
produce FFs that can be thought of as a frequency comb
in A and modulated by Bessel functions; more specifically,
F(w) = T? Y kez 8@ — kX)Ji(Q0/2) [61]. In order to can-
cel DC noise contributions, the control amplitude is chosen
as Qp = Axg, where xq is the first zero of the zeroth-order
Bessel function.

J

ex —iﬁ*-&ﬁ(t—mT) ex
p ) c p B

Uc() =

Al > QO Tc
_ln .O’—

2 2

A

(o] o 52

Q T,

A o NGO
—in_ o —

.A_ﬁQot +1 T y =
exp | —ii"-6 — m+ o |Te ) 1 exp ) —in 5

Motivated by oscillating and CD single-axis controls, as
well as work with Walsh synthesized filters [19], we ana-
lyze the FFs obtained from CD control along one axis, and
an oscillating square wave on the other axis. That is, we
study the Hamiltonian in Eq. (2), with

Q. (1) = Qcp = Qo cos(¢o),
Q) (1) = Qswsi (1) = Q0 sin(Po)s;.(0),

(C5)
(Co)

where s, (¢) is a square wave with unit amplitude and fre-
quency X, which defines the control period 7, = 27/A.

The polar control coordinates are 2 = ,/Q2&, + iy,

and cos ¢g = Qcp/ R0, sin gy = Qsw/ 2o, which will be
the representation used in the following discussion. In
these coordinates, the control can be interpreted as
having constant amplitude €2y, and alternating phase
¢ () = £¢y, depending on whether mT,. < t < (m + %)Tc
or (m+3)T. <t<(m+ DT, for m=0,1,....,M —1.
Here, M = T/T. denotes the number of control peri-
ods that fit in the full control time duration. Note that
in terms of the control frequency, M = AT/2w = A/déw,
meaning that M is the discrete, normalized control fre-
quency. Hence, in what follows we refer to M as a control
parameter, rather than A. The goal is, for fixed total time
T, to find optimal parameters €2y, ¢o, M that minimize the
FFs over a given CNB. We show next that it is possible to
derive optimal values for control parameters that produce
high-pass filters in all three axes.

The argument is as follows: first, we construct the noise
Hamiltonian in the toggling frame with respect to the con-
trol; then we use this to extract the control matrix R(f)
whose Fourier transform R(w) is directly related to the
FFs through Eq. (14); lastly, we show that, by rewrit-
ing R(w) in a convenient way, it is possible to cancel
all elements of the frequency space control matrix for
some frequencies w, and hence cancel the FFs within the
CNBs.

In general, the time evolution operator will be hard
to compute analytically. However, in the piecewise con-
stant control case, it is possible to arrive at a closed
expression. Given the noise Hamiltonian in Eq. (4), the
toggling frame Hamiltonian H(@) is computed by H() =
Uc(H)THy () Uc(t), where Uc(f) is the control time propa-
gator. Because of the periodicity of the control, the control
propagator takes the form

o]

Qo T,
2

5 }) , mT. <t < (m+ T,

|

}) ., m+HT. <t<@m+ DT,
(C7)
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form=0,...,M — 1, where 1™ = (Qcp, £Qsw, 0)/ 2o = (cos ¢y, sin ¢y, 0).
The toggling frame Hamiltonian in the interval 0 < ¢ < 7,/2 is

I:I(f) — e[ﬁ‘*’ﬁ'QOI/ZE(t) . 56—[?;‘*'&(20[/2 - - RQo,lPo (t) i B(t)’ (Cg)
where we have used Rodrigues’ rotation formula [62]. Additionally, we define the half-period rotation matrix

sin® ¢y cos(p1) + cos? Py sin Py cos (1 — cos(Qpr))  — sin ¢y sin(Qo?)
Rap.p (D) = | singy cos o (1 — cos(Qo?)) cos? ¢ cos(2f) + sin® ¢y cos ¢ sin(2p7) | - (C9)
sin ¢ sin($2¢?) — €0S g sin($2?) cos(207)

which captures the evolution induced by the control within a constant section of the control functions. The matrix R, 4, ()
will be the building block of the full evolution. Note that it can be conveniently written, using Euler’s decomposition, in
terms of basic rotations as Rq,¢, (1) = R-(¢o)Rc(—01)R-(—¢o). Next, we compute the toggling frame Hamiltonian for
the interval 7./2 < t < T,

i QT Q T\ - . .Q T QT
H(t) = exp {iﬁ*-a—o—c}exp {in -a%(f——)}[ﬁ(t)-a]exp{—m -070<t——c>}exp{—in+-a—0—c}

2 2 2 2 2 2
Qo T, T, > s ot - 20T,
= exp {iﬁ+-3707} [RQO,_% (t - 7) . ,B(z‘)] -0 exp {—m+~070?}
- Tc Tc a
=0 - [RQO’@) (?) . RQO’_(pO (f — ?> . IB(t):| (C10)

From here it becomes clear that the action of the control consists of successive applications of the constant section rotation
matrix, with variations in the parameters controlling the rotation.
The toggling frame Hamiltonian can then be constructed iteratively, yielding

Qi

T. 7.\ 1" R
. {[RQO,% (?) - Rag.—ao <?>:| - Ryt —mTe) - ,B(Z)}, mT, <t< (m+ %)Tc,

~ R T. T, m
0 =1 {[Rans(3) R ()
'RQO,%(%) 'RQO,—C/JO (t - (m + %)TC) B(I)}: (m + %)Tc <t<@m+ DT,
=5 -R(t) - BD). (C11)

Since the FFs depend on the Fourier transforms of the control matrix via Eq. (14), we compute

T
R(w) = / R(He ™ dt
0

M—1

(m+1D)T, ‘
=y / R(He ™™ dt

m=0 mTe

M=1"(m+1/2)T, T. 7.\7" A
- Z / |:R905¢0 (?) Ry~ (7)] * Reggy(t —mTe)e™dt
m=0 m

Te
(rDTe TC TC " Tc 1 .
+ / |:RQ(),¢>0 (5) . Rﬂo,—¢0 (?):| . RQOsd’O (3) . RQOs_¢0 (f — (m —+ E) Tc)e_lwtd[
(m+1/2)T,
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M—1 T .\ 7" (m+1/2)T, '
= Z [RQO#’O <?> - Rag,—¢ <?>i| ) [/ Ry (1 — mT)e " dt

Te

(m+D)T, T. 1 )
+ / RQO7¢0 (—) . RQOJ,% (I — (m + —> Tc> e_lwtdt]
(m+1/2)Te 2 2
M—1 m
I. Te\ ot
(e (®) (]

m=0
Te/2 ' T2 T, Te/2 .
' |: Reygy (e dt + 712 Ry 4, <?) ‘ R4 (t)e_lwtdt]
0 0
M-1 m
T T —iw —iw T
| X [Roonar) Ravos (i) [+ man5) - 0o
= Ry () - Ro (). (C12)
Here we defined
Rs(0) = Ail Rapan( — ) - Ra T\ ]" (C13)
ot 0,60 M 0,—¢0 M >
—iwT/2M T
R¢’ (a)) = q)Qo,¢0 (w) +e RQQ,¢0 w : cDQ(),*(ﬁO (w)7 (C14)
where the Fourier transform matrix is
T/2M '
D (@) = / R0 (He “'dt. (C15)
0

Note that R(w) is now a matrix product of the matrices Ry (w) and Rg(w). The first one is a geometric sum over rotation
matrices multiplied by a complex exponential. The second one consists essentially of the Fourier transforms over a single
control period. We have thus arrived at an expression for the frequency domain representation of the control matrix in
terms of the constant-section control matrix Rq, 4, (#) and its Fourier transform.

The matrix Ry (w) can be summed explicitly by diagonalizing Rq, 4,(T/2M) - Ra,,—,(T/2M), which being a combi-
nation of rotation matrices is another rotation matrix. The diagonal form of the rotation matrix resulting from the product
is Doy ¢, (T/2M) = diag(l, e =), where # depends on 2, ¢o, T, M and is the rotation angle performed by the com-
bined rotation. The relationship between 6 and the control parameters can be found using the following property: for
any rotation matrix R with rotation angle 6, its trace is TrR = (1 + cos #)/2. Additionally, we can find the vector u par-
allel to the rotation axis satisfying Rt = u by using the formula [#], = R — R”, where [-] denotes the cross product
matrix for the vector u. Applying R = R, ¢,(T/2M) - Ray.—¢,(T/2M), these equations yield expressions for the rotation
angle

cos 6 = cos*(¢) cos (%) — l sin®(¢o) <—8 cos?(¢) cos (%) + 3 cos(2¢p) + 1) (C16)
M 2 2M

and rotation axis

o g0 = (1,0, sin o tan [ =20 (17
u90,¢0 - > sSln¢0 an 4M > )

in terms of the control parameters g, ¢o, T, M.

014062-22



OPTIMALLY BAND-LIMITED NOISE FILTERING. ..

PHYS. REV. APPLIED 19, 014062 (2023)

In the basis where R, 4,(T/2M) - R, —¢,(T/2M) is diagonal, Ry (w) = ZZ:_OI [Day.py (T/2M)e@T/M ™ where each
diagonal entry is a geometric sum that can be summed explicitly. With finite total time 7, frequency values are discretized
in steps of 6w = 27 /T, taking the continuous frequencies to discrete frequencies w — w, = néw = n2x/T. The diagonal

Ry (w) then becomes

In general, we aim to cancel this matrix as much as pos-
sible over the range of frequencies corresponding to the
CNB, which is equivalent to reducing its rank. Impos-
ing the condition that 6M = 2n ¢, £ € 7Z, ensures that this
matrix has rank 1 for n = 0, the value corresponding to
the lowest frequency noise contribution @ = 0. Here, the
matrix Ry (w) becomes diag(M, 0,0), where the nonzero
eigenvalue corresponds to the eigenvector parallel to the
axis of rotation.

The diagonal elements of matrix Ry (w) will have
nonzero values only for those frequencies w, = néw with
ne{M{+0/2r),M¢t}, which, for the first few values
of £ € Z, means that n = 0, M0 /2w, M (1 — 6 /2m). Thus,
by choosing the controls parameters M,0 from the noise
cutoffs as

M = n. + nyy, (C19)
o =2m2 (C20)
M

with n, = w. /6w and ny, = wy, /Sw, we ensure that Ry (w)
(and, consequently, the FF) will be canceled for all low
frequencies except w € {0, w., wy, }. Next, we show how it
is possible to cancel the product between Ry (w) and Rg (w)
by properly choosing €2, ¢o.

The zero frequency case is of particular interest, since
in most practical applications, low-frequency noise will
be dominant. Having already shown that it is possible
to choose M, 6 such that Ry (w) is of rank 1 for w = 0,
we examine R(w = 0) and impose the condition that it
vanishes:

M—1 T T m
SR (RS RN ES) |

m=0

T
’ |:(DQO,¢0 0) + 7?’90,450 (ﬂ) ) q)Qo,—fﬁo (0):|

=0. (C21)

1— e*l’Z]Tn

1 — e—i2nn/M 0 0
1 — e*i(anhQM)
0 1 — ¢~ i@rn/M—0) 0
1— e—[(Zﬂn+0M)
0 0 1 — e~ i@mn/M+0)

(C18)

(

The goal is to find values of €,¢¢ for which the
matrix product between Ry and Rg is identically zero.
From a linear algebra perspective, this means setting
the values of €29, ¢o such that the image of Ry maps
to the kernel of Ry. Assuming that the control param-
eters are set as in Eq. (C19), for w = 0, the kernel of
Ry is the subspace orthogonal to the axis of rotation
ﬁgo’,po. In other words, we look for €2, ¢ that restrict
the image of R¢(0) to this orthogonal subspace. We can
impose this condition by requesting that the inner prod-
uct between ig, g, and Re(0) - v is 0 for all v € R It
is enough to show this for some basis vectors. Choos-
ing the Cartesian basis {v; = (1,0,0),v, = (0,1,0),v; =
(0,0,1)}, we see that this is automatically satisfied for
V2, 3, i€, (tigy s Ro(0) - v2) = (i, ¢> Ro(0) - v3) = 0.
On the other hand, applying this for v; yields a nontrivial
condition for ¢, ¢ in terms of M, T

0 = (i ¢y Ro(0) - v)

_ 8M sin’ (o) tan(T/4M) + 2T cos? (o)
- 2M

(C22)

(C23)

QT _ . QoT
— = — lan an{ — |.
4M 0 4M

Next, from Eq. (C16) we can see that one possible solu-
tion of this equation for $29,¢o in terms of the other
parameters is

QT

2T\ _ 502 (? 2
cos<2M>_1 2 cos <4>[l+tan dol, (C24)

which, combined with the previous equation results in

2
sin“(Q07/4M) — cos? (_) (C25)
1 — [Q0T/4M] cot(QT/4M) 4

Positive solutions to this equation in terms of €2¢7/4M can
be easily found numerically using standard tools for each
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value of n.,n,, from where it is straightforward to deter-
mine 2y. The value of ¢ can be set by inverting Eq. (C23).
Additionally, it can be shown that, with this choice of
parameters, Iy, (0 < wy,) = 0and F. (0 < w.) = 0.

To summarize, we use the multiaxis CD and square-
wave scheme to define a low-frequency noise filtering
problem. We start with the control Hamiltonian [Eq. (2)]
with Q1) = Qg (cos ¢ (), sin ¢ (£),0). Here, ¢ (£) = ¢os,(¢)
is a square wave of amplitude ¢y and frequency A. The
problem is defined as finding control parameters 2, ¢g, M
that filter noise along all three axes up to high-frequency
noise cutoffs w. = n.dw, w,, = n,dw. We find analyti-
cal solutions to this problem by solving the system of
equations

M =n, +n,, (C26a)
b = 271%, (C26b)
% = cos’(0/4), (C26¢)
£ = S;LMT (C26d)

tan’ ¢ = —& cot(£). (C26e)

The third equation can be easily solved numerically with
standard tools such as the optimize.fsolve function from
the SciPy PYTHON library, using the value of §y =2 as a
seed for £. In order to choose between the family of solu-
tions found by solving this equation, it is possible to use an
argument of efficiency of resources and choose the small-
est x, i.e., the value that minimizes the control amplitude
Q.

b. Alternative choices of initial conditions

To conclude this section, we add that solutions achiev-
ing equivalent levels of cancelation are found numerically
by using a sinusoidal control rather than a square wave.
That is, Q.(¥) = Qcp and () = Qgsw sin(A?) for given
Qcp, Qsw values, where A can be set as above from M =
n. + ny,. The disadvantage of this control is that we lack
an analytical derivation of the control parameters, since the
piecewise constant assumption of the square-wave control
used in the previous derivation is no longer valid. Never-
theless, it is straightforward to perform a numerical explo-
ration to find which values of the Q¢p, Qsw parameters
yield the desired FF features. For example, by using the
FGRAFS gradients in the functional basis of {1, sin(A?)}
one can find that the FFs obtained are equivalent to those
described in the previous section.

Lastly, it is also possible to create good solu-
tions using a different ansatz, where the controls are
chosen to be a combination of CD and the square
wave: Q. (1) = Q0(cos ¢y + sin ¢os; (1)) /+/2 and Q1) =

Qo (cos ¢y — sin ¢s, (1))/ V2. Interestingly, the values of
these controls that produce the desired FFs coincide with
those obtained from solving Egs. (C26). The reason behind
this is that these controls only differ from those described
in Egs. (C26) by a 7w /4 rotation about the z axis. The benefit
of choosing these rotated controls is that they are symmet-
ric with respect to the x-y plane, and hence the FFs along
xy that they produce are equal, Fy(w,T) = F,(w, T). When
symmetry of the xy FFs is required, these controls can be
conveniently used to achieve this feature.

3. Alternative I1Q-control representation

The widespread use of the IQ control suggests that, in
some cases, it will be convenient to perform the opti-
mization in this space. The polar IQ-control coordinate
representation Q2(¢) = Q(¢)(cos ¢ (¢),sin ¢ (¢),0) captures
the degrees of freedom of the controls in the amplitude
Q(#) and phase ¢ (f) parameters. The first step towards
adapting FGRAFS to work in the 1Q-controls framework
is to expand 2 (¢), ¢ (¢) in terms of Slepians:

Q=) afv®,
k

(C27)
() =Y afv®@).
k

Let us consider the objective function in Eq. (A11), and
proceed as in Sec. II B. The calculation is analogous, where
Eq. (29) now turns into

-1
8Uc(t) Z 8Uc(t) (k)
01 (C28)
aUc(t) dU(1) (k)
Ba,‘f n—=0 a¢n n

The derivatives with respect to the 1Q-control parameters
now become, using the chain rule,

AUC(t) A aUC(r) 3, dUC(?)
0,  9Q, 9 4R, Q)
aUc(t) . aUc()

= cos ¢, o + sin ¢, Pro (C29a)
AUC(t) A aUC(r) 3, dUC(?)
Ay O, 0 dp, I
BUc(t) oUc(?)
= —Q, singp,——— + Q, cos ¢, —am )
(C29b)

where Q) = Q,cos¢, and Q) = ,sin¢,. The deriva-
tives of Uc(f) with respect to Q’,‘l,QZ can be computed
following Eq. (32).
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FIG. 9. FGRAFS initial (a) controls and (b) filter functions in

the 1Q-control representation. The initial conditions are defined
as described in Sec. IVB 1. The optimized controls and filter
functions are shown in panels (c¢) and (d), respectively. High-
pass filters are produced in all directions, with isotropic cutoffs
oy = 0.016 x 21/8t and CNBs B, = [0,wy) for u =x,y,z,
represented in shaded gray frequency regions. We use N = 128
time steps, and the control bandwidth is set to W = 2|B] x
8t/2m = 0.094. The initial condition has a leakage in the low-
frequency CNB of about 0.01 ~ 1%, improved by several orders
of magnitude after the optimization.

Numerical investigations using FGRAFS are performed,
comparing the 1Q-control optimization scheme with the
Cartesian one described in the main text. Results show
that utilizing 1Q control in FGRAFS yields solutions that
achieve equivalent levels of cancelation in the CNB, when
the controls are initialized as described in Appendix C. An
example of optimized controls can be found in Fig. 9.

APPENDIX D: FILTERING SINGLE-AXIS NOISE
WITH MULTIAXIS CONTROL FGRAFS

In the main text, we analyze the single-axis noise opti-
mization problem using both single- and multiaxis con-
trol FGRAFS. The single-axis control (see Sec. IV A 3)
presents a sharp improvement in optimization perfor-
mance at a critical bandwidth of W, =2 x |B| x §t/2m.
In the multiaxis control and multiaxis noise scenarios (see
Sec. IV B 3), a sharp improvement in performance can be
observed at a smaller control bandwidth, namely 1.5 x
|B| x 8t/2m. The single-axis noise configuration serves
as a probe to analyze the advantages of multiaxis con-
trol, since it can be analyzed effectively with both control
schemes. Since the multiaxis initial conditions described in
Appendix C 2 reduce to CD when there is no control noise,
CD initial conditions are used along the x axis, while the y
axis is initialized with zero control amplitude.

In the present section, we study the optimized control
powers compared to the initial conditions, and find no dis-
tinguishing increase in power at the critical bandwidth.
Hence, we propose that the improvement in critical con-
trol bandwidth is due to the increase in control capabilities.
Additionally, we find that the critical bandwidth is gate
dependent, and argue that CD is not the optimal initial
condition for the single-axis noise and multiaxis control
configuration.

1. Optimized power analysis

In principle, the sharp improvement in noise cancelation
performance at the critical bandwidths could be given by a
significant change in control amplitude. This could allow
the control waveforms to reach different, possibly better,
solutions in the objective function landscape. As we show
below, no significant change in power is observed, suggest-
ing that no additional complexity is gained by increasing
the control amplitude.

Figure 10 presents the optimized control powers of dif-
ferent noise and control configurations, averaged over the
Clifford+T gate set as a function of W. The directional con-
trol powers along o, and o, are defined as P; = fOT Q; (t)zdt
for i = x,y and the full control power as P =3} ,_ P
Optimizations are initialized with CD as Q¢p(¢) = w, and
the power values shown in the figure are normalized by
its power Pcp = w?T. Note that the y-axis controls (green
crosses) need to be activated in order to produce general

o  Full x oy
z 1014
z
a a
T 100 e
N
= ++ + !
Sy L
+
“pa %ﬁ 5 1
: iq
0 1 2 3

Control bandwidth W/|B| x 27 /6t

FIG. 10. Average power for single-axis noise with high-
frequency cutoff w,, solved using multiaxis control FGRAFS.
Each point represents a different combination of w, and W,
averaged over the Clifford+7 gate set, generating high-pass fil-
ters. The initial conditions used correspond to CD along the x
direction and zero control along y. The figure displays the full
optimized control power (blue circles) as well as directional
powers along x (orange squares) and y (green crosses), normal-
ized by the initial condition power corresponding to each noise
configuration.

014062-25



YASUO ODA et al.

PHYS. REV. APPLIED 19, 014062 (2023)

single-qubit rotations, but for W > 2|B|8t/2r, the ampli-
tudes along o, are larger by over an order of magnitude.
For W > 2|B|8t/2m, the control powers deviate little from
the initial condition values (normalized power close to 1).
This means that there is no significant change in control
power between low and high bandwidth solutions. Since
the initial conditions are maintained the same, this suggests
that the improvement in performance is due entirely to the
increased control capabilities given by the bandwidth.

2. Optimization dependence on ideal gate fidelity
constraints

Another factor influencing the optimization perfor-
mance is the tolerance 7s set for the ideal gate fidelity,
i.e., F¢ > 1 — 1. Throughout the work described in the
main text, g was set to 1070, In this section, we show
how in some cases relaxing this requirement leads to
improvements in optimal bandwidth conditions.

Figure 11 presents the bandwidth dependence of
FGRAFS performance when optimizing single-axis noise
with multiaxis control. The figure illustrates how the
critical bandwidth W, changes with the tolerance for
the ideal gate fidelity. For all studied tolerances 75 =
10711073, 107, the means over the Clifford+T gate set
(dashed lines) satisfy W. = 2 x w, x §t/2x. The medians
(solid lines) on the other hand, present a lower criti-
cal bandwidth, notably W, = 1.5 x w, x §t/2x for tg =
107%,107%, like in the multiaxis noise with multiaxis
control case. This difference between mean and median
behavior implies that there exist numerous gates for which

109 i

0.5 1.0 15 2.0 2.5
Control bandwidth W/|B| x 2r /6t

FIG. 11. Dependence on tolerance for ideal gate fidelity ts of
FGRAFS performance for the single-axis noise along z case with
multiaxis control along x,y. Solid (dashed) lines represent the
means (medians) over the Clifford+7 gate set. In each case, data
shown represent averages over bandwidth windows of size 0.1.
Optimized objective function values are normalized by ts. Note
that after W, these values converge to 1, implying that the noise
is filtered effectively and most of the infidelity is given by the
gate constraints.

a bandwidth of W > 1.5 x w, x 8t/2x is sufficient to
achieve the desired noise cancelation.

The fact that this trade-off between gate fidelity and
bandwidth constraints is gate dependent suggests that the
CD initial conditions are not universally optimal for all
gates. In the presence of low bandwidth constraints e.g.
given by hardware, more gate-aware initial conditions are
necessary in order to perform a high degree of noise cance-
lation. To summarize, we observe that a degree of improve-
ment in optimal bandwidth conditions can be obtained,
albeit gate dependent, by relaxing the tolerance constraints
on the ideal gate fidelity.

APPENDIX E: EFFECTS OF NOISE PSD
SPECIFICATIONS ON FGRAFS-OPTIMIZED
CONTROLS

In Sec. III we describe the general procedure for find-
ing a CNB from a given PSD, which involves the choice
of a noise fractional power [Eq. (18)]. Intuitively, € is the
spectral leakage in the NB, meaning that 1 — € corresponds
to the amount of power that FGRAFS-optimized controls
will filter in the CNB. Consequently, there is strong inter-
est in choosing € < 1 as small as possible. In this section,
we address the effect of € on the optimization perfor-
mance. More specifically, we investigate the effect that
different choices of € have on the operational fidelity given
in Eq. (11). We show analytically and numerically that the
loss in fidelity is to first order proportional to €.

oxT/2m

— 107! 0% —— 107°

10-3 102
Fractional power in NB €

FIG. 12. Dashed lines: operational infidelities Z(7) =1 —
F(T) obtained from averaging over 1000 noise realizations of
single-axis noise and control simulations. Error bars represent
standard deviations of these noise realizations. Since the total
noise power is equal to 2mo?, varying the o is equivalent to
changing the noise strength. The fractional power in the CNB € is
varied through modifying the simulated noise correlation length
y, via the relationship y = wy tan(exr/2). The FF is kept con-
stant with oy = 0.01 x 2w /8. Solid lines: analytical predictions
described in the text; see Eq. (E3).
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In Fig. 12 we show the values of infidelity Z(7) =
1 — F(T) (dashed lines) for a qubit with single-axis noise
along z and control along x. The average fidelity F(7) is
obtained from simulation, averaging over 1000 different
noise realizations as well as two different gates: the identity
and X gates. The qubit is subject to FGRAFS-optimized
controls and dephasing noise characterized by a Lorentzian
spectrum with standard deviation o and correlation time
7 ~ 1/y. The error bars represent the standard deviations
of these different processes.

Throughout this analysis, the FF is kept constant with
wy = 0.01 x 27/8¢t and tolerance 10~'°. The fractional
power ¢ is varied in the range [1073,10~!], which mod-
ified the degree to which the noise affects the qubit. In
order to change the fractional power, the noise is modified
by adapting y through the relationship y = wy tan(emr/2)
(see Sec. V for further details).

The solid lines in Fig. 12 represent an analytical estima-
tion of the values of the fidelity. This is obtained through
approximating the FF as a delta function centered around
wy, namely F(w) ~ (T/2)5(w — wy). Using the explicit
formula for the Lorenzian PSD, we compute the overlap

1 o0
x(T) = —/ S(w)F (w)dw
T Jo

1 [® 2y02 T
—/ ve —6§(w — wy)dw
TJo yit+ow??2

&

LN (E1)
Tyt oy

Using the relationship between y and €, we rewrite this
expression in terms of € instead of y for fixed wy:

To? sin(re)

x(I) = —

T 2wy

To?
~ —E€.

Yom (E2)

The last line holds when € <« 7. This allows us to estimate
the fidelity as a function of the fractional power €. In the
case of high gate fidelity (in this case set to 10~!°), the
infidelity will be

(D) =1 - F(D)
= 1 - {§TrUum )
~ 1= (yTam)’)
14 e x™
2

=1

(E3)

This relationship is shown in Fig. 12 as solid lines, with
excellent agreement with the results of the simulations.
This further supports the approximation of the FGRAFS
FFs obtained from CD initial conditions as delta functions
centered around the frequency cutoff.

It is worth noting that the fidelity decays linearly with
the factor o%¢, corresponding to the noise power in the
CNB. This result suggests that although detailed knowl-
edge of the PSD is not required for FGRAFS optimization,
minimizing the noise contributions to the CNB is crucial
in order to maintain high-fidelity gates.

APPENDIX F: ALTERNATIVE OBJECTIVE
FUNCTIONS

The benefit of the objective function in Eq. (Al1) is
that it only requires limited knowledge of the noise PSD.
That is, the only feature of the noise needed to com-
pute the optimization is the location of the null band B
and the CNB. In this section, we adapt the algorithm
to include two variations of FGRAFS. More specifically,
when detailed knowledge of the noise PSD is at hand, the
overlap itself can be used as an objective function. Fur-
thermore, we show via numerical experiments that it is
possible to generate localized but targeted FFs, such as
Gaussian-shaped FFs. For simplicity, in what follows we
work in the single-axis noise and control scenario.

1. Explicit spectrum filtering

An alternative to the objective function in Eq. (All)
can be devised when detailed information of the PSD is
available. If S(w) is known then it is possible to define the
objective function

r*SP(r8) = / ~ S(w)F (0, Tdw. (F1)
0

Since the functional dependence on the control expansion
parameters has not changed, the computation of the gra-
dients follows as in Sec. II B. It is straightforward to see
that the derivative of the FF appears in the gradient in the
following way:

irPSD(T;S) = / OOS(w)iF(a), Ndw.  (F2)
day 0 oy

In Figs. 13(a) and 13(b) we present results from this opti-
mization that takes into account the specifics of the PSD
(PSD-FGRAEFS). We compare with the results obtained
with the regular FGRAFS optimization. In Fig. 13(b), the
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FIG. 13. Top row: comparison between controls (a) and FFs

(b) obtained from FGRAFS and the PSD-FGRAFS optimiza-
tions. The noise PSD, shown in black, is defined as 1/f -type
noise with hard cutoff at wy = 0.08 x 27 /8t, where S(w) =
A/w?* with the constant 4 chosen to match the amplitude of
the filter function. The PSD S(w) presents an additional cut-
off at low frequencies. Both the FGRAFS (blue) and the PSD
FGRAFS (orange) achieve greater cancelation than the initial
condition with CD (green). The PSD-FGRAFS FF presents
more features in frequency, due to access to higher PSD res-
olution. Bottom row: optimization results of controls (a) and
FFs (b) obtained with target FGRAFS (red), with target function
Flarget(w) = Aexp(—(w — wg)?/20?). In (b), it is clear that the
Target-FGRAFS FF (red) approximates well the target function
(black). In green we again show the initial condition resulting
from CD control.

noise PSD (black) is defined as S(w) = 4/w?* with hard
cutoff at a given value wy, where the constant 4 is chosen
to match the amplitude of the FF. This PSD also presents a
low-frequency cutoff, to prevent DC divergence.

From Fig. 13(b), it is clear that while both achieve
greater cancelation than pure CD (green), the PSD-
FGRAFS version follows an inverse trend compared to the
PSD. With detailed information of the PSD, it is possible to
get finer grained features in the FF that achieve greater can-
celation over those frequencies where the noise is stronger.
On the other hand, the FGRAFS solution aims to get aver-
age cancelation over the entire band and is considerably
more flat in the CNB. Additionally, both optimizations
achieve equivalent objective function values, I'"SP(7) ~
P x TFGRAFS (T .6y ~ 10~1°) where P is the total power
of the noise S(w). It took the FGRAFS method about 25
steps to achieve this level of cancelation, while the PSD-
FGRAFS method took only six iterations. This highlights
that, although finer resolution of the PSD can improve the
computational cost, it is not necessary and FGRAFS can
find an equally good solution for all the cases we studied.
This is further substantiated in Fig. 13(a), where we can see
that the control functions obtained through both methods
are very similar.

2. Target filter functions

Alternatively, one could ask whether FFs can be specif-
ically shaped to a given targeted objective FF Fiyrget(@).
For this application, we define the objective function as
the quadratic difference between the FF and the targeted
function,

e, Flarget) = / (F(w, T) — Ftarget(w))zdw~ (F3)
0

As in the previous section, the computation of the gradient
proceeds in the same way outlined in Sec. II B, where the
derivative of the FF is obtained by

a
% Ftarget(T; Ftarget)
k

o0 a
= 2/ F(w,T) — Ftarget(w))a_F(wa Ddw. (F4)
0 (473

In Figs. 13(c) and 13(d) we present an example of this
optimization for a Gaussian target function Fieet(w) =
Aexp(—(w — wp)?/20?). The FGRAFS initial conditions
are set such that the FF is centered around the same value
wy where the target Gaussian is located. In Fig. 13(d),
the black curve represents the target Gaussian function.
We can see that FGRAFS is capable of reshaping the ini-
tial constant drive condition into a Gaussian function with
good agreement. Note that the target functions need to be
normalized such that the total area of the FF is the total
time 7, which means that 4 = T/o V2.
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