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We solve robot-trajectory planning problems at industry-relevant scales. Our end-to-end solution inte-
grates highly versatile random-key algorithms with model stacking and ensemble techniques, as well as
path relinking for solution refinement. The core optimization module consists of a biased random-key
genetic algorithm. Through a distinct separation of problem-independent and problem-dependent mod-
ules, we achieve an efficient problem representation, with a native encoding of constraints. We show that
generalizations to alternative algorithmic paradigms such as simulated annealing are straightforward. We
provide numerical benchmark results for industry-scale data sets. Our approach is found to consistently
outperform greedy baseline results. To assess the capabilities of today’s quantum hardware, we comple-
ment the classical approach with results obtained on quantum annealing hardware, using gbsolv on
Amazon Braket. Finally, we show how the latter can be integrated into our larger pipeline, providing a

quantum-ready hybrid solution to the problem.
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I. INTRODUCTION

The problem of robot motion planning is pervasive
across many industry verticals, including (for example)
automotive, manufacturing, and logistics. Specifically, in
the automotive industry robotic path optimization prob-
lems can be found across the value chain in body shops,
paint shops, assembly, and logistics, among others [1].
Typically, hundreds of robots operate in a single plant
in body and paint shops alone. Paradigmatic examples in
modern vehicle manufacturing involve so-called welding
jobs, application of adhesives, sealing panel overlaps, or
applying paint to the car body. The common goal is to
achieve efficient load balancing between the robots, with
optimal sequencing of individual robotic tasks within the
cycle time of the larger production line.

Another prototypical example involves postwelding
processes by which every joint is sealed with special com-
pounds to ensure a car body’s water tightness. To this end,
polyvinyl chloride (PVC) is commonly applied in a fluid
state, thereby sealing the area where different metal parts
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overlap. The strips of PVC are referred to as seams. Post
application, the PVC is cured in an oven to provide the
required mechanical properties during the vehicle’s life-
time. Important vehicle characteristics such as corrosion
protection and soundproofing are enhanced by this process.
Modern plants usually deploy a fleet of robots to apply the
PVC sealant, as schematically depicted in Fig. 1. However,
the major part of robot programming is typically carried
out by hand, either online or offline. Compared to the
famous NP-hard traveling salesman problem, the complex-
ity of identifying optimal robot trajectories is amplified
by three major factors. First, an industrial robot arm can
have multiple configurations that result in the same loca-
tion and orientation of the end effector. Furthermore, the
PVC is applied with a tool that is equipped with multi-
ple nozzles that allows for application at different angles.
A choice must be made regarding which nozzle to use
for seams that display easy reachability. Finally, industrial
robots are frequently mounted on a linear axis; thus, an
optimal location of the robot on the linear axis at which
the seam is processed must be determined. The objec-
tive of picking and sequencing the robot’s trajectories is
to find a time-optimal and collision-free production plan.

© 2022 American Physical Society
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FIG. 1. Schematic illustration of the use case. Robots are pro-
grammed to follow certain trajectories along which they apply
a PVC sealant along seams. The seams are highlighted by solid
lines with two endpoints each, and are not necessarily straight.
Dotted lines represent additional motion between seams. Every
robot is equipped with multiple tools and tool configurations, to
be chosen for every seam. The goal is to identify collision-free
trajectories such that all seams get processed within the minimum
time span.

Such an optimal production plan may increase through-
put, and automation of robot programming reduces the
development time of new car bodies.

Quantum computers hold the promise to solve seem-
ingly intractable problems across virtually all disciplines
with chemistry and optimization being likely the first
medium-term workloads. Specifically, the advent of quan-
tum annealing devices such as the D-Wave Systems
Inc. quantum annealers [2—5] has spawned an increased
interest in the development of quantum native, heuristic
approaches to solve discrete optimization problems. While
impressive progress has been made over the last few years,
the field is currently still in its infancy, but arguably at a
transition point from mere academic research to industri-
alization. Currently, however, it is still unclear what type
of quantum hardware and algorithms will deliver quan-
tum advantage for a practical, real-world problem. Because
of this, it is imperative to develop optimization methods
that can bridge the gap until scalable quantum hardware is
available, but also prepare customers to use specific opti-
mization models that will eventually be able to run on
quantum hardware.

The industry use case outlined above has been previ-
ously proposed as a potential industry reference bench-
mark problem for emerging quantum technologies [6—8].
To assess the capabilities of near-term quantum hard-
ware and its potential impact for real-world industry use
cases, here we follow a two-pronged approach. On the
one hand, we provide and analyze small-scale numer-
ical experiments on quantum annealing hardware (and
hybrid extensions thereof), while on the other hand, we
design and implement a complementary nature-inspired
solution strategy that can integrate quantum computing

hardware into its larger framework and provide busi-
ness value already today. Specifically, we put forward an
end-to-end optimization pipeline that extends evolutionary
metaheuristics known as biased random-key genetic algo-
rithms [9] towards alternative algorithmic paradigms such
as simulated annealing, in conjunction with model stack-
ing and ensemble techniques for solution refinement. For
automated hyperparameter tuning, we leverage Bayesian
optimization techniques. By design, the resulting hybrid,
quantum-ready solution is highly portable and should find
applications across a myriad of industry-scale combinato-
rial optimization problems far beyond the use case studied
in this work.

This paper is structured as follows. In Sec. II we review
the basic algorithmic concepts underlying our work, with
details on biased random-key genetic algorithms, as well
as quantum annealing. In Sec. III we then detail our the-
oretical framework, providing a comprehensive, quantum-
ready optimization pipeline for solving robot path prob-
lems at industry scales. Section IV describes systematic
numerical benchmark experiments. Finally, in Sec. V we
draw conclusions and give an outlook on future directions
of research.

I1. PRELIMINARIES

We start with a brief review of biased random-key
genetic algorithms and dual annealing, to set notation and
explain our terminology. Furthermore, we give a brief
introduction to quantum annealing, as well as the quadratic
unconstrained binary optimization (QUBO) formalism.

A. Biased random-key genetic algorithms

Biased random-key genetic algorithms (BRKGAs) [9]
represent a (nature-inspired, because genetic) heuristic
framework for solving optimization problems. It is a
refinement of the random-key genetic algorithm of Bean
[10]. While most of the work in the literature has focused
on combinatorial optimization problems, BRKGA has also
been applied to continuous optimization problems [11].
The BRKGA formalism is based on the idea that a solu-
tion to an optimization problem can be encoded as a
vector of random keys, i.e., a vector X in which each
entry is a real number, generated at random in the inter-
val (0, 1]. Such a vector X is mapped to a feasible solution
of the optimization problem with the help of a decoder,
i.e., a deterministic algorithm that takes as input a vec-
tor of random keys and returns a feasible solution to the
optimization problem, as well as the cost of the solution.

1. BRKGA for traveling salesman and vehicle routing
problems

The BRKGA framework is well suited for sequencing-
type optimization problems, as relevant for our PVC use
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case. For example, consider the traveling salesman prob-
lem (TSP) where a salesman is required to visit # given
cities, each city only once, and do so taking a minimum-
length tour. A solution to the TSP is a permutation 7 of the
n cities visited and its cost is

c= 6(7[1:7[2) + K(n25n3) + v + g(nn—lann) + K(ﬂn,ﬂ]),

where €(i,j) is the distance between city i and city
j. A possible decoder for the TSP takes the vector of
random keys as input and sorts the vector in increas-
ing order of its keys. The indices of the sorted vector
make up m, the permutation of the visited cities. As
an example, consider a TSP on five cities and let X' =
(0.45,0.78,0.15,0.33,0.95). The sorted vector is s(X) =
(0.15,0.33,0.45,0.78.0.95) and its vector of indices is 7 =
(3,4,1,2,5) having cost

c=4£3,4)+£4,1)+£(1,2) + £(2,5) + £(5,3).

Consider now the vehicle routing problem (VRP) where
we are given up to p vehicles, a depot (node 0), and
n locations {1,2,...,n} that these vehicles must visit,
starting and ending at the depot. Each location must be
visited by exactly one vehicle and all locations must be
visited. A solution to this problem is a set of p per-
mutations ', 7%,..., 77 such the 7' N7/ = & (i.e., no
two vehicles visit the same location) fori =1,...,p — 1,
j=i+1,...,pand J_, 7" ={1,2,...,n} (ie., all loca-
tions are visited). In this solution 77’ indicates the sequence
that vehicle i will take. Suppose that 7' = {1,3,5} and
7% = {4,2}; then vehicle 1 visits locations 1, 3, and 5, in
this order, and vehicle 2 visits location 4 and then location
2. Both vehicles start and end their tours at node 0 (the
depot). The cost C of this solution is the sum of the costs
of the tours of each vehicle, i.e., C = ¢! + ¢?, where

' =200,1)+€(1,3) + £(3,5) + £(5,0)

and
3= £(0,4) +£(4,2) +£(2,0).

A possible decoder for the VRP takes as input a vec-
tor of n+ v random keys, sorts the keys in increas-
ing order of their values, rotates the vector of sorted
keys such that the largest of the v keys is last in the
array, and then uses the v keys to indicate the divi-
sion of locations traveled to by each vehicle. For exam-
ple, consider n =5 and v =2 and consider the vec-
tor X = (0.45,0.78,0.15,0.33, 0.95,0.25, 0.35) of random
keys. The first n = 5 keys correspond to the locations to
be visited by the v = 2 vehicles. The last two keys cor-
respond to the two vehicles and are indicated in bold.
Sorting the keys in increasing order results in s(X) =
(0.15,0.25,0.33,0.35,0.45,0.78,0.95). The correspond-
ing solution (3, V1,4, V3, 1,2, 5) corresponds to the indices

of the sorted random-key vector. For example, 3 is the
index of the smallest key, 0.15, while 5 is the index of the
largest key, 0.95. Here V; and V; respectively correspond
to the indices of vehicle random keys in the sorted vec-
tor. Rotating the elements of the solution vector circularly
such that V, occupies the last position in the vector, we
get (1,2,5,3,Vy1,4,V,), which translates into a solution
where vehicle V| leaves the depot and visits locations 1,
2,5, 3, and then returns to the depot and vehicle V; leaves
the depot, visits location 4 and returns to the depot. The
cost C of this solution is the sum of the costs of the tours
of each vehicle, i.e., C = ¢' + ¢2, where

e =0(0,1) 4+ £(1,2) + £(2,5) + £(5,3) + £(3,0)

and

2 =10(0,4) + £(4,0).

2. Anatomy of BRKGA

BRKGA starts with an initial population Py of p
random-key vectors, each of length N. A decoder is
applied to each vector to produce a solution to the prob-
lem being solved. Over a number of generations, BRKGA
evolves this population until some stopping criterion is sat-
isfied. Populations P, Ps, ..., Px are generated over K
generations. The best solution in the final population is out-
put as the solution of the BRKGA. BRKGA is an elitist
algorithm in the sense that it maintains an elite set £ with
the best solutions found during the search. The dynam-
ics of the evolutionary process is simple. Population P
of each generation is made up of two sets of random vec-
tors: the elite set and the remaining solutions, the nonelite
set. To generate population Py from Py, the elite set of
Py is copied, without modification to Py . This accounts
for p. = |€| elements. Next, a set M of mutant solutions
(randomly generated random-key vectors) is generated and
added to Py . This accounts for an additional p,, = | M|
elements. The remaining p — p. — p,, elements of Py are
generated through parameterized uniform crossover [12].
Two parents are selected at random, with replacement: one
from the elite set of P, and the other from the nonelite
set. Denote these parents as the elite parent &, and the
nonelite parent X}, respectively. The offspring &', is gener-
ated as follows. For i = 1,...,N, let X [i] < &,[i] with
probability IT > % Otherwise, with probability 1 — IT,
X.[i] < A,[i]. Offspring X, is added to Pj4. This pro-
cess is repeated until all p — p, — p,, offspring are added
to Py+1, completing a population of p elements. The p,
random-key vectors with the overall best solutions of Py,
are placed in the population’s elite set, while the remaining
vectors are nonelite solutions. A new iteration starts by set-
ting k < k + 1. For illustration, the evolutionary process
underlying BRKGA is illustrated schematically in Fig. 2.
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FIG. 2. Schematic illustration of the evolutionary process

underlying BRKGA. In step (1) the chromosomes within the cur-
rent population & are ranked according to their fitness values. In
step (2) the elite individuals (those with the highest fitness scores)
are copied over to population £+ 1. In step (3), for diversity
and to combat local minima, new mutant individuals are ran-
domly generated and added to population k& + 1. In step (4) the
remaining portion of population & + 1 is topped up with offspring
generated by a biased crossover that mates elite with nonelite
parents.

3. BRKGA in action

BRKGA is a general-purpose optimizer where only the
decoder needs to be tailored towards a particular problem.
In addition, several hyperparameters need to be specified.
These are limited to the length N of the vector of random
keys, the size p of the population, the size of the elite set
Pe < p/2, the size of the set of mutants p,, < p — p., and
the probability IT > 1/2 that the offspring inherits the keys
of the elite parent. In addition, a stopping criterion needs
to be given. That can be, for example, a maximum number
of generations, a maximum number of generations without
improvement, a maximum running time, or some other cri-
terion. Several application programming interfaces (APIs)
have been proposed for BRKGA [13,14], including some

J

84, (AX (D)

[Tqu (t)]—D/(3—qu)

based on C++, PYTHON, JULIA, and JAVA. With these APIs,
the user only needs to define a decoder and specify the
hyperparameters of the algorithm.

4. Extensions for BRKGA

It should be noted that several extensions have been
proposed for BRKGA. Decoding can be done in parallel
[15]. Instead of evolving a single population, several pop-
ulations can be evolved in an island model [16]. Restarts
are known to improve the performance of stochastic local
search optimization algorithms [17]. The number of gener-
ations without improvement can be used to trigger a restart
in a BRKGA where the current population is replaced by a
population of p vectors of random keys. In BRKGA with
restart [ 18] a maximum number of restarts can be used as a
stopping criterion. Instead of mating two parents, mating
can be done with multiple parents [19]. Finally, path-
relinking strategies can be applied in the space of random
keys as a problem-independent intensification operator
[14].

B. Dual annealing

Dual annealing (DA) is a stochastic, global (nature-
inspired) optimization algorithm. Here, we provide a brief
overview of the DA algorithm as used in our extension of
the random-key optimizer, described in more depth in Sec.
II1. We use the DA implementation provided in the SciPy
library [20]. This implementation is based on generalized
simulated annealing (GSA), which generalizes classical
simulated annealing (CSA) and the extended fast simulated
annealing (FSA) into one unified algorithm [21,22], cou-
pled with a strategy for applying a local search on accepted
locations for further solution refinement. GSA uses a mod-
ified Cauchy-Lorentz visiting distribution, whose shape is
controlled by the visiting parameter ¢,

where ¢ is the artificial time (algorithm iteration). This dis-
tribution is used to generate a candidate jump distance
AX (¢) under temperature 7, , which is the step from vari-
able X (¢) the algorithm proposes to take. If this proposed
step yields an improved cost, it is accepted. If the step does
not improve the cost, it may be accepted with acceptance
probability

Pg, = min{l, max{0,[1 — (1 — qa)BAE]( 7401 (2)

[+ (@ — DAX@)/[T,, (P-4 /e D+D-D7”

(D

(

where AE is the change in energy (cost) of the system, ¢, is
an algorithm hyperparameter, and g = 1/(x T, (1)) refers
to the inverse temperature, with Boltzmann constant «. If
the proposed step is accepted, this yields an update step of

X)) =X01—-1+AX®); 3)

otherwise, X' (f) remains unchanged. The artificial tem-
perature 7, (¢) is decreased according to the annealing
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schedule

2001

Tqv(t)=Tqv(1)(1+t)q7_1

; (4)

where T, (1) is the starting temperature, with default
T,,(1) = 5230. As the algorithm runs through this param-
eterized annealing schedule, both acceptance probabilities
Dq. as well as jump distances AX'(f) decrease over time;
this has been shown to yield improved global convergence
rates over FSA and CSA [23].

After each GSA temperature step, a local search
function is invoked, which in the bounded variable
case [as ours is here, ie., X () €[0,1]"] defaults to
the limited-memory Broyden-Fletcher-Goldfarb-Shanno
bound-constrained (L-BFGS-B) algorithm. At each itera-
tion, the L-BFGS-B algorithm runs a line search along the
direction of steepest gradient descent around AX'(¢) while
conforming to provided bounds. For more details, see Ref.
[24]. Once the local search converges (or exits, i.e., by
reaching invocation limits), the found solution X (¢) is used
as the starting point for the next step in the GSA algorithm.

This dual annealing process of GSA followed by
the L-BFGS-B algorithm runs until convergence, or
until the algorithm exits due to maximum iterations,
as set by the algorithm’s hyperparameter maxiter.
If the artificial temperature 7, (f) shrinks to a value
smaller than R * T,, (1) (with corresponding hyperparam-
eter restart_temp_ratio) then the dual annealing
process is restarted, with the temperature reset to 7, (1)
and a random (bounded) position is provided for AXj. Note
that the algorithm iteration counts are not reset in this case,
so the overall algorithm runtime remains tractable.

C. Quantum annealing and the QUBO formalism

Quantum computers are devices that harness quantum
phenomena not available to conventional (classical) com-
puters. Today, the two most prominent paradigms for quan-
tum computing involve (universal) circuit-based quantum
computers and (special-purpose) quantum annealers [5].
While the former hold the promise of exponential speedups
for certain problems, in practice circuit-based devices are
extremely challenging to scale up, with current quan-
tum processing units (QPUs) providing about one hun-
dred (physical) qubits [5]. Moreover, to fully unlock any
exponential speedup, perfect (logical) qubits have to be
realized, as can be done using quantum error correction,
albeit with a large overhead, when encoding one logical
(noise-free) qubit in many physical (noisy) qubits. Con-
versely, quantum annealers are special-purpose machines
designed to solve certain combinatorial optimization prob-
lems belonging to the class of QUBO problems. Since
quantum annealers do not have to meet the strict engineer-
ing requirements that universal gate-based machines have

to meet, already today this technology features about 5000
(physical) analog superconducting qubits.

1. QUBO formalism

Recently, the QUBO framework has emerged as a pow-
erful approach that provides a common modeling frame-
work for a rich variety of NP-hard combinatorial optimiza-
tion problems [25-28], albeit with the potential for a large
variable overhead for some use cases. Prominent examples
include the maximum cut problem, the maximum indepen-
dent set problem, the minimum vertex cover problem, and
the traveling salesman problem, among others [25-27].
The cost function for a QUBO problem can be expressed
in compact form with the Hamiltonian

Hqueo = x"0x = inQijxj, (%)

if

where X = (x1,xz,...) is a vector of binary decision vari-
ables and the QUBO matrix Q is a square matrix that
encodes the actual problem to solve. Without loss of
generality, the O matrix can be assumed to be sym-
metric or in upper triangular form [27]. We have omit-
ted any irrelevant constant terms, as well as any linear
terms, as these can always be absorbed into the O matrix
because xl-2 = x; for binary variables x; € {0, 1}. Problem
constraints—which are relevant for many real-world opti-
mization problems—can be accounted for with the help of
penalty terms entering the objective function, as detailed
in Ref. [27]. Explicit examples will be provided below.

The significance of the QUBO formalism is further illus-
trated by the close relation to the famous Ising model [29],
which is known to provide mathematical formulations for
many NP-complete and NP-hard problems, including all
of Karp’s 21 NP-complete problems [25]. As opposed to
QUBO problems, Ising problems are described in terms
of binary (classical) spin variables z; € {—1, 1} that can be
mapped straightforwardly to their equivalent QUBO form,
and vice versa, using z; = 2x; — 1. The corresponding
classical Ising Hamiltonian reads

Higing = — ZJz‘jZ[Zj - Zhizi (6)

if

with two-body spin-spin interactions J; = —Q;; /4 and
local fields 4; (note that a trivial constant has been omitted).
If the couplers Jj; are chosen from a random distribution,
the Ising model given above is also known as a spin glass.
By definition, both the QUBO and the Ising models are
quadratic in the corresponding decision variables. If the
original optimization problem involves k-local interactions
with k£ > 2, degree reduction schemes have to be involved,
at the expense of the aforementioned overhead in terms of
the number of variables [5]. In general, one disadvantage
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of solving problems in a QUBO formalism on quantum
annealing hardware lies in the fact that the problem has to
be first mapped to a binary representation, then locality has
to be reduced to k£ < 2 (see below for details).

2. Quantum annealing

Quantum annealing (QA) [30,31] is a metaheuristic for
solving combinatorial optimization problems on special-
purpose quantum hardware, as well as via software imple-
mentations on classical hardware using quantum Monte
Carlo [32]. In this approach the solution to the original
optimization problem is encoded in the ground state of
the so-called problem Hamiltonian I:Iproblem. Finding the
optimal assignment z* for the classical Ising model (6) is
equivalent to finding the ground state of the corresponding
problem Hamiltonian, where we have promoted the classi-
cal spins {z;} to quantum spin operators {6/}, also known
as Pauli matrices, thus describing a collection of interact-
ing qubits. To (approximately) find the classical solution
{z/}, quantum annealing devices then undergo the follow-
ing protocol. Start with the algorithm by initializing the
system in some easy-to-prepare ground state of an ini-
tial Hamiltonian ﬁeasy, which is chosen to not commute
with I:Ipmblem. Following the adiabatic approximation [5],
the system is then slowly annealed towards the so-called
problem Hamiltonian I:Ipmblem, whose ground state encodes
the (hard-to-prepare) solution of the original optimization
problem. This is commonly done in terms of the anneal-
ing parameter 7, defined as v =¢/T4 € [0, 1], where ¢ is
the physical wall-clock time and 7, is the annealing time.
In the course of this anneal, ideally, the probability to find
a given classical configuration converges to a distribution
that is strongly peaked around the ground state of Higing.
Overall, the protocol is captured by the time-dependent
Hamiltonian

H(t) = A(t)Heasy + B(T) Hproplem, (7)

where the functions A(t),B(t) describe the annealing
schedule, with 4(0)/B(0) > 1 and A(1)/B(1) < 1. For
example, a simple, linear annealing schedule is given by
A(t) =1 —1 and B(r) = t. Because of manufacturing
constraints, current experimental devices can only account
for 2-local interactions, with a cost function described by

I:Iproblem = - ZJU 6'126']2 - Z hiOA','Z: (8)
ij i
while the initial Hamiltonian is typically chosen as
I:Ieasy = - Z a,l:x, (9)

which is a transverse-field driving Hamiltonian responsible
for quantum tunneling between the classical states mak-
ing up the computational basis states. Because the final

Hamiltonian (8) only involves commuting operators {67},
the final solution {z/} can be read out as the state of the
individual qubits via a measurement in the computational
basis.

3. Embedding

Solving an optimization problem of QUBO form on
QA hardware, however, frequently involves one more step,
typically referred to as embedding [33]. Because of manu-
facturing constraints, today’s quantum annealers based on
superconducting technology only come with limited con-
nectivity, i.e., not every qubit is physically connected to
every other qubit. In fact, typically, the on-chip matrix Jj; is
sparse. If, however, the problem’s required logical connec-
tivity does not match that of the underlying hardware, one
can effectively replicate the former using an embedding
strategy by which several physical qubits are combined
into one logical qubit. The standard approach to do so is
called minor embedding that provides a mapping from a
(logical) graph to a subgraph of another (hardware) graph.
One can then solve high-connectivity problems directly on
the sparsely connected chip, by sacrificing physical qubits
accordingly to the connectivity of the problem, typically
introducing a considerable overhead with multiple physi-
cal qubits making up one logical variable. This limitation
makes the problems subsequently harder to solve than in
their native formulation [34]. Specifically, in the extreme
case of a fully connected graph (as relevant for the trav-
eling salesman problem) only approximately 64 logical
spin variables can be embedded within the D-Wave 2000Q
quantum annealer that nominally features about 2000 phys-
ical qubits. Another example, circuit fault diagnosis, is
analyzed in detail in Ref. [35] and further highlights some
of these limitations. Finally, when including constrained
problems, the coupler distributions tend to broaden, which,
in turn, results in an additional disadvantage due to the
limited precision of the analog device.

4. QA workflow

Today, quantum annealing devices as provided by D-
Wave Systems Inc. can be conveniently accessed through
the cloud. In Fig. 3 we detail the end-to-end workflow for
solving some combinatorial optimization problem on such
a quantum annealer from a practitioner’s point of view.
Below, we put this workflow into practice when solving
small instances of our use case on D-Wave, as available on
Amazon Braket, and hybrid extensions thereof.

III. THEORETICAL FRAMEWORK

In this section we discuss in detail the theoretical frame-
work underlying our work, as outlined in Fig. 4. We first
define notation, introducing the concept of an abstract,
composite node that encapsulates information about the
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Computational problem to solve
Map to Ising (QUBO) problem
Load (embed) Ising problem onto QPU
Run quantum annealing

Store bit string
solution and repeat

Read out (physical) spin configuration

Repeat

Map spin configuration to

(logical) bit string

FIG. 3. Flow chart illustrating the end-to-end workflow for
solving a combinatorial optimization problem on a quantum
annealer. First, the problem has to be cast as a QUBO (or, equiv-
alently, Ising) Hamiltonian. This abstract QUBO problem is then
mapped onto the physical QPU, typically at the expense of an
enlarged number of variables (given the sparse connectivity of
the underlying quantum chip). Next, quantum annealing is used
to find a high-quality variable configuration. This solution is
mapped back to a bit string (of logical variables) correspond-
ing to a solution of the original optimization problem. Given the
probabilistic nature of this process, it is typically repeated mul-
tiple times, followed by a statistical analysis. The goal is to find
a configuration of variables that (approximately) minimizes the
objective function. Further details are provided in the main text.

seam number together with other relevant degrees of
freedom (such as tool configuration or position of the
robot). Next we detail our classical as well as quantum
native solution strategies to the PVC use case. Specifi-
cally, we show how BRKGA can be applied to the PVC
use case, by proposing an efficient decoder design that
natively accounts for the problem’s constraints. Finally,
we detail how this use case can be described within the
quantum-ready QUBO framework.

A composite node can be viewed as a generalization of
a city in the canonical TSP. In analogy of the TSP, the
goal is to identify an optimal sequence of nodes, with a
node encoding not only spatial information, but also other
categorical features relevant to the use case at hand. Specif-
ically, in our setup we define a node as a quintuple of the
form

node = [s,d, t,c,p]. (10)

Generalizations to other problems are straightforward.
Here, a node encapsulates information about the seam
index s = 1,..., N ams, the direction d = 0,1 by which
a given seam is sealed, the tool #=1,..., %0, and
tool configuration ¢ = 1,...,nconig used, as well as the
(discretized) linear-axis position p = 1,. .., Apesition. This
definition of a generalized, composite node accounts for

TABLE I. Example data set (cost matrix) for illustration. The
problem is specified in terms of cost values (in seconds) for pairs
of nodes, with every node described by a tuple [s,d, ¢, c, p] that
captures the seam index s, direction d, tool ¢, tool configuration
¢, and robot position p. Further details are provided in the main
text.

Node (from) Node (to)

K d t ¢ p K d t ¢ p Costw(s)
0 o 0 o o 18 1 1 1 1 0.877
11 2 1 0 1 12 1 2 0 1 0.473
m 2 1 0 1 12 0 3 0 0 0.541
32 2 1 2 1 25 2 1 2 1

0.558

the facts that (i) any seam can be sealed in one of two direc-
tions, (ii) a robot can seal a given seam using one of several
tools, (iii) which (at the same time) can be employed in
different configurations, and (iv) a robot can take one of
several positions along a fixed rail. All coordinates can

be described by integer values. The problem is then spec-

. . node;
ified in terms of cost values w__ .~

node; (111 seconds) for the
robot to move from one of the endpoints of node; to one
of the endpoints of node;, including both the cost associ-
ated with applying PVC to node; as well as proceeding in
idle mode to node;. As illustrated in Fig. 1, every seam
has two endpoints, i.e., a degree of freedom captured by
the binary direction variable d = 0, 1. For illustration, a
sample data set is shown in Table 1. For industry-relevant
problem instances, such a data set has roughly one million
rows, only providing preselected, feasible connections, as
(in practice) many node pairs represent infeasible robot
routes because of obstacles. Finally, we note that each
robot has a home (or base) position from which it starts its
operation, and where its tour comes to an end; this home
position is associated with node [0, 0, 0, 0, 0]. More details
on the generation of real-world data sets will be given in
Sec. IV.

A. Robot motion planning with nature-inspired
algorithms

We now discuss our end-to-end optimization pipeline
for robot motion planning, as schematically depicted in
Fig. 4. We first detail the core optimization routine,
dubbed random-key optimizer (RKO), with a focus on
the use-case-specific decoder design, before discussing
potential upstream and downstream extensions for further
solution refinement. Specifically, with the RKO concept,
we introduce a generalization of the BRKGA formalism
and its distinct separation of problem-independent and
problem-dependent modules towards alternative optimiza-
tion paradigms such as simulated annealing. More details
are provided below.
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Optimization pipeline (a)
Greedy
Input Quantum Random-key Path
P annealing optimizer relinking Output
Random-key optimizer (BRKGA, ...) (b) Decoder (c)

Original chromosome

x 025019067098 ]0.04]0.71]

Decoder
Chromosome broken up into tuples
x [025]098]0.19 [ 0.04 [ 0.67 | 0.71 |
s . . ‘ . Sorted vector
¢ Search combinatorial
solution space indirectly o o s(X) | 0.19 | 0.04 | 0.25 | 0.98 | 0.67 | 0.71 |
« Decoder maps ‘ .
h feasibl
zo;’l:)tr;r;(:]some to feasible o X = ([2,“, [Lﬂa [37ﬂ) solution to original problem

FIG. 4. Schematic illustration of our approach. (a) Flow chart of our end-to-end optimization pipeline. The core routine takes the
problem input, here specified in terms of cost values associated with pairs of nodes, and feeds this input into the random-key opti-
mizer (RKO). The latter heuristically searches for an optimized tour of composite nodes, which represents the pipeline’s output. This
core routine can be extended with additional upstream and downstream modules for further solution refinement. Upstream solutions
provided by alternative algorithms (such as greedy algorithms, quantum annealing, etc.) can be used to warmstart the RKO. Akin to
ensemble techniques routinely used in machine learning, a pool of different solutions may help identify high-quality solutions, adding
high-quality diversity into the initial population of the RKO module. Downstream, further solution refinement can be achieved through
path-relinking techniques, by forming superpositions of high-quality solution candidates. (b) Schematic illustration of the RKO. The
key characteristic of the RKO is a clear separation between problem-independent modules (as illustrated by the blue hypercube that
hosts the chromosome X’) and the problem-dependent, deterministic decoder that maps X" to a solution of the original problem with
associated cost (or fitness) value. By design, our decoder ensures that problem constraints (e.g., every node has to be visited exactly
once) are satisfied. In BRKGA the trajectory of chromosome X is set by evolutionary principles, but generalizations to alternative
algorithmic paradigms such as simulated annealing are straightforward. (c) Example illustration of the decoding of chromosome X,
made of random keys in (0, 1], into a solution to the original combinatorial optimization problem. We consider a sequencing problem
paired with a binary decision variable (such as the binary direction variable d =1, |) for n = 3 composite nodes. The first block of
the chromosome (highlighted in blue) encodes the solution to the sequencing problem, while the second block (highlighted in red)
encodes the additional binary variable, thus representing a minimal example for the concept of a composite node. The chromosome
can be broken up into # tuples, one encoding a single node each. The decoder then performs simple sorting according to the first entry
in the tuple, yielding the sorted vector s(X). Finally, the solution to the original problem x is given by the indices of this sorting routine
paired with a simple threshold routine applied to the tuples’ second entry. Here, the threshold is set at 0.5. Further details are provided
in the main text.

1. Core pipeline: decoder design freedom making up a composite node. As illustrated in Fig.
4(b), the decoder plays an integral part in our random-key
approach. While the problem encoding is specified by
the evolutionary part underlying BRKGA, decoding is
controlled through the design of the decoder. Here, the
decoder is designed as follows (see Appendix A for imple-
mentation details in PYTHON code). The decoder takes a

We now detail an example decoder design, as used in
our numerical experiments. The problem input is given in
terms of a generalized cost matrix as displayed in Table I.
Similar to the TSP, our goal is to identify a minimum-cost
tour (as a sequence of nodes) that visits n given seams, each
seam only once, while specifying the additional degrees of
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vector X of N = D ngeams random keys as input, sorts the
keys associated with the seam numbers s in increasing
order of their values, and applies simple thresholding logic
to the remainder of keys; see Fig. 4(c) for an illustration. In
our case the number of features D is D = 5. Similar to the
TSP example outlined above, the indices of the sorted vec-
tor component make up 7, the permutation of the visited
seams; see the blue block in Fig. 4(c). As opposed to the
TSP, however, we have to assign discrete values for the
remaining node degrees of freedom as well, as shown in
the red block in Fig. 4(c). For example, if the correspond-
ing original variable is binary, as is the case in Fig. 4(c),
the thresholding logic reduces to int(X;) € {0, 1}, but gen-
eralizations to variables with larger cardinality are straight-
forward. For example, if a larger cardinality is assumed for
the original variable V;, say V; € {1,2,...,C}, then ), = k
if X; e (k—1)/C, k/C] fork =1,2,...,C. Note that our
mathematical representation by design generates feasible
routes only where every seam is visited exactly once, while
only scaling linearly with the number of seams #geanms, and
with a prefactor set by the number of degrees of freedom.
While the original cost matrix as displayed in Table I fea-
tures feasible connections only, the decoder may suggest
infeasible moves that have been preselected from the orig-
inal data set. By padding the cost matrix with prohibitively
large cost values for these types of moves, over the course
of the evolution the algorithm will learn to steer away from
these bad-fitness solutions. As detailed in Sec. IV numer-
ically, we find that our solution always arrives at feasible,
low-cost tours that include feasible moves only.

2. Algorithmic generalizations

In the common BRKGA framework the trajectory of
every chromosome X in the abstract half-open hyper-
cube of dimension (0,1]" is governed by evolutionary
principles, as detailed in Sec. II. However, alternative algo-
rithmic paradigms such as simulated annealing (SA) [36]
and related methods can be readily used as well, all within
our random-key formalism. That is because, for any chro-
mosome X, the decoder does not only provide the decoded
solution s(X’) but also the fitness (or cost) value f (X)), in
our case defined as the total cost of the tour. Black-box
query access to f (X)), however, is sufficient for optimiza-
tion routines such as SA to perform an update on the
solution candidate X" and continue with training till some
(algorithm-specific) stopping criterion is fulfilled. To illus-
trate this point, we have performed numerical experiments
based on the dual annealing algorithm [22]. As detailed
in Sec. I, this stochastic approach combines classical SA
with local search strategies for further solution refinement.
We refer to this annealing-based extension of the random-
key formalism as RKO DA. Numerical results and more
details are presented in Sec. V.

3. Warmstarting

The core optimization routine outlined above can be
extended with additional upstream logic. Specifically, in
analogy to model-stacking techniques commonly used in
machine-learning pipelines, solutions provided by alter-
native algorithms (such as linear programming, greedy
algorithms, quantum annealing, etc.) can be used to warm-
start the RKO, as opposed to coldstarts with a random
initial population P,. Similar to standard ensemble tech-
niques, the output of several optimizers may be used
to seed the input for RKO, thereby leveraging informa-
tion learned by these while injecting diverse quality into
the initial solution pool Py. By design, this strategy can
only improve upon the solutions already found, as elite
solutions are not dismissed and just propagate from one
population to the next in the course of the evolutionary
process. The technical challenge is to invert the decoder
with its inherent many-to-one mapping. To this end, we
propose the following randomized heuristic. Consider a
given permutation 7 such as 7 = (4,2,3,1), with n = 4.
Our goal is then to design an algorithm that produces
a random key X that (when passed to the decoder) is
decoded to the permutation . To this end, we chop up
the interval (0, 1] into evenly spaced chunks of size A =
1/n = 0.25, with centers &; at 0.125, 0.375, 0.625, and
0.875. We then loop through the input sequence 7 and
assign these center values to appropriate positions in X',
as X =(,,)—> (0125 — (-,0.375,-,0.125) —
-+ — (0.875,0.375,0.625,0.125). When sorting this key,
we obtain the desired sequence of indices given by m =
(4,2,3,1). Finally, we randomize this deterministic proto-
col by adding uniform noise §; € (X; — A /2, X; + A/2) to
each element in &, thus providing a randomized chromo-
some such as X = (0.93,0.31,0.67,0.08). By repeating
the last step m times, one can generate a pool of m
warm chromosomes. For the remaining categorical fea-
tures d,t,c,p, it is straightforward to design a similar
randomized protocol. For example, for the binary feature
d, we generate a random number in (0,0.5] if d = 0, and a
random number in (0.5,1]ifd = 1.

4. Path relinking

Our core pipeline can be further refined with path-
relinking (PR) strategies for potential solution refinement.
Several PR strategies are known, some of them operating
in the space of random keys (also known as implicit PR
[14]) for problem-independent intensification, and some of
them operating in the decoded solution space. The com-
mon theme underlying all PR approaches is to search
for high-quality solutions in a space spanned by a given
pool of elite solutions, by exploring trajectories connect-
ing elite solutions [37,38]; one or more paths in the search
space graph connecting these solutions are explored in
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the search for better solutions. In addition to these exist-
ing approaches, here we propose a simple physics-inspired
PR strategy that can be applied post-training. Consider
two high-quality chromosomes labeled as X} and A,. We
can then heuristically search for better solutions with the
hybrid (superposition) ansatz

X(@) = (1 —a)X) +als (11)

with o € [0, 1]. We then scan the parameter o and query
the corresponding fitness by invoking the decoder (with-
out having to run the RKO routine again). For « = 0 and
a = 1, we recover the existing chromosomes &’ and A%,
respectively, but better solutions may be found along the
trajectory sampled with the hybridization parameter «.

5. Restarts

Finally, restart strategies as described in Sec. II can be
readily integrated into our larger optimization pipeline.
Numerical experiments including restarts are detailed in
Sec. IV.

B. Robot motion planning with quantum native
algorithms

We now detail a quantum native QUBO formulation for
our industry use case, followed by resource estimates for
the number of logical qubits required to solve this use case
at industry-relevant scales.

1. QUBO representation

We introduce binary (one-hot encoded) variables, set-

ting xr[lf)]de =1 if we visit node = [s,d, t,¢,p] at position
T =1,...,eams Of the tour, and xr[lf)]de = 0 otherwise. Fol-
lowing the QUBO formulation for the canonical TSP
problem [25], we can then describe the goal of finding a

minimal-time tour with the quadratic Hamiltonian

Nseams

de’ T+1]
Heost = Z Z Z ngdz node node’ (12)

=1 node node’

node’

with w denoting the cost to go from node to node’.

node
Here, the product x[7) x I[;;rl,] =1 if and only if node is at

position 7 in the cycle and node’ is visited right after at
position 7 + 1. In that case we add the corresponding dis-
tance wﬁggg/ to our objective function that we would like
to minimize. Overall, we sum all costs of the distances
between successive nodes. Next, we need to enforce the
validity of the solution through additional penalty terms,
i.e., we need to account for the following constraints. First,
we should have exactly one node assigned to every time
step in the cycle. Mathematically, this constraint can be

written as

7] _
Z Msditep) = |

s,d,t.e.p

forallt =1,..., Asams- (13)

Second, every seam should be visited once and only once
(in some combination of the remaining features). Note
that we do not have to visit every potential node. This
constraint is mathematically captured by

Z Z x{srji,f,c,p] =1

T dtep

foralls =1,..., Nscams. (14)

As detailed in Ref. [27] within the QUBO formalism, we
capture these constraints through additional penalty terms
given by

Nseams 2
Htlme =P Z [Z'xnode :| > (15)

node

2
1] . (16)

Nseams
complete =P E |: E E xsdlcp]

T dtep

with penalty parameter P > 0 enforcing the constraints.
Note that the numerical value for P can be optimized in an
outer loop. Finally, the Hamiltonian describing the robot
motion (RM) use case (Hry) then reads

Hrm = Heost + Hiime + Hcomplete. (17)
Because the Hamiltonian Hgry is quadratic in the binary
decision variables {xr[lf)]de}, it falls into the broader class of
QUBO problems, which is amenable to quantum native
solution strategies, for example in the form of quantum

annealing [5], in addition to traditional classical solvers
such as simulated annealing or tabu search.

2. Resource estimation

We complete this analysis with a rough estimate for the
number of (logical) qubits rquyits required to implement this
QUBO formulation for industry-relevant scales. With the
number of time steps for the Hamiltonian cycle given by
Ngeams WE Obtain

2
Nqubits = 2nseamsntoolsnconﬁgnposition- (1 8)

Taking numbers from a realistic industry-scale case we
USe€ Ascams ~ 30, Mools ~ 3, Rconfig ™~ 10, and Nposition ™ 3;
we then find that ngpis ~ 5 x 10°. Furthermore, given the
quadratic overhead for embedding an all-to-all connected
graph onto the sparse Chimera architecture [35], we can
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estimate the required number of physical qubits Nyupits to
be as large as

Nqubits ~ 10", (19)

This number is much larger than the number of qubits
available today and in the foreseeable future, and higher
connectivity between the physical qubits will be needed
to reduce our requirements for Ngpiis. Therefore, in our
numerical experiments we utilize hybrid (quantum clas-
sical) solvers that heuristically decompose the original
QUBO problem into smaller subproblems that are compat-
ible with today’s hardware. These subproblems are then
solved individually on a quantum annealing backend, and
a global bit string is recovered from the pool of individ-
ual, small-scale solutions by stitching together individual
bit strings.

Finally, for illustration purposes, let us also compare the
size of the combinatorial search space any QUBO-based
approach is exposed to, as compared to the native search
space underlying the random-key formalism. Disregard-
ing (for simplicity) all complementary categorical features
for now, the size of the search space for the QUBO for-
malism amounts to 2”§eam5, while a native encoding has to
search through the space of permutations of size ngeams!.
This means that, for ng,ms ~ 50, the latter amounts to
about 10%, while the QUBO search space is many orders
of magnitude larger, with 25 ~ 10752 possible solution
candidates, thus demonstrating the benefits of an efficient,
native encoding for sequencing-type problems as relevant
here.

IV. NUMERICAL EXPERIMENTS AND
BENCHMARKS

We now turn to systematic numerical experiments for
industry-relevant data sets. We first describe the generation
of the data sets, and then compare results achieved with
random-key algorithms to baseline results using greedy
methods. Our implementation of BRKGA is based on
code originating from Ref. [14]. We also provide results
achieved with SA applied within the QUBO modeling
framework (referred to as QUBO SA). To assess the capa-
bilities of today’s quantum hardware, we complement
these classical approaches with quantum native solution
strategies, including results obtained on quantum anneal-
ing hardware within a hybrid quantum classical algorithm,
using gbsolv on Amazon Braket (referred to as QUBO
QBSolv) [39].

A. Data sets

All data sets are generated by BMW Group using cus-
tom logic that is implemented in the Robot Operating
System (ROS) framework [40]. To be able to calculate
the relevant cost values (measured in seconds) to move

between nodes and build the cost matrix W, the physical
robot cell is modeled in ROS. This includes loading and
positioning of the robot model, importing static collision
objects, and parsing the robotic objectives. The generation
of the data set is then done in two steps. First, a reachability
analysis is carried out to inspect the different possibili-
ties of applying sealant to a given seam. This includes the
choice of the nozzle to use, the robot’s joint configuration,
and the position of the robot on the linear axis. The latter
is discretized to provide a finite number of possible linear
axis positions to be searched, with nyusition left as a free
parameter in the framework. Second, the motion planning
is carried out to obtain the trajectories for all possibilities to
move from one seam to all possibilities of processing any
other seam. Collision avoidance and time parameteriza-
tion are included in this process. To this end, we adopt the
RRT* motion planning algorithm [41]. If the motion plan-
ning does not succeed, no (weighted) edge is entered in the
motion graph. The runtime to generate the largest data set
presented in this paper is approximately 2.5 d. These cal-
culations are performed with 70 threads on an Intel Xeon
Gold 6154 CPU, running at 3.00 GHz. The largest data
set considered contains ngams = 71 seams, including the
home position. For our scaling and benchmarking analy-
sis (as shown in Fig. 5 below), we have implemented a
random downsampling strategy. By randomly removing
seams from the original data set we have generated syn-
thetic data sets with variable size, ranging from 7ngeans = 10
10 Mseams = 70 1n increments of five seams, with ten distinct
downsamples per system size. For reference, within the
QUBO formalism, the smallest instance with 7gms = 10
already requires approximately 10* binary variables, thus
representing a large QUBO problem to be solved.

B. Benchmarking results

First we provide results for two selected, large-scale,
industry-relevant benchmark data sets, referred to as
benchmark L and benchmark XL with ng,ms = 52 and
Nseams = 71, respectively. While benchmark XL represents
the largest available problem instance, benchmark L, while
smaller, represents a particularly hard instance because
it features many obstructions to the robot’s path (result-
ing in missing entries in the motion graph). We compare
three different algorithmic strategies on these benchmark
instances, including BRKGA and RKO DA (both based
on the random-key formalism, but following different opti-
mization paradigms), as well as a greedy baseline. Here
we do not provide results for any QUBO-based solu-
tion strategies, because these instances are out of reach
for QUBO solvers, with approximately 6 x 10° and 10°
binary variables, respectively. Note that numerical results
based on the QUBO formalism will be provided below.
Hyperparameter optimization for the BRKGA and RKO-
DA solvers is done as outlined in Ref. [42] using Bayesian
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FIG. 5. Numerical results for systems with up to n5cams = 70 seams. Other dimensions are fixed, with ng = 2, #0015 = 3, fconfig = 9,
Tposition = 4. FOT Mgeams = 20, the QUBO size as measured by the required number of binary variables amounts to about 10°, posing
limits on the accessible problem size because of memory restrictions. (a) Solution quality as measured by the total cost (i.e., duration)
of the best tour found (in seconds). All results have been averaged over ten samples per system size, specified by the number of
seams. We compare results achieved with BRKGA for two sets of hyperparameters (as shown with the blue upward triangles [HPO
1] and orange downward triangles [HPO 2]) and for RKO-DA (brown crosses) with one set of hyperparameters, with a simple greedy
heuristic serving as the baseline (green circles). For instances with ngens S 20, we provide results based on the QUBO formalism for
both classical simulated annealing (QUBO SA, red diamonds), as well as a hybrid (quantum classical) decomposing solver gbsolv
(QUBO QBSolyv, purple squares). (b) Algorithm runtime as a function of the number of seams 7eams. The greedy baseline algorithm
is extremely fast with its runtime showing practically no discernible dependence on the system size in the parameter regime tested
here. Our implementation of BRKGA displays a mild, linear scaling with the absolute numbers depending on hyperparameters such
as population size. Still, the largest problems with 7geams ~ 70 seams are solved within a few hours. The RKO-DA implementation is
found to be about an order of magnitude faster than BRKGA. The QUBO-based approaches display comparatively long runtimes for
sufficiently large system sizes. Further details are given in the text.

optimization techniques. The greedy algorithm is run 10*
times, each time with a different random starting config-
uration, thereby effectively eliminating any dependence
on the random seed. We have observed convergence for
the best greedy result after typically about 10* shots, and
only the best solutions found are reported. Our results
are displayed in Table II. We find that both the BRKGA

and RKO-DA strategies outperform the greedy baseline.
Specifically, BRKGA yields an improvement of 3.24 s
(8.74%) on benchmark L and 0.90 s (1.36%) on benchmark
XL, while RKO DA yields an even larger improvement of
3.75 s (10.12%) on benchmark L and 2.39 s (3.62%) on
benchmark XL. These improvements can directly translate
into cost savings, increased production volumes or both.
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TABLE II. Numerical results for two industry-relevant benchmark data sets, referred to as benchmark L and benchmark XL. For
reference, with QUBO size we report the approximate number of binary variables [cf. Eq. (18)] to describe this instance within the
QUBO formalism. We report cost values achieved with three different algorithmic strategies (greedy, BRKGA, and RKO DA). The
greedy algorithm has been run 10* times, and the best (lowest cost) solution is reported in the table. Best results across algorithms are
marked in bold. The last two columns specify the absolute and relative improvements of the best solution over the greedy baseline

strategy. Further details are provided in the main text.

Number QUBO Absolute A Relative A
Data set of seams size Greedy BRKGA RKO DA (s) (%)
Benchmark L 52 6 x 10° 37.05 33.81 33.30 3.75 10.12
Benchmark XL 71 1 x 106 65.99 65.09 63.60 2.39 3.62

C. Scaling results

To complement our benchmark results, we have per-
formed systematic experiments on data sets with variable
size, ranging from 7geams = 10 t0 Mgeams = 70 in incre-
ments of five seams, with ten samples per system size.
Our results are displayed in Fig. 5, with every curve
referring to one fixed set of hyperparameters (such as pop-
ulation size p, mutant percentage p,,, etc. in the case of
BRKGA). Further details regarding hyperparameters can
be found in Appendix B. We also report numerical results
based on the quantum native QUBO formalism, using
both classical simulated annealing, as well as a hybrid
(quantum classical) decomposing solver gbsolv. How-
ever, for ngams = 20, the QUBO size as measured by
the required number of binary variables already amounts
to about 10°, posing limits on the accessible problem
size because of memory restrictions. We compare results
achieved with BRKGA for two sets of hyperparameters,
and for RKO DA with one set of hyperparameters, and
find that these consistently outperform greedy baseline
results, providing about a 10% improvement for real-world
systems with 7ge,ms ~ 50. Note that BRKGA (HPO 2) is
run with ten shots for problem sizes 45, 50, 55, and 70
to reduce variance observed when using fixed hyperpa-
rameters. Performance of the RKO-DA solver is found
to be competitive with BRKGA throughout the range of
problem sizes. The QUBO-SA solver is found to be the
least competitive, and the least scalable, unable to solve
problems beyond #geams & 20. Finally, the QUBO-QBSolv
approach performs on par with the greedy algorithm, albeit
at much longer runtimes, but is unable to scale beyond
Nseams ~ 30.

Next, we report on the average runtimes of each solver
as a function of problem size; see Fig. 5(b). Given its
simplicity, the greedy algorithm is found to be the fastest
solver, taking under a second (about 0.60 s) to solve the
largest problem instances with ngeams = 70, after loading in
the requisite data. Our implementation of the random-key
optimizer RKO DA can solve the largest problem instances
within about 15 min, and exhibits a benign, linear run-
time scaling with problem size. Our implementation of

BRKGA displays a similar scaling, but typically takes a
few hours to complete, with average runtimes ranging from
about 0.78 h (HPO 2, ngeams = 10) to about 6.40 h (HPO 1,
nseams = 70). The observed difference in runtimes between
BRKGA (HPO 1) and BRKGA (HPO 2) can be largely
attributed to the different population sizes (with p =
9918 and p = 7978 for HPO 1 and HPO 2, respectively)
and patience values (with patience = 52 and patience =
66 for HPO 1 and HPO 2, respectively). The observed
speedup from BRKGA to RKO DA, both based on the
random-key formalism, can be attributed to the inter-
nal anatomy of the respective algorithm: while BRKGA
evolves entire populations of (in our case typically p ~
10%) interacting chromosomes, RKO DA tracks only one
single chromosome X’ throughout its algorithmic evolu-
tion, yielding about an order-of-magnitude speedup across
the range of problem sizes studied here. Finally, as com-
pared to the heuristics described above, the QUBO-based
approaches display unfavorable runtimes, either because
of orders-of-magnitude longer runtimes across the range
of accessible problem sizes (QUBO QBSolv) or because
of unfavorable runtime scaling (QUBO SA), further cor-
roborating the advantage of our native solution strategies
as compared to quantum native QUBO formulations.

D. Time-to-target results

We complete our numerical benchmark analysis with
time-to-target (TTT) studies, as outlined and detailed (for
example) in Ref. [43]. TTT plots have been shown to
be useful in the comparison of different algorithms, and
have been widely used as a tool for algorithm design
and comparison [44]. As described in Ref. [44], on the
ordinate axis TTT plots display the probability that an
algorithm will find a solution at least as good as a given
target value within a given runtime (shown on the abscissa
axis), thereby characterizing expected runtimes of stochas-
tic algorithms within empirical (cumulative) probability
distributions. We extract these by measuring CPU runtimes
needed to find a solution with an objective function value
at least as good as a fixed target value for a given prob-
lem instance. To this end, we run a given algorithm 7o
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FIG. 6.

52. Target values (measured in seconds) have been set to 40 (poor solution quality; black circles), 38 (brown triangles), 36 (red
squares), and 34 (high solution quality; orange crosses); compare Table II. Plots for a target of 34 (if available) are placed in the insets
for clarity. We plot the probability to hit a fixed target cost value on the vertical axis, as a function of the algorithm’s runtime on the
horizontal axis. Each algorithm has been run 100 times to convergence with fixed hyperparameters, varying the seed on each run, and
tracking every intermediate step. The greedy solver is unable to reach or exceed a target of 37 (the best greedy solution is 37.05), while
both the BRKGA and RKO-DA solvers reach a target of 34, with probabilities about 2% for BRKGA and about 8% for RKO DA.

Further details are given in the text.

times, with a distinct seed for every run (thus giving inde-
pendent runs). Our results are displayed in Fig. 6, showing
TTT plots for BRKGA, RKO-DA, and greedy solvers on
benchmark L with ng,os = 100 and several target values.
The results show that each algorithm will take longer to
hit a given target as this target cost becomes smaller. Fur-
thermore, the greedy solver is unable to reach or exceed
a target of 37 (the best greedy solution is 37.05), while
both the BRKGA and RKO-DA solvers reach a target of 34
with probabilities about 2% for BRKGA and about 8% for
RKO DA. Finally, the expected runtime across solvers, for
any given target value, is different by orders of magnitude:
greedy is fastest, RKO DA is next fastest, and BRKGA is
slowest. For example, for the RKO-DA solver, a runtime
of approximately 300 s is sufficient to find a target solu-
tion with a cost of 36 (or better) with approximately 50%
success probability, while BRKGA needs about 1.2 x 10*
s to achieve the same and the greedy algorithm completely

fails to achieve this solution quality.

V. CONCLUSION AND OUTLOOK

In summary, we show how to solve robot-trajectory
planning problems at industry-relevant scales. To this

end, we develop an end-to-end optimization pipeline that
integrates classical random-key algorithms with quan-
tum annealing into a quantum-ready, future-proof solution
to the problem. With the help of a distinct separation
of problem-independent and problem-dependent modules,
our approach achieves an efficient problem representation
that provides a native encoding of constraints, while ensur-
ing flexibility in the choice of the underlying optimization
algorithm. We provide numerical benchmark results for
industry-scale data sets, showing that our approach con-
sistently outperforms greedy baseline results. We comple-
ment this analysis with a transparent assessment of the
capabilities of today’s quantum hardware and resource
estimates for the number of qubits required to implement a
quantum native problem formulation for industry-relevant
scales.
Finally, we highlight possible extensions of research
going beyond our present work, where we have focused
on settings involving a single robot, as relevant for situ-
ations in which collisions between robots can be avoided
through the definition of appropriate bounding boxes. In
future work it will be instructive how to generalize our
random-key approach towards multirobot problems. To
this end, we make use of an apparent analogy to the VRP as
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outlined in Sec. II. Specifically, we can associate individual
robots with vehicles in the traditional VRP. With a straight-
forward extension of our formalism we can then solve
both the allocation and the sequencing problems within
one unified framework. For example, consider a setup
with nge,ms = 6 and two robots, and a sample random-key
vector X = (0.25,0.19,0.67,0.98,0.04,0.82,0.23,0.71).
Here, the first ng,ms = 6 keys correspond to seams to
be sealed by v = 2 robots. Along the lines of the VRP
presented above, this random-key vector translates into
a solution where the first robot leaves its home position
and visits seams 6,4, 5,2 (in this order), and then returns
to its base, while the second robot leaves its home posi-
tion and visits locations 1,3 before returning to its base.
The decoder then computes the corresponding cost value
by adding individual cost values, in addition to potential

large penalties if the proposed solution incurs a collision
between robots. Through the feedback mechanism inherent
to our approach, the latter will steer the algorithm towards
collision-free solutions over the course of the evolution.
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APPENDIX A: EXAMPLE DECODER DESIGN

In this section, we provide the core code block (in
python) for our example decoder design.

def decode piecewise(self, chromosome):
# Split chromosome into (N) dimensions,
chr pieces = np.array split (chromosome,

decoded pieces = ||
sort order = None

to be decoded
self.instance .num_dims)

independently

for idx, piece in enumerate(chr pieces):
if idx = 0: # assume dim0 = abstract node number (e.g. seam number)
# Sort in ascending order and use the order of indices
permutation = np.argsort (piece)
# Track seam order to pair correctly with other dimensions

sort order =
else:

# Assume categorical

n_bins =

step size =

# Define bin

copy (permutation)

values for all
1. / n_bins
edges

other dimensions

self.instance.dim_sizes[idx|

bins = np.arange (0.0, 1.0+step size, step=step size)
# Assign values to bins, report bin assignment; offset by 1
permutation = np.digitize (piece, bins) — 1

# Rearrange output according to seam argsort order

permutation =

decoded pieces.append(permutation)

permutation[sort order]

# Pair elements in same position across dimensions
# i.e. [1,2,3], [10,20,30] — [1,10], [2,20], [3,30]
decoded = list (zip(*decoded pieces))

return decoded

def decode(self, chromosome, rewrite: bool = False) —> float:
# Decode chromosome into tour, with nodes of N—dimensions
decoded = self.decode piecewise (chromosome)
# Add distance from LAST node to FIRST node
cost = self.instance.distance(decoded|[—1], decoded[0])
# Cumulative sum of distances for intermediate nodes of tour
for i in range(len(decoded)—1):
cost += self.instance.distance(decoded|[i]|, decoded[i + 1])

return cost

Listing 1. Core code block of example decoder.
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APPENDIX B: HYPERPARAMETERS FOR NUMERICAL EXPERIMENTS

In this section, we provide details for the specific model configurations (hyperparameters) as used to solve benchmark
instances L and XL with the BRKGA and RKO-DA solvers, respectively.

TABLE III. Optimal hyperparameter values (rounded to four decimal points) for the BRKGA solver on benchmarks L and XL.
elite_ mutants_ num_ population_ num_elite_ total_
Benchmark percentage percentage generations patience size seed parents parents
L 0.4465 0.0518 2000 52 9918 839 2 3
XL 0.4894 0.2594 2000 66 7978 263 2 3

TABLE IV. Optimal hyperparameter values (rounded to four decimal points) for the RKO-DA solver on benchmarks L and XL.

Benchmark maxiter seed visit accept initial_temp restart_temp_ratio
L 5547 151 1.1321 —2.3875 20314.2789 6.3192 x 1073
XL 27635 656 1.1741 —0.4968 49 061.6875 1.1119 x 10~*

[1] M. Muradi and R. Wanka in 2020 6th International Confer-
ence on Control, Automation and Robotics (ICCAR) (IEEE,
Singapore, 2020), p. 130.

[2] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F.
Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson,
and P. Bunyk, e al., Quantum annealing with manufactured
spins, Nature 473, 194 (2011).

[3] P. Bunyk, E. Hoskinson, M. W. Johnson, E. Tolkacheva, F.
Altomare, A. J. Berkley, R. Harris, J. P. Hilton, T. Lanting,
and J. Whittaker, Architectural considerations in the design
of a superconducting quantum annealing processor, IEEE
Trans. Appl. Supercond. 24, 1 (2014).

[4] H. G. Katzgraber, Viewing vanilla quantum annealing
through spin glasses, Quantum Sci. Technol. 3, 030505
(2018).

[5] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and
W. Oliver, Perspectives of quantum annealing: Methods
and implementations, Rep. Prog. Phys. 83, 054401 (2020).

[6] J.R. Finzgar, P. Ross, J. Klepsch, and A. Luckow, QUARK:
A framework for quantum computing application bench-
marking, ArXiv:2202.03028 (2022).

[7] A. Luckow, J. Klepsch, and J. Pichlmeier, Quantum com-
puting: Towards industry reference problems, Digitale Welt
5,38 (2021).

[8] J. Klepsch, J. Kopp, A. Luckow, H. Weiss, B. Standen,
D. Vozl, C. Utschig-Utschig, M. Streif, T. Strohm,
and H. Ehm, ef al, Industry quantum applications,

https://www.qutac.de/wp-content/uploads/2021/07/QUTAC

"Paper.pdf (2021).

[9] J. F. Gongalves and M. G. C. Resende, Biased random-
key genetic algorithms for combinatorial optimization, J.
Heurist. 17, 487 (2011).

[10] J. C. Bean, Genetic algorithms and random keys for
sequencing and optimization, ORSA J. Comput. 6, 154
(1994).

[11] R. M. A. Silva, M. G. C. Resende, and P. M. Pardalos, Find-
ing multiple roots of a box-constrained system of nonlinear

equations with a biased random-key genetic algorithm, J.
Global Optim. 60, 289 (2014).

[12] W. M. Spears and K. A. DelJong, in Proceedings of the
Fourth International Conference on Genetic Algorithms
(Morgan Kaufmann Publishers, Burlington, Massachusetts,
1991), p. 230.

[13] R. F. Toso and M. G. C. Resende, A C++ appli-
cation programming interface for biased random-key
genetic algorithms, Optim. Methods Softw. 30, 81
(2015).

[14] C. E. Andrade, R. F. Toso, J. F. Gongalves, and M. G.
C. Resende, The multi-parent biased random-key genetic
algorithm with implicit path-relinking and its real-world
applications, Eur. J. Oper. Res. 289, 17 (2021).

[15] M. G. C. Resende, R. F. Toso, J. F. Gongalves, and R.
M. A. Silva, A biased random-key genetic algorithm for
the Steiner triple covering problem, Optim. Lett. 6, 605
(2012).

[16] J. F. Gongalves and M. G. Resende, A parallel multi-
population biased random-key genetic algorithm for a
container loading problem, Comput. Oper. Res. 39, 179
(2012).

[17] M. Luby, A. Sinclair, and D. Zuckerman, Optimal speedup
of Las Vegas algorithms, Inf. Process. Lett. 47, 173
(1993).

[18] M. G. C. Resende, L. Moran-Mirabal, J. L. Gonzalez-
Velarde, and R. F. Toso, Restart strategy for biased random-
key genetic algorithms, http://mauricio.resende.info/doc/
brkga-restart.pdf (2013).

[19] M. L. Lucena, C. E. Andrade, M. G. C. Resende, and
F. K. Miyazawa, in Proceedings of the XLVI Symposium
of the Brazilian Operational Research Society (Sociedade
Brasileira de Pesquisa Operacional (SOBRAPO), Rio de
Janeiro, Brazil, 2014).

[20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland,
T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W.
Weckesser, and J. Bright, et al, SciPy 1.0: Fundamen-
tal algorithms for scientific computing in Python, Nat.
Methods. 17, 261 (2020).

054045-16


https://doi.org/10.1038/nature10012
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1088/2058-9565/aab6ba
https://doi.org/10.1088/1361-6633/ab85b8
https://arxiv.org/abs/2202.03028
https://doi.org/10.1007/s42354-021-0335-7
https://www.qutac.de/wp-content/uploads/2021/07/QUTAC_Paper.pdf
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.1287/ijoc.6.2.154
https://doi.org/10.1007/s10898-013-0105-7
https://doi.org/10.1080/10556788.2014.890197
https://doi.org/10.1016/j.ejor.2019.11.037
https://doi.org/10.1007/s11590-011-0285-3
https://doi.org/10.1016/j.cor.2011.03.009
https://doi.org/10.1016/0020-0190(93)90029-9
http://mauricio.resende.info/doc/brkga-restart.pdf
https://doi.org/10.1038/s41592-019-0686-2

OPTIMIZATION OF ROBOT-TRAJECTORY PLANNING...

PHYS. REV. APPLIED 18, 054045 (2022)

[21] C. Tsallis and D. A. Stariolo, Generalized simulated anneal-
ing, Phys. A: Stat. Mech. Appl. 233, 395 (1996).

[22] Y. Xiang, D. Sun, W. Fan, and X. Gong, Generalized
simulated annealing algorithm and its application to the
Thomson model, Phys. Lett. A 233, 216 (1997).

[23] Y. Xiang, S. Gubian, B. Suomela, and J. Hoeng, Gen-
eralized simulated annealing for global optimization: The
GenSA package, R Journal §, 13 (2013).

[24] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited mem-
ory algorithm for bound constrained optimization, STAM J.
Sci. Comput. 16, 1190 (1995).

[25] A. Lucas, Ising formulations of many NP problems, Front.
Phys. 2, 5 (2014).

[26] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lu, H.
Wang, and Y. Wang, The unconstrained binary quadratic
programming problem: A survey, J. Comb. Optim. 28, 58
(2014).

[27] F. Glover, G. Kochenberger, and Y. Du, Quantum bridge
analytics I: A tutorial on formulating and using QUBO
models, 40R 17, 335 (2019).

[28] M. Anthony, E. Boros, Y. Crama, and A. Gruber, Quadratic
reformulations of nonlinear binary optimization problems,
Math. Program. 162, 115 (2017).

[29] E.Ising, Beitrag zur theorie des ferromagnetismus, Z. Phys.
31,253 (1925).

[30] T. Kadowaki and H. Nishimori, Quantum annealing in
the transverse Ising model, Phys. Rev. E 58, 5355
(1998).

[31] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren,
and D. Preda, A quantum adiabatic evolution algorithm
applied to random instances of an NP-complete problem,
Science 292, 472 (2001).

[32] S. V. Isakov, G. Mazzola, V. N. Smelyanskiy, Z. Jiang,
S. Boixo, H. Neven, and M. Troyer, Understanding Quan-
tum Tunneling through Quantum Monte Carlo Simulations,
Phys. Rev. Lett. 117, 180402 (2016).

[33] V. Choi, Minor-embedding in adiabatic quantum compu-
tation. I: The parameter setting problem, Quantum Inf.
Process. 7, 193 (2008).

[34] A. Zaribafiyan, D. J. J. Marchand, and S. S. Changiz
Rezaei, Systematic and deterministic graph minor embed-
ding for Cartesian products of graphs, Quantum Inf. Pro-
cess. 16, 1 (2017).

[35] A. Perdomo-Ortiz, A. Feldman, A. Ozaeta, S. V. Isakov,
Z. Zhu, B. O’Gorman, H. G. Katzgraber, A. Diedrich,
H. Neven, and J. de Kleer, et al., On the readiness of
quantum optimization machines for industrial applications,
arXiv:1708.09780 (2017).

[36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi Jr., Optimiza-
tion by simulated annealing, Science 220, 671 (1983).

[37] F. Glover, in Artificial evolution, Lecture Notes in Com-
puter Science, vol. 1363 (Springer, Berlin, 1997), p. 13.

[38] M. G. C. Resende, C. C. Ribeiro, F. Glover, and R. Marti,
in Handbook of Metaheuristics, International Series in
Operations Research and Management Science, vol. 146
(Springer, New York, NY, 2010), p. 87.

[39] A. W. S. Braket, Amazon braket python SDK: A python
SDK for interacting with quantum devices on Amazon
braket, https://github.com/aws/amazon-braket-sdk-python
(2021).

[40] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, ROS: An open-source
robot operating system, https://ros.org (last accessed: May
2022).

[41] S.Karaman and E. Frazzoli, Sampling-based algorithms for
optimal motion planning, Int. J. Rob. Res. 30, 846 (2011).

[42] J. Bergstra, D. Yamins, and D. Cox, in Proceed-
ings of the 30th International Conference on Machine
Learning, Proceedings of Machine Learning Research,
vol. 28, edited by S. Dasgupta and D. McAllester
(PMLR, Atlanta, Georgia, USA, 2013), p. 115-123,
https://proceedings.mlr.press/v28/bergstral3.html.

[43] M. G. C. Resende and C. C. Ribeiro, in Greedy Randomized
Adaptive Search Procedures, Handbook of metaheuristics
(Kluwer Academic Publishers, Boston, 2003), p. 219.

[44] R. M. Aiex, M. Resende, and C. Ribeiro, TTT plots: A perl
program to create time-to-target plots, Optim. Lett. 1, 355
(2007).

054045-17


https://doi.org/10.1016/S0378-4371(96)00271-3
https://doi.org/10.1016/S0375-9601(97)00474-X
https://doi.org/10.32614/RJ-2013-002
https://doi.org/10.1137/0916069
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.1007/s10288-019-00424-y
https://doi.org/10.1007/s10107-016-1032-4
https://doi.org/10.1007/BF02980577
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.1057726
https://doi.org/10.1103/PhysRevLett.117.180402
https://doi.org/10.1007/s11128-008-0082-9
https://doi.org/10.1007/s11128-017-1569-z
https://arxiv.org/abs/1708.09780
https://doi.org/10.1126/science.220.4598.671
https://github.com/aws/amazon-braket-sdk-python
https://ros.org
https://doi.org/10.1177/0278364911406761
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1007/s11590-006-0031-4

	I. INTRODUCTION
	II. PRELIMINARIES
	A. Biased random-key genetic algorithms
	1. BRKGA for traveling salesman and vehicle routing problems
	2. Anatomy of BRKGA
	3. BRKGA in action
	4. Extensions for BRKGA

	B. Dual annealing
	C. Quantum annealing and the QUBO formalism
	1. QUBO formalism
	2. Quantum annealing
	3. Embedding
	4. QA workflow


	III. THEORETICAL FRAMEWORK
	A. Robot motion planning with nature-inspired algorithms
	1. Core pipeline: decoder design
	2. Algorithmic generalizations
	3. Warmstarting
	4. Path relinking
	5. Restarts

	B. Robot motion planning with quantum native algorithms
	1. QUBO representation
	2. Resource estimation


	IV. NUMERICAL EXPERIMENTS AND BENCHMARKS
	A. Data sets
	B. Benchmarking results
	C. Scaling results
	D. Time-to-target results

	V. CONCLUSION AND OUTLOOK
	ACKNOWLEDGMENTS
	A. APPENDIX A: EXAMPLE DECODERQ8 DESIGN
	B. APPENDIX B: HYPERPARAMETERS FOR NUMERICAL EXPERIMENTS
	. References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


