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Structurally Stable Subharmonic Regime of a Driven Quantum Josephson Circuit
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Driven quantum nonlinear oscillators, while essential for quantum technologies, are generally prone to
complex chaotic dynamics that fall beyond the reach of perturbative analysis. By focusing on subharmonic
bifurcations of a harmonically driven oscillator, we provide a recipe for the choice of the oscillator’s
parameters that ensures a regular dynamical behavior independently of the driving strength. We show that
this suppression of chaotic phenomena is compatible with a strong quantum nonlinear effect reflected by
the confinement rate in the degenerate manifold spanned by stable subharmonic orbits.
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I. INTRODUCTION

Nonlinear oscillators are omnipresent and central for
developing quantum technologies. Toward quantum com-
puting, nonlinearity is required to realize non-Gaussian
states, which are a premise for quantum speedup [1,2]. In
quantum metrology, the same type of nonlinearities enable
measurements of physical quantities beyond the preci-
sions achievable with quasiclassical states [3–5]. In the last
few decades, superconducting circuits have emerged as an
exemplary platform to exploit extreme regimes of nonlin-
earity. Indeed, Josephson junctions coupled to microwave
radiation are modeled as ideal lossless nonlinear induc-
tors. They are now routinely used to engineer quantum
states of microwave radiation, beyond what is achieved in
the optical regime [6,7]. The eigenstates of such anhar-
monic oscillators are used to encode quantum informa-
tion and perform quantum operations, like logical gates
and measurements, by applying appropriate driving forces
[8–11]. Furthermore, nonlinear parametric oscillation is
routinely exploited to engineer processes like frequency
conversion [12], quantum limited amplification [13,14],
and multiphoton interactions [15].

All these applications have reached high precision lev-
els where the identification of the performance limit-
ing factors becomes extremely challenging. Indeed, while
this progress has mainly been made possible due to an
improved knowledge of the static properties of the system
(such as the coupling to various noise sources or spuri-
ous Hamiltonians), the characterization of the impact of
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dynamic driving remains an outstanding problem [15–27].
More precisely, as observed and discussed in the above
references among others, increasing the driving power,
sometimes even moderately, leads to undesired transitions
representing themselves as a degradation of coherence
properties, or an increase in the apparent thermal excitation
rate. The main approaches to explain these observations
have been to study microscopic effects such as drive-
induced quasiparticle generation [28,29], or to develop
refined perturbation theories at the macroscopic level to
capture modified system parameters such as coupling to
noise sources [30–36]. This paper puts forward another
fundamental mechanism, ultimately limiting the perfor-
mance of all the above applications, and provides circuit
design rules to prevent this from happening.

Indeed, the same driven nonlinear oscillators have been
thoroughly studied in the 1980s and 1990s from the view-
point of complex chaotic dynamics, i.e., observing and
characterizing classical chaotic phenomena and their sig-
nature at the quantum level in driven Josephson circuits
[37–39] and kicked rotors [40,41]. Here, we connect these
two lines of research, one on quantum information pro-
cessing with superconducting nonlinear oscillators and
the other on the onset of chaotic dynamics while driving
such systems. This paper hence aims to provide a recipe
for selecting parameters of a quantum nonlinear oscilla-
tor where the chaotic dynamics are suppressed and one
can safely rely on a refined perturbation theory to study
properties of the driven system.

We consider the one-mode system represented in Fig. 1
both as a mechanical or an electrical oscillator. This sim-
ple system is actually quite general since, by changing the
circuit parameters, it covers all types of superconducting
qubits developed in the past decades. When varying the
frequency and amplitude of a single-frequency drive [Vd(t)
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(a) (b)

FIG. 1. (a) Driven superconducting circuit comprising a
Josephson junction (cross) as the nonlinear element, in parallel
to a linear inductance and capacitance. (b) Equivalent mechanical
oscillator where nonlinearity is provided by the pendulum.

or Fd(t) in Fig. 1], the classical equations of motion can
undergo a subharmonic bifurcation. We discuss how this
subharmonic regime mirrors a quantum parametric pro-
cess confining the oscillator in a degenerate manifold of
Schrödinger cat states. Next, we study the potential tran-
sition to chaos of the classical system. We show that,
by appropriately choosing one effective circuit parameter
(that we call the regularity parameter), the main route to
chaos is blocked in the presence of any finite loss. We can
therefore reliably maintain the system in the subharmonic
regime while modifying the drive parameters. We demon-
strate the quantum signature of this classical transition as
the breaking down of the confinement process and appear-
ance of a high-entropy asymptotic behavior. We next show
that, with the regularity parameter fixed to avoid such
a transition, a second effective circuit parameter (that we
call the quantum scaling parameter) can be varied to con-
trol the quantum confinement strength in the subharmonic
regime. It is thus possible to benefit from a strong nonlinear
effect while maintaining the dynamics in a regular regime.
While our numerical study mainly focuses on a specific
subharmonic bifurcation, the results are general and apply
to other subharmonics.

II. QUANTUM AND CLASSICAL SUBHARMONIC
REGIMES OF OSCILLATION

The Hamiltonian of the driven circuit shown in Fig. 1(a)
is given by

H(t) = 4EC

(
N − CgVd(t)

2e

)2

+ EL

2
ϕ2

− EJ cos
(

ϕ − 2π
φext

φ0

)
, (1)

where EC = e2/2(C + Cg), EL = (φ0/2π)2/L, EJ is the
Josephson energy, φ0 is the magnetic flux quantum, and
e is the electron charge. The operators N = Q/2e and
ϕ = 2eφ/� describe the reduced charge on the capaci-
tance and its conjugate, the reduced flux operator [42].
We take for the external magnetic flux φext = 0 through-
out this paper, but the methods also apply to other

working points. We consider a single frequency drive
Vd(t) = Vd cos(ωdt). Rescaling x = ϕ/(

√
2λ), p = √

2λN
with λ = (2EC/EL)

1/4, rescaling time τ = t
√

8ECEL/�

(dimensionless), and displacing the mode, the Hamiltonian
becomes (see Appendix A)

H(τ ) = p2

2
+ x2

2
− β

2λ2 cos
(√

2λx + ξd sin(νdτ)
)

. (2)

Here

β = EJ

EL
, λ =

(
2EC

EL

)1/4

,

νd = �ωd√
8ECEL

, ξd = VdCg

e

√
2EC

EL

νd

1 − ν2
d

.

(3)

We call β the regularity parameter and λ the quantum
scaling parameter for reasons clarified below, while νd
and ξd are normalized parameters representing the fre-
quency and amplitude of the drive. Finally, as relevant
for quantum technologies, we consider a high-Q oscil-
lator where energy decay is present but corresponds to
the longest timescale. After a noncanonical transformation
(see Appendix A), the corresponding classical equations of
motion are

dxλ
dτ

= pλ, (4a)

dpλ
dτ

= −xλ − pλ
Q̃

− β sin(xλ + ξd sin(νdτ)). (4b)

Here 1/Q̃ models the decay rate with respect to dimension-
less time τ . Remarkably, the quantum scaling parameter
λ disappears from these dynamics. Note that, despite the
noncanonical transformation, for infinite Q̃, Eqs. (4) are
still of Hamiltonian form.

The time-periodic classical system (4) can be studied
through the Poincaré map P associated with τ ≡ 0 (mod
2π/νd) [section S in Fig. 2(a)]. A fixed point of P corre-
sponds to a 2π/νd-periodic solution of system (4), which
we call a harmonic solution. Similarly, a subharmonic
solution of period 2nπ/νd corresponds to n fixed points
of Pn. In the high-Q limit (Q̃ large), appropriate drive set-
tings (νd, ξd) indeed permit stabilizing such subharmonic
solutions, with an (n:m) resonance being characterized by
a subharmonic solution of period 2nπ/νd, and winding
number m, denoting the number of laps m the subhar-
monic makes around a given harmonic solution during
its period 2nπ/νd. We use the terms (n, m) subharmonic
and (n, m) resonance interchangeably. For concreteness,
numerical simulations in the main text mainly focus on
the (3:1) resonance associated with the stable fixed points
of P3 (see Fig. 3). Approximate analytical results on how
to characterize (n, m)-subharmonic regimes as a function
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(a) (b)

FIG. 2. (a) Illustration of the classical periodic planar system
(4) with periodic time variable τ . A (3:1)-subharmonic trajec-
tory is shown in black, intersecting the Poincaré section S in
three points (red, blue, and green). (b) Schematic depiction of
the equivalent quantum system (2), characterized by the Floquet
modes of the driven Hamiltonian. The (3:1) resonance corre-
sponds to three dominant Floquet modes |ψα

k (τ )〉 with degener-
ate quasienergies modulo νd/3. Also, the three Floquet modes
|ηαk (τ )〉 represent the most coupled “excited states.” The gap
ε between the quasienergies of |ηαk (τ )〉 and |ψα

k (τ )〉 provides
the Hamiltonian confinement strength of a three-component
Schrödinger cat state.

of system parameters can be found in Appendix F. Note
that in the case where n + m is an odd integer, a global
symmetry due to the parity of the cosine potential implies
that (n:m)-subharmonic solutions must come in pairs (see
Appendix C).

The quantum dynamics can be studied through the
quasienergies and Floquet modes of the periodically driven
Hamiltonian, corresponding to diagonalization of the oper-
ator H(τ )− i∂/∂τ . The Floquet mode |�r,k(τ )〉 in the
kth Brillouin zone has quasienergy εr,k = εr + kνd and

satisfies |�r,k(τ )〉 = exp(−ikνdτ) |�r,0(τ )〉. In the weakly
dissipative regime, the system converges to a limit cycle
given by a mixture of Floquet modes:

ρ∞(τ ) =
∑

r

pr |�r,0(τ )〉 〈�r,0(τ )| (5)

with the probability distribution {pr} calculated through the
Floquet-Markov approach [43,44]. The quantum mechani-
cal counterpart of an (n:m)-resonant classical subharmonic
regime is a limit cycle mainly populated by n Floquet
modes {|�rl,0〉}n

l=1 with degenerate quasienergies modulo
νd/n. The case of a (3:1) resonance is sketched in Fig. 2(b),
along with a Wigner function snapshot at time τ ≡ 0 (mod
2π/νd) of associated Floquet modes.

In other words, the above classical subharmonic regime
corresponds at the quantum level to a multiphoton pro-
cess confining the dynamics to a degenerate manifold
of Schrödinger cat states (superpositions of distinguish-
able states in phase space that are close to coherent
states). Noting again the parity of the cosine Hamil-
tonian, an (n:m) resonance [where we define r ≡ (n +
m)(mod 2)] corresponds to a process where (r + 1)m drive
photons at frequency νd are converted to (r + 1)n pho-
tons at frequency mνd/n, and the degenerate manifold
is spanned by cat states {|ψα

k (τ )〉}(1+r)n−1
k=0 approximately

given by |Cαk(mod(1+r)n)(τ )〉 = 1/Nk
∑(1+r)n−1

l=0 e2iπ lk/(1+r)n

|αe2iπ l/(1+r)ne−imνdτ/n〉 (see Appendix C). Here, Nk is a
normalization constant, |ζ 〉 represents the coherent state
of complex amplitude ζ , and α can be tuned through
drive parameters νd, ξd. Such a multiphoton confinement,
recently demonstrated in Ref. [45], is considered a promis-
ing approach toward protecting quantum information

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 3. Floquet-Markov simulations in the asymptotic regime of the weakly dissipative quantum system governed by Hamiltonian
(1). Plots (a)–(f) correspond to the (3:1) resonance while plots (g)–(h) represent a doubly degenerate (2:1) resonance. White regions in
(a) and (b) correspond to parameter values for which the numerical simulations do not converge (see Remark 1 in Appendix B).
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against perturbing Hamiltonians that are weak compared to
the gapε in the quasienergy spectrum [Fig. 2(b)], quanti-
fying the confinement strength [46,47]. We further discuss
this gap and its dependence on parameters at the end of this
paper.

III. REGULARITY PARAMETER AND
SUPPRESSING CHAOTIC DYNAMICS

In Fig. 3, we study the impact of β on the type of asymp-
totic behavior. More precisely, taking Hamiltonian (1), we
add weak coupling to a bath modeled by the Hamilto-
nian

∑
ω �ωa[ω]†a[ω] + �g[ω](a[ω] + a[ω]†)p. For these

Floquet-Markov simulations, we assume a zero tempera-
ture bath with frequency-independent coupling strength g,
g[ω] ≡ g. The Floquet-Markov approximation is valid in
the weak coupling limit [43,48], g → 0, and, accordingly,
the simulation results in this work correspond to finding
the limit cycle in the limit of infinitesimal dissipation. We
fix λ and study the asymptotic regime for various values
of β, while varying the drive parameters. We character-
ize this asymptotic behavior by the Von Neumann entropy
of ρ∞(τ ), i.e., the Shannon entropy of the classical dis-
tribution {pr} over Floquet modes in Eq. (5). Figures 3(a)
and 3(b) hence represent with a color axis the effec-
tive number of modes over which ρ∞(τ ) is distributed,
defined as

exp
(

−
∑

r

pr ln(pr)

)
. (6)

Figure 3(a), for β = 0.5, features two zones: the black
one, corresponding to a dominant harmonic solution,
and the purple one, corresponding to a dominant (3:1)-
subharmonic solution. Indeed, a Husimi-Q function of
ρ∞(0), for drive parameters corresponding to the green
cross in Fig. 3(a), shows essentially an equal mixture of
the three states |ψα

k (0)〉 [Fig. 3(c)].
In Fig. 3(b), for β = 1.5, a high entropy zone appears

in yellow. In this zone the subharmonic regime is essen-
tially lost, and ρ∞(τ ) spreads over a large portion of phase
space [about 93% of the population in the blue back-
ground of Fig. 3(d)]. This spreading is called wave-packet
explosion and is a quantum signature of classical chaos
in the weakly dissipative regime [49,50]. Stronger dissipa-
tion (with respect to the Lyapunov exponents of classical
chaos) would instead induce wave-packet collapse along a
classical chaotic trajectory [49,51].

Figures 3(e) and 3(f) show the Poincaré maps of the
associated classical dynamics (4) in the limit of infinite Q̃.
Each color corresponds to a different orbit of the Poincaré
map. In Fig. 3(e), we see a node close to the origin, asso-
ciated with a harmonic solution, encircled by red shaded
orbits. Furthermore, encircled by green shaded orbits, three
fixed points (centers) of P3 are visible as three distinct

phases on a period-3 orbit of P . Finally, the blue orbits
correspond to nested invariant tori [see Fig. 2(a)] enclos-
ing the harmonic and subharmonic orbits. In Fig. 3(f), the
harmonic and subharmonic solutions are still present but
are enclosed in a vast chaotic region, witnessed by a single
orbit in blue. For a large yet finite Q̃ (not shown), the circu-
lar features turn into tight spirals, indicating the asymptotic
stability of the limit cycles, but the chaotic regime for
β = 1.5 persists.

A pattern similar to Figs. 3(c)–3(d) can be observed for
the (2:1) resonance in Figs. 3(g)–3(h). The Husimi-Q func-
tions are given for the drive parameters ξd = 1.73, νd =
2.18 (for β = .5) and ξd = 1.85, νd = 2.135 (for β = 1.5).
The quantum scaling parameter is λ = 0.3; indeed, this
resonance becomes extremely narrow for smaller values of
λ and is therefore hard to identify numerically. In Fig. 3(g),
we observe a mixture over the harmonic solution (yellow
spot in the center) and four pairwise degenerate Flo-
quet modes corresponding to four-component cat states. In
Fig. 3(h), we again observe the appearance of the wave-
packet explosion. Further details on this odd-parity reso-
nance ((n + m) ≡ 1(mod 2)) are provided in Appendix D.
This suggests the following general picture: for low
enough values of β � 0.5, target subharmonics remain
robustly stable when varying the drive amplitude and
accounting for the ac-Stark shift. For larger values of β �
0.5, ramping up the drive amplitude risks inducing a highly
entropic regime instead of the target resonance. Note that
both the settings β = 0.5 and β = 1.5 are deep in the non-
hysteretic regime [52] since, for φext = 0, the potential
admits no local minima for β � 4.6. The next paragraphs
propose an analysis compatible with these observations.

In classical planar nonlinear systems with periodic
drives, chaotic behavior is characterized by the presence
of horseshoe dynamics [53,54], arising when the unstable
and stable manifolds of a hyperbolic saddle point intersect
transversally (see Ref. [55] for an introduction to hyper-
bolic fixed points, their stable and unstable manifolds,
and the horseshoe map). In the absence of dissipation,
Hamiltonian systems can develop such structures at all
spatial and temporal scales. As such, they are believed to
typically feature chaotic trajectories even for very weak
drives and very weak nonlinearity. For dissipative sys-
tems, there have been efforts to characterize the bifur-
cation mechanisms at the border of chaotic behavior. In
one-dimensional discrete-time maps, transition to chaos
always occurs through a so-called period-doubling cas-
cade [56–59]. It is conjectured that the same holds for
two-dimensional area-contracting, orientation-preserving
embeddings of a compact disk (see Ref. [60], proven
under additional assumptions in Ref. [61]). In this typi-
cal bifurcation mechanism, when a parameter is varied, a
solution of a given period becomes unstable as an eigen-
value of the linearized Poincaré map exits the unit disk
through −1; yet, under the area-contracting vector field, a
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stable solution with double the period appears nearby.
When varying the parameter further, the latter solution
undergoes the same bifurcation, quadrupling the initial
period. This process continues, inducing an infinite number
of period doublings over a finite parameter range.

Our analytical result identifies a bound on the regu-
larity parameter β to avoid the onset of such a period-
doubling cascade. More precisely, we establish the follow-
ing theorem.

Theorem 1: Fix drive parameters (νd, ξd) in Eq. (4b).
Consider a stable subharmonic solution of period smaller
than τ̄ = 2π n̄/νd, n̄ ∈ N, n̄ ≥ 2. For all τ̄ , there exists β̄
such that if 0 ≤ β < β̄ then the solution cannot undergo a
period-doubling bifurcation when varying (νd, ξd).

This theorem, proved in Appendix E, thus excludes a
period-doubling cascade starting from any such subhar-
monic solution. The proof provides a lower bound of
0.53/τ̄ for β̄ in the limit Q̃ � 1. The fact that β̄ does not
depend on ξd results from the boundedness of the cosine
potential. All these elements together indicate that, for
small β, a potential chaotic regime of the classical sys-
tem (4) could only originate from an extremely high-order
resonance. Numerically, we have never observed a chaotic
behavior for β < 0.5.

IV. QUANTUM SCALING PARAMETER AND
QUASIENERGY SPECTRAL GAP

Having clarified the role of β in the regularity of the
classical and quantum dynamics, we now focus on the
other parameter λ. We recall that this parameter was sup-
pressed in the classical dynamics, but it has an important
role at the quantum level. For fixed β ensuring regular
dynamics, we can vary λ in the circuit design to reach
strongly anharmonic quantum regimes. More precisely,
developing the cosine in Hamiltonian (2) for ξd = 0, the
term in x4 is proportional to βλ2 while the harmonic term
(in x2) remains independent of λ. In the subharmonic
regime of the driven system, this increased anharmonic-
ity shows up as an increased spectral gap between the
degenerate manifold of cat states |ψα

k (τ )〉 and the next
excited Floquet modes |ηαk (τ )〉 [see Figs. 4(c)–4(d)]. In
the Kerr cat encoding [45], this gap equals K |α|2, where
K is the quartic Kerr strength and |α|2 = n̄ the cat state’s
average number of photons. For our system, Fig. 4 inves-
tigates different values of λ and of the drive parameters
ξd, νd. Figures 4(a) and 4(b) are similar to Fig. 3(a) and
show that the system does not present a chaotic region
for λ = 0.2, 0.3, 0.4. In the same plots, we mark the drive
parameters leading to constant mean photon number n̄ = 9
or 16 in the asymptotic Schrödinger cat states. Figures 4(c)
and 4(d) show the quasienergy gap [ε in Fig. 2(b)],

(a) (b)

(c) (d)

FIG. 4. Quasienergy spectral gap as a function of quantum
scaling parameter λ for fixed β = 0.5 ensuring regular behavior.
Plots (a) and (b) are similar to plot Fig. 3(a) and show that the sys-
tem does not present a chaotic region for λ = 0.2, 0.3, 0.4. In the
same plots, we represent the drive parameters leading to constant
mean photon number n̄ = 9 or 16 in the asymptotic Schrödinger
cat states. Plots (c) and (d) show the quasienergy spectral gap
(ε in Fig. 2(b)), corresponding to those drive parameters. For
fixed n̄, increasing λ ramps up the quasienergy gap.

corresponding to those drive parameters. Similarly to the
Kerr cat case, increasing λ ramps up the quasienergy gap.

V. CONCLUSION

In conclusion, we identify a regularity parameter gov-
erning the structural stability of a driven nonlinear quan-
tum oscillator, while the quantum system can be main-
tained strongly anharmonic by independently varying a
quantum scaling parameter. We characterize the loss
of structural stability as a consequence of transition to
chaos for the corresponding classical system, and show
how a small regularity parameter value blocks the main
route toward such complex dynamics. Once regularity
is ensured, we can safely rely on the quantum scaling
parameter and drive parameters to robustly confine a
set of subharmonic solutions, which have major applica-
tions in quantum technologies. The methods of this paper
should be extendable toward multimode, multidrive sys-
tems required for developing large-scale quantum infor-
mation devices. Recently, we were informed that another
paper on a similar topic is being prepared by our colleagues
at Sherbrooke University. A first draft of this work is now
available online [62].
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APPENDIX A: NORMAL FORM AND CLASSICAL
EQUATIONS OF MOTION

In this section, we explain how the equations obtained
from the quantum physical model are put into a simpler
normal form for our analytical and numerical studies. We
also explicitly derive the corresponding classical equations
of motion.

The Hamiltonian corresponding to Fig. 1(a) in the main
text (at zero external magnetic flux) reads

H(t) = 4EC

(
N − CgVd(t)

2e

)2

+ EL

2
ϕ2 − EJ cos(ϕ),

(A1)

where EC is the charging energy, EL is the inductive
energy, and EJ is the Josephson energy. The operators
N and ϕ describe the reduced charge across the capac-
itance and its conjugate, the reduced flux operator. A
single-frequency drive is applied at frequency ωd:

Vd(t) = Vd cos(ωdt).

The quadratic part of Hamiltonian (A1) corresponds to a
driven harmonic oscillator, and our change of variables
maps it onto a normalized harmonic oscillator without
drive. For this, we perform the following steps.

(1) First, we rescale the variables (ϕ, N) → (x̃ =
ϕ/(

√
2λ), p̃ = √

2λ N) with the quantum scaling parame-
ter λ = (2EC/EL)

1/4, yielding

H(t) =
√

8ECEL
x̃2 + p̃2

2

− 23/2EC
CgV̄d

eλ
cos(ωdt)p̃ − EJ cos(

√
2λx̃), (A2)

maintaining the canonical commutation relations.

(2) Next, we rescale time t to an undimensional time τ
by multiplying it with the frequency

√
8ECEL/�, yielding

H̃(τ ) = x̃2 + p̃2

2

−
√

EC

EL

CgV̄d

eλ
cos(νdτ)p̃ − β

2λ2 cos(
√

2λx̃) (A3)

with

β = EJ

EL
, (A4a)

τ = t
√

8ECEL

�
, (A4b)

νd = �ωd√
8ECEL

. (A4c)

(3) Finally, we perform a time-dependent change of
variables, following the stationary response of the linear
system obtained with β = 0, namely,

x̃ = x + ξd√
2λ

sin(νdτ), (A5a)

p̃ = p + ξd√
2λνd

cos(νdτ) , (A5b)

with ξd = VdCg

e

√
2EC

EL

νd

1 − ν2
d

. (A5c)

This yields

H(τ ) = p2

2
+ x2

2
− β

2λ2 cos
(√

2λx + ξd sin(νdτ)
)

.

(A6)

It should be noted that Eqs. (A1) and (A6) are exactly
equivalent, as no approximations have been made in the
change of variables. For this reason, with a slight abuse
of notation, we denote both Hamiltonians by H, the dis-
tinction being made by the time argument τ , respectively
t. Furthermore, we have preserved the commutation rela-
tions as [ϕ, N] = [x, p] = i. In the main text and in the
following, we take Eq. (A6) as the quantum model to
analyze.

Given their canonical commutation relations, we can
consider x, p as conjugate position and momentum vari-
ables (x, p) in a corresponding classical model with Hamil-
tonian

H(τ ) = p2

2
+ x2

2
− β cos

(√
2λx + ξd sin(νdτ)

)
/(2λ2),
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leading to the classical equations of motion

dx
dτ

= ∂H
∂p

= p , (A7a)

dp
dτ

= −∂H
∂x

= −x − β√
2λ

sin
(√

2λx + ξd sin(νdτ)
)

− p

Q̃
, (A7b)

when accounting for a finite loss rate 1/Q̃ in the form of
linear damping.

We can rescale the quadratures to eliminate the
quantum scaling parameter λ from the equations of
motion

dxλ
dτ

= pλ, (A8a)

dpλ
dτ

= −xλ − pλ
Q̃

− β sin(xλ + ξd sin(νdτ)), (A8b)

with

(xλ, pλ) = (
√

2λx,
√

2λp). (A9)

We study the classical equations of motion of form (A8) in
which the dynamics do not depend on λ. Note that scaling
(A9) does not preserve the canonical Hamiltonian equa-
tions, so the correct quantum classical correspondence will
still involve the quantum scaling parameter λ.

APPENDIX B: FLOQUET THEORY AND
NUMERICAL SIMULATIONS

In this section, we review the basics of Floquet theory,
both for the case of closed Hamiltonian systems, as well as
for the case of a weak coupling to a bath where the Born-
Markov approximation is valid. This Floquet formalism is
used to perform the numerical simulations of the present
paper.

Consider a time-dependent Hamiltonian H(t) that is
time periodic with period T = 2π/ωd, acting on Hilbert
space H. The Floquet theorem states that there exists
solutions of the corresponding Schrödinger equation

d
dt

|ψ(t)〉 = − i
�

H(t) |ψ(t)〉 (B1)

of the form

|ψr(t)〉 = e−i/�εrt |φr(t)〉 , (B2)

where the Floquet modes {|φr(t)〉} form an orthonormal
basis of the Hilbert space H at any time t, and are T

periodic:

|φr(t + T)〉 = |φr(t)〉 for all t ∈ R, (B3a)

〈φr(t)|φl(t)〉 = δrl for all t ∈ R. (B3b)

Here, the {εr} are called the Floquet quasienergies. Clearly,
εr is defined up to multiples of �ωd as the Floquet modes
|φr(t)〉 can be multiplied by e−ikωdt. Without loss of gener-
ality we choose the quasienergies εr to lie in the first Bril-
louin zone [−�ωd/2, �ωd/2]. An equivalent viewpoint is
that the Floquet modes (respectively quasienergies) are the
eigenvectors (respectively eigenvalues) of the generalized
Hamiltonian

H(t)− i�
∂

∂t
,

considered to act on the Hilbert space of square-integrable
T-periodic wave functions in H. Since the Floquet
modes at any time t form an orthonormal basis of the
Hilbert space H, one can obtain the solution of the
Schrödinger equation corresponding to an arbitrary initial
state |ψ(0)〉 by decomposing it onto the basis of Floquet
modes:

|ψ(t)〉 =
∑

r

e−i/�εrt|φr(t)〉〈φr(0)|ψ(0)〉. (B4)

The Floquet modes can be numerically computed as the
eigenstates of the unitary evolution U(t) generated by
Eq. (B1). Indeed, we note that the solution of the equation

d
dt

U(t) = − i
�

H(t)U(t), U(0) = I,

with I representing the identity operator, is given by

U(t) =
∑

r

e−i/�εrt|φr(t)〉〈φr(0)|.

Therefore, one obtains the Floquet quasienergies and the
correct basis of Floquet modes at time t = 0 by numeri-
cally diagonalizing U(T). Next, we can again numerically
integrate the Schrödinger equation with initial conditions
|φr(0)〉 to obtain the Floquet modes at any time t ∈ [0, T].

Floquet theory can be extended to describe the effect of a
weak coupling to a thermal bath. In particular, the asymp-
totic behavior of the system is described by an extension
of Fermi’s golden rule (see Ref. [43, Sec. 9]). We give a
quick summary of this Floquet-Markov theory here, and
explain the numerical approach that we use in the paper.
For concreteness, recall that in the main text we modeled
the system coupled capacitively to a thermal bath through
the Hamiltonian

HSB =
∑
ω

�ωa[ω]†a[ω] + �g[ω](a[ω] + a[ω]†)p, (B5)

where a[ω] is the annihilation operator of the bosonic bath
mode at frequency ω and g[ω] is a frequency-dependent
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coupling rate. Assuming the coupling rates g[ω] to be the
slowest timescale in the joint system, and assuming a non-
resonance condition on the quasienergies (detailed below),
one can apply the standard Floquet-Markov-Born approxi-
mation (see Ref. [43, Sec. 9]). This Floquet-Markov-Born
approximation yields a Lindblad-type master equation for
the system alone that can be easily solved in the Floquet
basis. When parametrizing the density matrix of the system
with its components in the Floquet basis (corresponding to
the first Brillouin zone),

ρrl := 〈φr(t)|ρ(t)|φl(t)〉, (B6)

one obtains a set of decoupled rate equations for ρrl:

d
dt
ρrr(t) =

∑
l

Lrlρll(t)− Llrρrr(t), (B7a)

d
dt
ρrl(t) = −1

2

∑
m

(Lmr + Lml)ρrl(t). (B7b)

The transition rates Lrl are given by an extension of
Fermi’s golden rule:

Lrl :=
∑

m

γr,l,m + nth (|rlm|) (γr,l,m + γl,r,−m
)

. (B8)

Here,

(1) �rlm := εl − εr + m�ωd;
(2) nth(ω) represents the average number of thermal

photons in the bath mode at frequency ω, given by the
Bose-Einstein distribution at thermal equilibrium with bath
temperature Tbath:

nth = 1
exp(�ω/kBTbath)− 1

;

(3) the coefficients γrlm are in turn given by

γr,l,m := 2π�(rlm)J (rlm)|Prlm|2, (B9)

where J (ω) is the spectral function of the coupling rate to
the bath, defined in terms of the g[ω] and to be evaluated
mode by mode; and

(4) the matrix elements Prlm are defined by

i〈φr(t)|a − a†|φl(t)〉 =
∑

m

Prlmeimωdt. (B10)

The above rate equation can be contrasted to Fermi’s
golden rule for stationary systems as follows. The tran-
sition frequency between two Floquet modes is now not
simply given by one unique difference in energy. Instead
there are an infinite number of possible transition fre-
quencies, shifted by harmonics of the drive frequency ωd.

This is consistent with the fact that the Floquet modes
themselves can contain any harmonic of the drive in prin-
ciple. The total transition rate between two Floquet modes
r ↔ l induced by the coupling to the bath is now the sum of
the rates of these different possible transitions, obtained by
evaluating the bath spectral noise density at these different
transition frequencies.

It is easy to see that the rate equations (B7) ensure
that the asymptotic density matrix ρ∞(t) is diagonal in
the Floquet basis, since ρrl → 0, r = l, and that the state
converges to a unique classical mixture over the Floquet
modes:

ρ(t) → ρ∞(t) =
∑

r

pr|φr(t)〉〈φr(t)|.

To compute the probability distribution {pr} correspond-
ing to this mixture, it suffices to solve the linear system of
equations Rp = 0, with

Rrl := Lrl − δrl

∑
m

Lrm. (B11)

The fact that the asymptotic density matrix is diagonal
in the Floquet basis follows from a secular approxima-
tion as part of the Floquet-Born-Markov approximation,
where one neglects time-dependent terms that oscillate at
frequencies (εr − εl)/� − mωd, whenever either r = l or
m = 0. We will see later that indeed no (near) degenera-
cies typically occur in the quasienergy spectrum, so this
secular approximation is justified.

In this work, we assume the limit of a cold bath, and
hence assume that Tbath = 0, so nth = 0. We furthermore
assume J (ω) = J to be constant. We observe that the
maximal Brillouin-zone difference that has to be chosen
in Eq. (B8) for the simulations to converge amounts to
mmax = 5.

We use the Floquet toolbox of the QuTiP [63] open-
source package to compute the Floquet decomposition,
using a modified version of the subroutine calculating the
rate matrix in Eq. (B11). The number of Fock states that
has to be used to simulate the system highly depends on
the type of asymptotic cycle ρ∞(τ ) obtained.
Remark 1: One numerical difficulty that occasionally
presents itself lies in the numerical evaluation of the eigen-
vector of the transition matrix R corresponding to the
eigenvalue zero. Numerically, we observe that R admits
at least one eigenvalue that is 0 up to machine preci-
sion. For some system parameters, the transition matrix
R exhibits two very-nearly degenerate eigenvectors, both
corresponding to eigenvalues very close to 0. At this point
the employed diagonalization algorithm becomes unsta-
ble, and whether the steady state ρ∞ is uniquely defined
cannot be concluded based on the numerical simulations.
Such parameter values are shown as white points in the
corresponding figures in the main text.
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APPENDIX C: GLOBAL SYMMETRY FROM
PARITY OF THE COSINE POTENTIAL

The system exhibits a global symmetry, linked with the
parity of the Josephson cosine potential. We discuss the
consequences of this symmetry on the corresponding clas-
sical system, and link back to the consequences for the
quantum system at the end of this section. This will allow
us to explain the role of the parity r = (m + n) mod 2
introduced in the main text.

Recalling the classical equations of motion (A7) here,

dx
dτ

= p , (C1a)

dp
dτ

= −x − p

Q̃
− β√

2λ
sin

(√
2λx + ξd sin(νdτ)

)
,

(C1b)

one can see that the transformations

x → −x, p → −p , τ → τ + π

νd
. (C2)

leaves Eqs. (C1) invariant, as all individual terms change
sign. This symmetry implies that, for any given solution
(x(τ ), p(τ )) of Eqs. (C1), another exact solution of the
system is given by (−x(τ + π/νd), −p(τ + π/νd)). This
observation has the consequence that, when considering
periodic orbits of P , we can classify them into two distinct
categories. Consider a harmonic solution (x1(τ ), p1(τ ))
with the period of the drive, i.e., 2π/νd periodic. As a first
case, we can have

x1

(
τ + π

νd

)
= −x1(τ ) for all τ ∈ R, (C3a)

p1

(
τ + π

νd

)
= −p1(τ ) for all τ ∈ R, (C3b)

in which case we merely obtained a particular symme-
try of the given solution. We call harmonic solutions for
which symmetry (C3) is valid symmetric harmonics. Note
that symmetry (C3) immediately implies that the solution
has the period of the drive, as x1(τ ) = −x1(τ + π/νd) =
(−1)2x1(τ + 2π/νd) = x1(τ + 2π/νd), and analogously
for p1. As a second case, assume that the orbit does not
exhibit symmetry (C3), in which case we can immediately
identify a second, different solution of the system. Both of
the considered harmonics will then be called nonsymmetric
harmonics.

The same reasoning can be applied to n-orbits of
P , i.e., considering a solution (xn(τ ), pn(τ )) for which
(xn(τ ), pn(τ )) = (xn(τ + 2nπ/νd), pn(τ + 2nπ/νd)). Ind-

eed, applying symmetry (C2) n times, we have the follow-
ing derived symmetry of the system:

x → (−1)nx, p → (−1)np , τ → τ + nπ
νd

.

(C4)

We can similarly classify the n-orbits by asking whether or
not the symmetry

xn

(
τ + nπ

νd

)
= (−1)nxn(τ ), (C5a)

pn

(
τ + nπ

νd

)
= (−1)npn(τ ), (C5b)

holds. We can see that, when n is even, this leads to a con-
tradiction, as the period of the solution would be given by
πn/νd, corresponding to an n/2-orbit of P . We can con-
clude that an n-orbit of P cannot exhibit symmetry (C4)
when n is even. However, when n is odd, the symmetry
is well defined. We then have either a so-dubbed symmet-
ric n-orbit for which symmetry (C5) is satisfied, or we
can identify a second, different n-orbit of P correspond-
ing to (−xn(τ + nπ/νd), −pn(τ + nπ/νd)). The remaining
question to be answered is which n-orbits of P adhere to
symmetry (C4), and which do not.
Definition 1: Consider a harmonic, 2π/νd-periodic solu-
tion (x1(τ ), p1(τ )) of Eqs. (C1). An (n:m) subharmonic is
defined as a 2πn/νd-periodic solution (x(n:m)(τ ), p (n:m)(τ ))

of Eqs. (C1) that completes m laps [64] around the har-
monic solution (x1(τ ), p1(τ )) during its period 2nπ/νd.

In numerical simulations of the Poincaré map, we
observe that, for the specific class of (n:m) subharmon-
ics defined in Definition 1, whenever m + n is odd, the
solutions are nonsymmetric, and hence always come in
pairs. We can gain some intuition by anticipating some
of the results of Sec. F. In Sec. F, we show that, for
small enough values of β, for any pair of positive integers
(m, n) that are coprime, there exists a prominent class of
(n:m)-subharmonic solutions of the form

x(n:m)(τ ) � R sin
(

m
n
νdτ + θ

)
, (C6a)

p (n:m)(τ ) � R cos
(

m
n
νdτ + θ

)
, (C6b)

for some distance R > 0 and angle θ ∈ [0, 2π) that intri-
cately depend on β and the drive parameters (νd, ξd). We
can see that, when n + m is odd, this solution is non-
symmetric. Clearly, a second (n:m)-subharmonic resonance
can be readily identified, by applying symmetry (C4) to the
original solution.

An analogous discussion for the quantum system can be
made. We can make use of the following lemma to show
that certain Floquet modes must necessarily come in pairs.
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Lemma 1: Consider a Floquet mode |φ(τ)〉 of the quan-
tum Hamiltonian H(τ ) given in Eq. (A6) with correspond-
ing quasienergy ε,

(
H(τ )− i

∂

∂τ

)
|φ(τ)〉 = ε |φ(τ)〉 .

Then

|φ̃(τ )〉 := eiπa†a
∣∣∣∣φ

(
τ + π

νd

)〉

is also a Floquet mode of H(τ ), with the same quasienergy
ε.

Proof : Recalling that

H(τ ) = p2

2
+ x2

2
− β

2λ2 cos
(√

2λx + ξd sin(νdτ)
)

,

and introducing the annihilation operator a = (x + ip)/
√

2,
it is easy to see that H(τ ) adheres to the symmetry

eiπa†aH
(
τ + π

νd

)
= H(τ )eiπa†a.

This readily implies that
(

H(τ )− i
∂

∂τ

)
|φ̃(τ )〉

=
(

H(τ )− i
∂

∂τ

)
eiπa†a

∣∣∣∣φ
(
τ + π

νd

)〉

= eiπa†a
(

H
(
τ + π

νd

)
− i

∂

∂τ

)∣∣∣∣φ
(
τ + π

νd

)〉

= εeiπa†a
∣∣∣∣φ

(
τ + π

νd

)〉

= ε |φ̃(τ )〉 .

This completes the proof. �

Lemma 1 implies that the Floquet modes must either be
symmetric with

eiπa†a
∣∣∣∣φ

(
τ + π

νd

) 〉
= |φ (τ)〉 (C7)

or they must necessarily come in pairs of two nonsymmet-
ric Floquet modes (|φ (τ)〉 , |φ̃ (τ )〉) with

|φ̃(τ )〉 := eiπa†a
∣∣∣∣φ

(
τ + π

νd

) 〉
.

The question is again which Floquet modes of the system
are symmetric and which are not. Using the approximate

relation

|ψα
k (τ )〉 � |Cαk(mod n)〉

:= 1

N (n)
k

n−1∑
l=0

e2ilkπ/n |α0e2ilπ/ne−imνdτ/n〉 (C8)

for k = 0, . . . , n − 1 with α0 = iRe−iθ /
√

2, a completely
analogous discussion as for the classical system shows
that, for a given pair of integers (n, m), with m + n being
odd, the associated Floquet modes are necessarily nonsym-
metric and come in pairs. This explains why, for m + n
odd, a doubling of the number of cat-state Floquet modes
was stated in the main text.

As a last point of this section, note that if we had
considered a dc-biased Josephson potential,

β cos
(√

2λx + φbias + ξd sin(νdτ)
)

, φbias = 0,

then symmetry (C2) would be broken, as the corresponding
term in the vector field [last term of Eq. (C1b)] no longer
exactly switches sign. Hence, if we had taken a differ-
ent flux bias point, this discrete symmetry would not have
been present, and there would be no immediate distinction
between even-parity processes with r = 0 and odd-parity
processes where r = 1.

APPENDIX D: SIMILAR STUDY OF (2:1)
RESONANCE

This section provides extra material for the case of the
(2 : 1) resonance; we first illustrate the symmetry proper-
ties of this odd-parity resonance described in Appendix C,
and then provide the classical picture for the chaotic case.

We recall that, for the classical version of the system,
a (2:1) resonance corresponds to two stable fixed points
of P2 or, equivalently, a stable 2-periodic orbit of P , the
Poincaré map associated with Eqs. (C1). In the following
we use the shorthand terminology “2-orbit.” Because of the
parity of the cosine potential, as outlined in Appendix C,
the (2:1) subharmonics must come in pairs, which are
related by symmetry (C5). An account of this can be seen
in Fig. 5(b), where a stable 2-orbit encircled by the green
orbits goes hand in hand with a stable 2-orbit encircled
by the blue orbits. The asymptotic behavior of the quan-
tum system is represented in Figs. 5(a), 5(c), and 5(d). In
line with Lemma 1, the most-occupied Floquet modes are
indeed seen to correspond to two degenerate pairs with the
same quasienergy (each pair appearing as a single point
in the plot), and these Floquet modes take the form of
four-component cat states [Fig. 5(a)]. Unlike in the case
of the (3:1) resonance treated in the main text, a displaced
vacuum state [Fig. 5(d)] that corresponds to a harmonic
solution of the classical system shows a non-negligible
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(c) (d)

(a) (b)

FIG. 5. Asymptotic behavior for the case of (2:1) resonance
for β = 0.5, λ = 0.6, ξd = 3.3, νd = 1.96, and Q̃ = ∞. (a)
Wigner quasiprobability representation of one of the four dom-
inantly occupied Floquet modes |ψα

k 〉, corresponding to a four-
component Schrödinger cat state. (b) Phase portrait of the clas-
sical Poincaré map P . A stable 1-orbit of P is encircled by
the red shaded orbits, a stable 2-orbit is encircled by the green
shaded orbits, and a second 2-orbit is encircled by the blue
orbits. (c) Quasienergies εr and occupation probabilities pr of
the dominantly occupied Floquet modes in ρ∞. The four most-
occupied Floquet modes are pairwise twofold degenerate, both
in quasienergy εr as in occupation probability pr, making them
appear as only two points in total. (d) Wigner quasiprobability
representation of the fifth most-occupied Floquet mode, seen to
resemble a displaced vacuum state. The latter can be associated
with the 1-orbit of panel (b).

occupation probability, as can be seen in Fig. 5(c). One
can further discuss the dependence on the quantum scaling
parameter of the spectral gap characterizing the confine-
ment strength in these cat states (as in Fig. 4 of the
main text). Indeed, the mean number of photons in the
Schrödinger cat states with the parameters of Fig. 5 is
about 9. Changing λ from 0.6 to 0.4, keeping the values
of β and ξd the same, one can check that the same aver-
age number of photons can be reached with a choice of
drive frequency νd = 1.898. Now calculating numerically
the quasienergy gap as defined in the main text, one finds
a value of about 0.08 for λ = 0.6 and a value of about 0.05
for λ = 0.4. This indeed supports the monotonic increase
of this confinement rate with λ as discussed in Fig. 4 of the
main text.

As a last point, while the asymptotic behavior for the
case of the (2:1) resonance is observed to be nonchaotic for
β = 0.5, taking β = 1.5 does lead to high-entropy asymp-
totic regimes characterized by ρ∞ undergoing wave-packet
explosion, as was shown in Fig. 3(h) of the main text, and

(a) (b)

FIG. 6. Comparison between the asymptotic regimes of the
quantum and classical systems for β = 1.5, λ = 0.3, νd = 2.35,
and ξd = 1.85. This corresponds to the setting of Fig. 3(h) in the
main text, here repeated as plot (b) that thus shows the Husimi-Q
representation of ρ∞ featuring wave-packet explosion. Plot (a)
shows seven orbits of the Poincaré map P . Four different (2:1)
subharmonics are observed (encircled by orbits in blue, light
green, cyan, light pink), together with a chaotic orbit in dark
green and a harmonic periodic orbit close to the origin (encir-
cled by the orbit in red). Finally, a second chaotic orbit covering
a large area in phase space is shown in black. For this value of
β(= 1.5), many more different subharmonics coexist, albeit with
smaller domains of attraction. The extent of phase space that
ρ∞ covers in plot (b) is seen to roughly correspond to the area
covered by the chaotic trajectory in plot (a).

can be seen throughout the associated classical Poincaré
map in Fig. 6.

APPENDIX E: AVOIDING CHAOS IN THE
CLASSICAL SYSTEM

In the main text, in Fig. 3, we numerically show that,
when choosing the regularity parameter β small enough,
we can seemingly suppress high-entropy asymptotic
regimes for the periodically driven dissipative quantum
nonlinear system governed by Eq. (A6). We further argue
that such high-entropy regimes of Eq. (A6) go hand in
hand with large chaotic regions in phase space for the
corresponding classical system (A8). In this section, we
therefore study the behavior of the classical system (A8),
recalled here:

dxλ
dτ

= pλ, (E1a)

dpλ
dτ

= −xλ − pλ
Q̃

− β sin(xλ + ξd sin(νdτ)). (E1b)

We also discuss how taking β small enough would prevent
it from featuring chaotic behavior.

The general idea is illustrated in Fig. 7 and goes as
follows.

(1) When dissipation 1/Q̃ dominates regularity parame-
ter β (green zone in Fig. 7), we can prove that the system is
contracting, i.e., any two close solutions converge toward
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(a)

(b)

(c)

ξd, νd

ξd, νd

1/Q̃

1/Q̃
0

0

f−1
0 (β)

f−1
0 (β)

1/Q̃
0

β

f0

1

FIG. 7. Schematic representation of the study about avoiding chaos in system (E1). (a) For β < f0(1/Q̃) given in Eq. (E14) below,
corresponding to dissipation dominating nonlinearity, the system is contracting and all solutions are attracted toward a single asymp-
totic limit cycle (green region), whatever the drive parameters (ξd, νd). For β < f1(1/Q̃, τ̄ ) given by Eq. (E34) below, which admits
arbitrarily low dissipation, a period-doubling bifurcation is excluded, whatever the drive parameters (ξd, νd), for all solutions of period
shorter than τ̄ (blue region). This is useful, as the Gambaudo-Tresser conjecture (stated as Conjecture 1 below) states that if a region
of parameters featuring chaotic behavior exists [red regions in plots (a) and (c)] then a period-doubling cascade must exist at its
boundary. (b) Having fixed β at a low value, as indicated by the dotted line in (a), the green and blue regions as a function of the
remaining parameters (1/Q̃, ξd, νd) cover the whole parameter space. This excludes the existence of a period-doubling cascade, and
thus of chaotic behavior for any values of (1/Q̃, ξd, νd), unless the cascade is initiated by a first period doubling of a subharmonic
of very high period, > τ̄ . This absence of chaos corresponds to the situation depicted in Fig. 3(e) of the main text, except now for a
finite Q̃ < ∞. (c) Fixing β at a higher value, as indicated by the dashed line in (a), there exists a parameter zone (outside green and
blue) where a period-doubling cascade can indeed be expected, such that regions featuring chaotic behavior (red zone) can exist. Such
chaotic behavior is indeed observed in Fig. 3(f) of the main text, also with a finite Q̃ < ∞.

each other, such that the asymptotic regime has to fea-
ture a single limit cycle. This is valid for any values of
the drive parameters (ξd, νd); see Sec. E 2. Our remain-
ing goal is to extend the conclusion about the absence
of chaos from large damping 1/Q̃ to low damping, while
at the same time allowing for additional subharmonic
solutions.

(2) For appropriately fixed β, the remaining parameters
(1/Q̃, ξd, νd) thus feature a region where system (A8) con-
verges to a single limit cycle; hence, there is no chaos.
If there exists another parameter region featuring chaotic
behavior then it has been conjectured that the boundary
to this region has to feature a period-doubling cascade;
see the Gambaudo-Tresser conjecture, given herein as
Conjecture 1 in Sec. E 3.

(3) Thus, conversely, by excluding the possibility of
period-doubling bifurcations in a parameter region over-
lapping the green zone, we exclude the existence of a
chaotic regime within this parameter region. For the partic-
ular system (E1), we prove that period doubling is indeed
impossible, at least for solutions of period smaller than τ̄ ,
provided that β is small enough compared to 1/τ̄ . This cri-
terion allows arbitrarily small damping and any values for

the drive parameters (blue zone in Fig. 7); see Theorem 1
in the main text, recast as Corollary 1 in Sec. E 4.

(4) All these elements together thus indicate that, for
low enough β, even for extremely small damping and any
values of the drive parameters, the classical system should
not transition into a chaotic regime. Removing two techni-
cal points would make this a rigorous result: (i) proving the
Gambaudo-Tresser conjecture, which was recently done
under extra technical conditions in Ref. [65], and (ii) prov-
ing a bound similar to Corollary 1 but independent of the
period of the solution.

To simplify the mathematical analysis, in Sec. E 1 we first
perform a last change of variables in system (E1). We also
derive the linearized dynamics around a trajectory of the
system, i.e., the differential equation governing how small
deviations from this trajectory will evolve over time.

1. Final change of variables and local linearization
around a solution

The goal of our last change of variables is to induce
equal dissipation on both state variables. For this, we
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replace p by a hyperbolically rotated quadrature, defining

p̃ := pλ + xλ/(2Q̃)√
1 − 1/(4Q̃2)

, x̃ = xλ, (E2)

and rescaling time as

s :=
√

1 − 1

4Q̃2
τ . (E3)

Defining the modified parameters

β̃ = β

1 − 1/(4Q̃2)
, (E4a)

ν̃d = νd√
1 − 1/(4Q̃2)

, (E4b)

κ = 1

2Q̃
√

1 − 1/(4Q̃2)

, (E4c)

we obtain the model

d
ds

x̃ = p̃ − κ x̃, (E5a)

d
ds

p̃ = −x̃ − κ p̃ − β̃ sin(x̃ + ξd sin(ν̃ds)). (E5b)

We define the vector field f (x̃, p̃ , s) such that

d
ds

(
x̃
p̃

)
= f (x̃, p̃ , s)

:=
(

p̃ − κ x̃
−x̃ − κ p̃ − β̃ sin[x̃ + ξd sin(ν̃ds)]

)
,

(E6)

and denote the flow corresponding to system (E6) by �s :
R2 → R2, s ∈ R, such that, by definition,

∂

∂s
�s(x̃0, p̃0) = f (�s(x̃0, p̃0), s). (E7)

The Poincaré map P , which propagates any initial con-
dition over one period 2π/ν̃d, thus corresponds to P =
�2π/ν̃d .

We now turn to local linearization. Given any solution
(x̃(b)(s), p̃ (b)(s)) = �s(x̃

(b)
0 , p̃ (b)0 ) of system (E6), we can

investigate how small variations (x̃0,p̃0) of the initial
condition evolve under the same dynamics,

�s(x̃
(b)
0 +x̃, p̃ (b)0 +p̃)= (x̃(b)(s)+x̃s, p̃ (b)(s)+p̃s).

At the limit of infinitesimal (x̃0,p̃0), the corresponding
dynamics is given by the linearization of the vector field

around the solution, i.e.,

d
ds

(
x̃s

p̃s

)
= ∇zf (z, s)

∣∣∣
z=(x̃(b)(s),p̃(b)(s))

(
x̃s

p̃s

)
, (E8)

where

∇zf (z, s)
∣∣∣
z=(x̃(b)(s),p̃(b)(s))

=
( −κ 1

−1 − β̃ cos
(
x̃(b)(s)+ ξd sin(ν̃ds)

) −κ
)

.

Once a solution (x̃(b)(s), p̃ (b)(s)) is known, the linear time-
dependent Eq. (E8) enables the study of the system in that
solution’s vicinity. We denote the flow corresponding to
this linear system as �s ∈ R2×2, thus satisfying

(
x̃s

p̃s

)
= �s

(
x̃0

p̃0

)
(E9)

with

d
ds
�s =

( −κ 1
−1 − β̃ cos

(
x̃(b)(s)+ ξd sin(ν̃ds)

) −κ
)
�s.

(E10)

By integrating over n drive periods, we obtain the local
linearization of the nth power of the Poincaré map around
the chosen initial condition:

∇ (Pn) (x̃(b)0 , p̃ (b)0 ) = �2nπ/ν̃d , n ∈ N. (E11)

In particular, when (x̃(b)0 , p̃ (b)0 ) corresponds to a fixed point
of Pn, we can obtain the flow of the linearized system by
applying a time-independent linear map:

∇ (Pnk) (x̃(b)0 , p̃ (b)0 ) = (∇ (Pn) (x̃(b)0 , p̃ (b)0 ))k = �2nkπ/ν̃d

(E12)

with k, n ∈ N.

2. When damping dominates nonlinearity: single
asymptotic limit cycle

If any two close trajectories asymptotically converge
toward each other then, by induction, the asymptotic
regime of the system has to consist of a single trajectory.
Here we prove that our system (E6) satisfies the first prop-
erty, known as contraction in dynamical systems theory,
for 1/Q̃ sufficiently large compared to β̃ and any val-
ues of the drive parameters (ξd, ν̃d). We further prove that
the asymptotic trajectory must be a regular 2π/ν̃d-periodic
limit cycle.

Contraction thus analyzes local variations between two
close trajectories, and therefore it studies the linearized
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vector field (E8). In particular, contraction at a rate r > 0
holds if we can prove that

d
ds
(x2 +p2) < −r(x2 +p2) (E13)

for any values of x̃(b)(s) and s in Eq. (E8).

Lemma 2: System (E6) is a contraction, i.e., it satisfies
condition (E13) for a fixed r > 0 independent of x̃(b)(s) and
s for any values of the drive parameters, provided that

β <

√
1 − 1

4Q̃2

/
Q̃. (E14)

Proof : Writing out d(x2 +p2)/ds gives a quadratic
expression in (x,p), which satisfies condition (E13)
provided that

(κ − r)(x2 +p2)

+ β̃ cos
(
x̃(b)(s)+ ξd sin(ν̃ds)

)
xp ≥ 0.

This readily gives the bound β̃/2 < κ , which translates
into condition (E14). �

Under condition (E14), any trajectory of our system is
thus attracted toward a single asymptotic solution. We can
further prove that this solution must be a 2π/ν̃d-periodic
limit cycle. We separate the statement into two steps, as
the first one will be useful in other contexts.

Lemma 3: Any disk around the origin of radius

larger than β̃/κ = 2βQ̃/
√

1 − 1/(4Q̃2) remains positively
invariant under the evolution of system (E6), i.e., when
starting on this disk, the trajectory moves into its interior
and stays there for all times.

Proof : Writing out d(x̃2 + p̃2)/ds, we readily see that
it is negative as soon as κ(x̃2 + p̃2) > β̃|p̃|, which holds
under the stated condition on the radius. �

Lemma 4: For any values of the parameters, system
(E6) always features a solution that is a 2π/ν̃d-periodic
trajectory.

Proof : The proof uses the Brouwer fixed-point theorem
on the Poincaré map P . This theorem states that any
continuous function that maps a closed disk onto its inte-
rior must admit at least one fixed point inside this disk.
The function P is continuous since it results from inte-
grating a smooth vector field, and by Lemma 3, it does
map any disk around the origin of radius larger than
β̃/κ onto its interior. Therefore, P must always feature a
fixed point, corresponding to a 2π/ν̃d-periodic trajectory
of system (E6). �

3. Linking chaos to period-doubling cascades

System (E6) is a dissipative, periodically driven, planar,
nonlinear system. For such systems, it has been conjec-
tured that the only possible route to chaos upon varying
parameters is through a period-doubling cascade starting
from an initially stable orbit. More precisely, we have the
following result.

Conjecture 1 (Gambaudo-Tresser conjecture [60,65]):
In the space of Ck orientation-preserving embeddings of
a planar disk, with k > 1, which are area-contracting,
generically, maps that belong to the boundary of posi-
tive topological entropy have a set of periodic orbits that,
except for a finite subset, is made of an infinite number
of periodic orbits with periods m2k for a given m and all
k ∈ N.

The conditions of Conjecture 1 do hold for our Poincaré
map P as a function of the parameters (1/Q̃, ξd, νd).
Indeed,

(1) P is smooth for any parameter values, as resulting
from the integration of a smooth vector field;

(2) P embeds any disk of radius larger than β̃/κ into
itself, as established by Lemma 3; thus, for any fixed β and
any strictly positive interval 1/Q̃ ∈ [1/Q̃max, 1/Q̃max] ⊂
(0, 1/2), there exists a disk of sufficient radius for which
the embedding holds for all parameter values;

(3) P is orientation preserving and area contracting
for any (1/Q̃, ξd, νd) with 1/Q̃ > 0. These are both local
features to be checked uniformly in (x̃, p̃) on the lin-
earized Poincaré map ∇P(x̃, p̃). Orientation is preserved
if det(∇P) > 0 and area is contracted if | det(∇P)| < 1.
From Eq. (E10), we have

d
ds

det(�s) = tr
(
∇zf (z, s)

∣∣∣
z=[x̃(b)(s),p̃(b)(s)]

)
det(�s)

= −2κ det(�s),

and integrating from det(�0) = 1 up to s = 2π/ν̃d we
readily obtain

det(∇P) = exp
(

−4πκ
ν̃d

)
∈ (0, 1).

Physically, these properties hold by virtue of P being gen-
erated by a weakly dissipative system that reduces to a
Hamiltonian system for κ = 0.

We recall how this conjecture will be used in the context
of our study; see Figs. 7(b) and 7(c). For fixed β, con-
sider an open set of values for the parameters (1/Q̃, ξd, νd),
which we vary to define the set of maps. In particular, the
values of 1/Q̃ should span an interval ranging from the
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lowest damping ever expected, up to a value [green zone
in Fig. 7(b)] satisfying Lemma 2 in Sec. E 2. Thanks to
Lemma 2, the set of parameter values thus contains settings
(green zone) for which the system asymptotically con-
verges to a single harmonic orbit. According to Conjecture
1, if the set of parameter values also contains settings for
which the system features “positive topological entropy,”
which is the technical definition of what we call “chaos”
[red zone in Fig. 7(c)], then somewhere between these two
types of settings there must be a boundary with a period-
doubling cascade. In the next section, to conclude our
study, we thus try to exclude the existence of a parameter
region featuring chaotic behavior, by establishing condi-
tions that exclude its boundary, i.e., period doubling [blue
zone in Fig. 7(b)].

The Gambaudo-Tresser conjecture has recently been
proven under extra technical conditions in Ref. [65].

4. A bound on β to exclude period doubling

From the previous sections, we have identified that the
transition to a chaotic regime when (ξ , νd, 1/Q̃) is var-
ied over an essentially arbitrary range must involve the
period-doubling bifurcation of periodic orbits of the sys-
tem. In this last section, we establish that taking β low
enough excludes a period-doubling bifurcation for any
subharmonic solution of system (E6), at least if this sub-
harmonic’s period is lower than τ̄ , with the bound on β
depending on τ̄ . The bound is uniformly valid for any
values of (νd, ξd) and for arbitrarily low dissipation 1/Q̃.

We thus consider as a starting point a fixed value of
τ̄ and any given subharmonic solution of system (E6) of
period 2πn/νd. We assume that 2πn/νd < τ̄ remains valid
for any value of νd, bounded away from zero. We then
want to exclude that the considered solution undergoes
a period-doubling bifurcation when varying (νd, ξd, 1/Q̃)
in the relevant parameter range. Our proof again works
with the slightly changed coordinates (E6) and slightly

ν̃d

ξd, 1/Q̃

k

n

k+1
n

k+2
n

k+ 1
2

n

k+ 3
2

n

1/

FIG. 8. Splitting of the parameter space for the two parts of our
proof, excluding the period-doubling bifurcation of a 2πn/ν̃d-
periodic solution of system (E6).

modified parameters (β̃, ν̃d), and it comprises two parts
(see Fig. 8).

(1) In Sec. E 4 a, we perform a local study close to the
considered subharmonic, establishing a bound on β̃ under
which the premises for a period-doubling bifurcation can
be excluded. This local study provides a conclusive bound
only for some parameter region (blue in Fig. 8).

(2) In Sec. E 4 b, for another parameter region (red in
Fig. 8), we perform a global study in phase space, show-
ing that, for low enough β̃, the 2πn/ν̃d-periodic solution
cannot in fact exist.

These two parameter regions are defined as bands with
1/ν̃d centered respectively around integer and half-integer
multiples of 1/n. [Recall that in system (E6) the natural fre-
quency of the harmonic oscillator for β̃ = 0 is normalized
to 1.] Making these two regions overlap (Sec. E 4 c), we
exclude any period-doubling bifurcation of this solution
within the full parameter range.

a. Values of β̃ and ν̃d excluding period doubling

Consider a fixed point (x̃∗, p̃∗) of the smooth map
Pn, corresponding to the continuous-time trajectory
(x̃n(s), p̃n(s)) with (x̃n(0), p̃n(0)) = (x̃∗, p̃∗) for some fixed
parameter values. When varying parameters, the location
and the stability of the fixed point must vary smoothly,
unless it undergoes a bifurcation. A good introduction
to basic bifurcation theory can be found in Ref. [55].
We focus on period-doubling bifurcations, where the ini-
tial solution becomes unstable while a stable periodic
orbit of double the period appears in its vicinity. The
important property for our purposes is that at any point
where (x̃n(s), p̃n(s)) undergoes a period-doubling bifur-
cation, the linearized Poincaré map ∇(Pn)(x̃∗, p̃∗) must
have an eigenvalue crossing −1 [55]. In order to exclude
a period-doubling bifurcation, we thus set out to bound
the eigenvalues of ∇ (Pn) away from −1. Because of
the absence of an exact expression for the subharmonic
solution (x̃n(s), p̃n(s)), we approximate ∇ (Pn) (x̃∗, p̃∗) by
splitting the flow �s into a known part, based on the linear
part of the system, and an unknown part that we treat as
a perturbation, proportional to β̃. We obtain the following
result.

Lemma 5: Fix ν̃d > 0 and n ∈ N, n ≥ 1. Choose the m ∈
N that minimizes |1 − (m/n)ν̃d|, and define the detuning

δ := 1 − m
n
ν̃d (E15)

for which thus |δ| ≤ ν̃d/(2n). If

exp
(
β̃

4πn
ν̃d

)
− 1 < 2 cos

(
δ̄
πn
ν̃d

)
(E16)
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with

|δ| ≤ |δ̄| ≤ ν̃d

2n

then ∇ (Pn) (x̃, p̃) obtained by integrating Eq. (E10) can-
not exhibit an eigenvalue −1 for any point (x̃, p̃) ∈ R2.
Therefore, under condition (E16), a 2πn/ν̃d-periodic sub-
harmonic cannot undergo a period-doubling bifurcation.

Proof : The proof is organized as follows.

(1) We first perform a change of variables that inte-
grates out the time-independent part of the linearized
dynamics, which is also independent of β̃.

(2) We then bound the spectral norm of the flow oper-
ator corresponding to this linearized dynamics uniformly
in the remaining parameters. This bounds the effect of the
terms proportional to β̃.

(3) From this, we next bound the spectral norm of the
difference between the flow operator at time s = 0 (which
is the identity matrix) and the flow at any time s later.

(4) Finally, we use this proximity in spectral norm to
deduce information about the eigenvalues of the original
flow operator, in particular, evaluating a parameter setting
that guarantees that the eigenvalues cannot reach −1.

Change of variables.—We start by moving to a rotating
frame with frequency (m/n)ν̃d, such that

(
u(s)
v(s)

)
:=

(
cos(mν̃ds/n) − sin(mν̃ds/n)
sin(mν̃ds/n) cos(mν̃ds/n)

) (
x̃(s)
p̃(s)

)
.

(E17)

Note that, for the flow �(n:m)
s corresponding to the vari-

ables (u, v), we still have �(n:m)
Tn

= �Tn = Pn, where we
introduced the total period

Tn = 2πn
ν̃d

,

due to the periodicity of the change of variables, Apply-
ing the change of variables to Eq. (E10), we obtain the
following evolution equation for ∇�(n:m)

s (u0, v0), the lin-
earized flow around an arbitrary solution (u(s), v(s)) with
(u(0), v(0)) = (u0, v0):

∂

∂s
∇�(n:m)

s (u0, v0) = −κ
(

1 0
0 1

)
∇�(n:m)

s (u0, v0)

+ δ

(
0 1

−1 0

)
∇�(n:m)

s (u0, v0)

+ β̃ �(n:m)
s (ξd)∇�(n:m)

s (u0, v0).
(E18)

Here

�(n:m)
s (ξd) := cos[ζ(s)]

×
(

sin(2mν̃ds/n)/2 sin2(mν̃ds/n)
− cos2(mν̃ds/n) −sin(2mν̃ds/n)/2

)

with

ζ(s) = u(s) cos
(m

n
ν̃ds

)
+ v(s) sin

(m
n
ν̃ds

)
+ ξd sin(ν̃ds).

We drop the reference to the particular solution (u(s), v(s))
for notational convenience.

To conclude the proof, we must bound the eigenvalues
of ∇�Tn = ∇Pn away from −1. Since �0 is the identity
map, ∇�0 = 1, where 1 is the 2 × 2 identity matrix, with
eigenvalues +1. Our strategy is to show that the eigen-
values cannot move far away from 1 when integrating
Eq. (E18) over a time Tn. We can already explicitly inte-
grate the time-independent part, corresponding to β = 0,
by defining

X (s) = exp
((
κ1 − δ

(
0 1

−1 0

))
s
)

∇�s,

yielding

d
ds

X (s) = β̃Rδs �(n:m)
s (ξd) R−δs X (s), (E19)

where Rδs is the rotation matrix

Rδs =
(

cos(δs) − sin(δs)
sin(δs) cos(δs)

)
.

Bounding the norm of X .—We can write EQ. (E19) as an
integral equation:

X (s) = X (0)+ β̃

∫
0

Rδz�(n:m)
z (ξd)R−δzX (z) dz. (E20)

Taking the spectral norm of both sides, applying the tri-
angle inequality, pulling the norm into the integral on the
right-hand side, and subsequently using the submultiplica-
tivity of the spectral norm, we obtain

‖X (s)‖ ≤ ‖X (0)‖ + β̃

∫ s

0
‖X (z)‖ ‖�(n:m)

z (ξd)‖ dz.

(E21)

Since the entries of �(n:m)
z are all smaller than 1 in absolute

value, uniformly in z and ξd, we have ‖�(n:m)
s (ξd)‖ ≤ 2.

Substituting this into Eq. (E21) and applying the simplest
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form of the Grönwall lemma (recalled as Lemma 6 below)
yields

‖X (s)‖ ≤ ‖X (0)‖e2β̃s = e2β̃s, (E22)

since X (0) = 1.
Tying X to the identity.—Now, again consider

Eq. (E20):

X (s)− 1 =
∫ s

0
β̃Rδz�(n:m)

z (ξd)R−δzX (z) dz. (E23)

Analogously to the previous point, taking the spectral
norm of both sides, subsequently pulling the norm into
the integral on the right-hand side, and using the submulti-
plicativity of the spectral norm and the bound on ‖�‖, we
obtain

‖X (s)− 1‖ ≤ 2β̃
∫ t

0
‖X (s)‖ ds. (E24)

Substituting Eq. (E22) into the right-hand side and evalu-
ating at s = Tn, we obtain

‖X (Tn)− 1‖ ≤ e2β̃Tn − 1. (E25)

Confining the eigenvalues of ∇�Tn .—We have thus
bounded how X (Tn) departs from the identity, from which
there remains to deduce a bound on the eigenvalues of

∇�Tn = e−κTnR−δTnX

= e−κTnR−δTn + e−κTnR−δTn(X (Tn)− 1).

The last expression indicates how we intend to view ∇�Tn ,
namely, as the flow corresponding to β = 0 plus a per-
turbation. The Bauer-Fike theorem (recalled as Theorem
2 below), bounds how eigenvalues behave under such
perturbations. In this theorem, we use p = ∞ for the
Schatten norm, which corresponds to the operator norm
that we have used above. The norm of the perturba-
tion on the right-hand side of Eq. (E29) is bounded by
‖e−κTnR−δTn(X (Tn)− 1)‖ ≤ e−κTn(e2β̃Tn − 1), and since
e−κTnR−δTn is diagonalized by a unitary, the condition num-
ber equals 1. The Bauer-Fike theorem then says that, for
any eigenvalue μ of ∇�Tn , there exists an eigenvalue η of
e−κTnR−δTn such that

|η − μ| ≤ e−κTn(e2β̃Tn − 1). (E26)

Of course, we know that η = e(−κ±iδ)Tn .
The final argument is thus: if any eigenvalue μ is suffi-

ciently close to some η = e(−κ±iδ)Tn , while all these η are

sufficiently far from −1, then each μ can be bounded away
from −1. Explicitly, if

|1 + e(−κ±iδ)Tn | > e−κTn(e2β̃Tn − 1) (E27)

then

|μ+ 1| = |η − e(−κ±iδ)Tn + e(−κ±iδ)Tn + 1|
≥ |1 + e(−κ±iδ)Tn | − |η − e(−κ±iδ)Tn |
> 0. (E28)

Multiplying both sides of Eq. (E27) by eκTn , one read-
ily sees that κ = 0 is the most constraining case, and
working out the algebra for this case gives the stated
criterion (E16). �

We here recall the two lemmas used in the proof of
Lemma 5.

Lemma 6 (Grönwall’s lemma [66]): Consider the inte-
gral equation

h(t) ≤ c(t)+
∫ t

0
g(s)h(s) ds

with the scalar functions g, h, and c all non-negative on the
interval [0, t], and c differentiable. Then

h(t) ≤ c(0) exp
(∫ t

0
g(s) ds

)

+
∫ t

0

dc
dt
(t)

(
exp

(∫ t

s
g(τ ) dτ

))
ds.

We have used this lemma with both g and c constant. In
particular, the second term on the right drops out.

Theorem 2 (Bauer-Fike theorem [67]): Suppose that
A ∈ Cn×n is a diagonalizable matrix and that V ∈ Cn×n

is the nonsingular similarity transformation that brings A
into its diagonal form �:

� = V−1AV.

Define the condition number

κp(V) := ‖V‖p

‖V−1‖p

with ‖·‖p the p-Schatten norm. Let μ be an eigenvalue of
A + B, B ∈ Cn×n. Then there exists an eigenvalue η of A
such that

|η − μ| ≤ κp(V)‖B‖p . (E29)
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We used the Bauer-Fike theorem with the operator norm
(p = ∞) and with a matrix A that is diagonalized by a
unitary, such that κp(V) = 1.

Lemma 5 is useful only for part of the parameter space,
represented by blue bands in Fig. 8. Indeed, criterion (E16)
requires β̃ = 0 as δ̄ tends toward its maximal value ν̃d/2n.
Therefore, we next provide in Sec. E 4 b another result to
cover these largest values of δ̄ (red bands in Fig. 8). We
then combine the two in Sec. E 4 c to obtain our overall
conclusion.

b. Values of β̃ and ν̃d excluding an n subharmonic

The rough idea can be sketched as follows. We con-
sider a harmonic 2π/ν̃d-periodic solution as a point of
reference—we show that such a solution must exist for
any parameter values. If the natural dynamics for β̃ = 0
corresponds to a trajectory where a half-integer number
of laps around the harmonic orbit are completed over a
period 2nπ/ν̃d, then in the case of small β̃ > 0 it is unlikely
for a trajectory that completes an integer number of laps
around the harmonic solution to exist anywhere. It then
immediately follows that it is unlikely for any trajectory
to exist that can possibly close on itself to form a periodic
orbit. The only remaining trivial fixed point of Pn would
be the unavoidable fixed point of P corresponding to the
harmonic solution.

Lemma 7: If the interval [(1 − β̃)1/ν̃d, (1 + β̃)1/ν̃d] con-
tains no integer multiple of 1/n then system (E6) can
feature no 2πn/ν̃d-periodic solution other than a single
2π/ν̃d-periodic solution.

Proof : By Lemma 4 in Sec. E 2, the system always fea-
tures at least one 2π/ν̃d-periodic solution. Let us denote it
by (x∗

1(s), p∗
1 (s)) and define the displaced variables

xd(s) = x̃(s)− x∗
1(s), (E30a)

pd(s) = p̃(s)− p∗
1 (s), (E30b)

describing how other solutions behave compared to this
trajectory. The corresponding (exact) equations of motion
are

d
ds

xd = pd − κxd, (E31a)

d
ds

pd = −xd − κpd

− 2β̃ sin
(

xd

2

)
cos

(
xd

2
+ x∗

1(s)+ ξd sin(ν̃ds)
)

.

(E31b)

In polar coordinates xd = R cos(θ), pd = R sin(θ), we
obtain

d
ds

R = −κR − sin(θ)2β̃ sin
(

R
2

cos(θ)
)

cos(z(θ , R, s)),

(E32a)

d
ds
θ = −1 − β̃ cos2(θ)

sin(R cos(θ)/2)
R cos(θ)/2

cos(z(θ , R, s)),

(E32b)

with

z(θ , R, s) = R
2

cos(θ)+ x∗
1(s)+ ξd sin(ν̃ds).

By definition, xd(s) = pd(s) = 0 for any time s, corre-
sponding to R = 0, is a solution and no other trajectories
ever cross the point R = 0. Recognizing the expression
sin(pd/2)/(pd/2) ∈ [−1, 1] in Eq. (E32b), we can bound
|dθ/ds + 1| ≤ β̃. A 2πn/ν̃d-periodic solution has to make
an integer number of laps m around the (periodically
displaced) origin, including possibly m = 0. We thus need

θ(0)− θ

(
2πn
ν̃d

)
= 2πm ∈

[
2πn
ν̃d
(1 − β̃),

2πn
ν̃d
(1 + β̃)

]
,

which is equivalent to the statement. �

Using the notation of Lemma 5, the following criterion
excludes the existence of an (n:m) subharmonic

for |δ(n:m)| > δ̄, provided
2πnβ̃
ν̃d

<
2πnδ̄
ν̃d

. (E33)

c. Combining Lemmas 5 and 7 into a uniform criterion
on β

We now select δ̄ to have overlapping regions of 1/ν̃d, as
explained in Fig. 8.

Corollary 1: Consider a simply connected open set Sp of
possible parameter values (1/Q̃, νd, ξd) with νd ≥ νmin and
Q̃ ≥ Qmin > 1/2. For some parameter settings in this set,
consider a stable subharmonic solution of system (E1) of
period smaller than 2π n̄/νd, n̄ ≥ 2, n̄ ∈ N and denote the
largest period that this solution could possibly have when
varying νd by τ̄ = 2π n̄/νmin. If

β <
0.53
τ̄

√
1 − 1

4Q2
min

(E34)

then this solution cannot undergo a period-doubling bifur-
cation when varying (1/Q̃, νd, ξd) in Sp .

Proof : To cover the whole parameter space, we must
match the value of δ̄ in both criteria, (E16) and (E33).
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Selecting δ̄ smaller makes criterion (E16) easier to achieve,
yet it confines 1/ν̃d close to integer multiples of 1/n. Con-
versely, selecting δ̄ larger makes criterion (E33) easier to
achieve, while confining 1/ν̃d closer to half-integer multi-
ples of 1/n. The best compromise is obtained when both
criteria yield the same bound on β̃. We thus equate the
right-hand sides of criteria (E16) and (E33) to numerically
find the optimal value δ̄ � 0.537ν̃d/(2πn) for the bound-
ary between the red and blue regions of Fig. 8. Replacing
this value in criterion (E33), working back to the origi-
nal variables using Eqs. (E4a) and (E4b) and imposing
the condition for all parameter values then gives the stated
criterion. �

Important Remark: Corollary 1 speaks of a subhar-
monic and this should be taken in the strict sense, i.e.,
n2π/ν̃d periodic with n > 1. Indeed, when using Lemma
7 in the proof, we leave open the possible behavior of
a 2π/ν̃d-periodic solution. This is however no problem
for our intended use of Corollary 1 to exclude a period-
doubling cascade. Indeed, we thus leave open the possibil-
ity that a 2π/ν̃d-periodic solution would undergo period
doubling, but the resulting subharmonic would then be
covered by Corollary 1 such that further period doubling
is necessarily excluded.

Under the condition of Corollary 1, we are thus always
in a zone where the considered subharmonic cannot
undergo period doubling, either thanks to Lemma 5 or
because it cannot exist in the first place (Lemma 7). In
other words, starting from a subharmonic of period 2πn/ν̃d
we are necessarily in the blue zone of Fig. 8, and when
moving toward the red zone of Fig. 8, this subharmonic
must disappear without period doubling.

Note that this result is independent of ξd (essentially
the drive amplitude) and only requires a practically trivial
upper bound on the dissipation 1/Q̃.

Finally, to apply Conjecture 1, the parameter set Sp of
Corollary 1, with condition (E34), should overlap with
a zone where condition (E14) of Lemma 2 holds (green
zones in Fig. 7). Indeed, this would put us in the condi-
tions of Fig. 7(b): for some parameter region, we know
that there is a single harmonic limit cycle, while for an
overlapping region, we know that there can be no period-
doubling cascade (starting below τ̄ ), and thus according
to the conjecture there can be no transition into a chaotic
regime.

Let us thus analyze how to combine both conditions
(E14) and (E34). Condition (E34) holds for all Qmin ≥ Q if
it holds for Q. Conversely, for Q̃ > 1/

√
2, the right-hand

side of condition (E14) is decreasing in Q̃, so condition
(E14) holds for all Q̃ ≤ Q̄ if it holds for Q̄. For the regions
satisfying conditions (E14) and (E34) to overlap for a fixed
β, we thus need Q < Q̄. By inspection, the limit is obtained
at 1/Q = 1/Q̄ = 0.53/τ̄ <

√
2. The associated constraint

on β becomes

β <
0.53
τ̄

√
1 −

(
0.53
2τ̄

)2

.

This concludes our results on avoiding a chaotic regime
in the classical system (E1). Note that our arguments
are mainly based on the fact that the Josephson potential
and its first derivatives are uniformly bounded, so similar
results should hold in other systems with these properties.

APPENDIX F: CLASSICAL ANALYSIS OF
RESONANT BEHAVIOR

In the main text, we showed a clear correspondence
between stable subharmonic solutions of period 2πn/νd
and winding number m on the one hand, and the confine-
ment of Schrödinger cat states with n legs on the other
hand. Figures 3(a), 4(a), and 4(b) of the main text gave us a
preliminary numerical account of how the drive parameters
should be chosen to render the multiphoton confinement
process resonant, and regular, in the nonchaotic case of
β � 0.5. In this section, we set out to obtain a simpli-
fied model that describes the resonance condition the drive
parameters (νd, ξd) need to satisfy in order to create stable
(n:m) subharmonics. This analysis is performed using the
method of geometric averaging. We apply this perturbative
technique in the nonchaotic case of β � 0.5, treating β as a
perturbation. However, in contrast to Appendix E, we cap-
ture O (β) effects, and only neglect effects of O (

β2
)

in the
first instance.

This appendix is organized as follows. After a short
summary of the theory of geometric averaging for peri-
odic systems, we obtain a class of averaged models that
eliminates the dependence on time for any fixed (n:m) and
discuss its symmetries. Next, we numerically analyze the
equilibrium point structure of this average model for the
case of the (3:1) resonance, and compare to the numerical
Floquet-Markov simulations.

1. Summary of averaging theory

We first summarize the method of geometric averaging
(originally due to Krylov and Bogoliubov [68]). Consider a
general T-periodic vector field describing the dynamics of
a two-dimensional state variable z ∈ R2. The oscillations
of the vector field as a function of time t are assumed to be
fast with respect to the magnitude of the vector field itself.
To capture this, we introduce a small positive dimension-
less variable ε � 1, and assume the following equations of
motion for z:

ż = εf (z, t), z ∈ R
2, t ∈ R, (F1)
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with f assumed to be of the same order as the frequency
of its oscillations:

‖Tf ‖ = O(1).

Another way to interpret this condition is that the state of
the system should not change significantly on the timescale
of the oscillations present in the vector field. To system
(F1) we can associate an autonomous averaged vector
field, by neglecting its oscillations in time:

f̄ (·) = 1
T

∫ T

0
f (·, t) dt.

Based on the average vector field, one defines the averaged
system

˙̄z = εf̄ (z̄), z̄ ∈ R
2, (F2)

whose solutions z̄(t) are meant to approximate those of the
true system (F1) for small values of ε. More precisely, the
flow of the averaged system over one system period pro-
vides a good approximation of the true Poincaré map of
system (F1). We define

Pε := �T,

with

∂

∂t
�t(z0) = εf (�t(z0), t),

�0(z0) = z0 for all z0 ∈ R
2, t ∈ R.

A standard version of the averaging theorem for periodic
systems can be found in Chapter 4 of Ref. [55]. We here
summarize the main conclusions relevant to this work. One
can establish the following local correspondences between
f̄ and Pε for small enough ε.

(i) Consider a solution z̄(t) of system (F2) and a solu-
tion z(t) of system (F1), based at z̄0 and z0, respectively. If
|z̄0 − z0| = O(ε) then |z̄(t)− z(t)| = O(ε) on a timescale
0 < t < tmax = O (1/ε).

(ii) Consider a hyperbolic equilibrium point z̄∗ of sys-
tem (F2), namely,

f̄ (z̄∗) = 0, (F3)

where the stability matrix A(z̄∗) := ∇ f̄ (z̄∗) only has eigen-
values with nonzero real parts. Then there exists an ε0 > 0
such that, for all 0 ≤ ε < ε0, Pε possesses a unique hyper-
bolic fixed point z∗ of the same stability type as z̄∗, with
z∗ = z̄∗ + O (ε).

(iii) Consider a trajectory z̄s(t) in the stable mani-
fold of the hyperbolic equilibrium point z̄∗ of f̄ , and

let Pk
ε (zs,0) be an orbit in the stable manifold of the

corresponding fixed point z∗ of Pε [still with z∗ = z̄∗ +
O (ε)]. If |z̄s(0)− zs,0| = O (ε) then |z̄s(kT)− Pk

ε (zs,0)| =
O (ε) for all k ∈ N. Similar results apply for unstable
manifolds of hyperbolic fixed points (in reversed time).

(iv) If, for some system parameter μ = μ0, the aver-
aged vector field f̄ (μ) of system (F2) undergoes a saddle-
node bifurcation then, for ε small enough, the Poincaré
map P (μ)

ε of system (F1) similarly undergoes a saddle-
node bifurcation for a ε-close parameter value μ0,ε.

Since in the main text the quantum classical correspon-
dence in the asymptotic regime was shown to involve
stable periodic orbits of the Poincaré map, we are inter-
ested in characterizing these as a function of the system
parameters. The averaging theorem justifies characterizing
the equilibrium points of an averaged vector field instead,
if we can identify the corresponding small parameter ε. We
therefore study the equilibrium points of the average vector
field in a well-chosen frame.

2. General properties of (n :m) resonances

We recall the form of the classical system with symmet-
ric dissipation rates in the two quadratures, introduced in
system (E5):

d
ds

x̃ = p̃ − κ x̃,
(F4)

d
ds

p̃ = −x̃ − κ p̃ − β̃ sin(x̃ + ξd sin(ν̃ds)).

Here, the frequency of oscillation is given by the normal-
ized drive frequency ν̃d, and should be considered of order
1. To write our system in the normal form (F1), amenable
to averaging, we move to a rotating frame with frequency
(m/n)ν̃d, where m and n are two strictly positive coprime
integers:

x̃ = cos
(m

n
ν̃ds

)
u + sin

(m
n
ν̃ds

)
v, (F5a)

p̃ = cos
(m

n
ν̃ds

)
v − sin

(m
n
ν̃ds

)
u. (F5b)

Recalling the definition of the detuning from Eq. (E15),

δ = 1 − m
n
ν̃d, (F6)

the resulting equations of motion are

u̇ = δv − κu + β̃sin
(

m
n
ν̃ds

)
sin(ζ(u, v, s)),

v̇ = −δu − κv − β̃cos
(

m
n
ν̃ds

)
sin(ζ(u, v, s)),
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with

ζ(u, v, s) = u cos
(

m
n
ν̃ds

)
+ v sin

(
m
n
ν̃ds

)
+ ξd sin(ν̃ds),

and where now δ can be considered small with respect to
ν̃d. Note that we have changed the periodicity of the sys-
tem, as the smallest common period of all time-dependent
terms amounts to 2nπ/ν̃d. The equilibria found through an
averaged model will thus correspond to 2nπ/ν̃d-periodic
subharmonic solutions a priori. The averaged model is
defined as

˙̄u = δv̄ − κ ū

+ β̃
ν̃d

2nπ

∫ 2nπ/ν̃d

0
sin

(m
n
ν̃ds

)
sin(ζ(ū, v̄, s)) ds,

(F7a)

˙̄v = −δū − κv̄

− β̃
ν̃d

2nπ

∫ 2nπ/ν̃d

0
cos

(m
n
ν̃ds

)
sin(ζ(ū, v̄, s)) ds.

(F7b)

For the solutions of this model to correspond to the true
system up to good accuracy, we need to assume that

κ
√

ū2 + v̄2 � ν̃d

n
, |δ|

√
ū2 + v̄2 � ν̃d

n
, β̃ � ν̃d

n
.

The general correspondences between the averaged model
and the true system summarized in the previous section are
asymptotic in nature however, so there are no clear a priori
allowable values for (κ , δ,β) (and corresponding regions
in phase space) for which averaging is valid. Explicit
bounds on these values fall beyond the scope of this work.
We thus study the averaged model (F7) as is, knowing
that there exist some small enough values for (κ , δ,β) for
which the obtained conclusions are valid for the true sys-
tem. In Sec. F 3, however, we compare the predictions of
this averaged model to exact numerical Floquet-Markov
simulations.

The stability type of an equilibrium point (u∗, v∗) is
defined in terms of the eigenvalues of the stability matrix

A(ū∗, v̄∗) =
(−κ δ

−δ −κ
)

+ β̃
ν̃d

2nπ

(
b11(ū∗, v̄∗) b12(ū∗, v̄∗)
b21(ū∗, v̄∗) b22(ū∗, v̄∗)

)
(F8)

with

b11(ū∗, v̄∗) =
∫ 2nπ/ν̃d

0

sin(2mν̃ds/n)
2

cos
(
ζ(ū∗, v̄∗, s)

)
ds,

b12(ū∗, v̄∗) =
∫ 2nπ/ν̃d

0
sin2

(
m
n
ν̃ds

)
cos

(
ζ(ū∗, v̄∗, s)

)
ds,

b21(ū∗, v̄∗) = −
∫ 2nπ/ν̃d

0
cos2

(
m
n
ν̃ds

)
cos

(
ζ(ū∗, v̄∗, s)

)
ds,

b22(ū∗, v̄∗) = −
∫ 2nπ/ν̃d

0

sin(2mν̃ds/n)
2

cos
(
ζ(ū∗, v̄∗, s)

)
ds.

If both eigenvalues of A have strictly negative real parts,
(ū∗, v̄∗) corresponds to a stable node. If A has one eigen-
value with strictly positive real part and a second with
strictly negative real part, we speak of a saddle point. If
both eigenvalues of A have strictly positive real parts, the
equilibrium point corresponds to a source.

The dissipative nature of system (F7) dictates that equi-
librium points (ū∗, v̄∗) necessarily correspond to either
stable nodes or saddle points, and no sources are allowed.
This is easy to see by considering Tr(A) ≡ −2κ , so the
eigenvalues of A must sum to −2κ . Furthermore, since A
only has real entries, its eigenvalues are either both real or
are a complex conjugate pair. Then it easily follows that
the eigenvalues η± of A can be written as

η±=−κ ± χ ,

where χ is either strictly positive or purely imaginary.
Consequently, the only possible bifurcation mechanism is
a saddle-node bifurcation where η+ = 0 for χ = κ . At this
bifurcation point, a saddle-node pair is either created or
annihilated together (depending on which direction one
changes the system parameters). Denoting the total num-
ber of nodes by Nn, and the total number of saddle points
by Ns, this implies that, for any set of system parameters
(κ , δ,β, ξd), Nn − Ns remains constant. For system (F7),
we can prove that Nn − Ns ≡ 1. The main idea behind
the proof is a standard topological argument based on the
Poincaré index (see Proposition 1.8.4 of Ref. [55]) of a
closed curve C encircling all the equilibria [69]. The index
theorem equates Nn − Ns to the number of turns made by
the vector field when traversing the curve C, and for our
system, this number of turns amounts to 1.

We now turn to finding the equilibrium points of sys-
tem (F7). It is instructive to perform the equilibrium point
analysis in polar coordinates,

ū = R sin(θ), (F9a)

v̄ = R cos(θ). (F9b)
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The equivalent vector field for (θ , R) becomes

θ̇ = δ + β̃
g(n:m)(θ , R, ξd)

R
, (F10a)

Ṙ = −κR + β̃h(n:m)(θ , R, ξd), (F10b)

with

g(n:m)(θ , R, ξd) =
∞∑

k=−∞
cos(knθ)J1+kn(R)J−km(ξd)

if m + n is even and

g(n:m)(θ , R, ξd) =
∞∑

k=−∞
cos(2knθ)J1+2kn(R)J−2km(ξd)

if m + n is odd, where Jl is the lth-order Bessel function
of the first kind. Similarly,

h(n:m)(θ , R, ξd) = −
∞∑

k=−∞
sin(knθ)J1+kn(R)J−km(ξd)

if m + n is even and

h(n:m)(θ , R, ξd) = −
∞∑

k=−∞
sin(2knθ)J1+2kn(R)J−2km(ξd)

if m + n is odd. To make the notation more uniform, we
introduce the parity

r := (m + n) mod 2 =
{

0, m + n even,
1, m + n odd,

and drop the superscript “(n:m)” to make the notation less
heavy, while it should be remembered that g and h depend
on the pair of coprime integers (m, n). In this way we can
write

g(θ , R, ξd) =
∞∑

k=−∞
cos((1 + r)knθ)J1+(1+r)kn(R)

× J−(1+r)km(ξd), (F11a)

h(θ , R, ξd) = −
∞∑

k=−∞
sin((1 + r)knθ)J1+(1+r)kn(R)

× J−(1+r)km(ξd). (F11b)

As an immediate observation, for any values of κ ,β, and
δ, if either n ≥ 2 or n = 1 and r = 1, the origin R = 0
corresponds to an equilibrium point, since h(θ , 0, ξd) =
0 for all θ , ξd. Since we are interested in finding subhar-
monic solutions with n > 1, we can exclude the case

n = 1, r = 0 however, so we can always assume the ori-
gin to be an equilibrium point. Subsequently excluding the
origin, the remaining equilibria (θ∗, R∗) can be sought for
by solving

δ = −β̃ g(θ∗, R∗, ξd)

R∗ , (F12a)

κ = β̃
h(θ∗, R∗, ξd)

R∗ . (F12b)

Thus, excluding the origin, whenever we find a node
(respectively saddle point), we know that there must exist
a corresponding saddle point (respectively node). For this
reason, we do not focus on the stability type for now, and
postpone this question to Sec. F 3. The rest of this appendix
is organized as follows. First, a set of global symmetries of
the set of equilibria is discussed. Next, in Sec. F 2 b we
consider some insightful limiting cases, for which analyti-
cal conclusions can be obtained. Section F 3 then details a
numerical approach for characterizing the set of equilibria
for the case m = 1, n = 3.

a. Global symmetries

The averaged model (F7) adheres to a global rotational
symmetry, causing a degeneracy in the set of equilibria.

(i) The averaged vector field is invariant under rotation
by an angle 2π/(n(1 + r)), since h(θ + 2π/(n(1 + r)), ·, ·) =
h(θ , ·, ·) and g(θ + 2π/(n(1 + r)), ·, ·) = g(θ , ·, ·). This
means that, for any trajectory (θ(s), R(s)), another solution
is obtained by considering (θ(s)+ k2π/(n(1 + r)), R(s)),
k = 1, . . . , (1 + r)n − 1. In particular, any equilibrium
(θ∗, R∗) is part of a group of (1 + r)n equilibria of the same
stability type.

(ii) In the Hamiltonian limit of κ = 0, Ṙ = 0 is auto-
matically satisfied for

θ∗ = kπ
n(1 + r)

, k = 0, . . . , (1 + r)n − 1, (F13)

readily identifying a subset of possible equilibria. Note
that, for any value of R∗, the detuning can be chosen to
satisfy Eq. (F12a), so such equilibria must exist for

δ ∈ [−β̃gsup, −β̃ginf],

where

ginf := inf
θ∗∈{0,π/n(1+r)},R>0

g(θ∗, R∗, ξd)

R
,

gsup := sup
θ∗∈{0,π/n(1+r)},R>0

g(θ∗, R∗, ξd)

R
.

Since g is bounded, these limits are well defined.
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(iii) Still in the Hamiltonian case, an extra symmetry of
system (F10) can be established:

θ → −θ , (F14a)

s → −s. (F14b)

The system is therefore called reversible, due to this time-
reversal symmetry. Symmetry (F14) has no immediate
extra consequences for any of the equilibria satisfying
θ∗ = kπ/(n(1 + r)), since the set is invariant under θ →
−θ . However, any equilibrium (θ∗, R∗) that is not of this
form must necessarily come with a second equilibrium
(−θ∗, R∗) of the same stability type. This symmetry is bro-
ken for κ > 0, but one can expect a certain approximate
symmetry to hold, as an infinitesimal amount of dissipation
can only change the phase portrait in a continuous manner.

b. Limiting behavior

There are two interesting limits to be considered in terms
of the distance R to the origin.

(1) For R � 1, we can Taylor expand Eqs. (F10) to
obtain up to leading order, for n > 1,

θ̇ = δ + β̃

2
J0(ξd)+ O (R) , (F15a)

Ṙ = −κR + O (
R2) . (F15b)

The origin of phase space is seen to be a stable node for
κ > 0, and a center in the limit of κ → 0. We call this equi-
librium the nominal point. Close to the origin, the averaged
model describes an essentially linear system (harmonic
oscillator). The Josephson nonlinearity only shows itself in
the fact that the frequency of this effective harmonic oscil-
lator depends on the drive amplitude ξd, which is not the
case for the response of a purely linear system. We call
this drive-induced frequency shift the ac-Stark shift of the
oscillator:

AC := β̃

2
(J0(ξd)− 1) . (F16)

One important conclusion is that the ac-Stark shift shows
oscillatory behavior with ξd, and remains bounded as a
function of the drive amplitude ξd.

(2) The opposite limit can also be taken. Consider
a candidate equilibrium point (θ∗, R∗) and let R∗ → ∞.
Since g is a bounded function of R, we obtain

θ̇ = δ + O
(

1
R∗

)
.

As R∗ → ∞, the value of |δ| that is allowed for an equilib-
rium point to occur tends to zero. In terms of the original

drive frequency, this implies that

ν̃d = n
m

+ O
(

1
R∗

)
.

The effect of the nonlinearity of the Josephson junction
thus effectively disappears, and we obtain a resonance con-
dition based solely on the linear part of the system. We can
apply the same reasoning to the dissipation rate κ , as h is
also bounded in R. For an equilibrium point to occur at a
distance R∗, we need

κ = O
(

1
R∗

)
.

(3) There is one more limit that allows for a simple
analytical estimate, namely, the limit of weak driving:
ξd � 1. In this case we can replace the Bessel func-
tions by an appropriate asymptotic expansion to obtain the
leading-order contributions in system (F10). The asymp-
totic expansion

Jl(ξd) ∼ ξ l
d

2ll!
, l, ξd > 0, (F17)

is valid for ξd → 0. We obtain the following leading-order
equations:

θ̇ = δ + β̃
J1(R)

R
+ O

(
ξ
(1+r)m
d

2(1+r)m((1 + r)m)!

)
, (F18a)

Ṙ = −κR − (−1)mβ̃
sin((1 + r)nθ)ξ (1+r)m

d

2(1+r)m((1 + r)m)!
J(1+r)n+1(R)

− (−1)m+rβ̃
sin((1 + r)nθ)ξ (1+r)m

d

2(1+r)m((1 + r)m)!
J(1+r)n−1(R)

+ O
(

ξ
2(1+r)m
d

22(1+r)m(2(1 + r)m)!

)
. (F18b)

In this case, it is δ that first determines R∗ such that
−δ/β̃ � J1(R∗)/R∗ (though possibly not uniquely), and
the value of θ can then be chosen so as to satisfy Ṙ = 0
in Eq. (F18b). Note that this last equation always allows
for a solution θ∗ as long as the dissipation rate κ is small
enough. In the limit of κ = 0, θ∗ = kπ/(n(1 + r)), k =
0, . . . , (1 + r)n − 1, provides a class of solutions. How-
ever, for decreasing ξd, the averaged model tells us that
the oscillator must be increasingly high-Q to observe the
corresponding subharmonic resonance. Indeed, using the
boundedness of J(1+r)n±1(R)/R for n > 1, it easily follows
from Eq. (F18b) that

κ <
β̃ξ

(1+r)m
d

2(1+r)m−1((1 + r)m)!
+ O

(
ξ

2(1+r)m
d

22(1+r)m(2(1 + r)m)!

)

must be satisfied for there to exist any equilibria. Note that
odd-parity processes (r = 1) are suppressed, in the sense
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that asymptotically, for small ξd, one needs a much higher-
Q system to observe them.

The general equilibrium point structure of the averaged
model is quite complicated, and the sequence of bifurca-
tions upon varying parameters is especially increasingly
complicated. In the next subsection, we adopt a numerical
approach to characterize this equilibrium point structure as
a function of the drive parameters.

3. Numerical approach for (n :m) = (3:1)

Note that, for any fixed equilibrium (θ∗, R∗), and any
given drive amplitude ξd, one obtains the correspond-
ing values of (κ , δ) by forwardly computing them from
Eqs. (F10). If, on the other hand, we want to fix the system
parameters beforehand, and look for equilibrium points,
one has to resort to a numerical root-finding algorithm.
To avoid having to use root-finding algorithms in the two
variables (θ , R), we make an observation. Note that the
dissipation rate κ is fixed at the fabrication of the device,
whereas δ corresponds to a drive detuning that is typically
adjusted online. This allows us to adopt the following strat-
egy to find the equilibria of system (F10) as a function of
(β̃, κ , δ, ξd), using a reliable one-dimensional root-finding
algorithm. First fix the values of β̃, κ and the R∗ value of
the sought-for equilibrium. Next, from Eq. (F10b), root
find possible θ∗ values that give rise to Ṙ = 0. For this,
we used a simple algorithm based on sign changes of Ṙ
as function of θ . If no such sign changes are found, we
conclude that no equilibria exist for the given values of
(κ , δ, R∗). For every θ∗ that does give rise to Ṙ = 0, from
Eq. (F10a), we can forwardly compute the (unique) value

δ = −β̃ g(θ∗, R∗, ξd)

R∗

such that θ̇ = 0 also and (θ∗, R∗) is indeed an equilibrium
point. As a side note, the point R∗ = 0 should be omitted,
as θ is ill defined at the origin. From Eq. (F15b), we know
that the origin is always an equilibrium point however, and
corresponds to a stable node when κ > 0.

Afterwards, the stability type of the corresponding equi-
librium can be determined by performing a linearization
analysis on system (F7). We recall that if the eigenvalues
of A(R∗ sin(θ∗), R∗ cos(θ∗)) [as defined in Eq. (F8] both
have strictly negative real parts then (θ∗, R∗) corresponds
to a stable node. If one of the eigenvalues has a strictly pos-
itive real part then (θ∗, R∗) corresponds to a saddle point. In
practice, it suffices to compute the determinant of Eq. (F8).
This determinant is evaluated numerically in (θ∗, R∗).

a. Bifurcation structure

In Fig. 9, an account is given of the equilibrium point
structure of the averaged model for m = 1, n = 3 (so an

FIG. 9. Numerical account of the bifurcation structure of
the averaged model (F10)–(F11) when varying the detuning δ
for β̃ = 0.5, κ = 10−5, and ξd = 1.7. The possible equilibria
(θ∗, R∗) are determined by imposing Ṙ = 0 [see Eq. (F12b)].
Two projections are given for the remaining relation δ =
−β̃g(θ∗, R∗, ξd)/R∗, relating the detuning δ to the polar coor-
dinates (θ∗, R∗) of the equilibrium point. Top: the possible
equilibria satisfying Ṙ = 0 [see Eq. (F12b)] are plotted, omit-
ting the corresponding (uniquely defined) value of δ. Stable
nodes are shown in green, while saddle points are shown in
red. One can clearly see the rotational symmetry over an angle
2π/(n(1 + r)) = 2π/3 of the equilibrium point structure, which
was introduced in Sec. F 2 a. Equilibria close to the origin (R <
5 here) occur approximately at angles θ = kπ/3, k = 0, . . . , 5.
Bottom: plot of δ versus R∗, omitting the corresponding value
of θ∗. Correspondingly, every displayed point corresponds to a
triplet of equilibria, at the same distance R from the origin, and
angles ±2π/3 apart. At local extremal points of δ, a saddle-
node bifurcation takes place, since three nodes and three saddles
locally (dis)appear at these extrema. The bifurcation mechanisms
from situations (a)–(e) are discussed in the text.

even-parity process, r = 0), as a function of the detuning δ
for fixed values of κ = 10−5, β̃ = 0.5, and ξd = 1.7. Two
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projections of the relation

δ = −β̃ g(θ∗, R∗, ξd)

R∗

are given, linking the triplet (δ, θ∗, R∗). Stable nodes are
shown in green, while saddle points are shown in red. In
the top plot, the value of δ is implicit. One can clearly see
the rotational symmetry over an angle 2π/(n(1 + r)) =
2π/3 of the equilibrium point structure, which was intro-
duced in Sec. F 2 a. In the bottom plot, the value of the
angle θ∗ is implicit. At local extrema of δ, a saddle-
node bifurcation takes place, where three nodes and three
saddles locally (dis)appear at these extrema. Combin-
ing the bottom and top plots of Fig. 9, we can discuss
the locations of the equilibria and the bifurcations that
take place, when increasing δ gradually from point (a) to
point (e).

(1) For the most negative values of δ, no equilibria are
found for R > 0. The only equilibrium resides in the origin
(not shown), and the averaged model predicts the origin to
be globally attractive for any κ > 0. This is straightforward
to prove due to the absence of other equilibria.

(2) Upon increasing the value of δ, from point
(a) to point (b), a threefold saddle-node bifurcation
(around R∗ � 1) takes place, simultaneously creating three
saddle-node pairs at angles θ∗ � 2kπ/3, k = 0, 1, 2. Upon
further increasing the value of δ, the stable nodes move
radially outward to larger values of R∗, while the saddle
points move radially inward toward the origin.

(3) From point (b) to point (d), the saddle points
move through the origin, reexiting at angles θ∗ � π/3 +
2kπ/3, z, k = 0, 1, 2 (note that at the origin θ∗ can undergo
a discontinuity). In situation (c), the three saddle points
coalesce at the origin, creating a degenerate point [70].
The value of δ for situation (c) exactly compensates the
ac-Stark shift [see Eq. (F16)] of the oscillator:

δ = − β̃
2
J0(ξd) � −0.1.

(4) When further increasing δ, moving from situation
(d) to situation (e), many different saddle-node pairs are
created and move toward other equilibria as a function
of the detuning δ, before subsequently recombining and
annihilating in another saddle-node bifurcation. More-
over, we see that equilibria are no longer restricted to
the angles θ � kπ/3, k = 0, . . . 5, as equilibria branch off
and move in the angular direction in between these radial
axes. Beyond the numerical results displayed in Fig. 9,
we have no further analytical insight into this complicated
bifurcation structure. This process continues when further
increasing δ, until eventually all equilibria are annihilated,
corresponding to situation (e).

(a)(b)(c)(d)(e)

FIG. 10. Comparison between the Floquet-Markov signatures
of the (3:1)-resonant cat states, and the occurrence of (3:1)-fixed
points of P3, as predicted by the averaged classical system (F10)
for β = 0.5, λ = 0.2, and κ = 0. Bottom: the effective number of
Floquet modes Nocc occupied by ρ∞ at time τ = 0 mod 2π/νd
is plotted in a color map plot, as a function of drive parameters
(exact numerical Floquet-Markov simulations). The green lines
delimit the region where the classical averaged model (F7) pre-
dicts the existence of stable equilibria, and is seen to delimit the
quantum resonance region where Nocc � 3 up to very good accu-
racy. The ac-Stark-shifted drive frequency as predicted by the
averaged model [see Eq. (F22)] is shown in blue. Top: schematic
representation of the phase portraits of the averaged system for
the five points indicated in the bottom plot. The center in the
middle corresponds to the origin of phase space. Moving from
(a)–(e), the following bifurcation mechanisms take place. First,
a saddle-node bifurcation occurs where three nodes and three
saddles are created, represented in (b). The saddle separatrices
form (initially small) homoclinic loops. The corresponding sad-
dle points subsequently move radially inwards (typically very
fast as a function of νd), until they coalesce (and perfectly coin-
cide, due to the discrete rotational symmetry) at the origin. This
is depicted in the degenerate situation (c), corresponding to the
drive frequency νd that compensates for the ac-Stark shift, indi-
cated by the blue line. At this point, the direction of rotation of the
origin is reversed, and in (d) the three saddle points form hetero-
clinic loops. The bifurcation process from (d)–(e) involves (often
cascades of) saddle-node annihilations and creations (see Fig. 9),
when further lowering the value of νd [corresponding to increas-
ing δ; see Eq. (F6)]. This entails exchanges in pairing between
saddle-node triplets, before they eventually all cancel out, and
only the center in the origin remains. This situation is depicted in
situation (e).

A schematic representation of the phase diagrams cor-
responding to the analogous situations (a) to (e) for the
dissipationless case of κ = 0 is given in Fig. 10(top).
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The bifurcation structure for different values of ξd
looks qualitatively similar. Specifically, we observe that,
for values of ξd ∈ [0, 2.2], when driving to compen-
sate the ac-Stark-shifted frequency of the oscillator (δ =
−β̃J0(ξd)/2), there exists a unique triplet of stable nodes
(not shown here). The distance R∗ of these nodes to the ori-
gin moreover increases monotonically from 0 to 3.3 with ξd
going from 0 to 2.2, and for the corresponding angles, we
have θ∗ � 2kπ/3, k = 0, 1, 2. This is true independently
of the value of β̃ for a small enough dissipation rate κ .
Driving the oscillator around its ac-Stark-shifted frequency
thus identifies one favorable working regime in which the
global symmetries of Eq. (F13) approximately hold, and
in which the stable resonant nodes are unique. In the next
section, we indeed see that the drive parameters giving rise
to a confined manifold of Schrödinger cat states for the
quantum system generally follow the ac-Stark shift:

δ = − β̃
2
J0(ξd).

b. Comparison to Floquet-Markov simulations

In this section, we establish how the equilibrium point
structure of the averaged classical model (F10)–(F11) can
predict the asymptotic behavior of the quantum system, as
calculated by the numerical Floquet-Markov simulations
outlined in Appendix B. For this, we consider the dissipa-
tionless case of κ = 0, as the Floquet-Markov simulations
are set in the limit of a vanishing coupling rate to a ther-
mal bath, and hence at a vanishing dissipation rate. The
value of β is chosen to be in a regular regime, β = 0.5. We
again consider the case of the (3:1) resonance as a guid-
ing example, while the discussion can readily be applied to
other resonances.

The general correspondence that can be established
between the classical and quantum system was outlined in
the main text. For the case of the (3:1) resonance, we saw
that a stable 3-orbit

{(x(3:1)
l , p (3:1)

l ) | l = 0, 1, 2}

of the Poincaré map P corresponds to a triplet of Floquet
modes that are of the form of three-component Schrödinger
cat states, and whose quasienergies were shown to be
degenerate modulo νd/3, indicating a multiphoton process
where three oscillator photons are converted into one drive
photon and vice versa. We recall that these Schrödinger
cat states are given by the superpositions of distinguish-
able states in phase space that closely resemble coherent
states |αl〉 , l = 0, 1, 2. The amplitudes αl of these coher-
ent states were seen to approximately correspond [see, e.g.,
Figs. 3(c) and 3(e) of the main text] to the three classical

fixed points of P3,

αl � x(3:1)
l + ip (3:1)

l√
2

, l = 0, 1, 2. (F19)

In this section, we have described a prominent class of
stable (3:1) subharmonics corresponding to stable nodes

(R∗ sin
(
θ∗ + 2lπ/3

)
, R∗ cos

(
θ∗ + 2lπ/3

)
), l = 0, 1, 2,

of the first-order averaged model (F7), which approxi-
mate solutions of the true system. Working back to the lab
frame, by undoing the rotating-frame transformation (F4),
we find that the corresponding 3-orbit of the Poincaré map
P corresponding to Eq. (F4) is approximately of the form

x̃(3:1)
l � R∗ sin

(
θ∗ + 2lπ/3

)
, (F20a)

p̃ (3:1)
l � R∗ cos

(
θ∗ + 2lπ/3

)
. (F20b)

Recall from Sec. A that both quadratures x̃, p̃ are scaled
by the quantum scaling parameter [see Eq. (A9)] λ to
eliminate it from the classical equations of motion. Cor-
respondence (F19) can then be worked out for the 3-orbit
of form (F20), yielding

αl � ie−i(2π l/3+θ∗)R∗

2λ
, l = 0, 1, 2. (F21)

With this correspondence in mind, we can now compare
the classical averaged model to the numerical Floquet-
Markov simulations of the infinite-time behavior of the
quantum system. This is the subject of Fig. 10(bottom).
To characterize the asymptotic regime, as in the main text,
we consider the effective number of Floquet modes Nocc
occupied by the asymptotic state ρ∞(τ ), defined as

Nocc := exp(S(ρ∞)),

where S(ρ∞) is the von Neumann entropy of the state,

S(ρ∞) := −Tr(ρ∞ ln(ρ∞)).

We plot Nocc as a function of the drive parameters (νd, ξd)
in Fig. 10(bottom). From a numerical point of view, we
define the resonance region for the quantum system to be
the set of drive parameters (νd, ξd) for which

Nocc � 3,

since, when ρ∞ is given by a uniform mixture of three
three-component Schrödinger cat states, Nocc amounts to
exactly 3. This quantum resonance region corresponds to
the purple region in Fig. 10. The black region corresponds
to an essentially pure state (displaced vacuum) for ρ∞. For
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the drive parameters corresponding to the white points, the
numerical simulations are inconclusive in determining ρ∞
(see Remark 1).

Superimposed on the plot is the blue line, representing
the drive parameters that exactly compensate for the ac-
Stark shift of the oscillator, given by

ν
(3:1)
d := 3

1

(
1 + β

2
J0(ξd)

)
. (F22)

We can see that the general shape of the resonance region
follows the oscillation of this ac-Stark-shifted resonance
frequency. Plotted in green are the extremal values for
the drive detuning for which the averaged model exhibits
stable nodes. These necessarily coincide with a saddle-
node bifurcation of the average system, and analogously
to the global extrema of the analogous curves shown in
Fig. 9(bottom). We can see that the green lines delimit
the quantum resonance region (Nocc � 3) up to very good
approximation, and hence the averaged classical model
accurately predicts the drive parameters that lead to a res-
onant situation for the quantum system. As a point of
reference, the top panel of Fig. 10 shows schematic dia-
grams of the corresponding phase portrait of the classical
averaged model (for κ = 0). Examples of drive parameters
that give rise to the respective phase portraits are indi-
cated on the bottom plot of Fig. 10. The drive parameters
are chosen such that the averaged model predicts either
a unique triplet of resonant equilibria [situations (b)–(d)]
or that only the origin remains as a center [situations (a)
and (e)].

In conclusion, we can see that the general shape of the
quantum resonance region in terms of drive parameters is
well described by the classical averaged model (F7). The
validity of this classical averaged model was not a priori
given, since (F7) corresponds to the lowest-order model
of the perturbative method of averaging, and the value of
β chosen is quite large to be considered a perturbation
(but small enough to be in the regular, non-chaotic regime,
β = 0.5). A first limitation of any classical model in pre-
dicting the quantum resonance region is that the classical
equations of motion (F4) do not show any dependence on
the quantum scaling parameter λ, which has a clear quan-
tum effect studied in Fig. 4 of the main text. We conclude
with a few remarks on other limitations of classical models
in predicting the resonance region for the quantum system,
leading to some expected quantitative differences between
the purple region and the green delimiting lines in Fig. 10.

Remark 2 (Tunneling and far equilibria): A first aspect
to be noted is that the maximal number of Floquet modes
occupied by ρ∞ is seen to be Nocc,max � 3. The possible
Floquet modes that are occupied correspond to either three
three-component cat states (purple region, Nocc � 3) or a
single Floquet mode resembling a (dressed) vacuum state
(black region, Nocc � 1) [71]. Note that this is not what

would be predicted by the classical averaged model in the
equivalent limit of vanishing dissipation rate, since many
resonant stable nodes can coexist [see Fig. 9(bottom)], and
all have a nonvanishing basin of attraction. The reason for
this limitation of the quantum-classical correspondence in
the asymptotic regime is the specific dissipation model for
the driven quantum system consisting of a weak Hamilto-
nian coupling to a thermal bath. Indeed, by the extension of
Fermi’s golden rule to periodically driven systems outlined
in Appendix B, the driven quantum system can directly
transition between different Floquet modes, and is seen to
converge to a mixture of Floquet modes that correspond
to only a handful of the possible classical locally stable
nodes. When comparing the phase-space representation of
ρ∞ to the phase portrait of the classical Poincaré map, as
in Figs. 3(c) and 3(e) of the main text, we observe (simu-
lations not shown here) that the dominantly occupied Flo-
quet modes in the resonant case always correspond to the
classical stable resonant nodes that are closest to the origin,
so in terms of the averaged model, have minimal values of
R∗. This observation is in accordance with the energetic
expectations as we assume a coupling to a zero tempera-
ture thermal bath. This fact should also find a quantitative
explanation through the application of semiclassical quan-
tization methods based on the effective potential landscape
associated with the nested irrational tori of the Poincaré
map [72,73]. For the regular, nonchaotic regime of peri-
odically driven systems in a Floquet-Markov limit similar
to this work, a Boltzmann distribution with a winding-
number-dependent effective temperature has been shown
to predict the distribution of Floquet modes [74]. Such an
analysis falls beyond the scope of this paper however. As
a last point, note that far-away resonant stable nodes might
become relevant for the transient, finite-time behavior of
the system. This is not the subject of this work however.

Remark 3 (Basins of attraction): A second main differ-
ence between the classical averaged model and the behav-
ior of the quantum system lies in the fact that quantum
states occupy a finite minimal surface area in phase space
given by the Heisenberg uncertainty principle. In this way,
classical stable nodes with a small basin of attraction [75]
cannot be resolved by the quantum system, as the quan-
tum wave packet is forced to spread outside of the basin of
attraction. Concretely, if the basin of attraction of a stable
node is smaller than the surface in phase space occupied by
a quantum coherent state |αl〉, the correspondence in the
main text should be expected to break down. Such small
basins of attraction for the classical system occur close to
a saddle-node bifurcation point for example, and we cannot
expect the corresponding resonant stable nodes to give rise
to a resonant quantum regime. The same argument holds
when the resonant nodes are sufficiently close to the origin,
as the quantum state spreads over multiple classical basins
of attraction (not shown here). This potentially explains the
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black region around ξd ∈ [0, 0.3] , νd ∈ [3.67, 3.73], as νd
is close to the saddle-node bifurcations of the green curves,
and moreover, for small values of ξd, the stable nodes are
created close to the origin (not shown here).
Remark 4 (Hilbert space truncation): Lastly, from
Eq. (F20), we can see that the average number of photons
of the coherent state |αl〉 is approximately given by

n̄ := |αl|2 � R∗2

4λ
.

Depending on the value of the quantum scaling parame-
ter λ, many of the equilibria represented in Fig. 9 thus
correspond to a very high average number of photons
in the oscillator. Indeed, for a “nominal” experimental
value of λ = 0.2, and for a reference value of R = 3, the
corresponding mean number of photons amounts to

n̄ = R2

4λ2 � 56.

Hence, equilibria of the averaged model corresponding to
very large R∗ values are not captured by the numerical sim-
ulations, due to a finite truncation of the Hilbert space.
Depending on the value of λ, we might not be able to cap-
ture such far-out equilibria of the classical system, as most
of our simulations are performed using 300 Fock states.
Therefore, the number of Fock states is chosen so as to cap-
ture the coherent states corresponding to the stable nodes
of the averaged model that are closest to the origin, for the
smallest value of the quantum scaling parameter λ consid-
ered, namely λ = 0.2. Such an analysis reveals that 150
Fock states should suffice, and we see that the simulations
have fully converged for 300 Fock states, for any purple
or black point in Fig. 10(bottom). We recall that the white
points in Fig. 10(bottom) are not due a truncation of Fock
space. All the relevant individual Floquet modes have fully
converged with 300 Fock states, but the specific mixture
of Floquet modes in ρ∞ is not uniquely defined for these
points (see Remark 1).
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