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As progress is made towards the first generation of error-corrected quantum computers, robust char-
acterization and validation protocols are required to assess the noise environments of physical quantum
processors. While standard coherence metrics and characterization protocols such as T1 and T2, process
tomography, and randomized benchmarking are now ubiquitous, these techniques provide only partial
information about the dynamic multiqubit loss channels responsible for processor errors, which can
be described more fully by a Lindblad operator in the master equation formalism. Here, we introduce
and experimentally demonstrate Lindblad tomography, a hardware-agnostic characterization protocol for
tomographically reconstructing the Hamiltonian and Lindblad operators of a quantum noise environment
from an ensemble of time-domain measurements. Performing Lindblad tomography on a small supercon-
ducting quantum processor, we show that this technique naturally builds on standard process tomography
and T1/T2 measurement protocols, characterizes and accounts for state-preparation and measurement
errors, and allows one to place bounds on the fit to a Markovian model. Comparing the results of single-
and two-qubit measurements on a superconducting quantum processor, we demonstrate that Lindblad
tomography can also be used to identify and quantify sources of crosstalk on quantum processors, such as
the presence of always-on qubit-qubit interactions.
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I. INTRODUCTION

Quantum computers offer computational power funda-
mentally distinct from that of their classical counterparts
and are predicted to offer an advantage for certain prob-
lems in fields such as quantum chemistry and optimization,
which are often intractable on even the largest classical
supercomputers [1,2]. The promise of quantum advantage
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over classical hardware has driven extensive efforts to
build quantum computing devices based on a number
of different hardware platforms—including trapped ions
[3,4], neutral atoms [5,6], and superconducting circuits
[7]—each of which is susceptible to characteristic imper-
fections and noise mechanisms that can limit performance.

In order to mitigate these sources of error, fault-tolerant
quantum error-correction protocols encode logical qubits
across many physical qubits, provided the error rate of the
physical qubits is below a threshold [8,9]. This approach,
however, comes with considerable overhead in terms of
the additional qubits needed for the encoding [10]. While
the overhead required for generic device-agnostic error-
correction schemes may prove prohibitive in the near
term, the need for redundancy can be substantially reduced
by tailoring the correction scheme to the specific noise
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environment and imperfections of the particular quantum
processor [11–15].

To date, a broad toolbox of quantum characterization,
verification, and validation techniques have been proposed
and utilized that focus on different aspects of device perfor-
mance—such as randomized benchmarking (RB) [16,17],
gate set tomography (GST) [18–20], and state and pro-
cess tomography [21]—each with their own strengths and
weaknesses [22]. For example, randomized benchmarking
provides an approach for assessing the average fidelity of
quantum gate operations independent of state-preparation
and measurement (SPAM) errors, and it has consequently
become a standard measure of performance for experimen-
tal quantum devices. However, the average fidelity alone
does not provide much information about the actual noise
processes at play in the device, the details of which are
crucial to more fully modeling the device and developing
tailored error mitigation and correction techniques.

State and process tomography, on the other hand, pro-
vide more detailed information about discrete moments
in a qubit’s evolution, such as the qubit state at a par-
ticular time or the quantum process corresponding to a
gate operation of a fixed duration. However, caution must
be exercised in order to consistently interpret the results
of tomography in the presence of SPAM errors [23].
Building on traditional tomographic protocols, a number
of theoretical and experimental works have demonstrated
self-consistent characterization of SPAM errors in process
tomography and gate characterization [23–26]. Common
to many of these techniques is the use of maximum like-
lihood estimation, which provides a robust and flexible
estimation procedure capable of handling overcomplete
data and constrained problems. While such techniques
offer a promising step forward, the characterization of a
discrete moment in a qubit’s evolution is not always suf-
ficient, and one often requires detailed knowledge about
how the noise environment and crosstalk between qubits
dynamically influence evolution in time [27].

Here, we present a robust technique for characterizing
the dynamics of a multiqubit system from an ensem-
ble of time-domain measurements, which we call Lind-
blad tomography (LT). As a characterization tool, LT
can be used to analyze any general time-independent and
memory-less noisy quantum process. For example, one
could use LT to characterize the noise processes experi-
enced by a qubit during free evolution—such as T1 and T2
processes, which can be formally described as amplitude
damping and dephasing channels, respectively. Similarly,
LT could also be used to evaluate and diagnose a deliber-
ately engineered channel, such as a tailored Hamiltonian
implemented on an analogue quantum simulator [28].

The goal of LT is to estimate the Hamiltonian, quan-
tum jump operators, and corresponding decay rates that
describe the evolution of interest using maximum likeli-
hood estimation (MLE), a process we collectively refer

to as extracting the Lindbladian of the channel. In doing
so, we assume that the channel can be well approximated
by a time-independent master equation. Prior to extracting
the Lindbladian of the channel, our protocol uses a sub-
set of measurement data to characterize the SPAM errors
for the device, which we then include in our estimation of
the Lindbladian from the full set of measurement data. As
such, we assume that the SPAM errors are constant across
the full set of LT measurements, and are thus time indepen-
dent during the duration of data collection. To summarize,
the main requirements for LT are as follows.

1. The evolution of the quantum system should be
Markovian and well described by a time-independent mas-
ter equation.

2. SPAM errors are assumed to be constant during the
full duration of data acquisition.

As we demonstrate, the set of measurements required for
LT contains all the measurements required to perform pro-
cess tomography at many time points, and these data can
thus be used to independently extract the Kraus opera-
tors of the channel at discrete times. These operators can
then be used to qualitatively validate the assumption of
Markovianity using the measure proposed in Ref. [29].
Performing LT on a superconducting quantum processor,
we show that this verification technique enables us to iden-
tify potential sources of non-Markovianity that arise due to
always-on crosstalk between neighboring qubits.

While estimation techniques for Lindblad noise opera-
tors have been proposed and demonstrated previously for
a single-qubit solid-state [30] and trapped-ion system [31],
the characterization reported in this work differs from these
past demonstrations in its careful account of SPAM errors
during the estimation, its assessment of the Markovianity
of the channel, and its use of MLE. In this respect, Lind-
blad tomography has much in common with GST and can
be viewed as a strategic, application-specific simplifica-
tion of “long-sequence GST” [19]. In long-sequence GST,
the goal is to extract the SPAM-consistent process map for
each of the physical operations in a quantum gate set from
a long sequence of repeated operations; to impose phys-
icality constraints, long-sequence GST then estimates the
Lindbladian that generated each gate, and a discrete pro-
cess is obtained by evaluating the dynamic operators for
the fixed duration of the physical gate. Since the standard
gate set typically includes a period of free evolution (which
we refer to as the idling gate below), a small subset of
the sequences required for long-sequence GST are equiv-
alent to the sequences required for LT, i.e., the sequences
where the series of applied gates (the “germ” [18]) consist
entirely of repeated applications of the idling operation.
However, while GST requires many additional sequences
in order to consistently characterize all the operations in
the gate set relative to each other, LT substantially cuts
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down the number of required sequences by focusing only
on a single process: the idling operation. As such, while
GST provides a more complete description of the full set
of qubit operations, LT allows one to bypass much of the
analytical complexity and experimental overhead of GST,
at the cost of a more targeted characterization.

Like GST and most other tomographic protocols, such
as standard process tomography, the number of measure-
ments required for Lindblad tomography scales exponen-
tially with the number of qubits. As such, we note that
full characterization of a large quantum processor with
Lindblad tomography remains experimentally impracti-
cal. However, as we discuss in the conclusion, careful
characterization of single- and two-qubit plaquettes across
a device may prove sufficient to diagnose sources of
qubit-qubit crosstalk and bootstrap higher-order multiqubit
errors [32,33].

The paper is organized as follows. In Sec. II, we intro-
duce the general technical framework behind Lindblad
tomography. Applying LT to a small superconducting
quantum processor, we then continue with a characteriza-
tion of SPAM errors for this device in Sec. III, estimation
of Kraus operators and the degree of Markovianity in
Secs. IV and V, and finally Hamiltonian and Lindblad esti-
mation in Sec. VI. In each section, we first present the
hardware-agnostic protocol, and then consider the results
of running the protocol on a device of coupled supercon-
ducting qubits.

II. SINGLE-QUBIT LINDBLAD TOMOGRAPHY
MEASUREMENT PROTOCOL

We first introduce Lindblad tomography in the context
of characterizing a single qubit. The generalization to two
or more qubits follows readily, as discussed below.

The structure of single-qubit LT is illustrated in
Fig. 1. To determine the Lindbladian describing a single-
qubit channel, we perform the following overcomplete
set of single-qubit rotations and basis measurements
[Fig. 1(a)].

1. The qubit is initialized in a state ρ0 close to
its ground state and one of six single-qubit gates Rs =
{1, Xπ , Y±π/2, X∓π/2} is applied, initializing the qubit as
close as possible to each of the six cardinal states of the
Bloch sphere (|0〉, |1〉, |±〉, |±i〉), respectively.

2. The idling channel 1̃(t) is swept as a function of
time, corresponding to a variable time delay between state
preparation and measurement during which no experimen-
tal controls are performed on the qubit. In the absence
of any noise, the idling channel would correspond to the
identity channel 1(t).

3. One of three single-qubit gates Rb = {1, Y−π/2,
Xπ/2} is applied prior to measurement, corresponding to
measurement in the Pauli z, x, and y bases.

Initialize Six
Cardinal States

Sweep Quantum
Channel of Interest

Measure in Three
Pauli Bases
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FIG. 1. Single-qubit Lindblad tomography (LT) protocol. (a)
The sequence of measurements required for single-qubit LT. The
qubit is prepared in its imperfect ground state ρ0 and one of six
single-qubit prepulses Rs is applied to rotate the qubit as close as
possible to each cardinal state of the Bloch sphere; free evolution
of the quantum system is swept; and one of three postpulses Rb
is applied to rotate the measurement axis into each Pauli basis.
Notably, the set of pre- and postpulses {Rs, Rb} includes all of
the rotations required for standard process tomography, allow-
ing one to reconstruct the channel at each discrete time step as
in process tomography [(b), left path], as well as for continuous
time using all time steps [(b), right path]. (b) Analysis proto-
col for LT. Results from all combinations of pre- and postpulses
and channel durations are passed to a classical optimizer based
on maximum likelihood estimation (MLE). SPAM errors due to
imperfect ground-state preparation and measurement infidelity
are extracted from data at t = 0, and the results are used to sep-
arately estimate: (left path) the Kraus operators K(ti) for each
discrete channel duration ti and channel Markovianity using the
trace distance D between pairs of states; (right path) the Hamil-
tonian Ĥ and Lindblad matrix L for continuous time t, where the
operator fit to data is evaluated using the average error between
the measurement outcomes predicted by the operators (xmodel)
and data (xmeas).

These steps are repeated for all combinations of ini-
tial state, channel duration, and measurement basis, and
the results are saved in classical memory for analy-
sis. This dataset is fed to a MLE routine to determine
the matrix elements of the density matrix ρ0 and the
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positive operator-valued measures representing the imper-
fect measurement apparatus [Fig. 1(b) blue bubble; details
in Sec. III]. This initial characterization is then used to
independently estimate the process map at each discrete
time [Fig. 1(b) orange bubble; details in Sec. IV] and the
Hamiltonian and Lindblad operators for continuous time
[Fig. 1(b) red bubble; details in Sec. VI].

Since Lindblad tomography is designed to characterize
free evolution of a quantum system, note that a subset of
the LT measurement sequences are identical to conven-
tional T1 [pale green gates in Fig. 1(a)] and T2 (purple)
measurements. In this way, one can helpfully think of this
measurement protocol as a hybrid of standard qubit charac-
terization techniques, combining time-domain character-
ization of T1/T2 with process tomography. By iterating
over the full set of pre and postrotations, LT effectively
pieces together all combinations of T1- and T2-like mea-
surements to tomographically reconstruct the full quantum
loss channel.

III. EXTRACTING SPAM ERRORS

Once we have collected the full set of data for the
channel of interest, the subset of data obtained for the
zero-duration channel 1̃(t = 0) are analyzed to extract the
SPAM errors for the device.

For the state-preparation errors, we parameterize the
imperfect initial ground state of the qubit as an arbitrary
single-qubit density matrix, ρ0, which is constrained by
physicality conditions to be positive semidefinite and have
unit trace. The condition of positivity is enforced in the
optimization by expressing ρ0 as a Cholesky decomposi-
tion ρ0 = AA† and estimating the elements of the uncon-
strained matrix A from which ρ0 is computed. The unit
trace condition is readily included by normalization.

Measurement errors are characterized by extracting the
positive operator-valued measure (POVM) describing the
measurement apparatus. For most qubit modalities, mea-
surements are natively performed in a fixed z basis, while
measurement in other bases are performed by rotating the
state prior to measurement. The single-qubit POVM corre-
sponding to measurement in the z basis has two operator
elements (2 × 2 matrices) {M0, M1}, where M0 + M1 = 1.
The probability of measuring a state ρ in the ground state is
then p0 = Tr[ρM0] and the excited state is p1 = Tr[ρM1].
To estimate the POVM, we optimize over the matrix ele-
ments of M0, subject to the constraint that both M0 and
M1 = 1 − M0 are positive semidefinite.

In general, the fiducial gates required to initialize the
cardinal states and rotate the measurement basis cannot
be assumed error free. In order to fully characterize these
operations, one would therefore parameterize these gates
as arbitrary rotation matrices and estimate them together
with the POVM and initial state parameters, in much the
same way as in gate set tomography [26]. However, in

Lindblad tomography, we significantly simplify the anal-
ysis by excluding the effects of imperfect rotation from
our estimation. Here, our motivation is twofold. First, we
note that, for many noisy-intermediate-scale-quantum-era
devices across hardware modalities, errors due to imperfect
measurement and ground-state preparation exceed single-
qubit gate errors. Second, since our ultimate goal is to
characterize the idling channel over several multiples of
the qubit’s T1 and T2 times (tens of microseconds for
superconducting qubits, in comparison to tens of nanosec-
onds to implement a single-qubit gate), the channel errors
are naturally amplified relative to the errors in the fiducial
gates, regardless of their intrinsic magnitude (in much the
same way as in GST and RB). Furthermore, while ignor-
ing the contribution of these errors typically introduces the
issue of gauge freedom, we note that errors in the idling
channel are first-order gauge invariant, and the contribu-
tion of errors in the fiducial gates can be safely ignored in
this scenario [34–36]. We also note that randomized bench-
marking, which is not influenced by SPAM errors, can be
performed prior to LT to obtain an independent estimate of
the rotation pulse errors.

In order to find the initial state ρ0 and POVM M0 that
best describe the measurements, we construct a maximum
likelihood function LSPAM for our SPAM errors, which
allows us to optimize over the unknown elements of these
matrices. To perform a loglikelihood estimation, we take
the logarithm of this function

ln(LSPAM) =
∑

b,s

f (s, b) ln(Tr[ρsMb])

+ f̄ (s, b) ln(Tr[ρs(1 − Mb)]), (1)

where b ∈ {z, x, y} runs over the measurement bases,
s ∈ {|0〉 , |1〉 , |+〉 , |−〉 , |+i〉 , |−i〉} runs over the imperfect
input states, and f (s, b) [f̄ (s, b)] is the total number of
“0”s (“1”s) recorded during repeated measurements of
state ρs in measurement basis b. In general, reconstructing
the matrices Mb = R†

bM0Rb would require estimating the
matrix elements of both M0 as well as the potentially faulty
rotations (Rb = {1, Y−π/2, Xπ/2}), and reconstructing the
matrices ρs = Rsρ0Rs

† would require estimating the matrix
elements of both the initial state (ρ0) and the potentially
faulty rotations (Rs = {1, Xπ , Y±π/2, X∓π/2}). However, as
detailed above, LT strategically ignores the contribution
of fiducial gate errors, so only the elements of M0 and ρ0
remain to be found.

The experimental data required for estimating SPAM
errors correspond to the subset of LT data taken for the
zero-duration channel 1̃(t = 0), where we prepare the
qubit in each of the states ρs and immediately measure
in each basis b. Qubit measurements are recorded as sin-
gle shots, and the outcomes are labeled as either “0” or
“1.” The initial state and POVMs are then estimated by
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maximizing the loglikelihood in Eq. (1) with respect to
the unknown matrix elements of the density matrix and
measurement operators.

Now, in principle, we note that the SPAM parameters
could alternatively be determined simultaneously with the
Hamiltonian and Lindblad operations, using the entire set
of measured time steps [i.e., not just 1̃(t = 0)]. While this
alternative method may work for some applications, obvi-
ating the need for a separate SPAM estimation, it has a
major practical drawback: when equal weighting is given
to all time steps, it is possible to end up in a local minimum
that well fits the data at longer times (where channel errors
dominate over SPAM) but fails to fit it at shorter times
(where SPAM errors tend to dominate). To avoid this sce-
nario and ensure accurate estimation of the SPAM errors,
our SPAM estimation focuses only the data at t = 0, where
we expect these errors to dominate. Once we have an accu-
rate estimate of those errors at small time, we then include
them in the characterization of the channel at long times,
as in Sec. VI.

This technique extends naturally to multiqubit systems.
For two qubits A and B, we represent the initial state as
a general two-qubit density matrix ρAB

0 , and we charac-
terize the measurement apparatus using four 4 × 4 POVM
matrices {M00, M01, M10, M11}, corresponding to measure-
ment of the states |00〉, |01〉, |10〉, and |11〉, respectively.
To determine the matrix elements of the initial state and
the POVMs, we maximize a loglikelihood function anal-
ogous to Eq. (1) containing four terms (corresponding to
measurement of each of the four two-qubit computational
states) and sum over the full set of two-qubit pre- and
postpulses (discussed further in Sec. IV).

As a proof of principle demonstration of Lindblad
tomography, we perform the full protocol on a device con-
sisting of three capacitively coupled flux-tunable transmon
qubits, where we denote the two qubits characterized in
this experiment as qubit A and B [Fig. 2(a); full device
characterization found in Appendix A and Ref. [37] ].
In Fig. 2(b), we plot the extracted matrix elements of
the imperfect two-qubit ground states ρAB

0 , extracted dur-
ing two-qubit LT. In Figs. 2(c)–2(f), we plot the ele-
ments of the two-qubit POVM matrices, corresponding to
measurement of the four two-qubit computational states,
respectively. Bold wireframes in Figs. 2(b)–2(f) highlight
ideal ground-state preparation and perfect z-basis POVM
matrices for comparison.

To quantitatively motivate our choice to exclude fiducial
gate errors from our analysis, we note that, for high-fidelity
superconducting qubits, single-qubit operations are typi-
cally orders of magnitude less prone to error (typical error
rates < 0.05%) than measurements (typical error rates 1%)
[38]. In such systems, it is therefore reasonable to assume
that errors in single-qubit rotations have negligible impact
on state-initialization and POVM estimation in compari-
son to imperfect thermalization and measurement error. In

(b)

(c) (d)

(e) (f)

(a)

FIG. 2. Initial characterization of SPAM errors as part of Lind-
blad tomography. (a) Schematic of the two coupled transmon
qubits used in this experiment. (b) Skyscraper plots of the imper-
fect two-qubit ground state ρAB

0 extracted during two-qubit LT
(ideal ground state shown in wireframe, elements smaller than
10−2 omitted for visual clarity). (c)–(f) Extracted two-qubit
POVMs, corresponding to imperfect measurement of the states
|00〉, |01〉, |10〉, and |11〉, respectively (negative values shown
in red, perfect POVMs shown in wireframe, imaginary parts and
elements smaller than 10−2 omitted for visual clarity). The full
single- and two-qubit matrices for the extracted initial states and
POVMs are included in Appendix C.

the device used for the present experiment, we find unopti-
mized measurement fidelities of the order of 90%, in com-
parison to single-qubit gate fidelities of about 99.99% mea-
sured using interleaved randomized benchmarking (see
Appendix B).

Looking at the most likely state-preparation errors (full
matrices are reported in Appendix C), we note that the
initial single-qubit states are very similar to a thermal
state of the form ρthermal = a |0〉〈0| + (1 − a) |1〉〈1|, a ∈
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[0, 1]. Minimizing the trace distance D(ρthermal, ρ0) =
|ρthermal − ρ0|/2 (where |M | = Tr[

√
M †M ]) between the

estimated initial states and a thermal state, with respect
to the thermal parameter a, we find minimal trace dis-
tance D(ρthermal, ρA

0 ) = 0.01 [D(ρthermal, ρB
0 ) = 0.04] for

a = 0.999 (a = 0.998). This result is thus consistent with
the observation that the imperfect ground state of a super-
conducting qubit at finite temperature can be approximated
as a thermal state of an anharmonic oscillator [39].

Traditionally, the SPAM errors for a single qubit in a
multiqubit device would be found by characterizing the
qubit while all its neighbors are left in their ground states.
This is also the case for the above characterization in our
device, though we note that this implies that the manipu-
lation and readout of qubit B should have no effect on the
POVM and initial state of qubit A. The extent to which
this holds can be tested by comparing the estimated single-
qubit POVMs and initial states for both qubits with the
joint two-qubit POVM and initial state estimated using
full two-qubit LT. The probability of measuring qubit A
in state x and qubit B in state y is Tr[ρMxy], where ρ is
the two-qubit density matrix, Mxy is a two-qubit POVM,
and x, y ∈ {0, 1}. Once again, the likelihood function for
the two-qubit system is then optimized under the constraint
that the POVM elements sum to identity, and Cholesky
decompositions can be used to ensure that they are positive
semidefinite. All details of the estimated two-qubit POVM
can be found in Appendix C.

The deviation between the estimated single- and two-
qubit POVMs can be quantified as the trace distance
D(Mxy , Mx ⊗ My), where the Mx (My) are the estimated
single-qubit POVMs for qubit A (B). We find a trace
distance of 0.04 for xy = {00, 01, 10} and 0.05 for xy =
{11}. The trace distance between the estimated initial
two-qubit state ρAB

0 and the product state ρA
0 ⊗ ρB

0 con-
structed from the single-qubit estimates is D(ρAB

0 , ρA
0 ⊗

ρB
0 ) = 0.05. Comparing the initial two-qubit state ρAB

0 to a
product of single-qubit thermal states (see above), we find
a trace distance of 0.01 for thermal populations a = 0.998
(qubit A) and a = 0.994 (qubit B). The full single- and two-
qubit matrices for the extracted initial states and POVMs
are included in Appendix C for reference.

IV. RECONSTRUCTING THE KRAUS
OPERATORS AT DISCRETE TIMES

Once we have performed an initial characterization of
the SPAM errors for our device, we can proceed to char-
acterize the quantum channel of interest. For supercon-
ducting devices, qubits are primarily subject to amplitude
damping and dephasing noise over time [39], and the cor-
responding decay rates are traditionally characterized with
simple T1 and T2 measurements, respectively. However,
to accurately model multiqubit devices or develop tailored
error-correction techniques [13], it is important to directly

characterize the structure of these channels as well as how
they depend on the state of neighboring qubits, details
that are not readily obtainable from standard single-qubit
T1 and T2 measurements. To obtain this information, we
use LT to extract the Lindbladian of the channel, which
requires process tomography over varying idling channel
durations 1̃(ti).

Before estimating the Lindbladian of the channel for
continuous time t, we can first separately extract the
instantaneous evolution maps of the channel at each dis-
crete time step ti, which can then be used to check the
validity of the time-independent Markovian model. Any
quantum operation can be described by a set of Kraus
operators such that the final state is related to the initial
state as ρ = ∑

j Kj ρ0K†
j , where the Kraus operators sat-

isfy
∑

j K†
j Kj = 1 for a trace-preserving process. Note

that the Kraus operators are only unique up to a unitary
transformation: a quantum channel can be described by
two different but equivalent sets of Kraus operators {Kj }
and {K′

k}, which will be related through a unitary matrix
U such that Kj = ∑

k UjkK′
k. In standard process tomogra-

phy, one therefore often estimates a process matrix χ that
is unique in a specified operator basis. Since the process
matrix can be readily calculated from the Kraus operators
and vice versa, one can choose either description with-
out loss of generality. In this work, we choose to estimate
the Kraus operators; however, we note that we also used
the same MLE approach to estimate the process matrix,
but found a slower convergence of the optimization com-
pared to the Kraus estimation. We believe that this is likely
due to the unitary freedom in fixing the elements of the
Kraus matrices. In what follows, we therefore describe the
estimation of the Kraus operators.

Characterizing the idling channel, the task is to estimate
the Kraus operators describing the qubit evolution at dis-
crete delay times. For each time delay ti ∈ [t1, t2, . . . , tN ],
we consider a maximum likelihood function of a similar
form to Eq. (1),

ln(LK(ti)) =
∑

b,s

f (s, b, i) ln(Tr[ρs(ti)Mb])

+ f̄ (s, b, i) ln(Tr[ρs(ti)(1 − Mb)]) (2)

with parameters defined as in the SPAM estimation, except
that ρs(ti) is now the discrete time evolution of the ini-
tial state ρs at time ti, under the evolution of the Kraus
operators

ρs(ti) =
∑

j

Kj (ti)ρsK†
j (ti). (3)

The Kraus operators are then estimated by minimizing
the loglikelihood function with respect to the unknown
matrix elements of each Kraus operator, using the SPAM
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error parameters ρs and Mb found during the estimation
in Sec. III. For N delay times, we obtain N sets of Kraus
operators where, for a d-dimensional quantum system, the
process at each time is described by at most d2 Kraus oper-
ators. Thus, for a single qubit, we estimate four Kraus
operators per time delay (16 for two qubits).

In Fig. 3, we show the results of extracting the single-
qubit Kraus operators for qubit A of our superconducting
transmon device, superposed over the raw data obtained
at each time step. Blue dots show the raw measurement
probability p0, averaged from 1000 single-shot measure-
ments of the final state ρs(ti) (shot noise 1/

√
N ∼ 3%), and

orange crosses show the predicted outcome of an imperfect
measurement Mb of state ρs(ti), estimated by applying the
extracted Kraus operators to the extracted imperfect initial
state ρs as in Eq. (3). As such, the orange crosses not only
capture the channel noise, but also account for the SPAM
errors of our device. In Figs. 3(a)–3(c), we compare results
from the subset of LT sequences corresponding to a T2-like
measurement of qubit A [purple gates in Fig. 1(a)] when its
nearest neighbor B is prepared close to either its |0〉, |1〉, or
|+〉 state, respectively. Comparing these three scenarios, it
is clear that the state of qubit B has a significant effect on
the evolution of qubit A, a fact that we examine in detail in
Sec. V. To capture the full dynamics of this interaction, it
is thus necessary to extract the Kraus operators describing
the full two-qubit channel.

The estimation of the two-qubit Kraus operators follows
from a straightforward generalization of the single-qubit
LT protocol, as shown in Fig. 4(a). The corresponding
Kraus estimation is then performed by expanding the
likelihood function in Eq. (2) with all elements of the
two-qubit POVM. A subset of the results of this extrac-
tion are shown in Figs. 4(b) and 4(e). Having obtained
both the single- and two-qubit Kraus operators for this
channel, we can investigate the Markovianity of the idling
channel for our device. In particular, we can directly inves-
tigate how Markovian two-qubit noise due to spurious
interaction between qubits can manifest as non-Markovian
single-qubit noise.

V. VALIDATING THE MARKOVIAN MODEL

In this section, we use the Kraus operators extracted
in the previous section to provide qualitative insight into
whether or not the measured quantum channel can be
fit to a Markovian model. There exist a number of pro-
posed measures for non-Markovianity in the literature,
and we refer the interested reader to reviews such as
Refs. [40,41] for reference. Notably, a number of exper-
imental works have implemented the measure proposed
in Ref. [29], which quantifies the backflow of informa-
tion from the environment characteristic of non-Markovian
error [42,43]. This measure is also suitable for our pur-
pose, because it considers the noise process over time, in

(a)

(b)

(c)

FIG. 3. Lindblad tomography applied to the idling channel of
a single superconducting transmon qubit. (a) Data and analysis
results for the LT sequence corresponding to a T2 Ramsey mea-
surement [purple gates in Fig. 1(a)], when the neighboring qubit
is prepared near its ground state |0〉. Blue points are p0 of state
ρs(ti), averaged from 1000 single-shot measurements (discussed
in Sec. III, fitted value of T2 recorded in the appendix, shot noise
1/

√
N ∼ 3%). Orange crosses are predicted measurement out-

comes obtained from applying the Kraus operators estimated at
each discrete time ti to the extracted initial state ρ0 given an
imperfect measurement M0 (technique discussed in Sec. IV).
Red line traces the predicted outcomes for continuous time t,
based on the most likely time-independent Lindblad and Hamil-
tonian operators (technique discussed in Sec. VI, average error
equals 2.25 × 10−2). Results for the first 10 μs are enlarged for
clarity in the inset. We discuss the Lindblad fit for this partic-
ular dataset and its dependence on temporal fluctuations during
the protocol in Appendix D. (b) The same measurement, taken
when the neighboring qubit is near its excited state |1〉 (most
likely Lindbladian in red, average error equals 2.29 × 10−2). The
always-on ZZ coupling between the two transmon qubits induces
a state-dependent frequency shift when the neighbor is excited,
which manifests here as a faster oscillation frequency. (c) The
same measurement, taken when the neighboring qubit is in a
superposition state |+〉. In this basis, the always-on ZZ coupling
is an entangling operation, and the data are poorly predicted
by the most likely single-qubit Lindbladian (red, average error
equals 6.91 × 10−2), a hallmark of non-Markovian evolution
(see Sec. V).

contrast to instantaneous measures such as in Ref. [44].
We note that other non-Markovianity measures exist that
also consider the noise process over time and that may
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Initialize 
36 Cardinal States

Sweep Channel Measure in 
Nine Pauli Bases

(a) (c)

Idling Channel Duration (μs)

Idling Channel Duration (μs)

(e)

(b)

Idling Channel Duration (μs)

(d)

Idling Channel

Raw Data

Prediction from Kraus

Prediction from Lindblad

/ /

/// /

FIG. 4. Two-qubit Lindblad tomography protocol and results. (a) Measurement protocol: the two qubits are initialized into their
shared ground state ρAB

0 and prepared in each of 36 combinations of cardinal states; the channel of interest is swept; the qubits
are rotated into each of nine combinations of Pauli bases and measured. The full set of measurement results are passed through
the same classical optimizer as in the single-qubit protocol, SPAM errors are extracted, and the instantaneous process maps and
dynamic operators are estimated using MLE. (b) Raw data (blue; shot noise 1/

√
N ∼ 3%), predictions from extracted Kraus operators

(orange), and predictions from estimated Hamiltonian and Lindblad operators (red) for several combinations of pre- and postpulses.
(c) Schematic of a large superconducting quantum processor, where the two qubits studied in this work are thought of as neighboring
qubits (A and B) in a large patchwork. LT can be performed just as easily on distant qubits (i.e., A and C) to study nonlocal crosstalk. (d)
Single-qubit LT on qubit A while B is in a superposition state [same dataset as Fig. 3(c), enhanced for visual clarity]. The poor Lindblad
fit (red, average error equals 6.91 × 10−2) indicates that no single-qubit Lindblad operator successfully predicts the measured data; this
observation, paired with the result of the Markovianity metric shown in Fig. 5(c), suggests that the evolution is non-Markovian in the
single-qubit frame. (e) Two-qubit Lindblad tomography, where qubits A and B are both initialized in superposition states. While the
pulse sequence is identical to (d), the data are now well predicted by a two-qubit Lindbladian (average error equals 2.15 × 10−2); this
observation, paired with the result of the Markovianity metric shown in Fig. 5(d), suggests that the channel is Markovian in the two-
qubit frame. Comparing (d) and (e) in concert with the results in Fig. 5, we conclude that the non-Markovian errors in the single-qubit
data are due to spontaneous entanglement with qubit B (as discussed in Sec. V), revealing the error source.

provide complementary information about the nature of
non-Markovianity [45]. However, for the purpose of sim-
ply assessing the validity of the Markovianity assumption
of LT, the measure of Ref. [29] is sufficient.

The measure of Breuer et al. [29] exploits the following
fact: for any quantum process that can be captured by a
time-dependent master equation of the form

ρ̇(t) = − i
�

[Ĥ(t), ρ(t)]

+
∑

i

γi(t)
(

L̂i(t)ρ(t)L̂†
i (t) − 1

2
{L̂†

i (t)L̂i(t), ρ(t)}
)

(4)

with positive decay rates γi(t) > 0, the trace distance
D(ρ1(0), ρ2(0)) between two initial states ρ1(0), ρ2(0)

can only decrease. Here, Ĥ(t) and {L̂i(t)} are the time-
dependent Hamiltonian and jump operators of the process.

Since non-Markovian processes cannot be captured by a
time-dependent master equation of the form in Eq. (4), an
increasing trace distance between two states under the evo-
lution of a common channel signifies violation of Eq. (4)
and thus the presence of non-Markovian errors. Based on
this observation, Ref. [29] suggested the measure

NMarkov = maxρ1(0),ρ2(0)

∫

σ>0
σ(t, ρ1(0), ρ2(0))dt, (5)

where σ(t, ρ1(0), ρ2(0)) = dD(ρ1(t), ρ2(t))/dt. In other
words, we integrate the derivative of the trace distance
between a pair of states over all time intervals where the
derivative is positive (i.e., trace distance increasing), and
the larger the value of NMarkov, the more non-Markovian
the channel. However, we note that the quantitative value
of NMarkov can be ambiguous, since the value is unbounded
and extremely sensitive to experimental noise in individual
data points. As such, rather than treat NMarkov as a quan-
titative metric, we instead treat it as a qualitative metric,
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plotting the trace distance as a function of the channel
duration and looking for sustained periods of increasing
trace distance. In Sec. VI, we complement this observation
with a rigorous quantitative analysis of the error between
the operator predictions and data.

Having estimated the Kraus operators for the single- and
two-qubit idling channels of our coupled transmon sys-
tem, we perform the optimization in Eq. (5) over the initial
states of the LT protocol to calculate measure NMarkov. In
Fig. 5, we use the results of the single- and two-qubit LT
to perform this optimization, and we graphically illustrate
NMarkov (given by the total area in red) for several qubit
configuration. Notably, when qubit B is initialized in state
|+〉 [as in Fig. 3(c)], the idling channel of qubit A registers
clear periods of increasing trace distance [Fig. 5(c)]. This
behavior disappears when qubit B is initialized in either the
|0〉 or |1〉 state, as well as in the combined two-qubit chan-
nel [Figs. 5(a), 5(b), and 5(d), respectively]. In these latter
three scenarios, increases in the trace distance appear to
arise from isolated statistical fluctuations in the data, with
the trace distance otherwise monotonically decreasing over
the channel duration.

The distinctive presence of single-qubit non-Markovian
behavior in Fig. 3(c) is well understood from the physics
of coupled transmon qubits. For two transmon qubits inter-
acting via a fixed capacitance, the resulting dispersive
repulsion of the |20〉 and |02〉 states shifts the frequency of
the |11〉 state and gives rise to a ubiquitous “always-on” ZZ
interaction in the computational subspace of the form [46]

Ĥzz/� = ωzz |11〉〈11| = ωzz

4
(ZZ − ZI − IZ + II), (6)

where ωzz = ω11 − ω01 − ω10 is the energy shift of the |11〉
state due to the qubit coupling.

Consequently, when the two qubits are far detuned from
each other, this interaction results in an effective two-qubit
Hamiltonian of the form [47]

Ĥ/� = ωA |10〉〈10| + ωB |01〉〈01|
+ (ωA + ωB + ωzz) |11〉〈11| , (7)

where ωA, ωB are the |0〉 → |1〉 transition frequencies of
qubits A and B, respectively. When one of the qubits is
prepared in either |0〉 or |1〉, this interaction is manifest
as a state-dependent frequency shift [hence the differ-
ence in oscillation frequency between Figs. 3(a) and 3(b)].
However, when the two qubits are prepared in an ini-
tial state |++〉, they will evolve into an entangled state
under the influence of Hamiltonian (7). If we only con-
sider the evolution of one of the qubits—as is the case for
the single-qubit Kraus estimation, where we are effectively
tracing out one of the qubits—the always-on coupling will
swap information between the qubit we are measuring
and its neighbor. Qubit B thus functions as an environ-
ment with memory, and the entanglement between the two
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FIG. 5. Markovianity of single- and two-qubit idling channels.
(a)–(c) Qualitatively comparing the measured Markovianity of
qubit A’s idling channel when qubit B is prepared in |0〉, |1〉, or
|+〉, respectively. We find the two initial states of qubit A that
together yield the largest value of NMarkov, and we plot the trace
distance D between these two states at each time ti (blue points),
as well as the difference in the trace distance between sequential
times (red triangles; values less than 0 omitted for visual clarity,
since they do not contribute to NMarkov). Summing the area under
the red points amounts to the discrete version of Eq. (5), with sus-
tained periods of increasing trace distance indicating the presence
of non-Markovian errors. When qubit B is prepared in |+〉 as in
(c), we observe clear periods of increasing trace distance, sug-
gesting the greatest presence of non-Markovian errors. (d) The
same protocol as above, taken using two-qubit LT and comparing
the trace distance between two-qubit initial states (purple). Max-
imizing over all two-qubit initial states, we find that none display
the clear oscillations seen in (c), indicating that the channel errors
are largely Markovian in the two-qubit frame.

qubits gives rise to non-Markovian errors in the single-
qubit picture. However, if the evolution of both qubits
is considered, as in the two-qubit Kraus estimation, the
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always-on interaction is revealed to be unitary and this
non-Markovian behavior disappears [Fig. 5(d)].

VI. EXTRACTING THE LINDBLADIAN

While we have shown how the Markovianity of the
noise environment can be qualitatively assessed from the
estimated Kraus operators, it is often difficult to extract
much physical insight from the Kraus operators alone. If
the channel is Markovian, one can apply LT to estimate the
time-independent Lindbladian that best fits the measure-
ment data for continuous times t [right path in Fig. 1(b)].
If, on the other hand, the channel is non-Markovian, one
will be unable to find a set of operators that describe
the data, since non-Markovian processes cannot be fit to
a master equation. We note, however, that the Marko-
vianity measure employed in Sec. V only tells us if the
process can be captured by a general master equation with
a time-dependent Lindbladian, and it does not guarantee
that the assumption of a time-independent Lindbladian is
fulfilled. As such, comparison between the Markovianity
metric and the fit of the extracted Lindbladian allows us to
qualitatively distinguish between three possibilities.

(a) The channel is Markovian and described by a time-
independent Lindbladian. In this case, the extracted opera-
tors fit the data and the Markovianity measure will show a
monotonically decreasing trace distance between pairs of
states.

(b) The channel is non-Markovian. In this case, the
extracted operators poorly fit the data and the Markovian-
ity measure will show clear periods of increasing trace
distance.

(c) The channel is Markovian but not described by a
time-independent Lindbladian. In this case, the extracted
operators poorly fit the data, while the Markovianity mea-
sure shows a monotonically decreasing trace distance
between pairs of states. The appearance of this phe-
nomenon may also indicate failure in the MLE optimiza-
tion itself, and additional analysis is required to confirm
that the poor fit is physically meaningful.

For a time-independent Lindbladian, master equation (4)
simplifies to

ρ̇ = − i
�

[Ĥ , ρ] +
d2−1∑

i=1

γi

(
L̂iρL̂†

i − 1
2
{L̂†

i L̂i, ρ}
)

. (8)

Choosing an operator basis {σi} consisting of a Hilbert-
Schmidt orthogonal set of traceless Hermitian operators in
dimension d (which can be constructed from tensor prod-
ucts of single-qubit Pauli matrices and the identity), the

master equation can be rewritten as

ρ̇ = − i
�

[Ĥ , ρ] +
d2−1∑

i,j =1

Lij

(
σiρσ

†
j − 1

2
{σ †

j σi, ρ}
)

, (9)

where Lij is a Hermitian and positive semidefinite matrix
capturing the incoherent evolution, commonly referred to
as the Lindblad matrix.

We note that, similar to the process matrix χ , the Lind-
blad matrix is unique, while the jump operators, like
the Kraus operators, have a unitary freedom: Lindblad
equation (8) is invariant under a unitary transformation of
the jump operators and decay rates. In particular, a new
set of jump operators and decay rates {√γ ′

i L̂′
i} can be con-

structed from the set {√γj L̂j } as
√

γ ′
i L̂′

i = ∑
j Uij

√
γj L̂j ,

where U is a unitary matrix. Since the Lindblad matrix
can readily be obtained from the decay rates and jump
operators (and vice versa), one can choose either repre-
sentation without loss of generality. In the following anal-
ysis, we choose to directly estimate the Lindblad matrix,
and we derive the jump operators by diagonalizing this
matrix. Specifically, a (unique) set of jump operators can
be obtained by diagonalizing the Lindblad matrix as

L̂i =
d2−1∑

j =1

Uij σj , (10)

where U is a unitary matrix such that L = UDU† with
D = diag(γ1, γ2, . . . , γd2−1) a diagonal matrix of the decay
rates.

Performing LT, our goal is to estimate the Hamiltonian
and the Lindblad matrix that most likely describe evolution
under the idling channel for continuous time t. To do this,
we must account for all combinations of initial states and
measurement axes (as in our Kraus extraction), as well as
for all channel durations. We therefore seek to maximize a
loglikelihood function over all time steps ti,

ln(LLT) =
N∑

i=1

ln(L(ti)), (11)

where the likelihood function at each discrete time
ln(L(ti)) is defined as in Eq. (2), except that we no
longer write ρs(ti) = ∑

i KiρsK†
i . Instead, we find ρs(ti) by

numerically solving master equation (9) for each guess at
the elements of the Hamiltonian and the Lindblad matrices,
where we evaluate the master equation at each time step ti
by numerical exponentiation of the Lindbladian. As with
the SPAM and Kraus estimation, a Cholesky decomposi-
tion is used to ensure that the Lindblad matrix is positive
semidefinite.

Once the most likely Lindbladian has been extracted,
we evaluate the results of the optimization by calculating
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the error between the predictions of the operators and data.
For each time step, the error for a given set of initial state
and measurement axis is |xmeas

i − xmodel
i |, where xmeas

i is the
measurement probability obtained in experiment at time
step ti and xmodel

i is the corresponding estimate from the
outcome of the MLE routine. The error is then averaged
over time steps, and the average error for a given combi-
nation of initial state and measurement axis is reported. In
addition, the p-value can be similarly calculated using a χ2

analysis of the extracted operators and data, as discussed in
Appendix E.

We now turn to the results of the Lindblad estimation
on our superconducting transmon device, and we consider
a set of additional analyses motivated by our understand-
ing of the physics of superconducting transmon qubits.
These analyses, while not generically necessary for LT, are
helpful for interpreting the results of the Lindblad estima-
tion, and similar tests can be employed on other hardware
platforms. In Fig. 3, we plot the results of single-qubit
Lindblad estimation on qubit A for three different prepa-
rations of qubit B. Here, the solid red line traces out the
predicted measurement results for the continuous evolu-
tion of qubit A over all times t, as predicted by the most
likely Hamiltonian and Lindblad matrices. When qubit B
is in either its |0〉 state [Fig. 3(a)] or |1〉 state [Fig. 3(b)],
we find that the Lindblad evolution of qubit A well fits
the results of measurement (average errors equal 2.25 ×
10−2 and 2.29 × 10−2, respectively). However, when the

neighboring qubit is prepared in the superposition state |+〉
[Fig. 3(c)], we find that our estimation fails to find a combi-
nation of Hamiltonian and Lindbladian that well fit the data
(average error equals 6.91 × 10−2). As discussed above,
this is expected given the non-Markovian signature we pre-
viously found from the Kraus estimation [Fig. 5(c)], since
non-Markovian processes cannot be captured by a master
equation of the form in Eq. (9).

Having estimated the most likely single-qubit Lindbla-
dian, we proceed to estimate the most likely two-qubit
Lindbladian describing the coupled system of qubits A and
B. In Fig. 4, we plot a subset of the results of Hamil-
tonian and Lindblad extraction using two-qubit LT (red
solid line), and we show that the estimated operators
well fit both measurement (blue dots) and the predic-
tion of our extracted Kraus operators (orange crosses) for
all combinations of initial states and measurement axes.
In particular, we note a successful Lindblad fit for the
sequence where both qubits are prepared in superposition
states |++〉 [Fig. 4(e), average error equals 2.15 × 10−2],
indicating that the non-Markovian errors observed in the
corresponding single-qubit channel [Figs. 3(c) and 4(d),
average error equals 6.91 × 10−2] largely disappear in the
two-qubit frame. Average errors and p-values for the full
set of single- and two-qubit results (both the Linblad and
the Kraus) are included in Appendix E.

From the two-qubit data, we estimate the two-qubit
Hamiltonian

Ĥe = �

⎛

⎜⎝

−0.001 0.008 + 0.024i 0.004 − 0.003i 0.001 + 0.015i
0.008 − 0.024i −1.035 0.000 + 0.098i −0.019 + 0.004i
0.004 + 0.003i 0.000 − 0.098i −0.258 −0.009 + 0.000i
0.001 − 0.015i −0.019 + 0.004i −0.009 + 0.000 1.323

⎞

⎟⎠ (12)

with angular frequencies in units of 2π × MHz, relative
to the lab frame of the driving pulses used for single-qubit
rotations. Were these pulses chosen resonant with the qubit
frequencies, we would expect the diagonal elements of the
Hamiltonian to be zero, except for the |11〉 state, where the
always-on ZZ coupling shifts the energy.

From the Hamiltonian extracted in Eq. (12), we
see that there is a frequency detuning of �ωA/2π =
0.258/2π MHz = 41.1 kHz for qubit A and �ωB/2π =
1.04/2π MHz = 165 kHz for qubit B, which give rise
to the oscillations seen in Fig. 3(a) (qubit A) and the
bottom left plot of Fig. 4(b) (qubit B). The effect of
the ZZ coupling is evident when qubit B is excited
close to its |1〉 state [Fig. 3(b)], and we consequently
observe an increase in the frequency offset for qubit A.

From the extracted Hamiltonian, we can estimate the fre-
quency shift from the ZZ coupling to be ωzz/2π = (1.32 −
(−0.26 − 1.04))/2π MHz = 416 kHz, which is consistent
with independent estimation from device parameters (see
Appendix C).

Having estimated the unitary part of the idling chan-
nel, we turn to the extracted two-qubit jump operators
and decay rates corresponding to information loss dur-
ing the channel, and the full expressions of the extracted
jump operators and decay rates are shown in Appendix C.
Motivated by our understanding of the dominant error
mechanisms for superconducting qubits, we can compare
our extracted operators to single-qubit amplitude damp-
ing (at finite temperature) and dephasing noise (i.e., T1
and T2 processes, respectively), which correspond to jump
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operators of the forms

L̂d,1 ∝ σz ⊗ I, (13)

L̂d,2 ∝ I ⊗ σz, (14)

L̂−,1 ∝ σ−⊗I, (15)

L̂−,2 ∝ I ⊗ σ−, (16)

L̂+,1 ∝ σ+⊗I, (17)

L̂+,2 ∝ I ⊗ σ+, (18)

where the σz operator corresponds to dephasing and the
operators σ− = |0〉〈1| and σ+ = σ

†
− correspond to ampli-

tude damping to a thermal state at finite temperature.
To investigate whether traditional T1 and T2 models

accurately describe the evolution of our qubits, we run a
separate maximum likelihood optimization of the Lind-
bladian, time constraining the jump operators to be of the
form in Eqs. (13)–(18) and leaving only the rates (γ ) and
Hamiltonian (Ĥ ) as free parameters. We refer to this as
the restricted optimization, while the previous optimiza-
tion over general jump operators is referred to as the free
optimization. We compare the output of this restricted
optimization by calculating the diamond norm distance
between the two Liouvillian superoperators,

δ(t) = ‖
(Lfree, t) − 
(Lrestricted, t)‖♦, (19)

where Lfree (Lrestricted) is the Liouvillian superoperator
corresponding to the free (restricted) optimization, and

(L, t) is the Choi-matrix representation of eLt. For a
diamond norm distance δ, the minimum error probability
when trying to distinguish between the two channels for
each measurement shot is (1 − δ/2)/2 [48]. For t ≤ 80 μs,
we find that δ(t) ≤ 0.2; evaluating the asymptotic limit, we
find that δ(∞) = 0.06, indicating that the two evolutions
result in similar steady states (see Fig. 8 below).

From this analysis, we conclude that the extracted
jump operators from the unrestricted optimization are
largely consistent with single-qubit amplitude damping
and dephasing channels, confirming that standard T1 and
T2 models describe the data reasonably well. However,
the deviation from the single-qubit model is significant
and consistent with the observed always-on interaction
between the qubits, which can lead to two-qubit decay
channels. Further investigation is necessary to pinpoint
the physical mechanisms responsible for these errors, a
promising direction for future work.

We also compare the steady state of the two-qubit Lind-
bladian found in the free optimization (ρAB

ss ) to the initial
two-qubit state (ρAB

0 ) from the SPAM estimation. Calculat-
ing the trace distance between these two states, we find a
distance D(ρAB

ss , ρAB
0 ) = 0.09, indicating a slight deviation

between the two. This is unexpected, since the super-
conducting qubits are initialized by waiting many multi-
ples of T1—letting them relax to the steady state of the
idling channel—and one would therefore have expected
the steady state to be identical to the initial state. We note,
however, that the deviation is relatively small and may
originate from the fact that we only fit to data up to 80 μs
(about 2T1 for qubits A and B, as shown in Table I) and the
qubits have not fully relaxed.

VII. CONCLUSION AND DISCUSSION

In this work, we have proposed a technique for extract-
ing the time-independent Hamiltonian, jump operators,
and corresponding decay rates of an experimental quan-
tum channel, which we refer to as Lindblad tomogra-
phy. Combining aspects of process tomography and time-
domain T1/T2 measurement with Hamiltonian, Lindblad,
and SPAM error estimation based on MLE, Lindblad
tomography provides detailed information about the errors
and noise environment of physical quantum devices and
can be used to identify sources of qubit-qubit crosstalk.

Applying Lindblad tomography to the characterization
of a small superconducting device, we demonstrate how
the results provided by LT also allow us to quantify
crosstalk in qubit readout, frequency offsets in driving
pulses, and the strength of always-on interactions between
qubits, which can result in single-qubit non-Markovian
noise. Furthermore, our characterization shows that the
noise environment that best describes the data is consistent
with single-qubit amplitude damping (T1) and dephasing
(T2) channels to a large extent.

While much of this proof-of-principal study focuses on
noise processes that arise due to the presence of neigh-
boring qubits, we note that LT can be naturally applied
to study a broad range of noise sources that impact the
idling channel—such as coupling to coherent two-level
systems [49], dephasing due to photons in readout res-
onators [50], and interaction with quasiparticles [51] in
superconducting systems—all of which may leave traces
in the extracted Lindbladian and result in varying degrees
of non-Markovian error. Additionally, we believe that fur-
ther investigation of changes in the noise environment over
time [20,27] could offer a promising direction for future
inquiry, and we are confident that LT will prove a valuable
tool in future work towards suppressing these errors using
either quantum control or error-correction techniques.

As noted in the Introduction, we conclude by reiterat-
ing that the number of measurements required for Lind-
blad tomography scales exponentially with the number
of qubits, as with standard process tomography or GST.
Thus, full characterization of a large quantum processor
using LT remains experimentally impractical. However,
since crosstalk between qubits is almost entirely two body,
characterization of all combinations of two-qubit patches
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on a large quantum processor using LT will nevertheless
provide valuable insights into the collective noise environ-
ment of the full processor, and these measurements can be
used to bootstrap higher-order errors [32,33]. As the num-
ber of two-qubit patches only scales as about N 2 for an
N -qubit device (regardless of hardware platform), char-
acterization of direct two-qubit crosstalk with Lindblad
tomography can therefore, in principle, be done efficiently.
Furthermore, for devices where it is reasonable to assume
that crosstalk is restricted to pairs of qubits within a certain
maximal separation (as may well be the case for devices
with equally spaced qubits, as in a lattice of supercon-
ducting qubits), the number of pairs to be characterized
would only scale as O(N ), though investigating the valid-
ity of this approach remains the subject of future work. As
research scales to larger and more complex systems and
the possible sources of crosstalk and unintentional qubit
entanglement inevitably increases, we are confident that
repeated Lindblad tomography of single- and two-qubit
patches will provide an important step towards modeling
the dynamics of large-scale quantum processors.

Recently, the authors became aware of a recent and sep-
arate theory work that proposes, implements, and numeri-
cally benchmarks the fitting of tomography data to quan-
tum noise models, and we direct the interested reader to
that manuscript for comparison [52].

The code used for analyzing the results of Lindblad
tomography throughout this work can be found in the pub-
lic GitHub repository [53]. The experimental data used in
this work may be made available upon reasonable request
of the corresponding authors and with the permission of
the U.S. Government sponsors who funded the work.
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APPENDIX A: DEVICE AND MEASUREMENT
INFRASTRUCTURE

The quantum processor characterized in this work
consists of three capacitively coupled superconducting
flux-tunable transmon qubits arranged in a linear chain
[Fig. 6(a)]. For this initial proof-of-principle demonstra-
tion of single- and two-qubit Lindblad Tomography, we
choose to consider only the left and middle qubits of the
chain, which we label qubit A and B, respectively. The
rightmost qubit is far detuned to its frequency minimum
and left to idle in its ground state for the duration of
the characterization protocol. Significant device parame-
ters for qubits A and B are noted in Table I. In Fig. 6(b), we
outline the control and readout hardware used to perform
gate operations and measure the state of the qubits inside
a dilution refrigerator. Additional characterization of the
device used in this experiment can be found in Ref. [37].

APPENDIX B: SINGLE-QUBIT GATE
CHARACTERIZATION

As we note in the main text, Lindblad tomography is
resilient to errors in the single-qubit fiducial gates Rs and
Rb required for state preparation and measurement axis
rotation. Nonetheless, we can independently characterize
these rotations by performing interleaved Clifford random-
ized benchmarking on the full set of single-qubit gates R ∈
{1, Xπ , Y±π/2, X∓π/2} required to run Lindblad tomography
on each qubit. For each of these operations, we record
fidelities in excess of 99.9%, over an order of magnitude
greater than the fidelity observed for state initialization or
measurement (Fig. 7).

APPENDIX C: SPAM AND LINDBLAD
ESTIMATION

We estimated the SPAM errors both for each qubit
individually and for the combined two-qubit system. In
both cases, the maximization of the loglikelihood func-
tion is performed using MATLAB®’s built-in function
fmincon, which is a gradient-based numerical optimizer
for constrained nonlinear problems. For documentation,
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FIG. 6. Device and wiring diagram. (a) SEM image of an identically fabricated copy of the device characterized in this work.
(b) Schematic of the control and readout hardware used to operate the quantum processor characterized in this experiment. Dashed
horizontal lines indication the thermal stages of the dilution refrigerator in which the processor is measured, from room temperature
(RT) at the top to the mixing chamber (M/C) at the bottom. (AWG: arbitrary waveform generator; TWPA: traveling-wave parametric
amplifier.)

see Ref. [54]. The function is run with the interior-point
algorithm. We note that, to avoid the optimizer getting
stuck in local minima, multiple starting points are tried to
find a good approximation of the global minimum. This
is done by sampling random POVMs and initial states as
starting points. For both estimations, we sample over 104

different starting points. We run optimizations where we
restrict the search space to be within some deviation of

TABLE I. Device parameters for the two qubits characterized
in this work. Reported values of T1 and T2 are found by fitting
the raw data from the corresponding subsets of the single-qubit
LT sequence [highlighted gates in Fig. 1(a) of the main text; no
pulses applied to the neighboring qubits] and recording the decay
time of the fit, consistent with standard experimental convention.
LT generalizes this technique by extracting the decay channel
from the full set of initial states, measurement axes, and channel
durations, as emphasized in Fig. 9 below.

Parameter Qubit A Qubit B

Idling frequency ωi/2π 4.744 GHz 4.222 GHz
Anharmonicity η/2π −175 MHz −190 MHz
Coupling strength g/2π 12 MHz
Junction asymmetry 1:5 1:10
Single-qubit gate time 30 ns 30 ns
Readout resonator

frequency ωr/2π

7.252 GHz 7.285 GHz

Energy relaxation time T1 26 μs 35 μs
Ramsey decay time T2 25 μs 24 μs

perfect POVMs and zero temperature thermal initial state
for varying deviations. In particular, we restrict the initial
thermal population of the |1〉 state to be smaller than 5%,
a choice which is motivated by estimation of the effective
device temperature for the two transmon qubits in a dilu-
tion refrigerator at a base temperature of 11 mK [55]. For
the single-qubit estimation of qubit A, we use data where
the neighboring qubit B is kept in the ground state and mea-
sured in the z basis, such that no pulses are applied to qubit
B during the measurement (and vice versa for estimation
of qubit B). The POVMs found from the maximization are

M A
0 =

(
0.870 0.00 + 0.015i

0.00 − 0.015i 0.168

)
, (C1)

M B
0 =

(
0.880 −0.004 − 0.031i

−0.004 + 0.031i 0.165

)
, (C2)

indicating that there are significant measurement errors of
the order of 10%–20%. The estimated initial states are

ρA
0 =

(
0.999 −0.002 − 0.005i

−0.002 + 0.005i 0.001

)
, (C3)

ρB
0 =

(
0.998 0.009 − 0.04i

0.009 + 0.04i 0.002

)
, (C4)

which are consistent with single-qubit thermal states, as
discussed in the main text. The maximized loglikelihood
is ln(LSPAM) = −1.083 × 104.
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FIG. 7. Single-qubit reference and interleaved Clifford randomized benchmarking. Characterization of nine single-qubit gates per-
formed on qubit A (a) and qubit B (b). Clifford reference fidelity (Ref) and interleaved gate fidelities are recorded in the legend. This
set includes all the gates required for state preparation (Rs) and measurement axis rotation (Rb). Note that each of these gates exceeds
an interleaved RB fidelity of 99.9%, above the threshold for discounting rotation errors in our Lindblad tomography protocol.

For the two-qubit system, we find the following initial state and POVM elements:

ρAB
0 =

⎛

⎜⎝

0.992 −0.001 + 0.000i 0.000 + 0.000i 0.000 − 0.001i
−0.001 + 0.000i 0.004 0.001 − 0.002i 0.000 + 0.003i
0.000 + 0.000i 0.001 + 0.002i 0.001 −0.001 + 0.000i
0.000 + 0.001i −0.003i −0.001 + 0.000i 0.003

⎞

⎟⎠ , (C5)

M00 =

⎛

⎜⎝

0.7920 −0.010 − 0.019i −0.008 + 0.010i 0.006 − 0.002i
−0.010 + 0.019i 0.146 −0.014 + 0.000i 0.010 − 0.004i
−0.080 − 0.010i −0.014 + 0.000i 0.151 0.006 − 0.007i
0.006 + 0.002i −0.010 + 0.004i 0.006 + 0.007i 0.018

⎞

⎟⎠ , (C6)

M01 =

⎛

⎜⎝

0.095 0.010 + 0.014i 0.002 + 0.002i −0.009 + 0.002i
0.010 − 0.014i 0.726 0.014 + 0.002i 0.003 + 0.004i
0.002 − 0.002i 0.014 − 0.002i 0.018 −0.004 − 0.002i

−0.009 − 0.002i 0.003 − 0.004i −0.004 + 0.002i 0.130

⎞

⎟⎠ , (C7)

M10 =

⎛

⎜⎝

0.110 0.00 + 0.002i −0.008 − 0.009i 0.002 − 0.003i
0.000 − 0.002i 0.017 0.006 − 0.010i 0.002 − 0.001i

−0.008 + 0.009i 0.006 + 0.010i 0.727 0.011 − 0.001i
0.002 + 0.003i 0.002 + 0.001i 0.011 + 0.001i 0.124

⎞

⎟⎠ , (C8)

M11 =

⎛

⎜⎝

0.002 0.000 + 0.003i 0.014 − 0.003i 0.001 + 0.003i
0.000 − 0.003i 0.111 −0.005 + 0.007i −0.015 + 0.001i
0.013 + 0.003i −0.005 − 0.007i 0.104 −0.013 + 0.010i
0.001 − 0.003i −0.015 − 0.001i −0.013 − 0.010i 0.718

⎞

⎟⎠ . (C9)

As discussed in the main text, these are consistent with
the estimated single-qubit POVMs and initial states, indi-
cating that there is not much crosstalk between the qubits
in their initial state and the measurement operation. The
maximized loglikelihood is ln(LSPAM) = −3.868 × 105.

For the Kraus and Lindblad optimizations, we maxi-
mize the loglikelihood function using MATLAB’s built-in
functions fmincon and fminsearch. For the Kraus
optimization, fmincon is used for both the single-qubit
and two-qubit data in order to enforce the constraint of a

trace-preserving map. As with the SPAM characterization,
the interior-point algorithm is used [54]. As an initial point
of the optimization, we use Kraus operators corresponding
to an identity channel to estimate the Kraus operators of the
first time step, where the evolution from the initial state is
assumably small. The resulting estimate is then used as a
starting point for the next time step and this procedure is
iterated for the whole time series.

For the Lindblad estimation, all physical constraints of
the evolution can be ensured by employing a Cholesky
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decomposition of the Lindblad matrix and using the Her-
miticity of the Hamiltonian to reduce the number of
free parameters. The optimization therefore allows for an
unconstrained optimizer and we use the fminsearch
optimizer of MATLAB. For documentation, see Ref. [56].
This algorithm uses the simplex search method of
Ref. [57], which is a gradient-free method. As an initial

starting point for the optimization, we use the Lindblad
matrix corresponding to pure dephasing and (zero tem-
perature) amplitude damping for the single-qubit Lindblad
estimation. For the two-qubit optimization, we use the esti-
mated single-qubit Hamiltonian and Lindblad operators as
an initial point. The Lindblad operators estimated for the
two-qubit system are

L̂1 =

⎛

⎜⎝

0.501 = 0.001i 0.000 + 0.001i −0.0002 + 0.002i −0.002 + 0.000i
0.000 − 0.001i 0.499 − 0.001i −0.001 + 0.001i −0.002 + 0.002i

−0.001 − 0.001i 0.001 − 0.001i −0.499 0.000 + 0.001i
0.002 + 0.000i −0.001 − 0.001i 0.000 + 0.000i −0.501 + 0.000i

⎞

⎟⎠ , (C10)

L̂2 =

⎛

⎜⎝

0.448 − 0.001i 0.109 + 0.246i 0.001 − 0.002i 0.002 − 0.002i
0.061 − 0.125i −0.451 + 0.002i −0.001 + 0.002i 0.002 + 0.005i

−0.003 − 0.002i −0.003 + 0.001i 0.454 + 0.001i 0.109 + 0.249i
−0.004 + 0.001i 0.000 + 0.002i 0.064 − 0.131i −0.451 − 0.002i

⎞

⎟⎠ , (C11)

L̂3 =

⎛

⎜⎝

−0.072 + 0.161i 0.639 − 0.031i −0.003 − 0.001i 0.007 + 0.00i
0.114 + 0.039i 0.072 − 0.161i −0.001 + 0.001i −0.005 − 0.001i
0.002 + 0.003i 0.001 + 0.002i −0.071 + 0.162i 0.655 − 0.044i
0.002 − 0.003i −0.001 − 0.002i 0.134 + 0.035i 0.071 − 0.163i

⎞

⎟⎠ , (C12)

L̂4 =

⎛

⎜⎝

0.004 + 0.000i −0.001 − 0.003i 0.000 − 0.703i −0.003 + 0.00i
0.000 − 0.001i 0.000 − 0.002i −0.004 − 0.002i 0.000 − 0.703i
0.001 + 0.078i 0.002 + 0.001i 0.000 + 0.002i −0.002 − 0.003i
0.000 − 0.001i −0.001 + 0.079i 0.000 − 0.001i −0.004 + 0.000i

⎞

⎟⎠ . (C13)

The corresponding decay rates are found to be γ1 =
0.071 MHz, γ2 = 0.097 MHz, γ3 = 0.042 MHz, and
γ4 = 0.055 MHz. We fix the unitary freedom of the
jump operators by deriving them from the diagonaliza-
tion of the Lindblad matrix, as discussed in the main
text, and we normalize them such that Tr{L̂L̂†} = 1. The
extracted Hamiltonian is given in Eq. (12) in the main
text.

As noted in the main text, the jump operators above
are similar to single-qubit amplitude damping and dephas-
ing channels, and we refer the reader to the main text
for a comparison of the extracted operators to this model.
For this comparison, we also run a restricted optimization
with the jump operators fixed to correspond to single-qubit
dephasing and finite temperature amplitude damping noise.
For this restricted optimization, we extract the Hamiltonian

Ĥ = �

⎛

⎜⎝

0.001 0.001 + 0.02i 0.003 − 0.002i 0.009 − 0.012i
0.001 − 0.020i −1.031 0.007 + 0.003i −0.017 − 0.001i
0.003 + 0.002i 0.007 − −0.003i −0.257 −0.012 + 0.000i
0.009 + 0.012i −0.017 + 0.001i −0.012 + 0.000i 1.328

⎞

⎟⎠ (C14)

with angular frequencies in units of 2π × MHz and decay
rates of γ1,d = 0.071 MHz, γ2,d = 0.091 MHz, γ−,1 =
0.055 MHz,γ−,2 = 0.048 MHz, γ+,1 = 0.001 MHz, and
γ+,2 = 0.004 MHz. The deviation between the restricted
and free optimizations, δ(t), as defined in the main text,
is seen in Fig. 8. We note that the maximum likelihood

is found for the unrestricted optimization [ln(LLT) =
−7.121 × 107 for the unrestricted compared to ln(LLT) =
−7.124 × 107 for the restricted optimization].

Extracting the unrestricted Hamiltonian for the two-
qubit system, we find an estimated state-dependent fre-
quency shift ωzz/2π = 416 kHz due to the always-on
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FIG. 8. Deviation between the estimated Liouvillian of the
restricted and free optimizations. The deviation is calculated as
the diamond norm of the difference between the two superopera-
tors, as in Eq. (19).

ZZ coupling. As a check, the frequency shift ωzz can be
independently estimated from device parameters using the
relation [47]

ωzz = 2g2

� − ηB
+ 2g2

−� − ηA
, (C15)

where ηA, ηB are the anharmonicities of qubits A and
B, respectively, g is the coupling strength between the
two qubits, and � = ωA

i − ωB
i is the frequency detun-

ing between them. Substituting in the parameters for our
device from Table I, we estimate a state-dependent fre-
quency shift ωzz/2π = 425 kHz, consistent with the value
found from the Hamiltonian extraction using LT.

APPENDIX D: SINGLE-QUBIT LT RESULTS AND
DISCUSSION

The estimated jump operators for the single-qubit noise
channel of qubit A with the neighboring qubit in the ground
state are

L̂1 =
(−0.551 − 0.052i 0.030 − 0.622i

0.030 − 0.010i 0.551 + 0.052i

)
, (D1)

L̂2 =
(

0.438 − 0.019i 0.144 + 0.757i
0.144 − 0.042i −0.438 + 0.019i

)
, (D2)

with decay rates γ1 = 0.029 MHz and γ2 = 0.037 MHz.
We note that these operators fit the data well, as shown
in Fig. 9, and correspond to a maximized loglikelihood of
ln(LLT) = −1.739 × 106.

Running LT on the full set of pre- and postpulses
for this particular dataset, we note that there is some
small disagreement between the Lindblad fits (red) and
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FIG. 9. Single-qubit LT results for the full set of initial states and measurement bases, performed on qubit A while qubit B is its
ground state. The purple T2 plot is the same as in Fig. 3(a) in the main text. We emphasize that, while standard T1 and T2 metrics are
determined by simply fitting the measurement results of a single set of pre- and postpulses (pale green and purple, respectively), the
Kraus operators (orange) and Lindbladian (red) here are determined from the full set of 18 measurement sequences (36 initial states
times 9 measurement bases equals 324 sequences for two-qubit LT).
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the data (blue) for sequences corresponding to T2-type
measurements. For example, we observe that the Lind-
blad fit slightly underestimates the decay time for the
dataset when qubit A is prepared in |+〉 and measured
in the x basis [Fig. 3(a) in the main text, purple high-
lighted plot in Fig. 9]. Looking at the full matrix of pre-
and postpulses, we note small temporal fluctuations in the
channel over the course of the data acquisition period, and
we see that the Lindblad fit consequently overestimates
the decay time of some traces relative to others. Since
LT finds the single time-independent Lindblad operator
that best describes all combinations of pre- and post-
pulses, spurious temporal fluctuation in the channel during
a small set of measurements constitutes a partial violation

of assumption 1 of LT, and this fluctuation will affect the
fit of the other datasets.

APPENDIX E: ERROR AND χ2 ANALYSIS

In this section, we provide additional statistical analy-
sis of the single- and two-qubit operators reported in the
main text. For a single qubit, we can model the results for
each input state, evolution time, and measurement basis as
a Bernoulli distribution (a biased coin toss yielding either
“0” or “1”), from which we obtain 1000 independent shots.
The same can be said of the two-qubit data, with the results
corresponding to a multinomial distribution with four out-
comes (“00,” “01,” “10,” and “11”). The goal of LT is to

FIG. 10. Analyzing the Lind-
blad extraction of qubit A’s
idling channel when qubit B
is in |0〉, |1〉, and |+〉. The
error and p-value between the
data and the Lindblad estima-
tion are calculated for each time
step, initial state, and measure-
ment axis of qubit A, and the
results are averaged over the
first 20 μs. Note that, when
qubit B is prepared in |+〉 (bot-
tom plots), we observe dramat-
ically larger errors and lower
p-values for the sequences cor-
responding to T2-like measure-
ments of qubit A, consistent
with the poor Lindblad fits
shown in Fig. 3(c) of the main
text. Meanwhile, the sequences
corresponding to T1-like mea-
surements of qubit A (which
are blind to the entanglement
with qubit B) show compara-
tively good fits to data even
when qubit B is in |+〉.
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find a set of model parameters that closely estimates these
outcome probabilities across the entire set of initial states,
measurement axes, and time steps. To evaluate our success
in finding such a model, we compute two standard metrics
to quantify the deviation between the model predictions
and data: the absolute error and the chi-square goodness of
fit (χ2).

The error between the model and data at each time step
is computed as

error(ti) = |xmeas
i − xmodel

i |, (E1)

where xmeas
i is the measurement probability obtained in

experiment at time step ti (blue dots in Figs. 3 and 4 of the
main text) and xmodel

i is the corresponding estimate from

the outcome of the MLE routine (orange crosses in Figs. 3
and 4 for the Kraus extraction, red line for the Lindblad).

The χ2 test is a statistical quantifier of how likely it
is that the data could have been produced by an assumed
model known as the null hypothesis. Our null hypothesis
will be the assumption that the data are well fit by a time-
independent Markovian master equation. The χ2 value is
then computed as

χ2(ti) =
k∑

j =1

(xmeas
i,j − xmodel

i,j )2

xmodel
i,j

(E2)

with the same definitions of xmeas and xmodel as in Eq. (E1).
However, unlike in the error calculation, we must also sum

FIG. 11. Analyzing the
Kraus extraction of qubit A’s
idling channel when qubit B is
in |0〉, |1〉, and |+〉. The error
and p-value between the data
and the Kraus estimation are
calculated for each time step,
initial state, and measurement
axis of qubit A, and the results
are averaged over the first
20 μs.
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FIG. 12. Analyzing the Lindblad extraction of the two-qubit idling channel. The error and p-value between the data and the Lindblad
estimation are calculated for each time step and qubit configuration (qubit A on the y axis, B on the x axis), and the results are averaged
over the first 20 μs.

over the total number of categories k that the data can fall
into: two for the single-qubit data (“0” or “1”), four for the
two-qubit data (“00,” “01,” “10,” or “11”). Under the null
hypothesis, the deviation between xobserved

i and xexpected
i is

normally distributed due to the central limit theorem, and
it is well known that (given a large enough sample size
[58]) the χ2 statistic follows the χ2 distribution with k − 1
degrees of freedom [59]. Intuitively, the larger the value of
χ2, the greater the discrepancy between the observed and

expected values. For any value of χ2, the χ2 distribution
can then be used to compute the probability that a value at
least as extreme might have been obtained, which is known
as the p-value. If one finds a particularly small p-value
then one should consider rejecting the null hypothesis on
the grounds that the assumed model is not very likely to
have actually produced the observed data [60]. Whether
one accepts or rejects the null hypothesis is determined by
a threshold p-value (commonly denoted α) that is chosen

FIG. 13. Analyzing the Kraus extraction of the two-qubit idling channel. The error and p-value between the data and the Kraus
estimation are calculated for each time step and qubit configuration (qubit A on the y axis, B on the x axis), and the results are averaged
over the first 20 μs.
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in advance of analyzing the data. This threshold is set arbi-
trarily and simply expresses how conservative one would
like to be when deciding to reject the null hypothesis, trad-
ing off false positives for false negatives as the threshold
is set lower and lower. In our case, we refrain from choos-
ing a specific α and let the data speak for itself, noting
that higher p-values indicate data that are more compatible
with a Markovian assumption, while lower values suggest
deviation between the Markovian model and data.

In the following analysis, we compute the average error
and p-value over time, for each combination of initial state
and measurement basis. The p-value is computed from the
χ2 distribution with one degree of freedom to account for
the two different measurement outcomes (three degrees of

freedom for the two-qubit data, k − 1 in general). Since
the different outcomes are not inherently included in the
calculation of the error, we also average over the differ-
ent outcome types when calculating error. Since we are
calculating the error between two probabilities, the error
is bounded between 0 and 1. The p-value is inherently
bounded between 0 (bad fit) and 1 (exact fit). Under the
null hypothesis, the p-values should actually be uniformly
distributed due to statistical error, and so an average p-
value of around 0.5 indicates very close agreement with the
null hypothesis. We emphasize that in all cases, whenever
the expected probabilities are small, the relative error and
the p-value will both suffer even if the fit is qualitatively
quite good. All statistics are computed based on data drawn

FIG. 14. Cumulative histogram of
the error for each data point. Instead
of averaging over all time steps,
the cumulative histograms treat each
combination of time step, initial state,
and measurement axis as a single
data point and bins the error between
model (Kraus in orange, Lindblad in
red) and data at each point. The data
plotted here are compiled from all
time steps (i.e., not just the first 20 μs)
for each of the four cases in Fig. 5 of
the main text. For example, looking at
the results of all two-qubit data esti-
mated with the Lindblad MLE (bot-
tom plot, red), we find that 80% of
the predicted probabilities fall within
0.04 of the measured probabilities.
The Kraus estimates yield better fits
most of the time (since, unlike the
Lindblad estimates, they are not con-
strained to any Markovian model),
and thus they converge to the 100%
limit more rapidly.
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within the first 20 μs, corresponding to the most coher-
ent part of the evolution, where non-Markovian effects are
most apparent.

In Figs. 10 and 11, we plot the average error and p-
values for the Lindblad and Kraus extraction of qubit A’s
idling channel when qubit B is in |0〉, |1〉, and |+〉. When
qubit B is prepared in |0〉 or |1〉 (i.e., the cases where we
would expect the Markovian assumption to hold for qubit
A’s channel), the p-values are on average above 0.2, and
the error values are always less than 0.03, except for two
outlier cases: prepare |+〉, measure in y, qubit B in |0〉
(Lindblad fit shown in Fig. 9); prepare |1〉, measure in z,
qubit B in |1〉. In comparison, when qubit B is prepared
in |+〉 and we perform a T2-like measurement on qubit
A (initialize and measure in the x or y base), we find a
lower p-value (less than 0.15) and a large error (greater
than 0.06). As shown in the main text, these cases corre-
spond to evolution whose actual precession frequencies are
not well predicted by the Lindblad fit, due to entanglement
with qubit B. It is worth noting that, even in this non-
Markovian scenario, there are still sequences that are well
fit by a Lindbladian: these sequences (which correspond
to T1-type measurements) are blind to the entanglement
produced by the ZZ coupling between the qubits, and it
follows that they can be fit to a Markovian model. In
Figs. 12 and 13, we provide the same analysis for the two-
qubit Lindblad and Kraus estimates, respectively, where
the initial states and measurement bases for qubits A and
B are labeled along the axes. Lastly, in Fig. 14, we plot
cumulative histograms of the error values for the four
datasets emphasized in Fig. 5 of the main text, providing a
high-level view of the fit quality across all data points.
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