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In this work, we develop upper bounds on key rates for device-independent quantum key distribution
(DI-QKD) protocols and devices. We study the reduced cc-squashed entanglement and show that it is a
convex functional. As a result, we show that the convex hull of the currently known bounds is a tighter
upper bound on the device-independent key rates of the standard Clauser-Horne-Shimony-Holt (CHSH)-
based protocol. We further provide tighter bounds for DI-QKD key rates achievable by any protocol
applied to the CHSH-based device. This bound is based on reduced relative entropy of entanglement opti-
mized over decompositions into local and nonlocal parts. In the dynamical scenario of quantum channels,
we obtain upper bounds for device-independent private capacity for the CHSH-based protocols. We show
that the device-independent private capacity for the CHSH-based protocols on depolarizing and erasure
channels is limited by the secret key capacity of dephasing channels.
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I. INTRODUCTION

Quantum key distribution is a way of establishing the
key—a secure, uniformly random bitstring between dis-
tant honest parties, that can be used for one-time pad
encryption. The history of development of the quantum
key distribution can be divided in two stages. Security of
the first protocols such as BB84 [1] were based on the
trust towards the manufacturer. The devices were assumed
to be working according to their specification. The eaves-
dropper was assumed only to interfere with the channel
connecting the honest parties. In the second stage, taking
its origins in Ekert’s paper [2] this assumption was dropped
leading to the device-independent quantum cryptography.
In the latter approach security of a device is not based on
the assumptions about its inner workings, but only on the
statistics of its inputs and outputs [3–6]. The adversary
in this scenario is assumed to obey the laws of quantum
mechanics. This approach has dramatically increased the
security level of the quantum key distribution, which is
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known to be vulnerable to imperfections of the imple-
mentation [7]. Indeed, device-independent cryptography
can lead to establishing the secure key even if the adver-
sary has manufactured the device herself in any malicious
way.

As in Ekert’s work [2], quantum device-independent
key distribution is based on testing the statistics via the
so-called Bell inequalities [8]. In the generic quantum
device-independent (QDI) protocol, the honest parties ran-
domly choose to generate the raw key bit or to test the
inputs and outputs. If the tested statistics imply high vio-
lation of some Bell inequality, they could not have had
predefined values before they were generated. It was how-
ever hard to put this idea into practice, due to notorious
problems with its implementation that should close the
so-called loopholes evading the security scenario. One
of such loopholes was the so-called detection-efficiency
loophole: low-efficiency detectors, which disallow for the
mentioned argument of the nonpreexistence of statistics
[9,10]. The other, to mention just two of several, was assur-
ing a proper distance between the honest parties, so that
their inputs and outputs do not influence each other during
measurement (so-called no-signaling loophole) [11]. For-
tunately, these fundamental problems have been overcome
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in the sequence of the so-called loophole-free Bell test
experiments [12–14].

The (QDI) approach got advanced meanwhile both in
theory [15–17] and experiment [18,19]. Recently it was
shown that some of the latter so-called loophole-free
experiments had small but nonzero key rate [20]. This fact
was then confirmed in three different proof-of-principle
experiments achieving nonzero key rates [21–23]. The
obtained key rates are considerably smaller than in the
device-dependent case, which corresponds to early theoret-
ical results [5]. There it has opened the problem of achiev-
able key rates in a QDI setting. After the mentioned results
of Refs. [15–17], the problem of achievable key rates has
recently drawn much attention [24–26], where advanced
techniques to lower bound the device-independent key
rate achievable by one-way classical communication has
been proposed. Considerable focus is given to the possi-
bility of obtaining a nonzero key rate for devices driven
from the experiment with detectors having low detec-
tion efficiency. In order to close the gap between theory
and experiment, recent proposals go beyond the stan-
dard scenario with the setting (2, 3, 2, 2) of two inputs
(one binary and one trinary) and two binary outputs [20,
24,27], including drawing the key from more than two
outputs [20].

In parallel, the initial—call it device-dependent
approach—was getting maturity. On the practical side,
the point-to-point or relay-based QKD were achieved
commercially and experimentally (see Ref. [28,29] and
references therein). From a theoretical perspective, the lim-
itations in the form of upper bounds on the key rate were
developed in various device-dependent scenarios [30–36]
(see Ref. [37] for an overview).

Until recently, no analog of the upper bounds in the
quantum device-independent scenario has been found.
Therefore, as a complementary approach to the described
lower bounds on the QDI key, in this paper we focus on
the upper bounds to device-independent quantum key dis-
tribution rates. A result in this direction has been given in
Ref. [5], in the case of the nonsignaling adversary, that is
the one which is constrained only by the no faster than
light communication principle. Now, a number of recent
papers are tackling this problem [38–43] most of which
concerns, as we do, the quantum adversary [44]. By quan-
tum adversary we mean the one whose state of memory and
operations can be described within the theory of quantum
mechanics. In this paper, we not only find tighter limita-
tions on the performance of device-independent quantum
key distribution, but also provide a unified view on the
previous bounds exhibiting hidden connections. Although
our bounds are quite generic, applicable to various scenar-
ios, we illustrate them with an example of the (2, 3, 2, 2)
scenario.

After a seminal result of Ref. [38] for the quantum
adversary, three approaches were taken: (i) that of Ref.

[40] where the bound is proposed via reduced entangle-
ment measures, (ii) that of Ref. [41] where the intrinsic
information is proposed as an upper bound via Ref. [45]
(iii) that of Ref. [42] where classical attack is proposed via
the so-called intrinsic information. In Ref. [42], a strong
result was provided. We refer to the bound obtained in Ref.
[42], as the FBJLKA bound and the bound obtained in Ref.
[41] as the AFL bound. Namely, certain quantum states
exhibiting nonlocality, have a zero QDI key under standard
protocols. The key rate considered there is obtained by pro-
tocols based on projective measurements and announcing
publicly the inputs. It is easy to observe a direct anal-
ogy between this result and a previously obtained upper
bound in a case when Eve is limited only by no-signaling
communication [39]. There the key achieved by a sin-
gle measurement done in parallel is shown to be zero for
certain quantum nonlocal devices (for any Bell inequality
that can be used for testing). Noticing this connection will
be crucial to our methods in going beyond the FBJŁKA
bound. Indeed, one of our main results state that a convex
hull of two known bounds is also an upper bound on the
QDI key. This result originates from the technique called
convexification introduced in Ref. [39].

The most common DI-QKD protocols use only a single
measurement for key generation. In particular, its hon-
est implementation is based on distributing the two-qubit
Werner states (mixtures of a maximally entangled state
with the maximally mixed state). The testing against the
eavesdropper is based on the CHSH inequality [46]. The
approaches of Refs. [41,42] provide different upper bounds
for such a protocol. The AFL bound works in regime
when the Werner state is close to the maximally entangled
state, while the second works very well in the opposite
regime—when it is close to the maximally mixed state.
This is because the first attack is quantum (by a mixture
of Bell states and tuned measurements) while the second
exploits errors, and works when such errors in the Werner
state occurs. It was therefore not clear how to achieve a
single bound, which works in both regimes. In this work,
we show that the two bounds are instances of the optimiza-
tion of a single convex quantity. This allows us to obtain
a bound that performs better than the above-introduced
bounds.

II. MAIN RESULTS

In this section, we outline the three main results of
this paper. For technical details, we refer to the appropri-
ate sections. Formally a quantum device is given by its
quantum representation Tr[M x

a ⊗ M y
b ρ] where {M x

a }a and
{M y

b }b are positive operator-valued measures (POVMs) for
each input to the device (x, y), and ρ is a bipartite state.
We denote such a device as (ρ,M) where M = {M x

a ⊗
M y

b }x,y
a,b. The measurements and the states are assumed to

be controlled by an eavesdropper.
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A QKD protocol consists of several rounds of access-
ing the device (ρ,M) and obtaining the raw data in the
form of the measurement inputs and outputs of the device.
This data is then postprocessed to obtain the final key. The
final key is such that Eve has vanishing small knowledge
about the key. The postprocessing consists of local opera-
tions and classical communication between Alice and Bob.
The key rate of a protocol is given by the final length of the
key divided by the total number of rounds n. In this work,
we consider independent and identical devices (IID). This
implies that during each of the rounds of the protocols, the
underlying device is given by (ρ,M).

A device-independent QKD protocol involves learning
about the device to prove the security of the generated key.
We can divide the protocols based on the information the
protocol learns about the device. In the first protocol, we
consider the honest parties learn only about certain param-
eters of the device, such as the level of violation of a Bell
inequality ω(ρ,M) and the rate of the error in the out-
puts of the key rounds, also referred to as the raw key,
Perr(ρ,M). We denote the device-independent key rate
for such protocols as K IID

DI,par(ρ,M) (see Ref. [41] for this
approach). The second category, considered in Ref. [38,42]
is based on the protocols in which the parties perform a full
tomography of the device. We denote the DI key rate for
such protocols as K IID

DI,dev(ρ,M).
In DI-QKD protocols, we assume that an eavesdrop-

per controls the device. The honest parties (Alice and
Bob) while accessing a device cannot differentiate between
two devices (ρ,M) and (σ ,N ) if the observed statistics
are equivalent. We denote this equivalence by (ρ,M) =
(σ ,N ).

As the first main result, given in Sec. IV, we pro-
vide tighter bounds for the aforementioned protocols. The
bound we provide is given in terms of reduced relative
entropy of entanglement optimized over decompositions
into local and nonlocal part.

We develop on the results of Ref. [40] going beyond
states that are positive under partial transposition (PPT)
[47,48]. In the theorem given below, LHV denotes the
set of devices with locally realistic hidden variable mod-
els. We arrive at the following upper bound for general
DI-QKD protocols.

Theorem 1. The maximal DI-QKD rate K IID
DI (ρ,M) of a

device (ρ,M) is upper bounded as

K IID
DI,dev(ρ,M) ≤ (1 − p) inf

(σNL,N )=(ρNL,M)
ER(σ

NL)

+ p inf
(σL,N )=(ρL,M)

ER(σ
L), (1)

where ER(ρ) is the relative entropy of entanglement [49]
of the bipartite state ρ,

ρ = (1 − p)ρNL + pρL (2)

such that (σ L,N ), (ρL,M) ∈ LHV.

We then prove an analogous theorem. The maximal DI-
QKD rate K IID

DI,par(ρ,M) of a device (ρ,M), where the
parameters considered are the CHSH violation ω [2] and
the quantum bit error rate (QBER), is upper bounded as

K IID
DI,par(ρ,M) ≤ (1 − p) inf

ω(σ bnl,N )=ω(ρbnl,M)

ER(σ
bnl), (3)

where ρ = (1 − p)ρbnl + pρbl and ρbl denotes state satis-
fying CHSH inequality and ρbnl denotes the state-violating
CHSH inequality (The letters bnl correspond to bipar-
tite non-local and bl corresponds to bipartite local) [46].
We plot the upper bounds in Fig. 2. Here, ω(σ bnl,N ) =
ω(ρbnl,M), is used to denote that the CHSH violations
observed for the two devices is equal.

We now discuss the second main result of our work,
given in Sec. V. Consider a set up in which Alice and
Bob are connected by a channel. Alice’s device prepares
a bipartite quantum state and transmits it through the chan-
nel. Now, on surface this situation might seem similar to
the situation we encountered before, wherein Alice and
Bob are sharing a noisy quantum state. However, a crucial
difference is that Alice’s device can prepare a perfect Bell
state but during transmission the state will get corrupted
because of the channel noise. The noise prevalent in the
channel will fundamentally limit the DI key that Alice and
Bob can share. This is a generalization of the setup consid-
ered in Ref. [40]. The device for such a set up is given by
(�, ρ,M), where � is a channel connecting Alice to Bob.
This could include an optical fiber for instance. We provide
upper bounds on the device-independent key rate of the
device (�, ρ,M). We allow for the protocols in this set up
to have two types of classical communication. The device
is allowed to communicate after each input and output
round. We also allow the honest parties (Alice and Bob)
to communicate with each other after each input and out-
put round. This communication involves error correction
or parameter estimation part of the protocol.

The DI-QKD capacity of the device (�, ρ,M) under
the assumption of its IID uses assisted with i-way com-
munication between allies outside the device and j -way
communication between the input-output rounds within
the device, is given by [40]

P IDIj
i (�, ρ,M):= inf

ε>0
lim sup

n→∞
μ

IDIj ,ε
i,n (�, ρ,M), (4)

where μ
IDIj ,ε
i,n (�, ρ,M) is the maximum key rate opti-

mized over all viable CLOCC protocols P̂ over the IID
uses of device, and also includes a minimization over the
possible IID devices IDIj as well as a minimization over all
ε approximate devices given by (�′, σ ,N ) ≈ε (�, ρ,M).
We define the IID-device-independent variants IDIj for
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j ∈ {0, 1, 2}, where the devices are IID and are not allowed
memory or communication from one round to the next
(see Ref. [40] and Sec. V for details on different adver-
sarial models). By CLOCC protocols, we mean that the
Alice and Bob can communicate with each other and
perform only classical operations on their devices. This
informally means that the statistics of the two devices are
approximately equal. We require this minimization over all
devices since Alice and Bob do not trust the underlying
devices. We have

μ
IDIj ,ε
i,n (�, ρ,M):= sup

P̂∈CLOPCi

inf
(�′,σ ,N )∈IDIj

(�′,σ ,N )≈ε(�,ρ,M)

κεn (P̂, (�′, σ ,N )), (5)

where κεn is the rate of achieved ε-perfect key and classical
labels from local classical operations in P̂ ∈ CLOPCi are
possessed by the allies (Alice and Bob).

Consider now a class of channels � that are simulable
via LOCC and the respective Choi states as the resource
[50,51].

That is,

�A→B(ρA) = LAA′→B
(
��

A′B ⊗ ρA
)

, (6)

where LAA′→B is a LOCC channel, with the classical com-
munication being from A to B and ��

A′B:=�(�+
A′A) is the

Choi state of the channel, with �+
A′B:=(1/d)∑d−1

i,j =0 |i, i〉
〈j , j |A′B denoting a maximally entangled state of Schmidt
rank d = min{|A′|, |B|}. The above equation informally
implies that any quantum communication via the chan-
nel � is equivalent to sharing the Choi state �� followed
by local operations and classical communication. The
following upper bounds hold

P IDIj
i (�, ρ,M) ≤ inf

(�′,σ ,N )∈IDIj
(�′,σ ,N )=(�,ρ,M)

ER(�
�′
), (7)

where ��′
:=�′(�+) is the Choi state of the channel �′.

We also restrict �′ to be covariant channels.
In Fig. 3, we plot the upper bounds on the DI-QKD

rates for the devices (�, ρ,M) for � being qubit chan-
nels—depoloarizing Dp , dephasing Pp , and erasure Ep ,
where actions of these channels are given as Pp(ρ) =
(1 − p)ρ + pσZρσZ , Dp(ρ) = (1 − p)ρ + p 1

21, Ep(ρ) ≡
(1 − p)ρ + p|e〉〈e|, where |e〉〈e| is the erasure symbol,
orthonormal to the support of the input state and p ∈ [0, 1].
The relative entropy of entanglement of the Choi states of
the erasure and dephasing channels are also the device-
dependent QKD capacities of respective channels [34].
We make a crucial observation that the dephasing channel
can simulate the device (�, ρ,M) with � as the erasure
channel or depolarizing channel in a device-independent

way for protocols using the CHSH violation and QBER
as the parameters to identify the device. This suggests
that the outcomes of the device will have statistics that
can be explained by the dephasing channel even when
the actual channel present inside the device is erasure or
depolarizing.

As our third main result, we study a bound called
reduced cc-squashed entanglement. The upper bounds pre-
sented below apply only to the class of standard protocols
that use only certain inputs for generating key. In such
DI-QKD protocols the key rounds and the parameter esti-
mation rounds are separated. This implies that the final key
is generated from outputs of specified inputs. The number
of key-generating inputs can be varied depending on the
protocol, however usually the key is taken only from a sin-
gle input. To study upper bounds on the DI-QKD rates for
such protocols, we begin with introducing an entanglement
measure, similar to the squashed entanglement, which is
implicitly used in Ref. [41] (also see Lemma 7 of Ref.
[52]):

ECC
sq (ρAB, M ):= inf

�E
I(A : B|E)M⊗�E .(ψρ) (8)

It is a function of a pair of POVMs M := M x̂
a ⊗ M ŷ

a
and a bipartite quantum state. The x̂ and ŷ corresponds
to the key-generating rounds. It computes the infimum
over channels �E acting on the purification ψρ

ABE of the
state ρAB, of the conditional mutual information of result-
ing extension of ρ measured with M on system AB. We
call it cc-squashed entanglement where CC stands for
classical-classical registers of the measured system AB.

We further consider its reduced versions (reduced CC-
squashed entanglement), where reduction is due to the
infimum on the set of allowed attacking strategies of the
eavesdropper while manufacturing the device. As in the
case of IID DI key rate there are two versions of reduced
cc-squashed entanglement:

ECC
sq,par(ρAB,M(x̂, ŷ))

:= inf
ω(σ ,N )=ω(ρ,M)

Perr(σ ,N )=Perr(ρ,M(x̂,ŷ))

ECC
sq (σAB,M(x̂, ŷ)), (9)

ECC
sq,dev(ρAB,M(x̂, ŷ)) := inf

(σ ,N )=(ρ,M)
ECC

sq (σAB,M(x̂, ŷ)).

(10)

In the above definitions, (ρAB,M) corresponds to the hon-
est device in consideration and (x̂, ŷ) corresponds to the
key-generation inputs. We can also consider σ to be infi-
nite dimensional and any issues regarding this fact has
been tackled in Ref. [52]. In the first definition, we have
the infimum over all devices compatible to certain param-
eters observed in the protocol. In the second definition,
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we have the infimum over all devices that give the dis-
tribution p(a, b|x, y) = Tr(Mx

a ⊗ My
bρ). It is clear that

by definition ECC
sq,par ≤ ECC

sq,dev. This is because the former
involves the infimum over a larger set of dishonest device.
We denote the DI-QKD rate for protocols with single key-
generation inputs x̂ and ŷ as K IID,(x̂,ŷ)

DI,dev/par(ρ,M). Using the
proof techniques in Refs. [40,45], we can see (Theorem 5
and Corollary 5) that the above quantities upper bound the
DI-QKD rate:

K IID,(x̂,ŷ)
DI,dev/par(ρ,M) ≤ ECC

sq,dev/par(ρ,M). (11)

We prove that the bound is convex, and outperforms both
the limitations presented in Refs. [41,42] in a certain
regime of noise. We then show that in the case when testing
in the DI-QKD protocol is done by estimating the CHSH
inequality and the QBER, the cc-squashed entanglement
and its reduced version is an upper bound. We further
argue, that the bounds studied in Refs. [41,42] are in fact
particular instances of the optimization that takes place in
computing of the reduced cc-squashed entanglement. That
is, the upper bounds plotted in Refs. [41,42] are upper
bounds on ECC

sq,par(ρAB,M(x̂, ŷ)). We denote the plotted
functions as IAL(ρAB,M(x̂, ŷ)) and IFBJL+(ρAB,M(x̂, ŷ)),
respectively. That means, if ECC

sq,par was plotted, it would
be lesser than both the bounds IAL(ρAB,M(x̂, ŷ)) and
IFBJL+(ρAB,M(x̂, ŷ)) given in Refs. [41,42], respectively.
Formally, for any device (ρ,M) and input M(x̂, ŷ),
there is

ECC
sq,par(ρAB,M(x̂, ŷ)) ≤ IAL(ρAB,M(x̂, ŷ)), (12)

ECC
sq,dev(ρAB,M(x̂, ŷ)) ≤ IFBJL+(ρAB,M(x̂, ŷ)), (13)

ECC
sq,par(ρAB,M(x̂, ŷ)) ≤ ECC

sq,dev(ρAB,M(x̂, ŷ)). (14)

Based on the above inequalities and some of the desirable
properties like convexity of the cc-squashed entanglement
with respect to the states, we obtain our third main result.
In what follows we narrow considerations to (M, (x̂, ŷ))
being projective, as the bound for Werner states presented
in Ref. [42] applies only to this case. Our third main result
is encapsulated in theorem below.

Theorem 2. For a Werner state ρW
AB and M consisting

of projective measurements Px
a ⊗ Py

b, and a pair of inputs
(x̂, ŷ) used to generate the key, there is

K IID,(x̂,ŷ)
DI,par (ρW

AB,M) ≤ Conv(IAL(ρ
W
AB,M(x̂, ŷ)),

IFBJL+(ρW
AB,M(x̂, ŷ))), (15)

where Conv(F1, F2) is the convex hull of the plots of func-
tions Fi, and K IID,(x̂,ŷ)

DI,par (ρW
AB,M) is defined with respect to

ω(ρW,M) and Perr = P(a �= b|x̂ŷ).

[42]

[43]

This paper

FIG. 1. In this figure, we show the plots for standard device-
independent CHSH protocol obtained in Refs. [41,42], and the
upper bound given in Theorem 2, which is the convex hull of the
former bounds, depicted in green.

We plot the upper bound obtained from the aforemen-
tioned theorem in Fig. 1. The above result stems from
the technique provided in Ref. [39] where a similar upper
bound obtained via the method called convexification was
given in the scenario with nonsignaling adversary.

We also extend the definition of ECC
sq for multiple mea-

surements. We then prove that the reduced version of this
quantity is an upper bound on the DI-QKD rate for pro-
tocols with multiple key-generating inputs. We note that
for extension to multiple measurements, the function intro-
duced is tuned to protocols in which the measurements are
announced by Alice and Bob and hence are known to the
eavesdropper. We could in principle, on similar grounds,
also consider upper bounds for protocols in which the
measurements are not known to the eavesdropper.

III. NOTATION AND DEFINITIONS

In this section we provide the notation used throughout
the paper along with a relevant definition including that of
device-dependent and device-independent secure key rate
in the IID setting. We also give an intuitive explanation of
the latter definitions.

We begin with recalling the definition of key and device-
dependent key rate of a quantum state. A quantum state
representing (ideal) secure key of length K is a pair of
bitstrings drawn from a uniform distribution, which are
decoupled from the state of adversary:

τABE(K) := 1
K

K−1∑

i=0

|ii〉〈ii|AB ⊗ σE . (16)

Ideal security is hard to achieve in practice. Instead we
are interested in designing protocols that uses n copies of
an input state ρAB achieving ε security and take the limit
of small ε → 0 when n → ∞. By protocol P we mean a
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FIG. 2. In this plot, we depict the bounds on the amount of DI
key that can be obtained from a CHSH-based device. The yel-
low line and green line corresponds to the upper bounds obtained
from Eq. (3). The blue line corresponds to the bound obtained
in Appendix B of Ref. [41]. The purple line corresponds to the
bound obtained in Ref. [38]. The red line corresponds to the
lower bounds obtained in Ref. [60].

quantum map from the set of local operations and classical
communication P ∈ LOCC such that acting on ρ⊗n

AB pro-
duce output close by ε to τABE(nκεn ). We note that κεn is
the key rate (private bits per copy) and nκεn gives the total
number of private bits readily accessible from the ideal key
state τABE . More formally, a protocol P acting on n input
states ρAB has rate κεn if it outputs state ρout

ABE that satisfies
ε-security condition:

∥∥ρout
ABE − τABE(nκεn )

∥∥
1 ≤ ε, (17)

Dephasing channel

Depolarizing channel

Erasure channel

0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

p

R
at
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FIG. 3. In the above figure, we plot upper bounds on the
device-dependent QKD capacities of depolarizing channel (yel-
low line), dephasing channel (blue line), and erasure channel
(green line). We notice that the upper bounds for erasure and
dephasing channels are achievable device-dependent QKD rates
(capacities). We then notice that for the CHSH protocols, the
upper bounds on the DI-QKD capacities of channels is limited
by the device-dependent QKD capacity of dephasing channels.

where ‖·‖1 denotes the trace-norm distance. The device-
dependent key rate of a quantum state ρAB reads then [45,
53–56]:

KDD(ρAB) := inf
ε>0

lim sup
n→∞

sup
P∈LOCC

κεn (P(ρ⊗n
AB )). (18)

In the above the lim supn→∞ reflects the fact that it is
enough that the protocol is able to produce ε-secure out-
put only on an infinite subsequence of natural numbers n
of copies of the input states (e.g., only for n = 2k for some
natural k). The infimum over ε standing in front reflects the
fact that a given amount of key is achievable only if with
increasing n there are protocols P that achieve better and
better ε security with ε → 0.

We are ready to introduce the notation and facts needed
to recall the device-independent key rate, and its relation
to the device-dependent one. Like in the device-dependent
scenario the central object is a quantum state, in the device-
independent one the central object is a (quantum) device.
Informally it is a pair of a bipartite state ρ and a family of
maps M parametrized by inputs (x, y) and outputs of the
device (a, b). The maps acting on a state yield a conditional
probability distribution representing the device.

Formally a quantum device is given by its quantum rep-
resentation Tr[M x

a ⊗ M y
b ρ] where {M x

a }a and {M y
b }b are

POVMs for each input to the device (x, y), and ρ is a
bipartite state. We denote such a device as (ρ,M) where
M = {M x

a ⊗ M y
b }x,y

a,b. Let LHV denote the set of states with
locally realistic hidden variable models under a given set
of measurements.

We denote the IID device-independent key rate of a
quantum device as K IID

DI . By IID we mean that the devices
are independent and identical in each round of the pro-
tocol. We then consider various types of protocols for
DI-QKD rate. In the first case, single inputs are used for
key generation. There are a further two variants of such
a protocol. The first quantifies the key achieved by proto-
cols in which the honest parties perform test based only on
certain parameters of the device. These parameters include
the level of violation of a Bell inequality ω(ρ,M) and
the rate of the error of the raw key data Perr(ρ,M). We
denote the device-independent key rate for such protocols
as K IID,(x̂,ŷ)

DI,par (ρ,M) (see Ref. [41] for this approach). The
second, considered in Ref. [38,42] is based on the proto-
cols in which the parties perform a full tomography of the
device. We denote the DI key rate for such protocols as
K IID,(x̂,ŷ)

DI,dev (ρ,M).
Let D(HAB) denote the set of states defined on the

HAB:=HA ⊗ HB, where HA and HB are the separable
Hilbert spaces associated with the quantum systems A and
B, respectively. Let 1A denote the identity operator on HA
and |A| denote the dimension of HA (dim(HA)). Let �+

AB
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denote a maximally entangled state,

�+
AB:=1

d

d−1∑

i,j =0

|i, i〉 〈j , j |AB (19)

for d = min{|A|, |B|} and an orthonormal basis {|i〉}i. Let
ϑ be the partial transposition map with respect to a fixed
basis, i.e., ϑ(ρAB) = ρ


B
AB . The set of separable states ρAB ∈

D(HAB) is denoted as SEP(A; B).
Consider a setup, wherein Alice and Bob, two spatially

separated parties, have to extract a secret key. We assume
that in this setup, the devices are untrusted. That is, Alice
and Bob do not trust the quantum states, nor do they trust
their measurement devices. The untrusted measurement
of the device is given by M ≡ {M x

a ⊗ M y
b }a,b|x,y , where

a ∈ A, b ∈ B, and A,B denote the finite set of measure-
ment outcomes. The measurement outcomes, i.e., ouputs
of the device, are secure from adversary and assumed to
be in the possession of the receiver, Alice or Bob. Also,
x ∈ X , y ∈ Y , where X ,Y denote the finite set of measure-
ment choices. The joint probability distribution is given
as p(a, b|x, y) = Tr[M x

a ⊗ M y
b ρ] for measurement M on

bipartite state ρAB defined on the separable Hilbert space
HA ⊗ HB. The quantum systems A, B can be finite or
infinite dimensional. The number of inputs x, y and corre-
sponding outputs a, b of local measurements by Alice and
Bob are arbitrary in general.

Let ω(ρ,M) denote the violation of the given Bell
inequality B by state ρAB when the measurement settings
are given by M. Let Perr(ρ,M) denote the expected
QBER. In the standard protocols, it is a probability that
the raw key of Alice differs from the raw key of Bob.
Both the Bell violation, as well as the QBER are a func-
tion of the probability distribution of the box. If under
local measurements M, a state ρ exhibits a locally real-
istic hidden variable model then we write ρ ∈ LHV(M).
If {p(a, b|x, y)}a,b|x,y obtained from (ρ,M) and (σ ,N )
are the same, we write (σ ,N ) = (ρ,M). In most DI-
QKD protocols, instead of using the statistics of the full
correlation, we use the Bell violation and the QBER to
test the level of security of the observed statistics. In this
way, the protocols coarse grain the statistics and we use
only partial information of the full statistics to extract
the device-independent key. In this context, the notation
(σ ,N ) = (ρ,M) also implies that ω(σ ,N ) = ω(ρ,M)

and Perr(σ ,N ) = Perr(ρ,M). When conditional probabil-
ities associated with (ρ,M) and (σ ,N ) are ε close to each
other, then we write (ρ,M) ≈ε (σ ,N ). For our purpose,
it suffices to consider the distance

d(p , p ′) = sup
x,y

‖p(·|x, y)− p ′(·|x, y)‖1 ≤ ε. (20)

The device-independent (DI) distillable key rate of a
device is informally defined as the supremum over the

finite key rates κ achievable by the best protocol on
any device compatible with (ρ,M), within an appropri-
ate asymptotic block-length limit and security parameter.
There are at least two definitions of compatibility. One
is assuming full knowledge of the honest device reflected
by the description of the device (ρ,M). The other, as it
was mentioned, is assuming only the knowledge of some
parameters of the honest device. It is reflected only by a set
of parameters. In standard protocols these are the level of
violation of a certain Bell inequality, i.e., ω(ρ,M) and the
quantum bit error rate Perr(ρ,M).

For our purpose, we constrain ourselves to the situation
when the compatible devices are supposedly IID (inde-
pendent and identically distributed). Although the class
of attacks of the quantum adversary may be much larger,
including non-IID attack, for our purpose it is sufficient to
consider IID attacks. The reason for this is that any possi-
ble attack by the eavesdropper serves as a strategy for an
upper bound. For our work, the choice of strategy is an IID
attack.

In order to define formally the device-independent key
in the IID setting, we need the following relations:

(ρ,M) ≈ε (σ ,N ), (21)

ω(ρ,M) ≈ε ω(σ ,N ), (22)

Perr(ρ,M) ≈ε Perr(σ ,M), (23)

where Eq. (21) implies Eqs. (22) and (23). Formally, the
definition of device-independent distillable key rate in IID
setting, is given as

Definition 1 ([40]). The maximum device-independent key
rate of a device (ρ,M) with IID behavior is defined as
follows.

K IID
DI (ρ,M):= inf

ε>0
lim sup

n→∞
sup
P̂

inf
(21)
κεn (P̂((σ ,N )⊗n)),

(24)

where κεn is the key rate achieved for any security param-
eter ε, block length or number of copies n, and measure-
ments N .

Here, P̂ is a protocol composed of classical local opera-
tions and public (classical) communication (CLOPC) act-
ing on n identical copies of (σ ,N ), which, composed with
the measurement, results in a quantum local operations
and public (classical) communication (QLOPC) protocol.

Before going on with the known facts, let us comment
on the form of the above definition. We can see, that it
is very similar to the the definition of device-independent
key given in Eq. (18), with two crucial differences. First
a minor one: the supremum is taken over protocols that
consist of classical LOCC operations (CLOCC). That is
having only classical inputs and outputs (the ones coming
from n copies of a device). A major modification of the
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definition device-dependent key comes with the presence
of additional infimum over devices (σ ,N ) that are ε close
to the honest one (ρ,M). This infimum reflects the fact
that the device (ρ,M) is not trusted, and can be replaced
by any other pair of state σ and measurements N , that
yield enough close-by conditional probability distribution
(σ ,N ). Additionally, what is more, the protocol P acts on
the dishonest device (σ ,N ).

As discussed above, a large class of device-independent
quantum key distribution protocols, rely on the Bell vio-
lation and the QBER of the device p(a, b|x, y). For such
protocols, we can define the device-independent key distil-
lation protocol as follows.

Definition 2 (cf. [41]). The maximal device-independent
key rate of a device (ρ,M) with IID behavior, Bell
violation ω(ρ,M) and QBER Perr(ρ,M), is defined as

K IID
DI (ρ,M,ω, Perr):= inf

ε>0
lim sup

n→∞
sup
P̂

inf
(22),(23)

κεn (P̂((σ ,N )⊗n)). (25)

The difference between the above definition and that
of K IID

DI (ρ,M) is only by the fact that the infimum is
taken over the parameters: Bell violation ω(ρ,M) and
the quantum bit error rate Perr(ρ,M). Hence in the
case of K IID

DI (ρ,M) the set of inputs to the protocol
(i.e., the dishonest devices) is less than the correspond-
ing one over which infimum is taken in the definition
of K IID

DI (ρ,M,ω, Perr). Thus by property of the infimum,
we obtain that by definition there is K IID

DI (ρ,M,ω, Perr) ≤
K IID

DI (ρ,M).
Finally we also recall here the fact, which is used later

in Sec. VI, that the maximal device-independent key dis-
tillation rate KDI(ρ,M) for the device (ρ,M) is upper
bounded by the maximal device-dependent key distillation
rate KDD(σ ) for all (σ ,N ) such that (σ ,N ) = (ρ,M) (see
Ref. [40]), i.e.,

KDI(ρ,M) ≤ inf
(σ ,N )=(ρ,M)

KDD(σ ), (26)

where KDD is given in Eq. (18).

IV. BOUNDS ON DEVICE-INDEPENDENT KEY
DISTILLATION RATE OF STATES

In this section, we provide tighter bounds for protocols
considered in Ref. [38] and go beyond the results presented
in Ref. [40]. (The latter were restricted only to states with
positive partial transposition.) The bound we provide is
given in terms of reduced relative entropy of entanglement
optimized over decompositions into local and nonlocal
part.

Proposition 1. The maximal device-independent key rate
K IID

DI (ρ,M,ω, Perr) of a device (ρ,M) with IID behavior,

Bell violation ω(ρ,M) and QBER Perr(ρ,M) is upper
bounded as

K IID
DI (ρ,M,ω, Perr) ≤ inf

ω(N ,ρ)=N ,σ)
Perr(N ,ρ)=Perr(M,σ)

KDD(σ ). (27)

Proof :

K IID
DI (ρ,M,ω, Perr) ≤ inf

ε>0
inf

ω(N ,ρ)≈N ,σ)
Perr(N ,ρ)≈Perr(M,σ)

lim sup
n→∞

sup
P̂

κεn (P̂((N , σ)⊗n)) (28)

≤ inf
ε>0

inf
ω(N ,ρ)=N ,σ)

Perr(N ,ρ)=Perr(M,σ)

lim sup
n→∞

sup
P̂
κεn (P̂((N , σ)⊗n))

(29)

= inf
ω(N ,ρ)=N ,σ)

Perr(N ,ρ)=Perr(M,σ)

inf
ε>0

lim sup
n→∞

sup
P̂
κεn (P̂((N , σ)⊗n))

(30)

≤ inf
ω(N ,ρ)=N ,σ)

Perr(N ,ρ)=Perr(M,σ)

KDD(σ ) (31)

The first inequality follows from Observation 5 of Ref.
[40]. The second inequality follows from restricting the
infimum over the set of strategies. The equality follows
from commuting the infimums. The last inequality follows
from the definition of device-dependent key distillation
rate. �

Observation 1. For entanglement measures Ent, which
upper bounds the maximum device-dependent key distilla-
tion rate, i.e., KDD(ρ) ≤ Ent(ρ) for a density operator ρ,
we have,

KDI(ρ,M) ≤ inf
(σ ,N )=(ρ,M)

KDD(σ ) (32)

≤ inf
(σ ,N )=(ρ,M)

Ent(σ ). (33)

Some well-known entanglement measures that upper
bound KDD(ρ) are the relative entropy of entangle-
ment ER(ρ), regularized relative entropy of entan-
glement E∞

R (ρ), squashed entanglement Esq(ρ) (see
Refs. [30,32,57]).

We develop the results of Ref. [40] going beyond states
that are positive under partial transposition (PPT). We
arrive at the following main result.

Theorem 3. The maximal device-independent key rate
K IID

DI (ρ,M) of a device (ρ,M) is upper bounded as

K IID
DI (ρ,M) ≤ (1 − p) inf

(σNL,N )=(ρNL,M)
ER(σ

NL)

+ p inf
(σL,N )=(ρL,M)

ER(σ
L), (34)
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where

ρ = (1 − p)ρNL + pρL (35)

such that σ L, ρL ∈ LHV and σNL, ρNL /∈ LHV for respec-
tive local measurements.

Proof : The main idea behind the proof is to construct
an alternative state with flagged local and nonlocal parts,
followed by construction of flagged POVM elements. The
flagged strategy reproduces the exact statistics as the origi-
nal strategy. With this construction, we can use the decom-
position of relative entropy for flagged state as the sum of
the relative entropies for the constituent states.

Let us begin with the device {ρ,M} such that

ρAB = (1 − p)ρNL + pρL. (36)

We have from Eq. (26) that

KDI(ρ,M) ≤ inf
(σ ,N )=(ρ,M)

KDD(σ ). (37)

Let us now construct a strategy
{
σNL, N x

a ⊗ N y
b

}
such

that (σNL, N x
a ⊗ N y

b ) = (ρNL, M x
a ⊗ M y

b ). We also con-
struct another strategy

(
σ L,�x

a ⊗�
y
b

)
such that (σ L,�x

a ⊗
�

y
b) = (ρL, M x

a ⊗ M y
b ). Combining the above deductions,

we can define a strategy

σABR1R2 = (1 − p)σNL
AB ⊗ |0〉〈0|R1 ⊗ |0〉〈0|R2

+ pσL ⊗ |1〉〈1|R1 ⊗ |1〉〈1|R2 , (38)

�̃x
a = N x

a ⊗ |0〉〈0|R1 +�x
a ⊗ |1〉〈1|R1 , (39)

�̃
y
b = N y

b ⊗ |0〉〈0|R2 +�
y
b ⊗ |1〉〈1|R2 . (40)

We then see (ρ,N ) = (σ , �̃x
a ⊗ �̃

y
b). We then obtain

KDI(ρ,M) ≤ KDD(σ ) (41)

≤ ER(σ ) (42)

= (1 − p)ER(σ
NL)+ pER(σ

L). (43)

Since the strategies
(
σ L,�x

a ⊗�
y
b

)
and

(
σNL, N x

a ⊗ N y
b

)

are arbitrary strategies, we obtain

KDI(ρ,M) ≤ (1 − p) inf
(ρNL,M)=(σNL,N)

ER(σ
NL)

+ p inf
(ρL,M)=(σL,N)

ER(σ
L). (44)

�

Similarly, when we are interested only in the two param-
eters, namely Bell violation ω and QBER Perr, of the
device (ρ,M), then we have the following upper bound
on the DI-key distillation rate.

Proposition 2. The maximal device-independent key dis-
tillation rate KDI(ρ,M,ω, Perr) for the device (ρ,M) and
a linear Bell functional ω(ρ,M) and QBER Perr(ρ,M) is
upper bounded by

KDI(ρ,M,ω, Perr) ≤ p inf
ω(σL,N )=ω(ρL,M)

Perr(σL,N )=Perr(ρL,M)

ER(σ
L)

+ (1 − p) inf
ω(σNL,N )=ω(ρNL,M)

Perr(σNL,N )=Perr(ρNL,M)

ER(σ
NL), (45)

where ρ = pρL + (1 − p)ρNL and ρL ∈ LHV and σNL,
ρNL /∈ LHV (for respective local measurements).

For the proof, we refer to Appendix B.

Remark 1. The above proposition is general, since the
Bell functionals typically take the form of a scalar prod-
uct, and hence are linear [8]. For example, the tight Bell
inequalities corresponds to a test if a behavior is in or
outside of the polytope of local behaviors. However, in
principle, one could design a nonlinear Bell functional
such as the ones which are designed to characterize in
some way the set of quantum behaviors [see Eqs. (33) and
(34) [8]].

We now define a CHSH protocol considered in Ref.
[58]. In this protocol, Alice’s device has three inputs,
i.e., x ∈ {0, 1, 2} and Bob’s device has two inputs, i.e.,
y ∈ {0, 1}. Alice and Bob’s output are binary, i.e., a, b ∈
{0, 1}. This device is then defined by the distribution
{p(a, b|x, y)}. The protocol uses a coarse graining of the
distribution. That is, for each distribution, we define the
CHSH violation ω and the QBER p(a �= b|x = 0, y = 1)
as q. For such protocols PCHSH, the relevant statistics of
the device are ω and q. In the following, we use ω(ρ,N )
to denote the CHSH violation observed by the quantum
strategy ρ,N . We have the following corollary.

Corollary 1. The maximal device-independent key rate
K IID

DI (ρ,M) of a device (ρ,M) under CHSH protocol
PCHSH, is upper bounded as

K IID
DI (ρ,M,PCHSH) ≤ (1 − p) inf

ω(σNL,N )=ω(ρNL,M)
ER(σ

NL),

(46)

where

ρ = (1 − p)ρNL + pρL, (47)
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and ρL ∈ L and σNL, ρNL /∈ L (for respective local mea-
surements and CHSH inequality).

Proof : To see the proof, we construct a strategy{
ρSEP, N x

a ⊗ N y
b

}
that reproduces −2 ≤ ω ≤ 2 and any

value of q. For this, choose ρSEP = |00〉〈00|. Choose the
following projective measurements:

N 1
a = α1σx + α2σz, (48)

N 2
a = ω1σx + ω2σz, (49)

N 1
b = σz, (50)

N 2
b = ζ1σx + ζ2σz, (51)

where |ω1|2 + |ω2|2 = 1, |α1|2 + |α2|2 = 1, and |ζ1|2 +
|ζ2|2 = 1. The CHSH violation ω observed from the strat-
egy given above is

ω = α2(1 + ζ2)+ ω2(1 − ζ2). (52)

If |ω| ≤ 1, then choose ω2 = 0, ζ2 = 0 and α2 = ω. If
1 ≤ |ω| ≤ 2, choose ω2 = 0, ζ2 = 1 and α2 = ω/2. This
recovers the observed CHSH violation. For QBER, the
appropriate measurements are N 0

a , N 1
b . We see that any

value q of QBER can be obtained by choosing N 0
a as σx

with probability 2q and σz with probability 1 − 2q. Since
the relative entropy of entanglement of |00〉〈00| is 0, we
have the proof. �

Remark 2. All bound entangled states satisfy CHSH
inequality [59] and hence have zero device-independent
key rate for CHSH-based protocols. It is interesting to
note that there exists bound entangled states from which
private key can be distilled [32], however even these
states are useless for device-independent secret key distil-
lation for CHSH-based protocols. That the same can be
extended to all Bell inequalities is a matter of recently
posed conjecture [41]—revised Peres conjecture.

A. Numerics for CHSH protocols

We now plot the results of Corollary 1. We first
consider the device to be an honest device with the
underlying state being an isotropic state. The honest
measurements are M 0

a = σz, M 1
a = (σz + σx)/

√
2, M 2

a =
(σz − σx)/

√
2, M 0

b = σz, M 1
b = σx, where σx and σz are

Pauli-x and Pauli-z operators, respectively. A device hav-
ing the above honest realization is called a CHSH-based
device. Let us now consider the observed CHSH violation
to be ω. Then, we can construct an isotropic state as

ρν = (1 − ν)|�+〉〈�+| + (ν/4)1, (53)

where the parameter ν is related to the CHSH violation as,
ω = 2

√
2(1 − ν). We then have

ρω = ω

2
√

2
|�+〉〈�+| + 2

√
2 − ω

8
√

2
1. (54)

The relative entropy of entanglement for the isotropic state
is given by

ER(ρ
ω) = λ log2 λ+ (1 − λ) log2(1 − λ)+ 1, (55)

λ = ω

2
√

2
+ 2

√
2 − ω

8
√

2
(56)

= 3ω

8
√

2
+ 1

4
. (57)

Now, we express ρω as

ρω = pρω1 + (1 − p)ρω2 , (58)

where 2
√

2 ≥ ω1 > 2 and 2 ≥ ω2 ≥ 0 and ω = pω1 +
(1 − p)ω2.

We then have the following optimization:

K IID
DI (ρ

ω,M,PCHSH) = min
p ,ω1

pER(ρ
ω1), (59)

ω = pω1 + (1 − p)ω2, (60)

0 ≤ p ≤ 1, (61)

2 ≤ ω1 < 2
√

2, (62)

0 ≤ ω2 ≤ 2. (63)

By performing this optimization, we can obtain the bound
given in Fig. 2.

Another approach that we can take is to consider the
quantum strategy taken in Ref. [60]. For this strategy the
attacking quantum state is

ρ = 1 + C
2

|�+〉〈�+| + 1 − C
2

|�−〉〈�−|, (64)

∣∣�+〉
AB = 1√

2
(|00〉 + |11〉) , (65)

∣∣�−〉
AB = 1√

2
(|00〉 − |11〉) , (66)

C =
√(ω

2

)2
− 1. (67)

With this strategy we obtain a tighter upper bound as plot-
ted in Fig. 2. This strategy is particularly interesting as the
attacking state does not allow for a decomposition between
a local and a nonlocal part. The fractional bound reduces
to relative entropy of entanglement of the state.
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V. BOUNDS ON DEVICE-INDEPENDENT KEY
DISTILLATION RATE THROUGH CHANNELS

A simple realistic model of a physical box depicting
device-independent secret key generator (assumed to be an
honest device from perspective of manufacturer) between
allies, is describable by a tuple (�̃, ρ,M). Tuple for device
constitutes of measurement setting {M x

a ⊗ M y
b }, a source

state ρA′B′ , and a bipartite quantum distribution channel
�̃A′B′→AB, where a relay station inputs bipartite quantum
state and each output of the channel � is transmitted to a
designated receiver. The dimensions of the quantum sys-
tems A′, B′, A, B can be arbitrary in general as the device
can use an arbitrary bipartite quantum channel �̃. Quantum
states from the source undergo quantum dynamical evolu-
tion (quantum channels) before they are measured to yield
outputs at the ends of Alice and Bob, who are designated
parties or allies. Quantum channels can represent noisy
transmission via optical fibers, space, etc. or local time
evolution (e.g., [61,62]). In general, the bipartite distribu-
tion channel �̃A′B′→AB is of the form �1

A′′→A
⊗�2

B′′→B ◦
�A′B′→A′′B′′ , where �A′B′→A′′B′′ allows for the joint oper-
ation on the bipartite source state and �1

A′′→A
,�2

B′′→B
transmit A′′, B′′ to the ends A, B where local measurements
(temporally sync between Alice and Bob) take place to
yield classical outputs a, b to Alice and Bob, respectively.
In general, adversarial manufacturer can design the device
such that it can perform any physical actions between the
rounds and is only required to provide two pairs of classical
input-outputs, a pair to each designated party, while adver-
sary is limited only by the laws of quantum mechanics
(which includes no signaling).

The probability distribution p(�̃,ρ,M)(a, b|x, y) associ-
ated with an honest device (�̃, ρ,M) is given by

p(a, b|x, y) = Tr[M x
a ⊗ M y

b (�̃(ρ))]. (68)

An honest device (�̃, ρ,M) constituting channels has
same characterization and conditions as an honest device
(�̃(ρ),M), which is the ideal situation where time evo-
lution or noisy transmission of the source state �̃(ρ)

before measurement at the ends of Alice and Bob is not
considered (see Sec. IV), i.e., in principle (�̃, ρ,M) =
(�̃(ρ),M). If {p(a, b|x, y)} obtained from the devices
(�̃, ρ,M) and (�̃′, ρ ′,M′) are the same, then we
write (�̃, ρ,M) = (�̃′, ρ ′,M). The Hilbert-space dimen-
sions associated with systems involved in the device
(�̃′, ρ ′,M′) need not be the same as their counterpart
systems associated with the honest device (�̃, ρ,M).
When the two devices (�̃, ρ,M) and (�̃′, ρ ′,M′) are ε
close to each other in the trace-norm distance, we write
(�̃, ρ,M) ≈ε (�̃

′, ρ ′,M′).
The device-independent secret key agreement protocols

can allow i-way communication for i ∈ {0, 1, 2} depending

on whether two allies, Alice and Bob, are allowed to per-
form i-way classical communication outside the devices
[40]. This classical communication includes error correc-
tion and parameter estimation rounds. A two-way LOPC
(LOPC2) is a general LOPC channel where both Alice and
Bob can send classical communication to each other over
authenticated public channel, one-way LOPC (LOPC1) is
a restricted class of LOPC where only one party is allowed
to transmit classical communication to the other (while
the other remains barred from sending classical commu-
nication), and zero-way LOPC (LOPC0 = LO) is a very
restricted class of LOPC where both parties can perform
only local operations and are barred from any classical
communication. Therefore, LO ⊂ LOPC1 ⊂ LOPC2. We
note that in practice, there is also a need for (classical)
communication to agree upon the protocol, and for other
purposes like verification and testing.

Apart from the classical communication between Alice
and Bob during the key distillation protocol, there also
exists the possibility of the classical communication in
the device. This classical communication can be based on
the inputs from the previous rounds, that can be used by
the device to prepare the source state to be measured in
the coming round [40]. DIj denotes the devices where the
channel �̃ is IID, memory is allowed, and use j -way (clas-
sical) communication between the input-output rounds for
j ∈ {0, 1, 2}. This j -way communication can take place
either before the inputs are given or after the outputs are
obtained. The DIj devices can share memory locally at
Alice and Bob across each round enabling the capabil-
ity of adversary [40]. We provide definitions and related
observations in Appendix C.

While these assumptions of restraining adversarial capa-
bilities may drift from appropriate physical model of
device independence, they may provide upper bounds
on more capable adversarial models. For the purpose
of deriving fundamental limitations, we can accept the
trade-off that comes with simplistic assumptions on device-
independence protocols. In particular, we can further
restrict the adversary such that the device itself is assumed
to be IID. We define the IID-device independent variants
IDIj for j ∈ {0, 1, 2}, where the devices are IID and are
not allowed memory or communication from one round
to the next (e.g., see Ref. [40]). Based on these observa-
tions, we generalize Definition 1 for the DI-QKD setups
with channels in the following way.

Definition 3. The device-independent secret key agree-
ment (or private) capacity of the device (�̃, ρ,M) under
the assumption of its IID uses assisted with i-way com-
munication between allies outside the device and j -way
communication between the input-output rounds within the
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device, is given by

P IDIj
i (�̃, ρ,M):= inf

ε>0
lim sup

n→∞
μ

IDIj ,ε
i,n (�̃, ρ,M), (69)

where μ
IDIj ,ε
i,n (ρ, �̃,M) is the maximum key rate optimized

over all viable privacy protocols over the IID uses of
device, while also including a minimization over the pos-
sible IID devices IDI j that are compatible with the honest
device. We have

μ
IDIj ,ε
i,n (�̃, ρ,M):= sup

P̂∈CLOPCi

inf
(N ,�̃′,σ)∈IDIj

(N ,�̃′,σ)≈ε(M,�̃,ρ)

κεn (P̂, (N , �̃′, σ)), (70)

where κεn is the rate of achieved ε-perfect key and classical
labels from local classical operations in P̂ ∈ CLOPCi are
possessed by the allies (Alice and Bob).

Another direct consequence of the IID device-
independence assumptions is the following lemma.

Lemma 1. For any two IID devices, (�̃, ρ,M) and
(�̃′, σ ,N ), that are IDI j and compatible to each other,
we have

(�̃′, σ ,N ) = (�̃, ρ,M) =⇒ P IDIj
i (�̃′, σ ,N )

= P IDIj
i (�̃, ρ,M). (71)

The aforementioned definitions are a more realistic
variant and generalization of the definitions presented in
Ref. [40]. We obtain the definitions in Ref. [40] if we
assume bipartite distribution channel �̃ = idA′→A ⊗�B′→B
and restrict minimization over compatible devices consist-
ing of a channel of the form �̃′ = id ⊗�′, where id denotes
the identity channel, in the definitions aforementioned.

Lemma 2. The device-independent secret key capacity
P IDIj

i of an honest device (�̃, ρ,M) when �̃A′B′→AB =
�1

A′→A ⊗�2
B′→B is upper bounded by

P IDIj
i (�̃, ρ,M) ≤ inf

(�̃′,σ ,N )∈IDIj
(�̃′,σ ,N )=(�̃,ρ,M)

min{PDD
max{i,j }(�

′1),PDD
max{i,j }(�

′2)}, (72)

where PDD
i (�) is the LOPCi-assisted private capacity of

the point-to-point channel � (see, e.g., Refs. [35,37], and
Appendix C 1) and �̃′ = �′1 ⊗�′2.

Corollary 2. It follows that for all i, j ∈ {0, 1, 2}, we have

P IDIj
i (�̃, ρ,M) ≤ min{PDD

2 (�1),PDD
2 (�2)}. (73)

Furthermore, if the point-to-point channels �1,�2 are
PPT channels, we have

P IDIj
2 (�̃, ρ,M) ≤ min

{
PDD

2 (�1),PDD
2 (�2),

PDD
2 (ϑ◦�1),PDD

2 (ϑ◦�2)

}
, (74)

where ϑ is a partial transposition map, i.e., ϑ(ρ) = ρ
 .

We now restrict to the case of telecovariant channels,
which can be defined as in Refs. [50,63] and employed in
Ref. [34] in the context of secret key agreement protocols
over point-to-point quantum channels. The action of these
channels can be simulated via teleportation protocol using
resource states as the respective Choi states of the channels
(see Ref. [64] and Appendix C for details).

The lemma below follows from the observation that
the private capacity of telecovariant channels are upper
bounded by the relative entropy of entanglement of the
Choi state of the channel [34].

Lemma 3. Consider a telecovariant distribution chan-
nel �̃A′B′→AB = �1

A′→A ⊗�2
B′→B, where both point-to-

point channels �1 and �2 are telecovariant. The device-
independent secret key capacity P IDIj

i of an honest device
(�̃, ρ,M) with such a telecovariant distribution channel
�̃A′B′→AB = �1

A′→A ⊗�2
B′→B is upper bounded by

P IDIj
i (�̃, ρ,M)

≤ inf
(�̃′,σ ,N )∈IDIj

(�̃′,σ ,N )=(�̃,ρ,M)

min{ER(�
�′1
), ER(�

�′2
)}, (75)

where �̃′ = �′1 ⊗�′2 and ��′
1 and ��′

2 are the Choi
states of the channels�′1 and�′2, respectively. We assume
that the channels �′1 and �′2 are covariant channels.

A. Some practical prototypes

Let us now focus on three widely considered noise
models for the qubit systems: dephasing channel Pp , depo-
larizing channel Dp , and erasure channel Ep . The actions
of these telecovariant channels on the density operators ρ
of a qubit system are given as follows.

1. Dephasing channel: Pp(ρ) ≡ (1 − p)ρ + pσZρσZ ,
where σZ is the Pauli-Z operator.

2. Depolarizing channel: Dp(ρ) ≡ (1 − p)ρ + p 1
21.

3. Erasure channel: Ep(ρ)≡ pρ+ (1 − p)|e〉〈e|, where
|e〉〈e| is the erasure symbol, orthonormal to the support of
the input state.
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Let us now consider that Alice and Bob carry out the
CHSH protocol over the channel idA′→A ⊗�B′→B. As dis-
cussed above, for CHSH protocols, the relevant statistics
are the CHSH violation ω(ρ,M) and QBER Perr(ρ,M).
Thus, for CHSH protocols, the infimum in Eq. (75) is
reduced to the tuples

(
�̃′, σ ,N

)
that satisfy the CHSH

statistics.
We first consider the honest device

(
ρ, idA′→A ⊗ Dp

B′→B,
M). Let M be an arbitrary but honest measurement con-
sidered in the CHSH protocol. Then, the CHSH violation
observed by Alice and Bob is given as

ω(Dp(ρ),M) = (1 − p)ω(ρ,M)+ pω
(

1
4
1,M

)

(76)

= (1 − p)ω(ρ,M). (77)

≤ (1 − p)max
M

ω(ρ,M) ≡ ω� (78)

Here, ω(Dp(ρ),M) corresponds to the CHSH violation
observed from the statistics obtained if the state Dp(ρ)

is measured by M. The second equality follows from
ω(M, 1

41) = 0. The QBER associated with the state is
(1 − p)Perr(ρ,M)+ 1

2 p . We thus obtain the limits on the
statistics that Alice and Bob would obtain on carrying out a
CHSH protocol with the device

(
idA′→A ⊗ Dp

B′→B, ρ,M)
.

We now construct a strategy
(
idA′→A ⊗ Pq

B′→B,�,M)
,

where � is a maximally entangled state. By appro-
priate choice of parameter q and the measurements
M 0

a , M 1
a , M 1

b , M 2
b , we can replicate the CHSH violation

and Perr obtained from carrying out a CHSH protocol
with the device

(
idA′→A ⊗ Dp

B′→B, ρ,M)
. The noise of the

dephasing channel q is chosen as (1 − C)/2, where C =√
(ω∗/2)2 − 1. The measurements are given as M 1,2

a =
(σz/

√
1 + C2)± (C/

√
1 + C2)σx, M 1

b = σz, M 2
b = σx.

With this strategy, we obtain the Bell violation ω�. For
replicating the statistics of QBER, with prob Perr, Alice
chooses A0 = σz, else she randomly chooses a bit. This
strategy has been previously used in Ref. [60] to show
tightness of the obtained lower bounds for one-way CHSH
protocols. With this strategy, we can replicate the statistics
obtained from CHSH protocols performed over depolariz-
ing channels.

Combining the above observations with Eq. (75), we
then obtain the following:

P IDIj
i (idA ⊗ Dp) ≤ min

{
ER(P (1−C)/2 (�)), ER(Dp(�))

}

(79)

≤ min
{

1 − H
(

1 − C
2

)
, 1 − H

(
3p
4

)}
. (80)

We also see that the maximum CHSH violation ω�

obtained from the depolarizing channel with noise p is

(1 − p)2
√

2. Substituting C =
√(
(1 − p)2

√
2/2

)2
− 1 in

Eq. (80), we obtain

P IDIj
i (idA ⊗ Dp) ≤ min

{
1 − H

(
1
2

(
1 −

√
1 − 4p + 2p2

))
,

1 − H(3p/4)
}

. (81)

We thus obtain that for CHSH protocols, the DI secret key
capacity of depolarizing channels is strictly less than the
private capacity of the depolarizing channel as can be seen
in Fig. 3. Here, we use the upper bounds on the two-way
(LOCC-assisted) device-dependent secret-key-agreement
capacities for depolarizing and dephasing qubit channels
obtained in Ref. [34].

Next, let us consider the erasure channel. Let M be a set
of four measurements. The CHSH violation observed is

ω(Ep(ρ),M) = (1 − p)ω(ρ,M)+ pω(|e〉〈e|,M)

(82)

= (1 − p)ω(ρ,M). (83)

≤ (1 − p)max
M

ω(ρ,M) ≡ ω� (84)

We thus see that the upper bound on CHSH violation by
erasure channel of noise p and the depolarizing channel
p are exactly the same. However, the QBER obtained by
carrying out the CHSH protocol across the erasure chan-
nel and depolarizing channel can be different. We then
observe that any value of QBER can be observed by chang-
ing the measurement setting with the dephasing channel, as
detailed before in the numerics for depolarizing channel.
For erasure channels the QBER is zero, so we choose the
measurement settings such that the QBER obtained from
dephasing channel is also zero. We note that the measure-
ment setting M 0

a that is used to tune the QBER, does not
influence the CHSH value that is decided by the values
M 1

a , M 2
a , M 1

b , and M 2
b . We thus obtain

P IDIj
i (idA ⊗ Ep) (85)

≤ min
{
ER(P (1−C)/2 (�)), ER(Ep(�))

}
(86)

≤ min
{

1 − H
(

1 − C
2

)
, 1 − p

}
(87)

≤ min
{

1 − H
(

1
2
(1 −

√
1 − 4p + 2p2)

)
, 1 − p

}
.

(88)

That is, for CHSH protocols, the DI secret key capacity of
erasure channels is strictly less than the private capacity of
the erasure channels as can be seen in Fig. 3.

It is interesting to observe that in the above analysis,
the violation of the CHSH inequality had a vital role in
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limiting the CHSH DI capacity across various example
channels. Due to the structure of the dephasing channel,
which was the attacking channel, the QBER did not end up
influencing the upper bounds.

We thus observe that the dephasing channel can simulate
the device (id ⊗�, ρ,M) with erasure channel or depo-
larizing channel in a device-independent way for CHSH
protocols. This suggests that the outcomes of the device
will have statistics that can be explained by the dephasing
channel even when the actual channel present inside device
is erasure or depolarizing. Hence, it may be in the interest
of the manufacturer to use the dephasing channel instead
of the other two channels.

VI. UPPER BOUND VIA cc-SQUASHED
ENTANGLEMENT

In this section, we study a bound called reduced cc-
squashed entanglement. We prove that the bound is con-
vex, and outperforms both the limitations presented in
Refs. [41,42] in a certain regime of noise. In Sec. VI,
we introduce an entanglement measure, which we call cc-
squashed entanglement and denote as ECC

sq . It does not
have a traditional form [65], as it is a function of a pair
of arguments: a state ρ and measurement M = Ma ⊗ Mb,
i.e., pair of POVMs with outcomes {a} and {b}. We then
observe that, this measure is (i) convex (see Lemma 4)
and that (ii) (due to known results [45,52]) it upper bounds
the device-dependent key of a classical-classical-quantum
(CCQ) state M ⊗ idψρ , where ψρ is a purification of ρ to
the system of the eavesdropper.

In Sec. VI B by minimizing the cc-squashed entangle-
ment over devices (σ ,N ) that have compatible statistics
with honest device (ρ,M) we obtain definition of reduced
cc-squashed entanglement measures. There are two ver-
sions of them. One comes from the compatibility constraint
(σ ,N ) = (ρ,M), and reads

ECC
sq,dev(ρ,M) := inf

(σ ,N )=(ρ,M)
ECC

sq (σ ,N (x̂, ŷ)), (89)

where (x̂, ŷ) is a pair of inputs from which the raw
key is generated in standard DI-QKD protocols [so that
M(x̂, ŷ) = Ma ⊗ Mb]. We show that it upper bounds the
IID device-independent key obtained via measurements
(x̂, ŷ), which is defined via minimization over devices sat-
isfying (σ ,N ) = (ρ,M) and is denoted as K IID

DI,dev. Most
of the proofs in Sec. VI B are shown for the K IID

DI,dev, as they
are simple to state. By analogy to these proofs, we obtain
similar properties for the second version of the reduced cc-
squashed entanglement, which is more relevant for further
considerations. It reads

ECC
sq,par(ρ,M(x̂, ŷ)) := inf

ω(σ ,N )=ω(ρ,M)
Perr(σ ,N )=Perr(ρ,M)

ECC
sq (σ ,N (x̂, ŷ)).

(90)

In particular we show that this function is (i) convex, and
(ii) upper bounds the IID device-independent key obtained
from single input (x̂, ŷ) upon testing that involves esti-
mation of ω and Perr. The latter quantity is denoted as
K IID

DI,par.
Finally in Sec. VI C we apply the above results to show

that the ECC
sq,par is a lower bound to the plots of the bounds

given in Refs. [41,42]. Hence it is tighter bound on K IID
DI,par

(see Theorem 5). Since the bound is convex, we obtain
that in the case of Werner states, the convex hull of the
plots of the bounds of Refs. [41,42] is an upper bound on
the device-independent key rate K IID

DI,par (see Theorem 2).
Due to the observation, which we state below, the convex
combination of the plots is an alternative bound shown in
Fig. 1.

We argue below, that the convex hull of two plots of the
functions is below the convex combination of these plots
treated as sets of points. In our applications the two plots
will be the ones given in Refs. [41,42] as upper bounds for
K IID

DI,par.

Observation 2. For two functions f1, f2 : [0, ∞) → R+, let
g : [0, ∞) → R+ be the largest convex function, which is
less than or equal to the min(f1, f2). Then, for any p ∈ [0, 1]
and x1, x2 ∈ [0, ∞) such that f1(x1) ≤ f2(x1) and f1(x2) ≥
f2(x2), there is

g(px1 + (1 − p)x2) ≤ pf1(x1)+ (1 − p)f2(x2). (91)

Proof : We have the following chain of the (in)equalities,
which we explain below:

g(px1 + (1 − p)x2) ≤ pg(x1)+ (1 − p)g(x2)

≤ p min(f1(x1), f2(x1))+ (1 − p)min(f1(x2), f2(x2))

(92)

= pf1(x1)+ (1 − p)f2(x2) (93)

The first inequality is due to convexity of g. The second is
by assumption, that g is below the minimum of f1 and f2.
The equality holds because of the assumption that for x1,
f1 is less than or equal to f2 and for x2 it is converse. �

A. cc-squashed entanglement and its properties

In what follows, we define an entanglement measure
that takes as an input a bipartite state and a pair MAB of
POVMs {Ma}a and {Mb}b, which act on systems locally,
MAB:=Ma ⊗ Mb.

Definition 4. A cc-squashed entanglement of a bipartite
state ρAB reads Esq(ρAB, M ) is defined as follows:

ECC
sq (ρ, M ) := inf

�:E→E′ I(A : B|E′)MAB⊗�Eψ
ρ
ABE

, (94)

where MAB is a pair of POVMs M = Ma ⊗ Mb, and
ψ
ρ

ABE:=|ψρ〉〈ψρ |ABE is a state purification of ρAB.
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Following Ref. [30], we observe first the following.

Observation 3. For a bipartite state ρAB and a pair of
POVMs M = Ma ⊗ Mb, there is

ECC
sq (ρAB, M ) = inf

ρABE=Ext(ρAB)
I(A : B|E)M⊗idE ρABE , (95)

where Ext(ρAB) is an arbitrary state extension of ρAB to
system E, i.e., ρABE is a state such that TrE[ρABE] = ρAB.

Proof : Following Ref. [30]: to see that Eq. (94)≤(95)
we note that every extension can be obtained from the puri-
fying system by an appropriate channel. Indeed, we first
note that |ψ〉ABEE′′ , which purifies ρABE is related by an
isometry to any state purification |ψρ〉 of ρAB. Hence, a
channel performing this isometry and tracing out E′′ gen-
erates an extension ρABE . Thus, the infimum in Eq. (94),
which varies over �E acting on ψρ can be seen as opti-
mization over the set of arbitrary extensions measured by
M on AB, as it is the case in Eq. (95). Note that we use
the fact that measurements M are the same in both for-
mulas, and the extension in Eq. (95) is taken before the
measurement.

Conversely, we have also Eq. (94)≥(95), because appli-
cation of a channel on system E of a purified state ψρ ,
results in an extension ρABE′ . �

Owing to the above observation, we can see that the cc-
squashed entanglement is convex, as stated in the lemma
below.

Lemma 4. For a pair of measurements M, two states ρAB
and ρ ′

AB, 0 < p < 1, there is

ECC
sq (ρ̄AB, M ) ≤ pECC

sq (ρAB, M )+ (1 − p)ECC
sq (ρ

′
AB, M ),

(96)

where ρ̄AB = pρAB + (1 − p)ρ ′
AB.

Proof : Consider first two tripartite extensions of the
form:

ρ1 := ρABE , (97)

ρ2 := ρ ′
ABE (98)

of ρAB and ρ ′
AB, respectively. Consider then the state of the

following form:

ρABEF = M ⊗ idEF(pρ1 ⊗ |0〉〈0|F + (1 − p)ρ2 ⊗ |1〉〈1|F).
(99)

Note that it is a measured extension of the state ρ̄AB.
Indeed, by linearity of the partial trace, tracing out over

systems F and E we obtain the p-weighted mixture of
states ρAB and ρ ′

AB, measured by M , which is the measured
state ρ̄AB.

By Observation 3 we can use the definition of ECC
sq based

on extensions rather than channels. In what follows we go
along similar lines to Refs. [30,39].

ECC
sq (ρ̄AB, M ) = inf

ρABE=Ext(ρ̄AB)
I(A : B|E)M⊗idE ρABE

≤ I(A : B|EF)ρABEF (100)

= pI(A : B|E)M⊗idE ρ1 + (1 − p)I(A : B|E)M⊗idE ρ2
(101)

In the above we first narrow the infimum to a particu-
lar extension ρABEF . The equality follows from the fact
that system F is classical, and conditioning over such a
system yields an average value of the conditional mutual
information. We also have used linearity of measurement
M :

ρABEL = pM ⊗ idEF ρ1 ⊗ |0〉〈0| + (1 − p)M ⊗ idEF ρ2

⊗ |1〉〈1|, (102)

to separate terms in Eq. (101). Since the extensions ρ1 and
ρ2 were arbitrary, we can also take infimum over them,
obtaining

ECC
sq (ρ̄AB, M ) ≤ p inf

ρABE=Ext(ρAB)
I(A : B|E)M⊗idE ρABE

+ (1 − p) inf
ρ′

ABE=Ext(ρ′
AB)

I(A : B|E)M⊗idE ρ
′
ABE

.

(103)

Again by Observation 3 on the rhs we have pECC
sq (ρAB, M )+

(1 − p)ECC
sq (ρ

′
AB, M ), hence the assertion follows. �

Following Ref. [45, Theorem 3.5] and Ref. [52, Lemma
7] we obtain the following.

Theorem 4 ([45]). For a bipartite state ρ, its purified state
ψρ , and a pair of measurements M, there is

KDD(M ⊗ idψρ) ≤ ECC
sq (ρ, M ). (104)

Proof : The proof boils down to invoking Ref. [45,
Theorem 3.5] and Ref. [52, Lemma 7] for a tripartite
CCQ state ρCCQ := M ⊗ idψρ , and noticing that I(A : B ↓
E)ρCCQ = ECC

sq (ρ, M ). �
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B. Reduced cc-squashed entanglement

In this section we use the cc-squashed entanglement to
define its reduced version and prove the convexity of the
latter, and that it bounds the K IID

DI,dev/par.
To see the application of the cc-squashed entanglement

we need the following fact.

Lemma 5. The IID quantum device-independent key
achieved by protocols using single pair of measurements
(x̂, ŷ) applied to M of a device (ρ,M), is upper bounded
as follows:

K IID,(x̂,ŷ)
DI,dev (ρ,M) := inf

ε>0
lim sup

n
sup

P∈LOPC
inf

(σ ,N )≈ε (ρ,M)

κε,(x̂,ŷ)
n (P(N (σ )⊗n)

≤ inf
(σ ,N )=(ρ,M)

KDD(N (x̂, ŷ)⊗ idψσ ),

(105)

where N ≡ N (x̂, ŷ) is a single pair of measurements
induced by inputs (x̂, ŷ) on N and where κε(x̂,ŷ)

n is the rate
of achieved ε-perfect key and classical labels from local
classical operations in P̂ ∈ CLOPC are possessed by the
allies (Alice and Bob).

Proof :

K IID,(x̂,ŷ)
DI,dev (ρ,M) = inf

ε>0
lim sup

n
sup

P∈LOPC
inf

(σ ,N )≈ε (ρ,M)

κε,(x̂,ŷ)
n (P(N (σ )⊗n)) (106)

≤ inf
ε>0

inf
(σ ,N )≈ε (ρ,M)

lim sup
n

sup
P∈LOPC

κε,(x̂,ŷ)
n (P(N (σ )⊗n))

(107)

≤ inf
(σ ,N )=(ρ,M)

inf
ε>0

lim sup
n

sup
P∈LOPC

κε,(x̂,ŷ)
n (P(N (σ )⊗n))

= inf
(σ ,N )=(ρ,M)

KDD(N (x̂, ŷ)⊗ idψσ ). (108)

In the above we first use the max-min inequality for sup
and limsup [40]. We then narrow infimum to devices that
ideally mimic the device (ρ,M). We further notice that
the key κε,(x̂,ŷ)

n (P(N (σ )⊗n)), where the supremum is taken
over LOPC protocols, equals the device-dependent key of
a tripartite CCQ state N ⊗ idψσ . �

The LOPC protocols considered in the above definition
consist of the error correction and parameter amplification
in the DI-QKD protocols over the CCQ state N (x̂, ŷ)⊗
idψσ . We assume that the test rounds and the key gener-
ation rounds are known to Eve due to classical commu-
nication carried out by Alice and Bob. We should specify

that the distinction in the rounds was not known prior to
the preparation of the device. This knowledge becomes
available to the eavesdropper after Alice and Bob have
performed the measurements and classically communi-
cated with each other. This extra knowledge of distinction
between test rounds and key generation rounds is instru-
mental in obtaining tighter upper bounds for DI-QKD
protocols.

Due to Theorem 4, Ref. [52, Lemma 7], and the above
lemma we have immediate corollary.

Corollary 3. The IID quantum device-independent key
achieved by protocols using single pair of measurements
(x̂, ŷ) applied to M of a device (ρ,M), is upper bounded
as follows:

K IID,(x̂,ŷ)
DI,dev (ρ,M) ≤ inf

(σ ,N )≡(ρ,M)
ECC

sq (σ ,N (x̂, ŷ)) (109)

=: ECC
sq,dev(ρ,M(x̂, ŷ)). (110)

Observation 4. If two quantum devices (ρ,M) and
(σ ,N ) are such that (ρ,M) = (σ ,N ) then

K IID,(x̂,ŷ)
DI,dev (ρ,M) = K IID,(x̂,ŷ)

DI,dev (σ ,N ), (111)

ECC
sq,dev(ρ,M(x̂, ŷ)) = ECC

sq,dev(σ ,N (x̂, ŷ)) (112)

for any valid choice of (x̂, ŷ).

We now pass to study the upper bounds provided in
Refs. [41,42]. We first note that in Ref. [41] conditions
of equal CHSH value ω and QBER Perr are considered
instead of equality of attacking and honest device. It is
straightforward to adopt the above corollary to this case.

Corollary 4. The IID quantum device-independent key
achieved by protocols using a single pair of measurements
(x̂, ŷ) applied to M of a device (ρ,M), is upper bounded
as follows:

K IID,(x̂,ŷ)
DI,par (ρ,M):= inf

ε>0
lim sup

n
sup

P∈LOPC
inf

ω(σ ,N )≈εω(ρ,M)
Perr(σ ,N )≈εPerr(ρ,M)

κε,(x̂,ŷ)
n (P(N (σ )⊗n)) (113)

≤ inf
ω(σ ,N )=ω(ρ,M)

Perr(σ ,N )=Perr(ρ,M)

ECC
sq (σ , N ) =: ECC

sq,par(ρ,M(x̂, ŷ)),

(114)

where N = N (x̂, ŷ) is a single pair of measurements
induced by inputs (x̂, ŷ) on N .
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We show that ECC
sq,par(ρ,M(x̂, ŷ)) is equal to the bound

[41, Eq. (19)] in Appendix D 1.

Observation 5. If two quantum devices (ρ,M) and
(σ ,N ) are such that ω(ρ,M) = ω(σ ,N ) and Perr(ρ,M)

= Perr(σ ,N ) then

K IID,(x̂,ŷ)
DI,par (ρ,M) = K IID,(x̂,ŷ)

DI,par (σ ,N ), (115)

ECC
sq,par(ρ,M(x̂, ŷ)) = ECC

sq,par(σ ,N (x̂, ŷ)), (116)

for any valid choice of (x̂, ŷ). This is to say that
ECC

sq,par(ρ,M(x̂, ŷ)) is a function explicitly depending on
only two parameters ω and Perr.

The quantity defined in Eq. (113) K IID,(x̂,ŷ)
DI,par depends on

the choice of Bell inequality and its violation ω and quan-
tum bit error rate Perr. For further considerations one can
assume that Perr is computed as P(a �= b|x̂, ŷ), as the key is
generated by (x̂, ŷ), howeverω remains a free parameter. In
any case, not to overload the notation, we refrain from dec-
orating definition of K IID,(x̂,ŷ)

DI,par by ω, and make ω explicitly
known from the context if needed (e.g., see Theorem 6).

It will appear crucial for the main Theorem 2 to prove
that ECC

sq,par(ρ,M(x̂, ŷ)) is convex, which we show in the
lemma below.

Lemma 6. The ECC
sq,par is convex, i.e., for every device

(ρ̄,M) and an input pair (x̂, ŷ) there is

ECC
sq,par(ρ̄,M(x̂, ŷ)) ≤ p1ECC

sq,par(ρ1,M(x̂, ŷ))

+ p2ECC
sq,par(ρ2,M(x̂, ŷ)), (117)

where ρ̄ = p1ρ1 + p2ρ2 and p1 + p2 = 1 with 0 ≤ p1 ≤ 1.

Proof : Let us fix two strategies (σ1,N1) and (σ2,N2)

such that ω(σi,Ni) = ω(ρi,M) and Perr(σi,Ni)

= Perr(ρi,M). Consider also a state σ̄ = p1σ1 ⊗ |00〉
〈00|A′B′ + p2σ2 ⊗ |11〉〈11|A′B′ , and a joint strategy N =
N1 ⊗ |00〉〈00|A′B′ + N2 ⊗ |11〉〈11|A′B′ . We note then that
by linearity of ω, there is

ω(σ̄ ,N ) = ω

(
∑

i

pi TrNiσi

)

= (118)

∑

i

piω(σi,Ni) =
∑

i

piω(ρi,M) = ω(ρ̄,M), (119)

where in the prelast equality we use the fact that strate-
gies (σi,Ni) reproduces statistics of (ρi,M), respectively.

Analogously we obtain

Perr(σ̄ ,N ) = Perr(ρ̄,M). (120)

This implies that

ECC
sq,par(ρ̄,M(x̂, ŷ)) ≤ ECC

sq (σ̄ ,N (x̂, ŷ)) (121)

since infimum over strategies is less than the value of the
function taken in the particular strategy described above
by (σ̄ ,N ). We use further convexity of the ECC

sq function
proved in Lemma 4 to get

ECC
sq,par(ρ̄,M(x̂, ŷ)) ≤ p1ECC

sq (σ1 ⊗ |00〉〈00|A′B′ ,N (x̂, ŷ))

+ p2ECC
sq (σ2 ⊗ |11〉〈11|A′B′ ,N (x̂, ŷ)).

(122)

We further note that by definition of N there is

ECC
sq (σ1 ⊗ |00〉〈00|A′B′ ,N (x̂, ŷ)) = ECC

sq (σ1,N1(x̂, ŷ)).
(123)

Indeed, N (x̂, ŷ)(σ1 ⊗ |00〉〈00|) = N1(x̂, ŷ)σ1 ⊗ |00〉〈00|.
Below we have a slight change in notation. From here on
instead of I(A : B|E)ρ , we use I(A; B|E)[ρ]. We also rep-
resent the purification ψσ

ABE as ψABE(σ ). Hence, denoting
by ψ(σ) a purification of a state σ we get

ECC
sq (σ1 ⊗ |00〉〈00|A′B′ ,N (x̂, ŷ))

= ECC
sq (σ1 ⊗ |00〉〈00|A′B′ ,N1(x̂, ŷ)⊗ idA′B′)

= inf
�:E→E′ I(AA′ : BB′|E′)[(N1(x̂, ŷ)⊗ idA′B′ ⊗�E)

ψABA′B′E(σ1 ⊗ |00〉〈00|A′B′)]

= inf
�:E→E′ I(AA′ : BB′|E′)[(N1(x̂, ŷ)⊗ idA′B′ ⊗�E)

ψABE(σ1)⊗ |00〉〈00|A′B′)]

= inf
�:E→E′ I(A : B|E′)[N1(x̂, ŷ)⊗�Eψ

ABE(σ1)]

= ECC
sq (σ1,N (x̂, ŷ)). (124)

In the second last equality we use the fact that I(AA′ :
BB′|E′)[ρCCQ ⊗ |00〉〈00|A′B′] with ρCCQ := (N1(x̂, ŷ)⊗
idA′B′ ⊗�E)ψ

ABE(σ1) equals just I(A : B|E′)[ρCCQ] since
the pure state |00〉〈00|A′B′ does not alter the von Neumann
entropies involved in definition of the conditional mutual

054033-17



KAUR, HORODECKI, and DAS PHYS. REV. APPLIED 18, 054033 (2022)

information. Similarly,

ECC
sq (σ2 ⊗ |11〉〈11|A′B′ ,N (x̂, ŷ)) = ECC

sq (σ2,N2(x̂, ŷ)).
(125)

Hence, there is

ECC
sq,par(ρ̄,M(x̂, ŷ)) ≤ p1ECC

sq (σ1,N1(x̂, ŷ))

+ p2ECC
sq (σ2,N2(x̂, ŷ)). (126)

Now, since strategies (σi,Ni) were arbitrary within their
constraints, we obtain

ECC
sq,par(ρ̄,M(x̂, ŷ)) ≤ p1ECC

sq,par(σ1,N1(x̂, ŷ))

+ p2ECC
sq,par(σ2,N2(x̂, ŷ)), (127)

hence the assertion follows. �

C. Application of the reduced squashed entanglement

We now observe that the upper bounds plotted in
Refs. [41,42] are upper bounds on ECC

sq,par(ρAB,M(x̂, ŷ)).
We denote the plotted functions as IAL(ρAB,M(x̂, ŷ)) and
IFBJL+(ρAB,M(x̂, ŷ)), respectively. That means, if ECC

sq,par
was plotted, it would be below both the bounds given in
these articles.

Theorem 5. For any device (ρ,M) and input M(x̂, ŷ),
there is

ECC
sq,par(ρAB,M(x̂, ŷ)) ≤ IAL(ρAB,M(x̂, ŷ)), (128)

ECC
sq,dev(ρAB,M(x̂, ŷ)) ≤ IFBJL+(ρAB,M(x̂, ŷ)), (129)

ECC
sq,par(ρAB,M(x̂, ŷ)) ≤ ECC

sq,dev(ρAB,M(x̂, ŷ)). (130)

Proof : Let us first note that the last inequality from the
above follows from the fact, that the set over which infi-
mum is taken in definition of ECC

sq,dev is contained in the set
over which infimum is taken in definition of ECC

sq,par.
To obtain Eq. (128), observe that the bound calculated

in Ref. [41] is

I(A; B|E)MA⊗MB⊗idEψ
σ
ABE

, (131)

where MA = σz, MB = σz with probability 1 − 2Perr and
a random bit with probability 2Perr. Here, ψσ is the

purification of the state

σ = 1 + C
2

|�+〉〈�+|AB + 1 − C
2

|�−〉〈�−|AB, (132)

∣∣�±〉
AB = 1√

2
(|00〉 ± |11〉) , (133)

C =
√(ω

2

)2
− 1. (134)

We then obtain the following set of inequalities:

ECC
sq,par(ρ,M(x̂, ŷ)) ≡ inf

ω(σ ,N )=ω(ρ,M)
Perr(σ ,N )=Perr(ρ,M)

inf
�:E→E′

I(A : B|E′)MAB⊗�Eψ
σ
ABE

(135)

≤ I(A; B|E)MA⊗MB⊗idEψ
σ
ABE

. (136)

This follows by choosing particular strategies as specified
above, where we choose the state given in Eq. (132), and
by choosing �E→E′ as identity.

For the plot IFBJL+, we first note that the FBJŁKA bound
[42] works for the protocols where the measurements are
projective and announced after the protocol. If we then fix
a single measurement (x̂, ŷ), we can consider this to be
known to Eve. In principle, in this case, Alice and Bob
need not to announce the test rounds, as they can use a
sublinear amount of private key needed for authentication
to encrypt this information. However whenever test rounds
(and so key rounds) are available to Eve, she can mea-
sure all her shares as if they were key rounds. This strategy
will lead to the same bound as if Alice and Bob publicly
announced testing and/or key rounds.

The device p(ab|xy) against which the honest parties
(implicitly) perform test in Ref. [42], is quantum, hence
it is expected to be (ρ,M) for some honest realization via
measuring M on ρ promised by provider (e.g., a Werner
state of some dimension, and the measurements of CHSH
inequality). But it can be in fact equal to any (σ ,N ) such
that (σ ,N ) = (ρ,M). The idea of Ref. [42] is to repre-
sent the device p(ab|xy) as convex combination of local
and nonlocal part, where the local part is a mixture of local
conditional distributions, i.e.,

p(ab|xy) =
k−1∑

i=0

piP
(i)
L (ab|xy)+ qPNL(ab|xy), (137)

where
∑k−1

i=0 pi + q = 1 for some natural k, {P(i)L (ab|xy)}i
is a set of local conditional distributions and PNL(ab|xy)
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is the nonlocal part of the device p(ab|xy). In what fol-
lows, for the clarity of argument we first assume that Pi

L

are deterministic. That is, for every i and x, y P(i)D (ab|xy) =
δ(a,b),(ax

i ,by
i )

. That is, for every input the outcomes are
(ax

i , by
i ) with probability 1. We further relax this assump-

tion to local distributions in Remark 4.
Since the devices in the above convex combination

are quantum, they admit quantum representation so that
there exist collections of measurements N (i)

L = {N x,(i)
a ⊗

N y,(i)
b }x,y and NNL = {N x,(NL)

a ⊗ N y,(NL)
b }x,y and states σi as

well as σNL such, that

P(i)D (ab|xy) = TrN (i)
L σi

PNL(ab|xy) = TrNNLσNL
(138)

We can then define a strategy, which realizes splitting of a
device p(ab|xy) into the above devices. To this end let us
define

σABA′B′ =
k−1∑

i=0

piσi ⊗ |ii〉〈ii|A′B′ + qσNL|kk〉〈kk|A′B′ (139)

and

N =
k−1∑

i=0

N (i)
L ⊗ |ii〉〈ii|A′B′ + NNL ⊗ |kk〉〈kk|A′B′ . (140)

By definition there is (σ ,N ) = Tr
(∑

i piN (i)
L σ

i
L+

qNNLσNL
) = ∑

i piP
(i)
D (ab|xy)+ qPNL(ab|xy) = (M, ρ).

We are ready to define an extension of the state σABA′B′ to
systems EE′ of Eve, which realizes distribution p(abe|x, y)
as defined in Ref. [42, Eq. (3)], given Eve learns (x, y).

σABA′B′EE′ =
k−1∑

i=0

piσi ⊗ |ii〉〈ii|A′B′ ⊗ σ E
i ⊗ |i〉〈i|E′

+ qσNL ⊗ |kk〉〈kk|A′B′ ⊗ |?〉〈?|E ⊗ |k〉〈k|E′ ,
(141)

where σ E
i = σi for all i ∈ {0, . . . , k − 1}.

Given the system E′ is in state |i〉〈i| with i ∈ {0, . . . , k},
the state of Alice and Bob collapses to σ k

AB or σNL, respec-
tively. Then, either i = k so she learns |?〉〈?|, i.e., nothing
from E, or i < k and Eve measures σ E

i = σi according to
N (i)

L (x, y) and learn the (deterministic) outputs of Alice
and Bob ax

i , by
i . Note here, that due to the fact that outputs

of Alice and Bob are deterministic, Eve can learn them
from a copy of the state σi, given she performs the same
measurement as they do.

In particular, if the key-generation input is single, equal
to (x̂, ŷ), Alice, Bob, and Eve can generate from σABA′B′EE′
a distribution p(abe|x̂ŷ), where e ∈ A × B ∪ {?}, where A

and B are the alphabets of outputs of Alice and Bob’s
device given input (x̂, ŷ). Further, as proposed in Ref.
[42], depending on the state of the system E′, Eve applies
a particular postprocessing map �

post
E|E′ : E → E′′ on her

classical outputs δ(ax
i ,by

i ),e
and symbol “?” mapping them

to symbols {ē} in order to minimize the value of I(A :
B|E′′)p(abē|x̂ŷ) on such obtained distribution p(abē|x̂ŷ).

It is known, that any extension of a bipartite quantum
state can be obtained by a CPTP map applied to its purify-
ing system. Hence, there exists a map�ext

E which produces
from a purification of σAB denoted as |ψσ

ABE〉, the extension
in state σABA′B′EE′ . This map composed with the measure-
ment N i

L(x̂, ŷ) on the Eve system, followed by �post
E|E′ and

tracing out register E′ results in desired final distribution
p(abē|x̂ŷ).

To summarize, the distribution p(abē|x̂ŷ) can be
obtained by applying N (x̂, ŷ) on systems AB and �tot

E :=
TrE′ ◦�post

E|E′ ◦ NL(x̂, ŷ)E|E′ ◦�ext
E on system E of the purifi-

cation |ψσ
ABE〉 of σAB. Here by NL(x̂, ŷ)E|E′ we mean that

given E′ is in state |i〉, N (i)
L (x̂, ŷ) is measured on system E.

We thus have

I(A : B|E′′)p(abē|x̂ŷ) = I(A : B|E)N (x̂,ŷ)⊗�tot
E |ψσABE〉

≥ inf
�:E→E′′ I(A : B|E′′)N (x̂,ŷ)⊗�|ψσABE〉

= Esq(σ ,N (x̂, ŷ))

≥ inf
(σ ,N )=(ρ,M)

Esq(σ ,N (x̂, ŷ))

≡ ECC
sq,dev(ρAB,M(x̂, ŷ)). (142)

It suffices to note that the plot of IFBJL+ visualizes the val-
ues of the function I(A : B|E′′)p(abē|x̂ŷ) attained on the dis-
tribution p(abē|x̂, ŷ). Hence due to the above inequalities
we obtain

IFBJL+(ρ,M(x̂, ŷ)) ≥ ECC
sq,dev(ρAB,M(x̂, ŷ)). (143)

�

We show in Appendix D 2, how to fit our results to
exactly reproduce the results of Ref. [42].

As a corollary there comes the following fact.

Corollary 5. For any device (ρ,M) and a pair of inputs
generating the key (x̂, ŷ), there is

K IID,(x̂,ŷ)
DI,par (ρ,M) ≤ ECC

sq,par(ρ,M(x̂, ŷ)) (144)

≤ min{IAL(ρ,M(x̂, ŷ)), IFBJL+(ρ,M(x̂, ŷ))} (145)

Proof : It holds due to Corollary 4 and Theorem 5. �
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We are ready to state the main Theorem of this section.
In what follows we narrow considerations to (M, (x̂, ŷ))
being projective, as the bound for Werner states presented
in Ref. [42] applies only to this case.

Theorem 6. For a Werner state ρW
AB and M consisting

of projective measurements Px
a ⊗ Py

b, and a pair of inputs
(x̂, ŷ) used to generate the key, there is

K IID,(x̂,ŷ)
DI,par (ρW

AB,M) ≤ Conv(IAL(ρ
W
AB,M(x̂, ŷ)),

IFBJL+(ρW
AB,M(x̂, ŷ))), (146)

where Conv(F1, F2) is the convex hull of the plots of func-
tions Fi, and K IID,(x̂,ŷ)

DI,par (ρW
AB,M) is defined with respect to

ω = CHSH and Perr = P(a �= b|x̂ŷ).

Proof : For the proof it suffices to note that by Corollary
5 we have

K IID,(x̂,ŷ)
DI,par (ρW

AB,M) ≤ ECC
sq,par(σ ,M(x̂, ŷ))

≤ min{IAL(σAB,M(x̂, ŷ)), IFBJL+
× (σAB,M(x̂, ŷ))}. (147)

Now, by Lemma 6 the ECC
sq,par is convex. It is also below the

plots of IAL(σAB,M(x̂, ŷ)) and IFBJL+(σAB,M(x̂, ŷ), due to
the above inequality. As such, it must be below their con-
vex hull. It also upper bounds the key, hence the key must
be below the convex hull of the plots of IAL and IFBJL+ as
well. �

We extend out approach to a greater number of measure-
ments in Appendix E.

VII. DISCUSSION

We develop tighter bounds on the DI-QKD rate in the
case of protocols with single measurement for generating
the raw key. Extending this result for more measure-
ments (see lower bounds studied in Ref. [20]), would be
the next step. We also develop tighter bounds based on
the relative entropy of entanglement for the general DI-
QKD protocols. The upper bounds developed in this work
are essential to understand the fundamental limitations
of CHSH-based DI-QKD protocols. Our findings suggest
that protocols that consider the full correlation or only
one of the parties announces the inputs could potentially
offer an improvement over key rates in device-independent
protocols. It is, therefore, worthwhile to explore more gen-
eral protocols. Developing further on the relative entropic
bound, we use it to derive tighter limitations on the DI-
QKD rate of bipartite states and setups with quantum
channels. This line of approach can be helpful in the devel-
opment of device-independent internet. In this case, it may

be of interest to the manufacturer to know the equivalence
of dephasing, erasure, and the depolarizing noises for the
device-independent key. This can be particularly useful
in choosing the error-correction codes to encode quantum
information in the context of quantum repeaters. Our tech-
niques can be generalized to the multipartite case and will
form a future direction.
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APPENDIX A: OBSERVATIONS RELATED TO
THE DI-QKD RATE

Definition 5. In this section we present some observations,
which follow from the definition of K IID

DI , that can be of
independent interest.

The maximum device-independent key distillation rate
K IID

DI of a bipartite state ρAB is given by

K IID
DI (ρ) = sup

M
K IID

DI (ρ,M). (A1)

Observation 6. We note that there may exist states ρ for
which K IID

DI (ρ) = 0 but K IID
DI (ρ

⊗k) > 0 for some k ∈ N.

A bipartite state ρ that is positive under partial transpo-
sition (PPT), i.e., ρ
 ≥ 0, is called a PPT state. Similarly, a
point-to-point channel � is called a PPT channel if � ◦ ϑ
is also a quantum channel [47,48], where ϑ is a partial
transposition map, i.e., ϑ(ρ) = ρ
 . There exists bipartite
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entangled states, which are PPT [51,66,67]. However, all
PPT states are useless for the task of entanglement distilla-
tion via LOCC even if they are entangled [47,48,51].

A direct consequence of Lemma 7 is the following
corollary (see Ref. [40] for the proof argument made for
≤).

Corollary 6. For any bipartite state ρ that is PPT, we have
K IID

DI (ρ) = K IID
DI (ρ


).

The following lemma follows from the definition of K IID
DI

(see Ref. [40] for the proof argument made for ≤):

Lemma 7. The maximum device-independent key rate
K IID

DI of a device (ρAB,M) is equal to the maximum device-
independent key rate of a device (σ ,N ) when (ρ,M) =
(σ ,N ):
(ρ,M) = (σ ,N ) =⇒ K IID

DI (ρ,M) = K IID
DI (σ ,N ).

(A2)

APPENDIX B: PROOF FOR PROPOSITION 2

First, we can write ρ = pρ1 + (1 − p)ρ2. Let us fix
two strategies (σ1,N1) and (σ2,N2) such that ω(σi,N ) =
ω(ρi,M) and Perr(σi,Ni) = Perr(ρi,Mi). Consider also a
state σ = pσ1 ⊗ |00〉〈00|A′B′ + (1 − p)σ2 ⊗ |11〉〈11|A′B′ ,
and a joint strategy N ≡ N1 ⊗ |00〉〈00|A′B′ ⊗ N2 ⊗
|11〉〈11|A′B′ . We note than that by linearity of ω, there is
ω(σ̄ ,N ) = ω(ρ̄,N ). Analogously, we can also note that
Perr(σ̄ ,N ) = Perr(ρ̄,N ). This implies, by the convexity of
the relative entropy of entanglement, that

inf
ω(σ̄ ,N )=ω(ρ̄,N )

Perr(σ̄ ,N )=Perr(ρ̄,N )

ER(σ ) ≤ ER(σ̄ ) (B1)

≤ pER(σ1)+ (1 − p)ER(σ2).
(B2)

Since the choice of σ1 and σ2 was arbitrary, we obtain

inf
ω(σ̄ ,N )=ω(ρ̄,N )

Perr(σ̄ ,N )=Perr(ρ̄,N )

ER(σ ) ≤ ER(σ̄ ) (B3)

≤ p inf
ω(σ1,N )=ω(ρ1,M)

Perr(σ1,N )=Perr(ρ1,M)

ER(σ1) (B4)

+ (1 − p) inf
ω(σ2,N )=ω(ρ2,M)

Perr(σ2,N )=Perr(ρ2,M)

ER(σ2). (B5)

In particular, if we chose ρ = pρL + (1 − p)ρNL, we
recover the statement of the proposition.

APPENDIX C: BOUNDS ON DI-QKD SETUPS
WITH CHANNELS

In this section, we supplement the discussions and
results in Sec. V. We provide upper bounds on the DI-QKD

rates for the realistic scenarios by taking the dynamical
processes (i.e., quantum channels) within the device into
account.

For the dynamical devices, i.e., DI-QKD setups with
consideration of channels inside the box, we have,

(�̃, ρ,M) = (�̃′, ρ ′,M′) ⇐⇒ p(�̃,ρ,M) = p(�̃′,ρ′,M′),
(C1)

(�̃, ρ,M) ≈ε (�̃
′, ρ ′,M′) ⇐⇒ p(�̃,ρ,M) ≈ε p(�̃′,ρ′,M′).

(C2)

If an honest device (�̃, ρ,M) constituting channels is
being used just for a single round (where the bipartite dis-
tribution channel �̃ is called just once) then it is the same
as an honest device (�̃(ρ),M), which is the ideal situation
where time evolution or noisy transmission of the source
state �̃(ρ) before measurement at the ends of Alice and
Bob is not considered (see Sec. IV). That is (�̃, ρ,M) =
(�̃(ρ),M) for a single round where the device uses the
channel just once.

Definition 6. The device-independent secret key agree-
ment (or private) capacity of the device (�̃, ρ,M) assisted
with i-way communication between allies outside the
device and j -way communication between the input-output
rounds within the device, is given by

PDIj
i (�̃, ρ,M):= inf

ε>0
lim sup

n→∞
μ

DIj,ε
i,n (�̃, ρ,M), (C3)

where μ
DIj,ε
i,n (�̃, ρ,M) is the maximum key rate optimized

over all viable privacy protocols with security parameter
ε, while also including a minimization over the possible
devices DIj that are compatible with the honest device.

Definition 7. The device-independent capacities PDIj
i and

P IDIj
i of a bipartite distribution channel �̃ for the device

DI i and IDI j , respectively, are defined as

PDIj
i (�̃):= sup

ρ,M
PDIj

i (�̃, ρ,M), (C4)

P IDIj
i (�̃):= sup

ρ,M
P IDIj

i (�̃, ρ,M). (C5)

Remark 3. We note that

PDIj
i (�̃, ρ,M) ≤ P IDIj

i (�̃, ρ,M) (C6)

as

μ
DIj,ε
i,n (�̃, ρ,M) ≤ μ

IDIj ,ε
i,n (�̃, ρ,M). (C7)
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1. Bounds on DI-QKD rates in terms of private
capacities of the channels

The main objective of a device-dependent private pro-
tocol is to distribute secret keys between two or more
trusted allies over quantum channels in the presence of a
quantum eavesdropper (e.g., see Ref. [37]). Traditionally,
the secret key agreement between Alice and Bob is over
idA′→A′ ⊗�A→B, where the notion is that Alice transmits a
part of composite system in joint state over channel �A→B
to Bob. It is assumed that the system A′ does not undergo
noisy evolution. Alice and Bob are allowed to use channels
n times and make use of adaptive strategy by interleaving
each call of channel with LOPCi. In the end of the pro-
tocol, Alice and Bob perform LOPCi to distill the secret
key between them. However, in practice, even local sys-
tems with Alice could undergo noisy quantum evolution.
Therefore, we need to consider quantum and private com-
munication over bipartite quantum distribution channels of
the form �1 ⊗�2 rather than restricting to the bipartite
quantum distribution channels of the form id ⊗�2.

Let us now consider a device-dependent quantum com-
munication protocol where the goal is for a relay station
to transfer prepared entangled state to two allies, Alice
and Bob, such that Alice and Bob can distill secret keys
between themselves, which is secure from a quantum
eavesdropper and the relay station. We can assume that
an arbitrary bipartite state ρA′B′ is available at relay station
to Charlie. Charlie may operate bipartite quantum distri-
bution channel �A′B′→A′′B′′ on the state ρA′B′ , and is an
untrusted party. Charlie then transmits quantum systems
A′′, B′′ in the joint state �(ρ) to trusted allies Alice and
Bob, respectively, over quantum channels �1

A′′→A,�2
B′′→B.

In general, all three parties can perform i′-way LOPC
(LOPCi′) among themselves in an adaptive strategy, where
i′ ∈ {0, 1, 2}. Charlie can make n uses of channel �̃ =
�1 ⊗�2 ◦� interleaved with LOPCi′ between each round
(i.e., each call of the channel). At the end of the protocol,
the goal is for Alice and Bob to get the state from which
secret key is readily accessible upon local measurements.
The secret key distillable at the end of Alice and Bob can
be ε close to the ideal secret key.

Definition 8. The device-dependent privacy distribution
capacity Ri′ over a bipartite quantum distribution chan-
nel �̃ assisted with i′-way communication (LOPCi′) among
Charlie, Alice, and Bob for i′ ∈ {0, 1, 2} is defined as

Ri′(�̃):= inf
ε>0

lim sup
n→∞

νεi′,n(�̃), (C8)

where νεi′,n(�̃) is the maximum ε-perfect key rate obtained
among all possible repeatable privacy protocols (assisted
with i′-way communication LOPCi′ among the relay sta-
tion and the trusted allies) that uses channel �̃ n times.

Device-dependent privacy distribution capacity over
idA′→A′ ⊗�A→B, where Alice herself is at the relay sta-
tion and sender to Bob, with LOPCi assistance reduces
to device-dependent LOPCi-assisted private capacity
PDD

i (�) over point-to-point quantum channel �.

Observation 7. The device-dependent privacy distribution
capacity Ri over a bipartite quantum distribution channel
�̃ = �1 ⊗�2 is upper bounded by the device-dependent
private capacity over point-to-point channels �1 and �2,
i.e.,

Ri(�̃) ≤ min{PDD
i (�1),PDD

i (�2)}. (C9)

The protocol for the privacy distribution over �1 ⊗�2

reduces to secret key agreement protocols over �1 or
�2 if we assume �2 = id with Bob at relay station as
sender or �1 = id with Alice at the relay station as the
sender, respectively. Under such reduction of the proto-
col, a lesser amount of information is leaked to a quantum
eavesdropper as a part of a noisy evolution becomes
noiseless.

Lemma 8. The device-independent secret key capacities
PDIj

i and P IDIj
i of a device (�̃, ρ,M) in terms of optimized

privacy distribution capacity Rmax{i,j } are

PDIj
i (�̃, ρ,M) ≤ inf

(�̃′,σ ,N )∈IDIj
(�̃′,σ ,N )=(�̃,ρ,M)

Rmax{i,j }(�̃′), (C10)

P IDIj
i (�̃, ρ,M) ≤ inf

(�̃′,σ ,N )∈IDIj
(�̃′,σ ,N )=(�̃,ρ,M)

Rmax{i,j }(�̃′). (C11)

We omit the proof of the above lemma as proof argu-
ments are similar to the proof of Ref. [40, Eqs. (47) and
(49)].

2. Telecovariant channels

Definition 9. Let G be a group with unitary representation
g → Ug

A on HA and g → Vg
B on HB. A quantum chan-

nel �A→B is covariant with respect to the unitary group{Ug
}

g∈G if

Vg
B�(·)Vg†

B = �
(

Ug
A(·)Ug†

A

)
. (C12)

If a quantum channel �A→B satisfies Eq. (C12) such that
the unitary group G is a one design, i.e.,

1
|G|

∑

g∈G

Ug
AρAUg†

A = 1
|A|1A ∀ρA, (C13)

then �A→B is said to be telecovariant.
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A channel that is covariant with respect to one-design
unitaries can be simulated via LOCC and the Choi state of
the channel as a shared resource state [64]. That is,

�A→B(ρA) = LAA′→B
(
��

A′B ⊗ ρA
)

, (C14)

where LAA′→B is a LOCC channel, with the classical com-
munication being from A to B and ��

A′B:=�(�+
A′A) is the

Choi state of the channel. The above equation informally
implies that any quantum communication via the channel
� is equivalent to sharing the Choi state �� followed by
local operations and classical communication.

APPENDIX D: ON RELATION TO PRIOR
RESULTS

This section is devoted to relating our results to
the ones obtained in Refs. [38,41,42]. We show that
ECC

sq,par(ρ,M(x̂, ŷ)) is equal to the bound [41, Eq. (19)]. We
then show how our Theorem 5 relates to the approach of
Ref. [42]. Finally we discuss the relation of our approach
to that of Ref. [38].

1. Comparison with the approach of [41]

In this section, we argue that the ECC
sq,par(ρ,M(x̂, ŷ))

is equal to the bound [41, Eq. (19)]. Before that we
invoke the notation of Ref. [41], where (σABE ,M(x̂, ŷ)) ∈
�̂(ω∗, Q∗) iff trE(σABE ,M(x̂, ŷ)⊗ idE) = q(ab|x̂ŷ) where
ω(q(ab|x̂ŷ)) = ω∗ and Perr(q(ab|x̂ŷ)) = Q∗.

The bound of Ref. [41] reads

Ipar(ω
∗, Q∗, x̂, ŷ) := inf

σ∈�̂(ω∗,Q∗)
I(A; B ↓ E)σ(x̂,ŷ), (D1)

where the quantity I(A : B ↓ E) := inf�:E→E′ I(A : B|E′)σ(x̂,ŷ)
is computed on a state σABE measured with M(x̂, ŷ) on AB
for some measurements M.

The equivalence is encapsulated in the following
theorem.

Theorem 7. Let (ρ,M) be a quantum device with param-
eters ω∗, Q∗ where Q∗ is computed based on the inputs
(x̂, ŷ). Then there is

ECC
sq,par(ρ,M(x̂, ŷ)) = I(ω∗, Q∗, x̂, ŷ) (D2)

for any choice of the inputs (x̂, ŷ).

Proof : In what follows we can fix (x̂, ŷ) arbitrarily. We
first prove that for any quantum realization (ρ,M) of a
device with parameters ω∗, Q∗, there is ECC

sq,par(ρ,M(x̂, ŷ))
is a lower bound to I(ω∗, Q∗, x̂, ŷ). To this end, let us
assume that the infimum in I is achieved for a pair

(̃σABE ,M̃(x, y)) ∈ �̂(ω∗, Q∗). We then observe that for
ρ̃AB := trEσ̃ABE , there is

Ipar(ω
∗, Q∗, x̂, ŷ) = I(A : B ↓ E)(̃σABE ,M̃(x̂,ŷ)) (D3)

≥ ECC
sq (ρ̃AB,M̃(x̂, ŷ)) (D4)

≥ inf
ω(σ ,N )=ω(ρ̃,M̃)

Perr(σ ,N (x̂,ŷ))=Perr(ρ̃,M̃(x̂,ŷ))

ECC
sq (σ ,N (x̂, ŷ)) (D5)

≥ inf
ω(σ ,N )=ω(ρ,M)

Perr(σ ,N (x̂,ŷ))=Perr(ρ,M(x̂,ŷ))

ECC
sq (σ ,N (x̂, ŷ)) (D6)

= ECC
sq,par(ρ,M(x̂, ŷ)), (D7)

where the first inequality comes from the fact, that chan-
nels � : E → E′ in definition of ECC

sq are acting on a
purification of ρ̃AB = trEσ̃ABE hence can achieve a lower
value than channels acting on system E of σ̃ABE . The next
inequality is just by taking infimum, while the last is due
to the fact that (ρAB,M), (ρ̃AB,M̃) ∈ �̂(ω∗, Q∗).

We prove now the converse inequality. Let (σAB,N )
be a pair achieving infimum in definition of the
ECC

sq,par(ρ,M(x̂, ŷ)). In particular there is ω(σ ,N ) =
ω(ρ,M) = ω∗ by assumption and Perr(σ ,N ) = Perr

(ρ,M) = Q∗. And hence (ψσ ,N ) ∈ �̂(ω∗, Q∗). We have
then

ECC
sq,par(ρ,M(x̂, ŷ)) = ECC

sq (σ ,N (x̂, ŷ)) (D8)

= I(A : B ↓ E)(ψσ ,N (x̂,ŷ)) (D9)

≥ inf
σ ′∈�̂(ω∗,Q∗)

I(A : B ↓ E)σ ′(x̂,ŷ)

(D10)

= Ipar(ω
∗, Q∗, x̂, ŷ), (D11)

hence the assertion follows. �

In Ref. [41] [see Eq. (18) there] there is also defined
a quantity, which is equivalent to ECC

sq,dev. It reads in our
notation

Idev(p(ab|x̂ŷ)):= inf
σ∈�(p(ab|x̂ŷ))

I(A; B ↓ E)σ(x̂,ŷ), (D12)

where σABE ∈ �(p(ab|x̂ŷ)) iff there exists a measurement
M such that trE(σABEM ⊗ idE) = p(ab|xy). Analogous
proof to the above, with �̂ replaced by� and optimization
over ω and Perr reduced to optimization over compatible
devices, leads to the following equivalence.
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Theorem 8. For any quantum realization (ρ,M) of a
device p(ab|xy) and pair of inputs (x̂, ŷ), there is

Idev(p(ab|x̂ŷ)) = ECC
sq,dev(ρ,M(x̂, ŷ)). (D13)

2. Correspondence with Ref. [42]

In this section we present two remarks showing how to
fit our approach to exactly reproduce results of Ref. [42]
(however not necessarily in optimal way with respect to
finding upper bounds on the key rate). We first extend the
proof of Theorem 5 to the case of splitting into local rather
than deterministic devices.

Remark 4. In the case where the devices in Eq. (137) are
not deterministic, one can explicitly specify σi and N (i)

L as
it is explained below, with all other parts of the proof of
Theorem 5 unchanged. For each i ∈ {0, . . . , k − 1}, there
exists a splitting of P(i)L (ab|xy) into deterministic devices

P(i)L (ab|xy) =
∑

j

q(i)P(ij )D (a|x)P(ij )D (b|y). (D14)

We can then explicitly realize the deterministic devices as

P(ij )D (a|x) = Tr σ (ij )A N x
a,L, (D15)

where σ (ij )A = ⊗|X |
l=1|a(ij )l 〉〈a(ij )l |Al , and

N x
a,L = {PAx ⊗ idAl �=x }, (D16)

N y
b,L = {PBy ⊗ idBl �=y }, (D17)

where Pl projects system Al (or Bl, respectively) onto com-
putational basis. Having defined analogously PD(b|y), we
can define the state σABA′B′ as follows:

σABA′B′ =
k−1∑

i=0

pi

⎛

⎝
∑

j

q(i)j σ
(ij )
A ⊗ σ

(ij )
B

⎞

⎠⊗ |ii〉〈ii|A′B′

+ qσNL ⊗ |kk〉〈kk|A′B′ , (D18)

where
∑

j q(i)j σ
(ij )
A ⊗ σ

(ij )
B =: σi.

With

N (i)
L (x, y) = N x

a,L ⊗ N y
b,L (D19)

for all i ∈ {0, . . . , k − 1} already defined, and N
defined as in Eq. (140), we have again (σABA′B′ ,N ) =
Tr(
∑

i piN (i)
L σi + qNNLσNL) = (M, ρ).

We can also define extension of the state σABA′B′ to Eve’s
systems EAEB as shown below.

σABA′B′EAEBE′ =
k−1∑

i=0

∑

j

piq
(i)
j σ

(ij )
A ⊗ σ

(ij )
B ⊗ |ii〉〈ii|A′B′

⊗ σ
(ij )
EA

⊗ σ
(ij )
EB

⊗ |i〉〈i|E′ + qσNL

⊗ |kk〉〈kk|A′B′

⊗ |?〉〈?|EA ⊗ |?〉〈?|EB ⊗ |k〉〈k|E′ , (D20)

where σ
(ij )
EA

= σ
(ij )
A and σ

(ij )
EB

= σ
(ij )
B . Note, that given

knowledge of (x, y) Eve can measure N (i)
L (x, y) on her

systems EAEB and learn the outcomes of Alice and Bob.
We have therefore specified a tripartite quantum state,

from which Alice, Bob, and Eve generate the distribution
p(abe|xy) as it is specified in Ref. [42, Eq. (3)]. In this
distribution Eve is fully correlated to the outcomes of local
devices, and is fully uncorrelated (having symbol “?”) with
the nonlocal device. The remaining part of the proof of
Theorem 5 is the same as shown before.

In the remark below we argue that our approach pre-
sented in Theorem 5 is slightly more general than that of
Ref. [42].

Remark 5. In fact the register E′ is not used in Ref. [42].
There, the distribution P(abē|x̂ŷ) depends only from the
outputs (a, b) and “?” and not on the number of a deter-
ministic device that produces this output. The system E′
appeared in our discussion as a mean to realize the con-
dition of Ref. [42] that Eve should obtain the outputs of
Alice and Bob in the case when the device shared by them
is local. Whether one can achieve this goal without addi-
tional information held by the index i is possible, we leave
as an open problem. We also keep system E′ and its use in
the description (proof of Theorem 5) due to the fact that
it shows that Eve has more knowledge, that may lead to
potentially tighter upper bounds.

3. Comparison with the intrinsic nonlocality of Ref.
[38]

As the second conclusion from the above theorem there
comes the fact that for any family of plots of the upper
bound via the average intrinsic information given in Ref.
[42], the device-independent key is below their convex
hull.

As we see above ECC
sq,dev(ρ,M, p(x, y) as well as intrin-

sic nonlocality [38] are based on conditional mutual infor-
mation where the Eve system is an extension system of
underlying strategy. For completeness, we give here the
definition of the quantum intrinsic nonlocality as intro-
duced in Ref. [38].
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Definition 10. The quantum intrinsic nonlocality of a
correlation p(a, b|x, y) is defined as

N Q(p(a, b|x, y)) = sup
p(x,y)

inf
ρĀB̄XYE

I(Ā; B̄|XYE)ρ , (D21)

where

ρĀB̄XYE =
∑

x,y,a,b

p(x, y)p(a, b|x, y)|a〉〈a|Ā ⊗ |b〉〈b|B̄ ⊗ |x〉

× 〈x|X ⊗ |y〉〈y|Y ⊗ ρ
a,b,x,y
E . (D22)

Here, p(a, b|x, y)ρa,b,x,y
E = TrAB

[
(�x

a ⊗�
y
b)ρABE

]
and ρABE

is the extension of ρAB.

The major differences between the two quantities is as
follows: the intrinsic nonlocality is a function of the device
{p(a, b|x, y)} while ECC

sq,dev(ρ,M, p(x, y)) is a function of
the compatible ρCCQ states. For most DI-QKD protocols,
the testing rounds are only relevant while choosing the
compatible strategies, but have no further role to play in
the key generation protocol. This distinction between the
testing and key-generation rounds can be exploited via
ECC

sq,dev(ρ,M, p(x, y)) to upper bounds the key rate for pro-
tocols with specific inputs. The presence of p(x, y) in the
definition of the intrinsic nonlocality does not allow for this
clear distinction of the key-generation and testing rounds.
Another major difference is that with ECC

sq,dev(ρ,M, p(x, y))
we allow for a flexibility on the channels that Eve can
act upon her extension systems. That is, Eve’s actions on
the extensions can be dependent on the measurements per-
formed by Alice and Bob. These two differences in the
structure of the quantities are vital to obtain tighter bounds.

4. EXTENSION TO MORE MEASUREMENTS

One can consider the function ECC
sq for multiple measure-

ments defined as follows.

Definition 11. The cc-squashed entanglement of the col-
lection of measurements M measured with distribution
p(x, y) of the inputs reads

ECC
sq (ρAB,M, p(x, y)) :=

∑

x,y

p(x, y)ECC
sq (ρAB, Mx,y).

(E1)

Similarly to Observation 3 we have that

ECC
sq (ρ,M, p(x, y)) =

∑

x,y

p(x, y) inf
ρABE=Ext(ρAB)

I(A : B|E)Mx,y⊗idE ρABE (E2)

We note here that the extensions ρABE can be different for
different choices for (x, y). We then note a general fact

that a convex combination of convex functions is a convex
function itself.

Lemma 9. Let {fi} be the set of convex functions. Then for
every distribution {pi} the function

∑
i pifi is convex.

Proof : Let x = px1 + (1 − p)x2 then,

∑

i

pifi(x) ≤
∑

i

pi(pfi(x1)+ (1 − p)fi(x2))

= p
∑

i

pifi(x1)+ (1 − p)
∑

i

pifi(x2). (E3)

�

From the above lemma it follows that due to convexity
of ECC

sq (ρ, M ) the function ECC
sq (ρ,M, p(x, y)) is convex.

Further, due to convexity of the latter function we have that
the analogously defined reduced version of this function

ECC
sq,dev(ρ,M, p(x, y)) := inf

(σ ,N )=(ρ,M)
ECC

sq (σ ,N , p(x, y))

(E4)

is also convex (via analogous lemma to Lemma 6).
It will appear crucial to notice, that in DI-QKD it is

assumed, that the distribution of inputs p(x, y) is drawn
from a private shared randomness held by Alice and Bob,
which is independent of the device (ρ,M). (In most cases
p(x, y) is the uniform distribution. Otherwise sharing pri-
vate correlations in order to choose inputs based on these
correlations would imply sharing private key. It would be
then no sense to run a DI-QKD, given Alice and Bob
already share the key in the form of these correlations.)
Due to this “free-will” assumption, it is not known to Eve
for each run which (x, y) was chosen by Alice and Bob.
This means that a priori Eve does not have access to
systems ExEy of an extension of the form

∑

x,y

p(x, y)Mx,y idE ρ
(x,y)
ABE ⊗ |xy〉〈xy|ExEy , (E5)

where ρ(x,y)
ABE is an extension of ρAB for each (x, y). How-

ever, under assumption that Alice and Bob make the
announcements for the choice of measurements and Eve
subsequently learns this measurement [42], Eve can have
access to the extensions given in Eq. (E5). To obtain these
extensions, we can assume that the eavesdropper can act on
its quantum system by a map�E→ExEy , which is dependent
on the measurements (x, y). It is crucial for further con-
siderations that Eve has access to the above extension. To
make this assumption explicit we consider the following
QDI key rate:
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K IID,broad
DI,dev (ρ,M, p(x, y)) := inf

ε>0
lim sup

n
sup

P∈LOPC
inf

(σ ,N )≈ε (ρ,M)

κεn

(

P
([
∑

x,y

p(x, y)Nxy ⊗ idE(ψ
σ
ABE ⊗ |xy〉〈xy|ExEy )

]⊗n))

, (E6)

where by broad we mean that (x, y) are broadcasted, and
made explicit by adding systems ExEy to Eve.

We denote the action of broadcasting the values of (x, y)
(creating systems ExEy) as C. This allows us to state the
following technical lemma.

Lemma 10. The function ECC
sq (ρ, C ◦∑x,y p(x, y)Mx,y) is

convex in the second argument, i.e.,

ECC
sq

(

ρ, C ◦
∑

x,y

p(x, y)Mx,y

)

≤
∑

x,y

p(x, y)ECC
sq (ρ, Mx,y).

(E7)

Proof : We can write

ECC
sq

(

ρ, C ◦
∑

x,y

p(x, y)Mx,y

)

≤ inf
�EExEy

I(A; B|EExEy)�EExEy (ρABEExEy )
. (E8)

Here, the inequality follows by fixing a particular class of
extension. We take an arbitrary extension of the underlying
quantum state, allow for flag registers and arbitrary quan-
tum channels on Eve’s system. We construct a particular
extension of ρ measured by

∑
x,y p(x, y)Mx,y as follows:

ρABEExEy :=
∑

x,y

p(x, y)Mx,y ⊗ idEExEy σABE ⊗ |xy〉〈xy|ExEy ,

(E9)

where σABE is an arbitrary extension of the state ρ. The
map�EExEy is arbitrary. The access to the registers ExEy is
assured by application of a broadcasting map C after per-
forming the measurement. It is straightforward to see that
upon tracing out E, Ex, Ey we obtain ρ measured by a con-
vex combination of Mx,y . Now, let us choose a particular
map of the form

�̃EExEy =
∑

x,y

�̃
x,y
E ⊗ |xy〉〈xy|ExEy , (E10)

where �̃x,y
E is arbitrary. We then obtain

ECC
sq

(

ρ, C ◦
∑

x,y

p(x, y)Mx,y

)

(E11)

≤ I(A; B|EExEy)�̃EExEy (ρABEExEy )
(E12)

=
∑

x,y

p(x, y)I(A; B|E)Mx,y⊗�̃x,y
E (σABE)

, (E13)

where �̃EExEy (ρABEExEy ) = ∑
x,y p(x, y)Mx,y ⊗ �̃

x,y
E ⊗

idExEy σABE ⊗ |xy〉〈xy|ExEy . Since �̃x,y
E is an arbitrary map,

we obtain

ECC
sq

(

ρ, C ◦
∑

x,y

p(x, y)Mx,y

)

(E14)

≤
∑

x,y

p(x, y) inf
�

x,y
E

I(A; B|E)Mx,y⊗�x,y
E (ρABE)

(E15)

=
∑

x,y

p(x, y)ECC
sq (ρ, Mx,y). (E16)

This concludes the proof. �

We note now, that ECC
sq (ρ,M, p(x, y)) is an upper

bound for a distillable key of the state
∑

x,y p(x, y)Mx,y ⊗
idE |ψρ〉〈ψρ |ABE ⊗ |xy〉〈xy|ExEy .

Theorem 9. For a bipartite state ρ and a set of measure-
ments M, performed with probabilities p(x, y) on it, there
is

KDD

(
∑

x,y

p(x, y)Mx,y ⊗ idE |ψρ〉〈ψρ | ⊗ |xy〉〈xy|ExEy

)

≤ ECC
sq (ρ,M, p(x, y)). (E17)

Proof : The proof follows from Ref. [45, Theorem
3.5] (also see Ref. [52, Lemma 7]) for a tripar-
tite CCQ state ρCCQ := ∑

x,y p(x, y)Mx,y ⊗ id |ψρ〉〈ψρ | ⊗
|xy〉〈xy|ExEy , and noticing that KDD(ρCCQ) ≤ I(A : B ↓
E)ρCCQ = ECC

sq (ρ, C ◦∑x,y p(x, y)Mx,y) ≤ ∑
x,y p(x, y)

ECC
sq (ρ, Mx,y) ≡ ECC

sq (ρ,M, p(x, y)), where the last inequal-
ity follows from Lemma 10. �

We are ready to formulate the analog of Corollary 3.
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K IID,broad
DI,dev (ρ,M, p(x, y)) ≡ inf

ε>0
lim sup

n
sup

P∈LOPC
inf

(σ ,N )≈ε (ρ,M)

κεn

(

P
([
∑

x,y

p(x, y)Nxy ⊗ idE(|ψσ 〉〈ψσ | ⊗ |xy〉〈xy|ExEy )

]⊗n))

(E18)

≤ inf
(σ ,N )=(ρ,M)

ECC
sq (σ ,N , p(x, y)) =: ECC

sq,dev(ρ,M, p(x, y)), (E19)

where Nxy are measurements induced by (x, y) on N ,
respectively.

Proof : It follows from similar lines as the proof of
Lemma 5 to show that

K IID,broad
DI,dev (ρ,M, p(x, y)) ≤ inf

(σ ,N )=(ρ,M)
KDD

(
∑

x,y

p(x, y)Mx,y ⊗ idE |ψρ〉〈ψρ | ⊗ |xy〉〈xy|ExEy

)

.

(E20)

The assertion follows then from Theorem 9. �

Let us note, that the above bound is in principle tighter
than the one considered in Ref. [42], as it is stated in the
Theorem below.

Theorem 10. The function ECC
sq,dev(ρ,M, p(x, y)) is (i) a

convex upper bound on K IID,broad
DI,dev (ρ,M, p(x, y)) and (ii) a

lower bound to the upper bound given in Ref. [42, Eq. (5)].

Proof : The first part of the proof follows from Corollary
7. The convexity of this upper bound is already observed,
as analogous to the one of ECC

sq,par proved in Lemma 6. We
focus now on showing that this function is a lower bound
to the upper bound given in Ref. [42].

Let us first restrict the attacks to such that the channel�
involved in the definition of the ECC

sq,dev(ρ,M, p(x, y)) is a
POVM, i.e., has only classical outputs, denoted as �cl

E . In
such a case we have

ECC
sq,dev(ρ,M, p(x, y)) ≤ inf

(σ ,N )=(ρ,M)

∑

x,y

p(x, y) inf
�

post
E ◦�cl

E

I(A : B|E)[Nxy ⊗�
post
E ◦�cl

E |ψσ 〉]
(E21)

= inf
(σ ,N )=(ρ,M)

∑

x,y

p(x, y) inf
�cl

E

I(A : B ↓ E)[Nxy ⊗�cl
E |ψσ 〉]

≤
∑

x,y

p(x, y)I(A : B ↓ E)[Ñxy ⊗ �̃cl
E |ψσ̃ 〉] (E22)

≡
∑

p(x,y)

p(x, y)I(A : B ↓ EE′)[p(abei|xy)] (E23)

≤
∑

p(x,y)

p(x, y)I(A : B ↓ E)[p(abe|xy)], (E24)

where I(A : B ↓ E)[p(abe|xy)] is the intrinsic information
of the distribution p(abe|xy). (In the last line we obtain the
bound given in Ref. [42, Eq. (5)].)

The first inequality is due to restriction of the infi-
mum to that over POVMs with classical outputs only. The
first equality follows from using the definition of intrin-
sic information, which absorbs minimization over channels
�

post
E . The inequality (E22) follows from (i) fixing a par-

ticular choice of the attack (Ñ , σ̃ ) := (N , σ), where σ
is given in Eq. (D18) and N is defined via Eqs. (D16),
(D17) and (140) (ii) by choosing �̃ext

E such that it pro-
duces extension σABA′B′EAEBE′ given in Eq. (D20), when
acting on system E of |ψσ 〉ABE . (iii) The choice of a
channel �̃cl

E := N (i)
L (x, y)E|E′ ◦ �̃ext

E where measurements
N (i)

L (x, y) = N x
a,L ⊗ N y

b,L are given in Eq. (D19). This is
possible for Eve because, as discussed earlier, Alice and
Bob broadcast the input choices (x, y). This choice results
in classical systems EE′ holding pairs (e, i) with e ∈ A ×
B ∪ {?} and i ∈ {0, . . . , k}, where e = (a, b), i.e., the out-
puts of Alice and Bob given input x, y has been chosen.
We thus observe in Eq. (E23), that the minimized condi-
tional information is equal to the intrinsic information of
such obtained distribution p(abei|xy).

The last inequality is due to the fact, that we first
trace out register E′, so that the channel involved in the
definition of the intrinsic information does not depend on
i (the information from which local device Eve obtains
the outputs). This narrows the infimum over channels in
the definition of intrinsic information, hence the quantity
under consideration can only go up. As a result the intrin-
sic information is a function of distribution p(abe|xy), as
it is obtained in Ref. [42, Eq. (5)]. (See Remark 5 in this
context.) �

054033-27



KAUR, HORODECKI, and DAS PHYS. REV. APPLIED 18, 054033 (2022)

[1] C. H. Bennett and G. Brassard, in Proceedings of the
IEEE International Conference on Computers, Systems and
Signal Processing (IEEE, Bangalore, India, 1984), p. 175.

[2] Artur K. Ekert, Quantum Cryptography Based on Bell’s
Theorem, Phys. Rev. Lett. 67, 661 (1991).

[3] Dominic Mayers and Andrew Chi-Chih Yao, Quantum
Cryptography with Imperfect Apparatus (IEEE Computer
Society, Palo Alto, CA, USA, 1998), p. 503.

[4] Frédéric Magniez, Dominic Mayers, Michele Mosca, and
Harold Ollivier, in Automata, Languages and Program-
ming (Springer Berlin Heidelberg, 2006), p. 72.

[5] Antonio Acín, Nicolas Gisin, and Lluis Masanes, From
Bell’s Theorem to Secure Quantum Key Distribution, Phys.
Rev. Lett. 97, 120405 (2006).

[6] Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge
Massar, Stefano Pironio, and Valerio Scarani, Device-
Independent Security of Quantum Cryptography Against
Collective Attacks, Phys. Rev. Lett. 98, 230501 (2007).

[7] Vadim Makarov, Controlling passively quenched single
photon detectors by bright light, New J. Phys. 11, 065003
(2009).

[8] Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Vale-
rio Scarani, and Stephanie Wehner, Bell nonlocality, Rev.
Mod. Phys. 86, 419 (2014).

[9] Philip M. Pearle, Hidden-variable example based upon data
rejection, Phys. Rev. D 2, 1418 (1970).

[10] Emilio Santos, Critical analysis of the empirical tests of
local hidden-variable theories, Phys. Rev. A 46, 3646
(1992).

[11] John Stewart Bell, Atomic-cascade photons and quantum-
mechanical nonlocality, Commen. At. Mol. Phys. 9, 121
(1980).

[12] Marissa Giustina, et al., Significant-Loophole-Free Test of
Bell’s Theorem with Entangled Photons, Phys. Rev. Lett.
115, 250401 (2015).

[13] Lynden K. Shalm, et al., Strong Loophole-Free Test of
Local Realism, Phys. Rev. Lett. 115, 250402 (2015).

[14] Wenjamin Rosenfeld, Daniel Burchardt, Robert Garthoff,
Kai Redeker, Norbert Ortegel, Markus Rau, and Harald
Weinfurter, Event-Ready Bell Test using Entangled Atoms
Simultaneously Closing Detection and Locality Loopholes,
Phys. Rev. Lett. 119, 010402 (2017).

[15] Umesh Vazirani and Thomas Vidick, Fully Device-
Independent Quantum Key Distribution, Phys. Rev. Lett.
113, 140501 (2014).

[16] Rotem Arnon-Friedman, Frédéric Dupuis, Omar Fawzi,
Renato Renner, and Thomas Vidick, Practical device-
independent quantum cryptography via entropy accumula-
tion, Nat. Commun. 9, 459 (2018).

[17] Rotem Arnon-Friedman, Renato Renner, and Thomas
Vidick, Simple and tight device-independent security
proofs, SIAM J. Comput. 48, 181 (2019).
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