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One of the most prominent techniques to enhance the performance of practical quantum key distribution
(QKD) systems with laser sources is the decoy-state method. Current decoy-state QKD setups operate at
gigahertz repetition rates, a regime where memory effects in the modulators and electronics that control
them create correlations between the intensities of the emitted pulses. This translates into information
leakage about the selected intensities, which cripples a crucial premise of the decoy-state method, thus
invalidating the use of standard security analyzes. To overcome this problem, a security proof that exploits
the Cauchy-Schwarz constraint has been introduced recently. Its main drawback is, however, that the
achievable key rate is significantly lower than that of the ideal scenario without intensity correlations.
Here, we improve this security proof technique by combining it with a fine-grained decoy-state analysis,
which can deliver a tight estimation of the relevant parameters that determine the secret key rate. This
results in a notable performance enhancement, being now the attainable distance double that of previous
analyzes for certain parameter regimes. Also, we show that when the probability density function of the
intensity fluctuations, conditioned on the current and previous intensity choices, is known, our approach
provides a key rate very similar to the ideal scenario, which highlights the importance of an accurate
experimental characterization of the correlations.
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I. INTRODUCTION

Quantum key distribution (QKD) offers a way to
distribute a secret key over the distance between two com-
municating parties, Alice and Bob [1–3]. When used in
conjunction with the one-time-pad encryption scheme [4],
QKD allows for information-theoretically secure commu-
nications, regardless of the future evolution of classical
or quantum computers. This is so because its security is
based on the laws of quantum mechanics and does not
rely on computational assumptions. In recent years, QKD
has progressed very rapidly both in theory and in practice,
turning into a flourishing commercial technology that is
being deployed in metropolitan and intercity fiber-based
networks worldwide [5–8], including also satellite links
[9–13] and chip-based technology [14–17].

One of the most successful QKD protocols for long-
distance transmission is undoubtedly the decoy-state QKD
scheme [18–20]. It uses phase-randomized weak coherent
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pulses (PRWCPs) emitted by laser sources to provide
a secret key rate that scales linearly with the channel
transmission [21]. Since its theoretical proposal, numer-
ous experimental implementations have been reported in
recent years [22–30], being the actual distance record
over fiber of 421 km [31]. Decoy-state QKD has also
been demonstrated over satellite links [9,11,12], and var-
ious companies currently implement it in their commer-
cial products. Importantly, the use of decoy states is also
an essential ingredient for other QKD schemes that use
laser sources, like, e.g., measurement-device-independent
(MDI) QKD [32] or twin-field (TF) QKD [33], the lat-
ter presently holding a distance record over fiber of
833 km [34].

However, despite these achievements, there are still cer-
tain challenges that need to be overcome for QKD to
become a widely used technology. One of these chal-
lenges is to increase the secret key rate delivered by
current experimental setups, which is severely affected
by the limited transmissivity of single photons in optical
fibers, as well as by the dead time of the detectors at the
receiver. Possible approaches for this include the use of
multiplexing techniques—like, e.g., wavelength division
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multiplexing—that simultaneously transmit several QKD
channels over the same fiber [35,36], the adoption of
high-dimensional QKD, which can encode many bits of
information on a single photon [37], and the increase
of the pulse repetition rate of the sources [38]. Indeed,
current decoy-state QKD experimental setups operate at
gigahertz repetition rates [26,29–31], and the trend is to
increase their clock frequency even further. However, in
such a high-speed regime, memory effects in the modula-
tors and electronics that control them create correlations
between the generated optical pulses [38–41]. That is, the
state of a quantum signal emitted by the source at a cer-
tain time instant depends not only on the state preparation
settings selected by Alice in that time instant, but also
on those selected by her in previous time instants. Impor-
tantly, if this effect is not properly taken into account in the
security proof of QKD, it might open a security loophole
in the form of information leakage [42]. This is so because
the settings chosen to encode each quantum signal are also
partially leaked through the quantum states of subsequent
signals.

So far, most security proofs of QKDs have neglected
the effect of pulse correlations and assume indepen-
dent and identically distributed emitted pulses. Therefore,
they cannot be used to guarantee the security of high-
speed QKD implementations. Only a few recent theoret-
ical works partially address this problem. Precisely, the
authors of Refs. [43,44] studied the case of setting-choice-
independent pulse correlations, in which the emitted pulses
can be arbitrarily correlated between them, but these cor-
relations do not depend on the state preparation setting
choices. This scenario may occur, for example, when the
temperature of Alice’s laser drifts slowly over time due
to thermal effects, or when her modulators’ power supply
fluctuates in time. Moreover, various results that address
the problem of setting-choice-dependent pulse correla-
tions have also been reported. In particular, the authors
in Ref. [42] introduced a security proof that can handle
arbitrary correlations that originate from the phase mod-
ulator that encodes the bit and basis information of each
generated signal. Likewise, a restricted class of nearest-
neighbor pulse correlations that arise from the intensity
modulator used to prepare decoy states has been studied in
Ref. [41], where a postprocessing technique to treat these
correlations is also provided. Also, the authors of Ref. [45]
introduced a general methodology to treat arbitrary inten-
sity correlations in a decoy-state QKD setup. For this, they
exploit a fundamental constraint that is a direct conse-
quence of the Cauchy-Schwarz (CS) inequality in Hilbert
spaces [42,46]. The case of correlations between the global
phases of the coherent states emitted by a laser when it is
operated under gain-switching conditions has been studied
in Ref. [47].

On the experimental side, a few recent works have
quantified the strength of pulse correlations (affecting the

phase-randomization process, and/or the bit, basis, and
intensity encoding of the signals) for various particular
QKD setups that operate at the gigahertz regime [38–
41], and showed that such correlations are in general not
negligible. All these works, however, limit their study
to nearest-neighbor pulse correlations. More experimental
efforts are needed to accurately characterize the pulse cor-
relations (of arbitrary length) that are created by a QKD
source as a function of its experimental configuration and
repetition rate.

A main limitation of the security proof technique pre-
sented in Ref. [45] is that the delivered secret key rate is
significantly lower than that of the ideal scenario without
correlations. Only when the intensity correlations are very
tiny, the resulting performance can approximate the ideal
scenario. In this paper we improve the general methodol-
ogy introduced in Ref. [45], based on the CS constraint, by
combining it with a fine-grained decoy-state analysis. In
doing so, we achieve a much tighter estimation procedure
to determine the relevant parameters that enter the secret
key rate formula. This results in a notable enhancement
of the achievable secret key rate in the presence of inten-
sity correlations. Indeed, for certain parameter regimes,
the maximum attainable distance can be double that of
Ref. [45]. In addition, we show that when the probability
density function of the intensity fluctuations, conditioned
on the current and previous intensity setting choices, is
known, our analysis can provide a secret key rate that is
very close to that of the ideal scenario. This highlights
the importance of properly characterizing intensity cor-
relations in QKD experimental setups. Most importantly,
our results can be readily applied to guarantee the security
of high-speed decoy-state QKD realizations with current
technology, without much penalization on their secret key
rate.

The paper is organized as follows. In Sec. II we present
the problem of intensity correlations, and explain why the
standard decoy-state analysis cannot be directly applied to
this scenario. Here, we also emphasize our main contri-
butions in relation to previous results. Next, in Sec. III we
provide the main assumptions that we consider in the secu-
rity analysis. Then, in Sec. IV we introduce a fine-grained
decoy-state parameter estimation method that can be used
in the presence of intensity correlations to tightly estimate
the relevant parameters that determine the secret key rate.
This estimation procedure is then applied to two differ-
ent scenarios in the following two sections. Precisely, in
Sec. V we consider the general case where Alice and Bob
only know the intervals where the intensity fluctuations lie.
The results for the case where they know the probability
density function of the intensity fluctuations are presented
in Sec. VI, followed by the conclusions in Sec. VII. To
improve the readability of the paper, certain derivations
are omitted in the main text and are included in a series
of appendices.
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II. RELATION WITH PREVIOUS WORK

As already mentioned, intensity correlations refer to
the fact that the intensity of an optical pulse gener-
ated in a certain round of a QKD protocol depends
not only on the intensity setting selected for that round,
but also on the intensity settings selected for previous
rounds. This effect has been experimentally quantified in
Refs. [38,40,41]. It is illustrated in Fig. 1 with a simple
example. In general, an eavesdropper (Eve) could exploit
these correlations to learn information about the inten-
sity settings selected in previous rounds by measuring
the intensity of the pulses emitted in subsequent rounds.
This could allow her to make the photon-number detection
statistics (i.e., the yields and error rates associated to n-
photon pulses) dependent on the intensity setting selected,
in so breaking the elementary security premise of the stan-
dard decoy-state method [18–20]. This situation is similar
to that of a Trojan-horse attack [48–50], in which Eve can
learn partial information about the intensities selected to
generate the different pulses.

To overcome this problem, there are two main com-
plementary approaches. Precisely, one could implement
hardware countermeasures to try to reduce (or even elim-
inate) the correlations, and one could also include their
effect in the security proof of QKDs. An example of the
first type of approach could be to use various intensity
modulators, each of them acting on different nonconsec-
utive signals, such that their modulation rate effectively
decreases to a regime where no correlations are created.
An example of the second approach has been provided

FIG. 1. Illustration of the effect of intensity correlations. The
upper subfigure shows a train of optical pulses sent by Alice
to the channel with three different intensity values selected at
random, which are indicated with the different colours and ampli-
tudes of the pulses. In the absence of intensity correlations, the
intensity of each signal is determined only by the intensity setting
selected in the corresponding time instant. In the lower subfigure
we show a specific example of nearest-neighbor intensity cor-
relations. Solid lines indicate the pulses actually emitted, while
dashed lines indicate the selected intensity settings. Precisely,
this example assumes that, for illustration purposes, when the
intensity setting of the previous pulse is lower (higher) than that
of the actual pulse, then the actual intensity generated is a bit
lower (higher) than that indicated by the setting selected.

in Ref. [41], where the authors studied a restricted type
of nearest-neighbor intensity correlation (i.e., this refers
to the fact that the actual intensity of each pulse only
depends on the intensity settings selected for that time
instant and for the previous time instant). In particular,
Ref. [41] analyzes the case where only certain intensity
settings have a significant effect on the actual intensity
of a subsequent pulse, and introduces a postprocessing
technique to guarantee security in this scenario. In addi-
tion, an experimental characterization of the probability
density function of the correlations is provided, which
seems to indicate that it essentially follows a Gaussian-
shaped form, though this knowledge is not exploited by
the postprocessing technique introduced.

Recently, in Ref. [45], the authors presented an asymp-
totic security proof that can deal with intensity correlations
of arbitrary range (i.e., not necessarily nearest-neighbor
pulse correlations) in the decoy-state parameter estima-
tion procedure. Their method is rather general and can be
applied when all previous intensity settings can influence
the actual intensity of subsequent pulses. The main idea in
Ref. [45] is to pose a restriction on the maximum bias that
Eve can induce between the n-photon yields and error rates
associated to different intensity settings, by using the CS
constraint [42,46]. Notably, only two parameters, the cor-
relation range ξ and the maximum deviation δmax between
the physical intensity and the selected intensity setting, are
needed. However, despite the fact that this work is quite
simple and experimentally friendly, it treats the deviation
of each pulse independently of the previous sequence of
selected intensities, but instead it takes the maximum pos-
sible deviation for the worst-case scenario, thus providing
loose bounds. Indeed, the resulting bounds on the secret
key rate are significantly lower than those obtained in the
absence of correlations. Therefore, the question arises of
whether this damaging effect on the key rate is a funda-
mental feature of the correlations, or rather an artifact of a
loose parameter estimation procedure.

In this paper we preserve the essence of the approach
in Ref. [45] to deal with arbitrary intensity correlations—
i.e., we exploit the CS constraint to quantify the max-
imum bias that Eve may induce between the photon-
number detection statistics associated to different intensity
settings—but sharpen the decoy-state method with a finer-
grained analysis of the yields and errors that keeps explicit
track of the record of settings. This, in turn, allows us
to incorporate finer-tuned CS constraints to the parameter
estimation procedure. Putting it all together, our approach
enables a noticeable enhancement of the secret key rate
when compared with the results in Ref. [45].

In addition, we show that, when the probability density
function of the intensity fluctuations is known, our fine-
grained decoy-state analysis is rather tight, as it can pro-
duce a secret key rate that is comparable to that obtainable
in the absence of intensity correlations. This is explicitly
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illustrated by considering a Gaussian-shaped probability
density function for the correlations, following the pre-
liminary results in Ref. [41] (see also Ref. [51]). In this
scenario, the principal improvement mainly comes from
the fact that the knowledge of the probability density func-
tion now permits us to calculate certain quantities—that
are necessary to determine the secret key rate—precisely,
avoiding the need to use looser bounds that exploit mono-
tonicity arguments.

III. ASSUMPTIONS

For concreteness, below we shall consider a typical
polarization encoding decoy-state BB84 protocol with
three intensity settings. Nevertheless, our results apply
to other encoding schemes, and can be straightforwardly
adapted to other decoy-state-based QKD protocols with a
different number of intensity settings.

In the first place, let us fix the notation that is used
throughout the paper. In each round k of the protocol, with
k = 1, . . . , N , Alice selects an intensity setting ak ∈ A =
{μ, ν,ω} with probability pak , a basis xk ∈ B = {X , Z} with
probability qxk , and a uniform raw key bit rk ∈ Z2 = {0, 1}.
Without loss of generality, we impose that the intensity
settings satisfy μ > ν > ω ≥ 0. Then, she encodes the
BB84 state defined by xk and rk in a PRWCP with inten-
sity setting ak, and sends it to Bob through the quantum
channel. Importantly, the actual mean photon number of
the pulse might not match the setting ak due to the pres-
ence of intensity correlations. To finish with, we assume
perfect phase randomization, perfect polarization encod-
ing, and that there are no side channels beyond intensity
correlations for simplicity.

On the other hand, Bob selects a basis yk ∈ B with prob-
ability qyk and performs a measurement described by a pos-
itive operator-valued measure (POVM) {M̂ yk ,sk

Bk
}sk∈{0,1,f } on

the incident pulse. Here, Bk denotes Bob’s kth incoming
pulse, sk stands for Bob’s classical outcome, and f stands
for “no click.” As usual, the basis-independent detection
efficiency condition is assumed, i.e., M̂ Z,f

Bk
= M̂ X ,f

Bk
, and

thus, we shall simply denote these two operators by M̂ f
Bk

.
Also, we disregard any potential memory effect in the
detectors [52]. These assumptions could be removed by the
use of MDI-QKD [32] or TF-QKD [33].

Let �ak = ak, ak−1, . . . , a1 symbolize the record of inten-
sity settings up to round k, where aj ∈ A for every j , and
let αk stand for the actual intensity emitted in round k. We
consider that αk is a continuous random variable whose
probability density function is fixed by the record of set-
tings �ak. From now on, we denote such correlation function
as g �ak (αk). Three additional elementary assumptions of our
work are listed below.

Assumption 1: The presence of correlations does not
compromise the Poissonian character of the photon-number

statistics of the source conditioned on the value of the
actual intensity, αk. Mathematically, this amounts to saying
that, for any given round k, and for all nk ∈ N,

p (nk|αk) = e−αkα
nk
k

nk!
. (1)

Notably, this assumption is supported by recent high-
speed QKD experiments [38,41]. Still, we remark that our
analysis could be easily adapted to consider any other
photon-number statistics conditioned on the value of αk.
Assumption 2: The intensity correlations have a finite
range ξ , meaning that the value of the physical intensity
of round k, αk, is not affected by those previous settings aj
with k − j > ξ .
Assumption 3: The correlation function g �ak (αk) is only

nonzero for αk ∈ [a−
k , a+

k

]
with a±

k = ak

(
1 ± δ±

�ak

)
, where

δ±
�ak

are the relative deviations. Note that, in virtue of
Assumption 2, δ+

�ak
and δ−

�ak
only depend on ak and the

previous ξ intensity settings.
From these three assumptions, it follows that the photon-

number statistics for a given round k and a given record of
settings �ak are

pnk

∣∣
�ak

=
∫ a+

k

a−
k

g �ak (αk)
e−αkα

nk
k

nk!
dαk for all nk ∈ N. (2)

Note that Assumption 2 is not explicitly imposed here.

IV. QUANTIFYING THE EFFECT OF INTENSITY
CORRELATIONS ON THE DECOY-STATE
PARAMETER ESTIMATION PROCEDURE

With the three assumptions stated above and to account
for the influence of intensity correlations in the decoy-state
analysis, we use the fundamental CS constraint [42,46].
This result poses a natural constraint between the mea-
surement statistics of two nonorthogonal states. Hence, in
particular, one can use it to restrict the possible bias that
Eve may induce between the yields (error probabilities)
associated to different records of settings. The reader is
directed to Appendix A for a definition of this statement.
The limits we derive with it are shown below.

We define both the yield and the error probability, for
any given round k, photon number n ∈ N, and record of
settings v0, . . . , vξ ∈ A, as

Y(k)n,v0,...,vξ = p(sk �= f |nk = n, ak = v0, . . . ,

ak−ξ = vξ , xk = Z, yk = Z),

H (k)
n,v0,...,vξ ,r = p(sk �= f , sk �= rk|nk = n, ak = v0, · · · ,

ak−ξ = vξ , xk = X , yk = X , rk = r). (3)
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In virtue of the CS constraint, for any two distinct intensity
settings v0 and w0 that could be selected in round k, and for
any record of previous settings v1, . . . , vξ , in Appendix A
it is shown that the associated yields and error probabilities
satisfy

G−
(

Y(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
≤ Y(k)n,w0···vξ

≤ G+
(

Y(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
(4)

and

G−
(

H (k)
n,v0···vξ ,r, τ

ξ
v0w0···vξ ,n

)
≤ H (k)

n,w0···vξ ,r

≤ G+
(

H (k)
n,v0···vξ ,r, τ

ξ
v0w0···vξ ,n

)
, (5)

where

G−(y, z) =
{

g−(y, z) if y > 1 − z,
0 otherwise,

G+(y, z) =
{

g+(y, z) if y < z,
1 otherwise,

(6)

with the function g±(y, z) = y + (1 − z)(1 − 2y)±
2
√

z(1 − z)y(1 − y). That is, Eqs. (4) and (5), state,
respectively, how much Y(k)n,w0···vξ and H (k)

n,w0···vξ ,r can devi-
ate from Y(k)n,v0···vξ and H (k)

n,v0···vξ ,r. Crucially, the parameters

τ
ξ
v0w0···vξ ,n are a lower bound on the squared overlap of the

two quantum states with which the two yields are calcu-
lated. Explicit expressions for the parameters τ ξv0w0···vξ ,n are
derived in Appendix B 2 for the two different scenarios that
we consider in Secs. V and VI.

To enable the use of linear programming for the decoy-state parameter estimation procedure, a linear version of the
constraints given by Eq. (4) is needed. As shown in Appendix A, the linearized versions of the CS constraints for the
yields and error probabilities can be expressed as

G−
(

Ỹ(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
+ G′

−
(

Ỹ(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

) (
Y(k)n,v0···vξ − Ỹ(k)n,v0···vξ

)
≤ Y(k)n,w0···vξ

≤ G+
(

Ỹ(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
+ G′

+
(

Ỹ(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

) (
Y(k)n,v0···vξ − Ỹ(k)n,v0···vξ

)
(7)

and

G−
(

H̃ (k)
n,v0···vξ , τ

ξ
v0w0···vξ ,n

)
+ G′

−
(

H̃ (k)
n,v0···vξ , τ

ξ
v0w0···vξ ,n

) (
H (k)

n,v0···vξ − H̃ (k)
n,v0···vξ

)
≤ H (k)

n,w0···vξ

≤ G+
(

H̃ (k)
n,v0···vξ , τ

ξ
v0w0···vξ ,n

)
+ G′

+
(

H̃ (k)
n,v0···vξ , τ

ξ
v0w0···vξ ,n

) (
H (k)

n,v0···vξ − H̃ (k)
n,v0···vξ

)
, (8)

where both Ỹ(k)n,v0···vξ and H̃ (k)
n,v0···vξ are the reference parameters of the linear approximations, introduced in Appendix C.

Finally, the functions G′
± are defined as

G′
−(y, z) =

{
g′

−(y, z) if y > 1 − z,
0 otherwise,

G′
+(y, z) =

{
g′

+(y, z) if y < z,
0 otherwise,

(9)

with g′
±(y, z) = −1 + 2z ± (1 − 2y)

√
z(1 − z)/y(1 − y).

V. MODEL-INDEPENDENT CORRELATIONS

A. Characterization

In this section we now consider a general scenario in
which the correlation function g�ak (αk) given by Eq. (2)
is unknown. This implies that one cannot compute the

photon-number statistics of the emitted pulses explicitly,
and, thus, must impose bounds on them by invoking
monotonicity arguments. We consider two cases.

In the first one, the maximum relative deviations
δ+
(ak ...ak−ξ ) and δ−

(ak ...ak−ξ ) depend on the intensity setting
choices corresponding to all the previous ξ rounds and the
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present round, and define an interval that is in general not
symmetric with respect to the value of the selected setting.

As shown in Appendix B 2, and denoting aN
1 = a1 . . . aN ,

the bound for this case reads

√
τ
ξ
v0,w0,...,vξ ,n =

∑

amin{k+ξ ,N }
k+1

min{k+ξ ,N }∏

i=k+1

pai

[
e(1/2)(−a

(w0)+
i −a

(v0)+
i ) + e(1/2)(−a

(w0)−
i −a

(v0)−
i )

(
e
√

a
(w0)−
i a

(v0)−
i − 1

)]
, (10)

where the terms a(v0)±
i satisfy a(v0)±

i = ai(1 ±
δ±
(ai...ak+1,ak=v0,ak−1=v1...ai−ξ=vξ+k−i)

) and analogously for

a(w0)±
i . Note that, with this notation, settings a1 to ak are

fixed to a certain value, while settings ak+1 to ai are not.
Also, note that the bound given by Eq. (10) does not
depend on the photon number n, i.e., it holds for all n.

Secondly, we consider as well a simplified situation
where only a worst-case deviation δmax is known for every
possible record of settings. That is, it holds that δmax ≥
δ±
(ai···ak+1,ak=w0,v0,ak−1=v1···ai−ξ=vξ+k−i)

for all k = 1, . . . , N
and all i ∈ [k + 1, min{k + ξ , N }]. In this case, the bound
simply reads

√
τ

ξ
v0,w0,...,vξ ,n =

⎡

⎣1 −
∑

ai∈A

pai

(
e−a−

i − e−a+
i

)
⎤

⎦

ξ

, (11)

where a±
i = ai(1 ± δmax). This derivation is also presented

in Appendix B 2. Note that Eq. (10) can only be used
if one is able to experimentally characterize the maxi-
mum relative deviation for every possible combination of
settings.

From now on, and in order to keep the discussion sim-
ple, we focus on the case of nearest-neighbor intensity
correlations. That is, we set ξ = 1. For this purpose, it
is convenient to do a slight change of notation, by call-
ing v0 = a; w0 = b and v1 = c as this makes the following
section easier to follow. Note that the analysis below can
be easily adapted for the case of ξ > 1, and we include
simulations for this latter scenario in Sec. V D.

B. Decoy-state method

To introduce the linear programs that perform the
parameter estimation, we shall now provide a decoy-state
analysis.

Let us start by defining the Z basis gain for a certain pair
of intensity settings a and c, and a number of rounds N , as

Za,c,N =
N∑

k=1

Z(k)a,c , (12)

with Z(k)a,c = I{ak=a,ak−1=c,xk=yk=Z,sk �=f }. That is, Z(k)a,c = 1 if
in round k, Alice selects an intensity setting a that is pre-
ceded by an intensity setting c (in round k − 1), both Alice
and Bob select the Z basis, and a click occurs at Bob’s side.
Thus,

〈
Z(k)a,c

〉 = p (k)(a, c, Z, Z, click)

= q2
Zpapc

∞∑

n=0

p (k)(n, click|a, c, Z, Z)

= q2
Zpapc

∞∑

n=0

p (k)(n|a, c)Y(k)n,a,c. (13)

Straightforward monotonicity arguments lead to the fol-
lowing bounds on the photon-number statistics p (k)(n|a, c):

p (k)(0|a, c) ∈
[
e−a+

c , e−a−
c
]

,

p (k)(n|a, c) ∈
[

e−a−
c (a−

c )
n

n!
,

e−a+
c (a+

c )
n

n!

]

(n ≥ 1).
(14)

Here a±
c = a(1 ± δ±

(ak=a,ak−1=c)). Note that, despite the fact
that this notation is similar to that used in Eq. (10), the
parameters a±

c are actually not equal to a(γ )±i with γ ∈ A.
This is so because here, only the settings ak and ak−1
matter, and they are respectively fixed to a and c.

Now, using these intervals in Eq. (13), one obtains

〈
Z(k)a,c

〉

q2
Zpapc

≥ e−a+
c Y(k)0,a,c +

∞∑

n=1

e−a−
c (a−

c )
n

n!
Y(k)n,a,c,

〈
Z(k)a,c

〉

q2
Zpapc

≤ e−a−
c Y(k)0,a,c +

∞∑

n=1

e−a+
c (a+

c )
n

n!
Y(k)n,a,c,

(15)

for all a, c ∈ A and k = 1, . . . , N . Selecting a threshold
photon number for the numerics, ncut, and using the fact
that

∞∑

n=ncut+1

Y(k)n,a,ce−a+
c a+n

c

n!
≤ 1 −

ncut∑

n=0

e−a+
c (a+

c )
n

n!
, (16)
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we have

〈
Z(k)a,c

〉

q2
Zpapc

≥ e−a+
c Y(k)0,a,c +

ncut∑

n=1

e−a−
c (a−

c )
n

n!
Y(k)n,a,c,

〈
Z(k)a,c

〉

q2
Zpapc

≤ 1 − e−a+
c + e−a−

c Y(k)0,a,c

−
ncut∑

n=1

e−a+
c (a+

c )
n

n!
(
1 − Y(k)n,a,c

)
.

(17)

Note how replacing Z by X everywhere, one obtains the
corresponding analysis for the X basis gains in a certain
round k.

We now have to impose similar constraints to the error
counts. For that matter, we define the number of X basis
error counts with settings a in round k and c in round
k − 1 as

Ea,c,N =
N∑

k=1

E(k)a,c , (18)

with E(k)a,c = X (k)
a,c I{rk �=sk}. Then, we have

〈
E(k)a,c

〉 = p (k)(a, c, X , X , err)

= q2
X papc

∞∑

n=0

p (k)(n, err |a, c, X , X)

= q2
X papc

∞∑

n=0

p (k)(n|a, c)H (k)
n,a,c, (19)

where we have defined

H (k)
n,a,c = p (k)(err | n, a, c, X , X )

= H (k)
n,a,c,0 + H (k)

n,a,c,1

2
. (20)

With the same steps as before, it follows that

〈
E(k)a,c

〉

q2
X papc

≥ e−a+
c H (k)

0,a,c +
ncut∑

n=1

e−a−
c (a−

c )
n

n!
H (k)

n,a,c,

〈
E(k)a,c

〉

q2
X papc

≤ 1 − e−a+
c + e−a−

c H (k)
0,a,c

−
ncut∑

n=1

e−a+
c (a+

c )
n

n!
(
1 − H (k)

n,a,c

)
.

(21)

Now, summing over k and dividing by N in both Eqs. (17)
and (21), one obtains bounds for the average parameters

yn,a,c,N =
N∑

k=1

Y(k)n,a,c

N
,

hn,a,c,N =
N∑

k=1

H (k)
n,a,c

N
,

(22)

from the round-dependent bounds. Thus, defining

Z̄a,c,N = Za,c,N

N
,

Ēa,c,N = Ea,c,N

N
,

(23)

we obtain that the final bounds are
〈
Z̄a,c,N

〉

q2
Zpapc

≥ e−a+
c y0,a,c,N +

ncut∑

n=1

e−a−
c (a−

c )
n

n!
yn,a,c,N ,

〈
Z̄a,c,N

〉

q2
Zpapc

≤ 1 − e−a+
c + e−a−

c y0,a,c,N

−
ncut∑

n=1

e−a+
c (a+

c )
n

n!
(
1 − yn,a,c,N

)
,

〈
Ēa,c,N

〉

q2
X papc

≥ e−a+
c h0,a,c,N +

ncut∑

n=1

e−a−
c (a−

c )
n

n!
hn,a,c,N ,

〈
Ēa,c,N

〉

q2
X papc

≤ 1 − e−a+
c + e−a−

c h0,a,c,N

−
ncut∑

n=1

e−a+
c (a+

c )
n

n!
(
1 − hn,a,c,N

)
.

(24)

C. Linear programs for parameter estimation

In this section we present the linear programs that allow
us to estimate the relevant single-photon parameters by
putting together the decoy-state constraints, already intro-
duced above, and the linearized CS constraints with the
notation presented in Eq. (A6).

To begin with, note that the quantities that go into the
secret key rate are the average number of single-photon
counts associated to the case where Alice selects the sig-
nal intensity setting, which we shall denote by Z̄1,μ,N , and
the average number of phase errors associated to these
single-photon counts (which in the case of the BB84 pro-
tocol, without state preparation flaws and assuming the
asymptotic limit, match the average number of single-
photon error counts in the X basis). Moreover, since below
we shall consider the asymptotic secret key regime where
pμ ≈ 1, for simplicity, we can restrict our estimation to the
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number of single-photon error counts in the X basis when
Alice selects the intensity setting, which we shall denote
by Ē1,μ,N .

Let us consider Z̄1,μ,N first. Formally,

Z̄1,μ,N =
N∑

k=1

Z(k)1,μ

N
, (25)

where, for each k, Z(k)1,μ = Z(k)μ I{nk=1} is the probability that
Alice selects the signal intensity setting μ, both Alice and
Bob select the Z basis, and a click occurs at Bob’s side. In
turn, it is clear that Z(k)1,μ decomposes as

Z(k)1,μ =
∑

h∈A

Z(k)1,μ,h, (26)

where of course Z(k)1,μ,h = Z(k)1,μI{ak−1=h}. Then it trivially
follows that

〈Z̄1,μ,N 〉 = 1
N

N∑

k=1

〈Z(k)1,μ〉 = 1
N

N∑

k=1

∑

h∈A

〈Z(k)1,μ,h〉

= 1
N

N∑

k=1

∑

h∈A

q2
Zpμphp (k)(1|μ, h)Y(k)1,μ,h

≥ 1
N

N∑

k=1

∑

h∈A

q2
Zpμphμ

−
h e−μ−

h Y(k)1,μ,h

=
∑

h∈A

q2
Zpμphμ

−
h e−μ−

h y1,μ,h,N . (27)

Note that the above equation lower bounds the expected value of the quantity of interest Z̄1,μ,N using the yields y1,a,b,N
introduced in the previous section. Thus, the linear program of interest is

min q2
Zpμ

∑

h∈A

phμ
−
h e−μ−

h y1,μ,h,N

such that

〈
Z̄a,c,N

〉

q2
Zpapc

≥ e−a+
c y0,a,c,N +

ncut∑

n=1

e−a−
c (a−

c )
n

n!
yn,a,c,N (a, c ∈ A),

〈
Z̄a,c,N

〉

q2
Zpapc

≤ 1 − e−a+
c + e−a−

c y0,a,c,N −
ncut∑

n=1

e−a+
c (a+

c )
n

n!
(
1 − yn,a,c,N

)
(a, c ∈ A),

c+
abc,n + m+

abc,nyn,a,c,N ≥ yn,b,c,N (a, b, c ∈ A, b �= a, n = 0, . . . , ncut) ,

c−
abc,n + m−

abc,nyn,a,c,N ≤ yn,b,c,N (a, b, c ∈ A, b �= a, n = 0, . . . , ncut) ,

0 ≤ yn,a,b,N ≤ 1 (a, b ∈ A, n = 0, . . . , ncut) ,

(28)

where the parameters c±
abc,n and m±

abc,n represent, respectively, the intercepts and slopes from the linear version of the
CS constraints given in Appendix A. We recall that we use such linearization for convenience, to be able to use linear
programming to estimate the relevant parameters in the decoy-state analysis. The precise form of these parameters is
provided by Eq. (A6) in Appendix A; we do not explicitly include it in Eq. (28) to keep the notation simple. We shall
denote the lower bound on 〈Z̄1,μ,N 〉 obtained with the linear program above by Z̄L

1,μ,N .
Naturally, substituting Z for X everywhere yields the equivalent program for the average number of signal-setting single-
photon counts in the X basis.
Proceeding analogously for the average number of signal-setting single-photon error counts in the X basis we have

Ē1,μ,N =
N∑

k=1

E(k)1,μ

N
, (29)

where, for each round k, E(k)1,μ = E(k)μ I{nk=1}. As before, E(k)1,μ decomposes as

E(k)1,μ =
∑

h∈A

E(k)1,μ,h, (30)
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where E(k)1,μ,h = E(k)1,μI{ak−1=h}. Therefore, we obtain

〈Ē1,μ,N 〉 = 1
N

N∑

k=1

〈E(k)1,μ〉 = 1
N

N∑

k=1

∑

h∈A

〈E(k)1,μ,h〉 = 1
N

N∑

k=1

∑

h∈A

q2
X pμphp (k)(1|μ, h)H (k)

1,μ,h

≤ 1
N

N∑

k=1

∑

h∈A

q2
X pμphμ

+
h e−μ+

h H (k)
1,μ,h =

∑

h∈A

q2
X pμphμ

+
h e−μ+

h h1,μ,h,N . (31)

Then an upper bound ĒU
1,μ,N on the quantity 〈Ē1,μ,N 〉 is achieved by using the linear program

max q2
X pμ

∑

h∈A

phμ
+
h e−μ+

h h1,μ,h,N

such that

〈
Ēa,c,N

〉

q2
X papc

≥ e−a+
c h0,a,c,N +

ncut∑

n=1

e−a−
c (a−

c )
n

n!
hn,a,c,N (a, c ∈ A),

〈
Ēa,c,N

〉

q2
X papc

≤ 1 − e−a+
c + e−a−

c h0,a,c,N −
ncut∑

n=1

e−a+
c (a+

c )
n

n!
(
1 − hn,a,c,N

)
(a, c ∈ A),

t+abc,n + s+
abc,nhn,a,c,N ≥ hn,b,c,N (a, b, c ∈ A, b �= a, n = 0, . . . , ncut) ,

t−abc,n + s−
abc,nhn,a,c,N ≤ hn,b,c,N (a, b, c ∈ A, b �= a, n = 0, . . . , ncut) ,

0 ≤ hn,a,b,N ≤ 1 (a, b ∈ A, n = 0, . . . , ncut) ,

(32)

with the parameters t±abc,n and s±
abc,n representing again,

respectively, the intercepts and slopes that arise from the
linear CS constraints. We refer the reader to Appendix A
for further details, and to Eq. (A6) for the explicit
definition of these parameters.

D. Simulations

As shown in Ref. [45], the asymptotic secret key rate is
well approximated by

K∞ = Z̄L
1,μ,N

[

1 − h

(
ĒU

1,μ,N

X̄ L
1,μ,N

)]

− fECZ̄μ,N h (Etol) (33)

for large enough N , as long as the variances of the exper-
imental averages vanish asymptotically (see Ref. [45] for
a precise meaning of this statement). Here, h(x) denotes
the binary entropy function, fEC is the error-correction
efficiency, the parameter Z̄μ,N is the gain in the Z basis
defined as

Z̄μ,N =
∑

h∈A

Z̄μ,h,N , (34)

and Etol is the overall error rate observed in the Z basis.
Note that here one cannot simply use the asymptotic

secret key rate formula against collective attacks due to

the presence of intensity correlations. To be precise, we
have the fact that the asymptotic equivalence between
the collective and the coherent settings is typically estab-
lished on the basis of the so-called postselection technique
[53] built on the De Finetti theorem [54,55]. However,
the round-exchangeability property required to apply the
postselection technique is generally invalidated by pulse
correlations.

Even though simulations with real data from Ref. [41]
are presented in Sec. VI, in order to compare our fine-
grained analysis with the previous results in Ref. [45],
we fix the experimental inputs of the linear programs
Z̄a,c,N/q2

Zpapc, X̄a,c,N/q2
X papc, and Ēa,c,N/q2

X papc to their
expected values according to a typical channel model,
which is provided in Appendix C.

For that matter, let ηdet denote the common detection
efficiency of Bob’s detectors, and let ηch = 10−αattL/10

be the transmittance of the quantum channel, where αatt
(dB/km) is its attenuation coefficient and L (km) is the
distance. Also, let pd denote the dark count probability of
each of Bob’s detectors and let δA stand for the polarization
misalignment occurring in the channel. This model yields
the results (see Appendix C)

〈
Z̄a,c,N

〉

q2
Zpapc

=
〈
X̄a,c,N

〉

q2
X papc

= 1 − (1 − pd)
2 e−ηa, (35)
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and

〈
Ēa,c,N

〉

q2
X papc

=
〈
Ēa,c,N (Z)

〉

q2
Zpapc

= p2
d

2
+ pd (1 − pd)

(
1 + hη,a,c,δA

)

+ (1 − pd)
2 ×

(
1
2

+ hη,a,c,δA − 1
2

e−ηa
)

, (36)

for a, c ∈ A and where η = ηdetηch. Here, we define the
parameter hη,a,c,δA as

hη,a,c,δA = e−ηa cos2 δA − e−ηa sin2 δA

2
. (37)

We also introduce the parameter Ēa,c,N (Z), which is
equivalent to Ēa,c,N but accounts for the Z basis error
clicks. The tolerated bit error rate of the sifted key is set
to Etol = 〈Ēμ,N (Z)

〉
/
〈
Z̄μ,N

〉
. Also, the reference parameters

for the linearized CS constraints are fixed by the channel
model as well, as indicated in Appendix C.

In particular, in the simulations we take ηdet = 0.65 and
pd = 7.2 × 10−8 [56]. The attenuation coefficient of the
channel is set to αatt = 0.2 dB/km, the error-correction
efficiency to fEC = 1.16, and a channel misalignment of
δA = 0.08 is used. As for the intensities, the weakest inten-
sity setting is set to ω = 10−4 due to the finite extinction
ratio of intensity modulators. For simplicity, due to the
large number of constraints included in the linear pro-
grams, instead of optimizing both μ and ν to maximize
the asymptotic secret key rate K∞ as a function of the dis-
tance L, we select a pair (μ, ν) that roughly maximizes the
achievable distance and use that pair for all values of L.
Notably, since we are considering the asymptotic regime,
K∞ does not depend on the probabilities of the decoy set-
tings, pν and pω, nor on the probability of selecting the X
basis, qX , in such a way that setting pμ ≈ 1 and qZ ≈ 1
maximizes K∞.

In Fig. 2 we illustrate the effect of the intensity correla-
tions in a rate-distance representation for various values of
the maximum relative deviation δmax ∈ {10−2, 10−3, 10−4},
and for ξ = 1 (i.e., for the case of nearest-neighbor pulse
correlations) and ξ = 2 (corresponding to pulse correla-
tions of range two). The simulations show that the secret
key rate is very sensitive to the deviation δmax. What is
more, with realistic experimental data [41], we find that the
maximum distance attainable is less than 50 km. Moreover,
it is important to remark that, as expected, the fine-grained
analysis presented here outperforms the coarse-grained
analysis introduced in Ref. [45] regardless of the value
of δmax. Indeed, Fig. 2 shows that when δmax = 10−2,
now the attainable distance is approximately double that
in Ref. [45]. Also, note that this figure assumes a single

FIG. 2. Secret key rate given by Eq. (33) using the analysis
provided by Eq. (11). We consider different values for the max-
imum deviation δmax ∈ {10−2, 10−3, 10−4} between the actual
physical intensity αk and the selected intensity setting ak, and
two values of the parameter ξ . Precisely, we consider ξ = 1 (i.e.,
corresponding to the case of nearest-neighbor pulse correlations)
and ξ = 2 (corresponding to pulse correlations of range two).
The coarse-grained analysis follows the techniques presented in
Ref. [45].

worst-case deviation parameter δmax [following Eq. (11)].
The case corresponding to Eq. (10) is illustrated in the next
section, when we compare this model with the one where
Alice and Bob know the probability density function of the
correlations.

VI. TRUNCATED NORMAL MODEL

A. Characterization

In this section we show that a significant improvement
on the secret key rate presented in Fig. 2 can be obtained
when Alice and Bob know the probability density function
given by Eq. (2). By assuming this, the analysis that we
present now is similar to that of the previous section but
simpler, as we do not have to bound the photon-number
statistics, but we can solve them numerically.

The main motivation to consider this scenario is that
recent decoy-state QKD experiments [41] performed in
the high-speed regime seem to indicate that the corre-
lation function is not arbitrary but Gaussian-shaped (see
also Ref. [51]). Triggered by this observation, for con-
creteness and illustration purposes, we shall assume here
a truncated Gaussian (TG) distribution for the correlations,
which follows from renormalizing a Gaussian distribution
to a fixed finite interval [λ,�]. We note, however, that
the analysis presented in this section could be straightfor-
wardly adapted to any other probability density function
of the correlations. To be precise, given both the mean and
the variance—say, γ and σ 2, respectively—of the parental
Gaussian distribution together with the truncation interval
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[λ,�], the TG model reads

g �ak (γ , σ , λ,�;αk)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if αk ≤ λ,
φ
(
γ ,σ 2;αk

)

�(γ ,σ 2;�)−�(γ ,σ 2;λ)
if λ < αk < �,

0 if � ≤ αk,

(38)

where

φ
(
γ , σ 2; x

) = 1

σ
√

2π
e−((x−γ )2/2σ 2),

�
(
γ , σ 2; x

) =
∫ x

−∞

1

σ
√

2π
e−((t−γ )2/2σ 2)dt.

(39)

From now on, we shall denote by γ̃ and σ̃ 2 the mean
and variance of the TG distribution. We also call γ �ak , the
average intensity given the sequence �ak, and σ �ak , the stan-
dard deviation given the sequence �ak of the parental normal
distribution, although below the subscript indicating the
record of settings will be omitted unless it can lead to con-
fusion. More details on the truncation model are given in
Appendix D.

Importantly, under suitable truncation conditions, this
model reproduces the observed Gaussian-shaped correla-
tions in a finite support [λ,�] (in contrast to the unbounded
support of nontruncated Gaussian distributions). We note
as well that the relevant parameters can be estimated exper-
imentally by monitoring the intensities in long sequences
of rounds.

From Eq. (38), the photon-number statistics now read

pnk

∣∣
�ak

=
∫ �

λ

φ
(
γ �ak , σ 2

�ak
;αk

)
e−αkα

nk
k

[
�
(
γ �ak , σ 2

�ak
;�
)

−�
(
γ �ak , σ 2

�ak
; λ
)]

nk!
dαk.

(40)

In general, as has been experimentally observed in
Ref. [38], γ �ak �= ak for ak ∈ {μ, ν,ω}, i.e., a certain

displacement in the mean intensity typically occurs. We
account for this shift in the signal and the decoy inten-
sity settings, while we neglect it for the vacuum intensity
setting following the observations of Ref. [41]. Notably
as well, σ 2

�ak
generally depends on the previous intensity

settings, and so far no assumption about the range of
the correlations has been made. In this sense, despite the
fact that the analysis is valid for an arbitrary range, for
simplicity here, we only consider nearest-neighbor cor-
relations for illustration purposes, i.e., below we assume
that ξ = 1.

Following the calculations in Appendix B 2, and com-
bining the analysis above with the TG model here pre-
sented, the bound on the squared overlap in the nearest-
neighbor setting simply reads

∑

ak+1∈A

pak+1

∞∑

ni=0

√
pni |ak+1,apni |ak+1,b

≥
∑

ak+1∈A

pak+1

ncut∑

ni=0

√
pni |ak+1,apni |ak+1,b ≡

√
τ
ξ=1
a,b,c,n,

(41)

where we have introduced a threshold photon number ncut
for the numerics.

B. Linear programs for parameter estimation

The techniques for calculating the relevant parameters to
evaluate the secret key rate formula using the decoy-state
constraints in this model are common with those deployed
in the model-independent case evaluated in the previous
section. The only difference is that certain steps such as the
one that leads to Eq. (14) are no longer necessary. Here
we solve the photon-number statistics given by Eq. (40)
numerically and there is no need to invoke monotonicity
arguments to bound them. The resulting linear program for
the relevant single-photon yield (error click probability in
the X basis) reads

min q2
Zpμ

∑

h∈A

php (k)(1|μ, h)y1,μ,h,N

such that

〈
Z(k)a,c

〉

q2
Zpapc

≥
ncut∑

n=0

pn|a,cyn,a,c,N ,

〈
Z(k)a,c

〉

q2
Zpapc

≤ 1 −
ncut∑

n=0

pn|a,c +
ncut∑

n=0

pn|a,cyn,a,c,N ,

c+
abc,n + m+

abc,nyn,a,c,N ≥ yn,b,c,N (a, b, c ∈ A, b �= a, n = 0, . . . , ncut) ,

c−
abc,n + m−

abc,nyn,a,c,N ≤ yn,b,c,N (a, b, c ∈ A, b �= a, n = 0, . . . , ncut) ,

0 ≤ yn,a,b,N ≤ 1 (a, b ∈ A, n = 0, . . . , ncut) ,

(42)

044069-11



SIXTO, ZAPATERO, and CURTY PHYS. REV. APPLIED 18, 044069 (2022)

and

max q2
X pμ

∑

h∈A

php (k)(1|μ, h)h1,μ,h,N

such that

〈
E(k)a,c

〉

q2
X papc

≥
ncut∑

n=0

pn|a,chn,a,c,N ,

〈
E(k)a,c

〉

q2
X papc

≤ 1 −
ncut∑

n=0

pn|a,c +
ncut∑

n=0

pn|a,chn,a,c,N ,

t+abc,n + s+
abc,nhn,a,c,N ≥ hn,b,c,N (a, b, c ∈ A, b �= a, n = 0, . . . , ncut) ,

t−abc,n + s−
abc,nhn,a,c,N ≤ hn,b,c,N (a, b, c ∈ A, b �= a, n = 0, . . . , ncut) ,

0 ≤ hn,a,b,N ≤ 1 (a, b ∈ A, n = 0, . . . , ncut) .

(43)

C. Simulations

The TG model requires us to experimentally determine
all of its parameters, namely, the truncation ranges, the
mean intensities, and the standard deviations of the dis-
tribution for every combination of pulses in rounds k
and k − 1 (if one assumes, as already mentioned, nearest-
neighbor intensity correlations), which in turn should be
experimentally accessible by monitoring the output of the
transmitter in long sequences of rounds.

As discussed in Appendix D, regardless of the value
of the mean intensity and the standard deviation, which
in principle depend on the present and previous settings,
for illustration purposes, we determine the truncation range
for these simulations as (λ,�) = (γ̃ − tσ̃ , γ̃ + tσ̃ ), where
γ̃ is the measured mean intensity of the TG distribution
and σ̃ is the measured standard deviation of the TG dis-
tribution. Note that ideally, the truncation range could be
measured experimentally. We can now make a direct com-
parison between this model in which we assume that Alice
and Bob know the probability density function of the corre-
lations, and the one that uses a maximum relative deviation
defined in Eq. (10).

For this, we use Eq. (33) and the channel model pre-
sented in Appendix C to evaluate the performance. More-
over, regarding the mean and the standard deviations as a
function of the intensity settings in rounds k and k − 1,
we take the experimental values reported in Ref. [41].
The only exception is the normalized standard deviation
σ̂ = σ̃ /γ̃ corresponding to vacuum, where Ref. [41] does
not report any value and we select, for illustration pur-
poses, 10−5 for all possible intensities in the round k − 1.
This is so because the fluctuation of the vacuum setting
seems to be essentially negligible. In addition, for simplic-
ity, we do not optimize the intensity settings, but fix them
to μ = 0.5, ν = 0.2, and ω = 10−4, which are the values
considered in Ref. [41], and we select the parameter t = 4.
The relevant parameters are summarized in Table I.

To facilitate a fair comparison between this model and
that of Eq. (10), we take

δ(ak=i,ak−1=j ) = tσ̂i,j = t
σ̃i,j

γ̃i,j
, (44)

as explained in Appendix D, where i, j ∈ A. Here, γ̃i,j (σ̃i,j )
refers to the average mean intensity (standard deviation) of
round k associated to the record (ak−1, ak) = (j , i), while
σ̂i,j = σ̃i,j /γ̃i,j are the normalized standard deviations of
the TG model. In this way, we ensure that the physical
intensity is bounded in the same interval in both cases.
These parameters are obtained from Table I.

Figure 3 illustrates the improvement in the secret key
rate when the correlation function is known and corre-
sponds to a TG distribution according to the model that
was just introduced. We find that now the results are
comparable to those of the ideal case without intensity
correlations, which highlights the importance of character-
izing the probability density function of the correlations.
When comparing the two models studied in this paper, we

TABLE I. Values for the average intensity γ̃ and normalized
standard deviations σ̂ = σ̃ /γ̃ reported in Ref. [41]. The only
exception is the normalized standard deviation σ̂ correspond-
ing to vacuum, where Ref. [41] does not report any value and
we select for illustration purposes 10−5. In our simulations we
consider that they characterize a TG distribution.

Pattern (ak−1, ak)
Average

intensities (γ̃ )
Normalized

SD (σ̂ )

μ,μ 0.500 0.032
ν,μ 0.510 0.032
ω,μ 0.503 0.034
μ, ν 0.210 0.070
ν, ν 0.172 0.090
ω, ν 0.165 0.091
μ/ν/ω,ω 10−4 10−5
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FIG. 3. Secret key rate within the TG model assuming the
parameters from Table I (solid blue line), and when the nor-
malized standard deviations are twice those illustrated in that
table (dash-dotted green line). For comparison, this figure also
includes the model-independent case (dashed blue line) where
the maximum relative deviation is taken as δ(ak=i,ak−1=j ) = tσ̂i,j
for every i, j ∈ A, where σ̂i,j stands for the normalized standard
deviations in the TG model, and we select t = 4. When we con-
sider twice the normalized standard deviations provided in Table
I, this latter model provides no key.

conclude that knowing the distribution g �ak (αk) allows for a
significant improvement of the resulting performance. This
is due to the fact that in this scenario one can evaluate the
photon-number statistics exactly, which makes the parame-
ter estimation much tighter, improving both the decoy-state
constraints and the CS constraints. Finally, Fig. 3 also
includes a representation where the standard deviations are
twice the values given in Table I, to evaluate the effect
that this parameter has on the secret key rate. The fine-
grained analysis described in Eq. (10) does not provide the
key in this latter scenario. Likewise, if we use Eq. (11)
in the model-independent case, no key is obtained in
neither case.

VII. CONCLUSIONS

When combining high-speed clock rate QKD trans-
mitters with the decoy-state technique, the presence of
intensity correlations in the generated pulses invalidate the
central security assumption of this method, namely, that
the yields and error rates associated to n-photon pulses
are independent of the intensity settings. This problem can
be solved by imposing constraints on the intensity set-
ting dependence of these parameters, which is done here
by invoking the so-called Cauchy-Schwarz constraints.
Essentially, these constraints arise from the indistinguisha-
bility of nonorthogonal quantum states and can be derived
on the basis of a minor characterization of the correlations.

In this work, by using a standard decoy-state BB84 pro-
tocol with three possible intensity settings, we evaluate the
effect that such correlations have in the secret key rate. We
do so by introducing a fine-grained analysis able to han-
dle arbitrary long-range correlations. This approach leads
to significantly tighter constraints for the parameter esti-
mation and notably improves the secret key rate achieved
by previous works. Also, we show that the characteriza-
tion of the probability density function of the correlations
permits us to notably improve the resulting performance,
which now becomes comparable to that of the ideal sce-
nario without intensity correlations. Putting it all together,
the present work provides a solid step forward towards full
implementation security in QKD with high performance.
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APPENDIX A: CAUCHY-SCHWARZ CONSTRAINT

The CS constraint can be stated as follows.

Theorem 1: Let |u〉 and |v〉 be pure states of a certain
quantum system. Then, for all positive operators Ô ≤ I ,

G−
(
〈u|Ô|u〉, |〈v|u〉|2

)

≤ 〈v|Ô|v〉 ≤ G+
(
〈u|Ô|u〉, |〈v|u〉|2

)
, (A1)

where the functions G± are given in Eq. (6).

Proof : See supplementary materials of Ref. [42]. �

This constraint can be used to impose a restriction on the
maximum bias that Eve can induce between the n-photon
yields and error probabilities associated to different inten-
sity settings. Here we derive a linear version of Eq. (4),
enabling the use of linear programming for the decoy-
state parameter estimation procedure. Following Ref. [45],
we have that in virtue of the convexity or concavity of
the functions that define the constraints, their first-order
expansions around any given reference value provide valid
linear bounds as well. Thus, if we focus on the yields, the
linearization provides the bounds
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G−(Y(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n) ≥ G−(Ỹ(k)n,v0···vξ , τ

ξ
v0w0···vξ ,n)+ G′

−(Ỹ
(k)
n,v0···vξ , τv0w0···vξ ,n)(Y(k)n,v0···vξ − Ỹ(k)n,v0···vξ ),

G+(Y(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n) ≤ G+(Ỹ(k)n,v0···vξ , τ

ξ
v0w0···vξ ,n)+ G′

+(Ỹ
(k)
n,v0···vξ , τv0w0···vξ ,n)(Y(k)n,v0···vξ − Ỹ(k)n,v0···vξ ),

(A2)

for every Y(k)n,v0···vξ ∈ [0, 1] independently of which reference Ỹ(k)n,v0···vξ ∈ [0, 1] is selected.
Note that the derivative functions G′

± are well defined for all Y(k)n,v0···vξ ∈ [0, 1]; their expression is given by Eq. (9).

Thus, given a reference yield Ỹ(k)n,w0···vξ , the linearized bounds read

G−
(

Ỹ(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
+ G′

−
(

Ỹ(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

) (
Y(k)n,v0···vξ − Ỹ(k)n,v0···vξ

)
≤ Y(k)n,w0···vξ ,

G+
(

Ỹ(k)n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
+ G′

+
(

Ỹ(k)n,v0···vξ , τ
ξ
aw0···vξ ,n

) (
Y(k)n,v0···vξ − Ỹ(k)n,v0···vξ

)
≥ Y(k)n,w0···vξ .

(A3)

Similarly for the error probabilities, and assuming that we select reference parameters independent of Alice’s bit value rk
(for a more detailed analysis, see Ref. [45]), we have

G−
(

H̃ (k)
n,v0···vξ , τ

ξ
v0w0···vξ ,n

)
+ G′

−
(

H̃ (k)
n,v0···vξ , τ

ξ
v0w0···vξ ,n

) (
H (k)

n,v0···vξ − H̃ (k)
n,v0···vξ

)
≤ H (k)

n,w0···vξ ,

G+
(

H̃ (k)
n,v0···vξ , τ

ξ
v0w0···vξ ,n

)
+ G′

+
(

H̃ (k)
n,v0···vξ , τ

ξ
aw0···vξ ,n

) (
H (k)

n,v0···vξ − H̃ (k)
n,v0···vξ

)
≥ H (k)

n,w0···vξ .
(A4)

To finish with, note that one can restrict the reference parameters to be round independent, in such a way that, summing
over k and dividing by N in Eqs. (7) and (8), we obtain the average parameters

yn,w0···vξ ,N =
N∑

k=1

Y(k)n,w0···vξ
N

,

hn,w0···vξ ,N =
N∑

k=1

H (k)
n,w0···vξ

N
,

(A5)

and similarly for the other terms that appear below.
We define the intercepts and slopes as

c±
v0w0···vξ ,n = G±

(
ỹn,v0···vξ , τ

ξ
v0w0···vξ ,n

)
− G′

±
(

ỹn,v0···vξ , τ
ξ
v0w0···vξ ,n

)
ỹn,v0···vξ ,

m±
v0w0···vξ ,n = G′

±
(

ỹn,v0···vξ , τ
ξ
v0w0···vξ ,n

)
,

t±v0w0···vξ ,n = G±
(

h̃n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
− G′

±
(

h̃n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
h̃n,v0···vξ ,

s±
v0w0···vξ ,n = G′

±
(

h̃n,v0···vξ , τ
ξ
v0w0···vξ ,n

)
.

(A6)

The linear CS constraints for the round independent case are

c+
v0w0···vξ ,n + m+

v0w0···vξ ,nyn,v0···vξ ,N ≥ yn,w0···vξ ,N
(
v0, w0, . . . , vξ ∈ A, w0 �= v0

)
,

c−
v0w0···vξ ,n + m−

v0w0···vξ ,nyn,v0···vξ ,N ≤ yn,w0···vξ ,N
(
v0, w0, . . . , vξ ∈ A, w0 �= v0

)
,

0 ≤ yn,v0···vξ ,N ≤ 1
(
v0, · · · , vξ ∈ A

)
,

(A7)

and

t+v0w0···vξ ,n + s+
v0w0···vξ ,nhn,v0···vξ ,N ≥ hn,w0···vξ ,N

(
v0, w0, . . . , vξ ∈ A, w0 �= v0

)
,

t−v0w0···vξ ,n + s−
v0w0···vξ ,nhn,v0···vξ ,N ≤ hn,w0···vξ ,N

(
v0, w0, . . . , vξ ∈ A, w0 �= v0

)
,

0 ≤ hn,v0···vξ ,N ≤ 1
(
v0, · · · ., vξ ∈ A

)
.

(A8)
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Note that the characterization of the quantum channel is essential, as the tightness of these linear bounds is subject to
the adequacy of the selected reference parameters, and so it relies on it. The selected reference values are presented in
Appendix C.

APPENDIX B: DERIVATION OF τ
ξ
v0,w0,...vξ ,n

In an entanglement-based view of the protocol, the global input state describing all the protocol rounds reads

|�〉 =
[∑

aN
1

∑

xN
1

∑

rN
1

(
N∏

i=1

√
paiqxi

2

)( N⊗

i=1

|ai〉Ai |xi〉Ãi
|ri〉A′

i

∣∣∣ψxi,ri
�ai

〉

BiCi

)]
⊗|0〉E , (B1)

where aN
1 = a1 . . . aN and equivalently for xN

1 and rN
1 . Also, for every round i, {|ai〉Ai |ai ∈ A}, {|xi〉Ãi

|xi ∈ B}, and
{|ri〉A′

i
|ri ∈ Z2} are orthonormal bases of Alice’s ith registers Ai, Ãi, and A′

i. The state |0〉E stands for the initial state
of Eve’s ancillary system. We also define

∣∣∣ψxi,ri
�ai

〉

BiCi
=

∞∑

ni=0

√
pni|�ai

∣∣tni

〉
Ci

∣∣nxi,ri
i

〉
Bi

, (B2)

where Ci denotes an inaccessible purifying system with orthonormal basis {∣∣tni

〉
Ci

|ni ∈ N} (Ci stores the photon-number
information of the ith signal that Alice sends to Bob), Bi denotes the system delivered to Bob, |nxi,ri

i 〉Bi stands for a Fock
state with ni photons encoding the BB84 polarization state defined by (xi, ri), and the photon-number statistics pni

∣∣
�ai

are
defined in Eq. (2).

Let us denote by ÛBE Eve’s coherent interaction with systems B1, . . . , BN and E so that ÛBE|�〉 represents the global
state prior to Bob’s measurements. We also refer to Bob’s click POVM element in round k as

M̂ click
Bk

= IBk − M̂ f
Bk

. (B3)

The joint probability p (k)(click, n, v0, . . . , vξ , Z) is computed as

p (k)(click, n, v0, . . . , vξ , Z) = Tr
{

P̂|v0,...,vξ ,Z,tn〉Ak ···Ak−ξ ÃkCk
M̂ click

Bk
ÛBE|�〉〈�|Û†

BE

}

= Tr
{

Û†
BEM̂ click

Bk
ÛBEP̂|v0,...,vξ ,Z,tn〉Ak ···Ak−ξ ÃkCk

|�〉〈�|P̂|v0,...,vξ ,Z,tn〉Ak ···Ak−ξ ÃkCk

}

= TrAkÃkCk ,A′N
1 BN

1 E

{
Û†

BEM̂ click
Bk

ÛBE

∣∣∣�̃(k,...,k−ξ)
v0,...,vξZ,n

〉 〈
�̃
(k,...,k−ξ)
v0,...,vξ ,Z,n

∣∣∣
}

, (B4)

where

P̂|v0,...,vξ ,Z,tn〉AkÃk ···Ak−ξCk
= |vξ 〉〈vξ |Ak−ξ ⊗ · · · ⊗ |v0〉〈v0|Ak ⊗ |Z〉〈Z|Ãk

⊗ |tn〉〈 tn|Ck , (B5)

Ak = {Aj |j �= k, .., k − ξ}, Ãk = {Ãj |j �= k}, and Ck = {Cj |j �= k
}
. Note that, for round k, we project on the intensity

setting, the basis and the photon number, and for all previous rounds, we only project on the intensity setting. The
unnormalized pure state is defined as

∣∣
∣�̃(k,...,k−ξ)

v0,...,vξ ,Z,n

〉
= 〈vξ |Ak−ξ · · · 〈v0|Ak 〈Z|Ãk

〈tn|Ck |�〉. (B6)

We now restate Eq. (B4) in terms of the normalized state

∣∣∣�(k,...,k−ξ)
v0,...,vξ ,Z,n

〉
=

∣∣∣�̃(k,...,k−ξ)
v0,...,vξ ,Z,n

〉

∥
∥∥
∣∣∣�̃(k,...,k−ξ)

v0,...,vξ ,Z,n

〉∥∥∥
, (B7)

044069-15



SIXTO, ZAPATERO, and CURTY PHYS. REV. APPLIED 18, 044069 (2022)

which leads to

p (k)(click, n, v0, . . . , vξ , Z) =
∥∥∥
∣∣∣�̃(k,...,k−ξ)

v0,...,vξ ,Z,n

〉∥∥∥
2

Tr
{

Û†
BEM̂ click

Bk
ÛBE

∣∣∣�(k,...,k−ξ)
v0,...vξ ,Z,n

〉 〈
�
(k,...,k−ξ)
v0,...vξ ,Z,n

∣∣∣
}

. (B8)

We note that p (k)(n, v0, . . . , vξ , Z) is given by p (k)(n, v0, . . . , vξ , Z) = Tr{P̂|v0,...,vξ ,Z,tn〉AkCk
ÛBE|�〉〈�|Û†

BE} =
∥∥∥
∣∣∣�̃(k,...,k−ξ)

v0,...,vξ ,Z,n

〉∥∥∥
2
. Therefore, in virtue of Bayes rule we obtain

p (k)(click|n, v0, . . . , vξ , Z) = 〈�(k,...,k−ξ)
v0,...,vξ ,Z,n

∣∣Ô(k)
click

∣∣�(k,...,k−ξ)
v0,...,vξ ,Z,n

〉
, (B9)

where we have defined

Ô(k)
click = Û†

BEM̂ click
Bk

ÛBE . (B10)

Now, from Eq. (3), we recall that the quantity defined above is actually the n-photon yield of round k associated to the
record of settings v0, . . . , vξ . From the CS constraint, it follows that

G−

(
Y(k)n,v0···vξ ,

∣∣∣
〈
�
(k,...,k−ξ)
w0···vξ ,Z,n|�(k,...,k−ξ)

v0···vξ ,Z,n

〉∣∣∣
2
)

≤ Y(k)n,w0···vξ ≤ G+

(
Y(k)n,v0···vξ ,

∣∣∣
〈
�
(k,...,k−ξ)
w0···vξ ,Z,n|�(k,...,k−ξ)

v0···vξ ,Z,n

〉∣∣∣
2
)

, (B11)

for all n ∈ N, w0, v0, . . . , vξ ∈ A where v0 �= w0 and k = 1, . . . , N . Note that the closer the inner product between the
states is to one, the tighter the bounds of the inequality are.

Having reached this stage, we recall that the goal is to set a lower bound on the inner product 〈�(k,...,k−ξ)
w0···vξ ,Z,n | �(k,...,k−ξ)

v0···vξ ,Z,n〉.
From Eqs. (B1) and (B6), direct calculation shows that

∣∣∣�̃(k,...,k−ξ)
v0,v1···vξ ,Z,n

〉
=
√

qzpv0 · · · pvξ
2N

[∑

ak

∑

xk

∑

rN
1

⎛

⎝
∏

i�=k

√
qxi

⎞

⎠

⎛

⎝
∏

i�=k···k−ξ

√
pai

⎞

⎠
k−ξ−1⊗

i=1

|ai〉Ai |xi〉Ãi
|ri〉A′

i

∣∣∣ψxi,ri
�ai

〉

BiCi

⊗ ∣∣xk−ξ
〉
Ãk−ξ

∣∣rk−ξ
〉
A′

k−ξ

∣∣∣ψ
xk−ξ ,rk−ξ
�ak−ξ (ak−ξ=vξ )

〉

Bk−ξCk−ξ

∣∣xk−ξ+1
〉
Ãk−ξ+1

∣∣rk−ξ+1
〉
A′

k−ξ+1

⊗
∣∣∣ψ

xk−ξ+1,rk−ξ+1
�ak−ξ+1(ak−ξ+1=vξ−1,ak−ξ=vξ )

〉

Bk−ξ+1Ck−ξ+1
. . . |xk−1〉Ãk−1

|rk−1〉A′
k−1

⊗
∣∣∣ψ

xk−1,rk−1
�ak−1(ak−1=v1···ak−ξ=vξ )

〉

Bk−1Ck−1

√
pn|v0,v1,...,vξ ,�ak−ξ−1

|rk〉A′
k

∣∣nZ,rk
〉
Bk

N⊗

i=k+1

|ai〉Ai |xi〉Ãi
|ri〉A′

i

∣∣
∣ψxi,ri

�ai(ak=v0,...,ak−ξ=vξ )

〉

BiCi

]
⊗ |0〉E , (B12)

where xk = {xj |j �= k,
}

and ak = {aj |j �= k, . . . , k − ξ
}
. Then, computing the inner product yields

〈
�̃
(k,...,k−ξ)
w0,v1,...,vξ ,Z,n|�̃(k,...,k−ξ)

v0,v1,...,vξ ,Z,n

〉
= qz

√pv0 · · · pvξ pw0 · · · pvξ
2N

∑

ak

∑

xk

∑

rN
1

⎛

⎝
∏

i�=k

qxi

⎞

⎠

⎛

⎝
∏

i�=k,..,k−ξ
pai

⎞

⎠

×
〈
ψ

xk−ξ ,rk−ξ
�ak−ξ (ak−ξ=vξ )|ψ

xk−ξ ,rk−ξ
�ak−ξ (ak−ξ=vξ )

〉

B,Ck−ξ

〈
ψ

xk−ξ+1,rk−ξ+1
�ak−ξ+1(ak−ξ+1=vξ−1,ak−ξ=vξ )|ψ

xk−ξ+1,rk−ξ+1
�ak−ξ+1(ak−ξ+1=vξ−1,ak−ξ+1=vξ−1)

〉

B,Ck−ξ+1

. . .
(√

pn|v0,v1,...,vξ pn|w0,v1,...,vξ

)(min{k+ξ ,N }∏

i=k+1

〈
ψ

xi,ri
�ai(ak=w0,...,ak−ξ=vξ )|ψ

xi,ri
�ai(ak=v0,...,ak−ξ=vξ )

〉

BiCi

)

,

(B13)

where we have omitted the subscript �ak−ξ−1 in the square root term in parentheses because the photon-number statistics
are independent of this substring of settings. Since all the factors previous to round k are equal to 1, and the sums over xk

044069-16



SECURITY OF DECOY-STATE QUANTUM KEY DISTRIBUTION. . . PHYS. REV. APPLIED 18, 044069 (2022)

and rN
1 yield

∑
xk

∑
rN
1

(∏
i�=k qxi

)
=∑rN

1

{∑
xk

(∏
i�=k qxi

)}
= 2N , the previous equation reduces to

〈
�̃
(k,...,k−ξ)
w0,v1,...,vξ ,Z,n|�̃(k,...,k−ξ)

v0,v1,...,vξ ,Z,n

〉
= qz

√
pv0pw0pv1 · · · pvξ

∑

ak−ξ−1
max{1,k−2ξ}

⎛

⎝
k−ξ−1∏

i=max{1,k−2ξ}
pai

⎞

⎠
√

pn|v0,...,wξ pn|w0,...,wξ

×

⎡

⎢
⎣

∑

amin{k+ξ ,N }
k+1

(min{k+ξ ,N }∏

i=k+1

pai

〈
ψ

xi,ri
�ai(ak=w0,...,ak−ξ=vξ )|ψ

xi,ri
�ai(ak=v0,...ak−ξ=vξ )

〉

BiCi

)⎤

⎥
⎦ . (B14)

In terms of the normalized states, we obtain

〈
�
(k,...,k−ξ)
w0,...,vξ ,Z,n|�(k,...,k−ξ)

v0,...,vξ ,Z,n

〉
=

∑

amin{k+ξ ,N }
k+1

(min{k+ξ ,N }∏

i=k+1

pai

) 〈
ψ

xi,ri
�ai(ak=w0,...,ak−ξ=vξ )|ψ

xi,ri
�ai(ak=v0,...ak−ξ=vξ )

〉

BiCi
. (B15)

We can express Eq. (B15) in terms of the photon-number statistics instead, i.e.,

〈
�
(k,...,k−ξ)
w0,...,vξ ,Z,n|�(k,...,k−ξ)

v0,...,vξ ,Z,n

〉
=

∑

amin{k+ξ ,N }
k+1

(min{k+ξ ,N }∏

i=k+1

pai

) ∞∑

m=0

√
pm|ai···v0···vξ+k−ipm|ai···w0···vξ+k−i . (B16)

That is, this quantity takes the same value given by Eq. (B16) for all n.

1. Model-independent correlations

Equation (B16) provides a general formula that can be used as the input of the CS constraint regardless of the correlation
function. Here we consider the model-independent scenario where the correlation function is assumed to be unknown.
This implies that we cannot evaluate the photon-number statistics on which Eq. (B16) depends. Therefore, we bound
these statistics by invoking monotonicity arguments.

Only to keep the notation simple, we consider that the mean physical intensity matches the actual intensity setting,
even though according to experiments there might to be a certain displacement between these two quantities [41]. We
emphasize, however, that such a shift could be straightforwardly included in our analysis. Let us start by introducing the
following shorthand notation:

a(τ )±i = ai

(
1 ± δ±

(ai,...,ak+1,ak=τ ,ak−1=v1,...,ai−ξ=vξ+k−i)

)
(B17)

with τ ∈ {v0, w0}.
From the definition of the photon-number statistics and by noting that e−xxn is strictly decreasing for n = 0 and

increasing for n ≥ 1 in x ∈ (0, 1), we have

p0|�ai(ak=v0) ≥ e−a
(v0)+
i ,

pn≥1|�ai(ak=v0) ≥ e−a
(v0)−
i

(
a(v0)−

i

)n

n!
.

(B18)

Therefore, we can bound the square root of Eq. (B16) as (where, for convenience, we now use the variable n to name the
index of the sum)

∞∑

n=0

√
pn|ai···v0···vξ+k−ipn|ai···w0···vξ+k−i =

√
p0|ai···v0···vξ+k−ip0|ai···w0···vξ+k−i +

∞∑

n=1

√
pn|ai···v0···vξ+k−ipn|ai···w0···vξ+k−i

≥
[

e(1/2)(−a
(w0)+
i −a

(v0)+
i ) + e(1/2)(−a

(w0)−
i −a

(v0)−
i )

(
e
√

a
(w0)−
i a

(v0)−
i − 1

)]
. (B19)

By combining Eqs. (B16)–(B19), we obtain the bound given by Eq. (10).
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A simpler bound given by Eq. (11) arises by considering that the relative deviation parameters are all equal. It can be
obtained directly from Eq. (10).

It is also worth mentioning that one could use a more exhaustive approach by considering different records of settings for
each of the two yields (or error probabilities) to be compared via the CS constraint. However, our numerical simulations
suggest that the improvement achieved by doing so is not really significant, while the analysis is much more cumbersome
to implement numerically.

If we focus our attention on nearest-neighbor intensity correlations only, and call v0 = a, w0 = b, and v1 = c, then from
Eqs. (10) and (11), respectively, one trivially obtains

〈
�b,c,Z,n | �a,c,Z,n

〉 ≥
∑

ai∈A

pai

[
e(1/2)(−a(b)+i −a(a)+i ) + e(1/2)(−a(b)−i −a(a)−i )

(
e
√

a(b)−i a(a)−i − 1
)]

≡
√
τ
ξ=1
a,b,c,n (B20)

and

〈
�b,c,Z,n | �a,c,Z,n

〉 ≥
⎡

⎣1 −
∑

ai∈A

pai

(
e−a−

i − e−a+
i

)
⎤

⎦ ≡
√
τ
ξ=1
a,b,c,n. (B21)

2. Truncated normal model

Following Eq. (B16) and using the same notation as in the previous section for nearest-neighbor intensity correlations,
we have that the bound for the different possible combinations of settings when the correlation function is a TG distribution
is given by

⎡

⎣
∑

ak+1∈A

pak+1

∞∑

nk+1=0

√
pnk+1 |ak+1,apnk+1 |ak+1,b

⎤

⎦

2

≥
⎡

⎣
∑

ak+1∈A

pak+1

ncut∑

nk+1=0

√
pnk+1 |ak+1,apnk+1 |ak+1,b

⎤

⎦

2

≡ τ
ξ=1
a,b,c,n. (B22)

For instance, we have

pnk+1 |ak+1,a =
∫ �

λ

e−αk+1α
nk+1
k+1

nk+1!

φ
(
γak+1,a, σ 2

ak+1,a;αk+1

)

[
�
(
γak+1,a, σ 2

ak+1,a;�
)

−�
(
γak+1,a, σ 2

ak+1,a; λ
)]dαk+1, (B23)

where σak+1,a and γak+1,a, respectively, are the parental standard deviation and the parental mean value of the random
variable αk+1, given that ak = a. Similarly, λ and � define the truncation intervals of the TG distribution.

APPENDIX C: REFERENCE VALUES FOR THE LINEARIZED CAUCHY-SCHWARZ CONSTRAINTS

We now present the reference values ỹn,a,c and h̃n,a,c. For the moment, we neglect the effect of the dark counts of Bob’s
detectors and the random assignments of the double clicks that he performs. This means that the possible genuine detection
outcomes for an n-photon pulse emitted by Alice are “no click” (00), “error” (01), “no error” (10), and “double click”
(11). Their probabilities are (see Fig. 4 below)

p00 = (1 − η)n,

p01 = (η sin2 δA + 1 − η
)n − (1 − η)n,

p10 = (η cos2 δA + 1 − η
)n − (1 − η)n,

p11 = 1 − p00 − p01 − p10.

(C1)

We now need to incorporate the dark counts and the random assignments of the double clicks, so let us intro-
duce the mutually exclusive events A = {no dark counts}, B = {dark count in D1}, C = {dark count in D2}, and D =
{dark count in both D1 and D2}, where we follow the detector notation of the figure above. The conditional error
probabilities read
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FIG. 4. Representation of the channel model considered for
the simulations when Alice uses a PRWCP source. We recall
that η stands for the overall system efficiency (i.e., it includes
the loss in the channel and the finite detection efficiency of the
detectors), and δA stands for the polarization misalignment intro-
duced by the channel. We assume that Bob uses an active BB84
receiver with two detectors, D1 and D2. In the figure BS stands
for beam splitter.

perr|A = p01 + 1
2

p11,

perr|B = 1
2
(p01 + p11) ,

perr|C = p00 + p01 + 1
2
(p10 + p11) ,

perr|D = 1
2

,

(C2)

so that

h̃n,a,c = (1 − pd)
2 perr|A + pd (1 − pd)

(
perr|B + perr|C

)

+ p2
d perr|D (C3)

for all n ∈ N and a, c ∈ A. Note that these quantities
depend only on round k, so that they are independent of c
or the intensity setting of round k − 1. Regarding the yield,
we have

ỹn,a,c = 1 − (1 − pd)
2 p00. (C4)

APPENDIX D: THE TRUNCATED NORMAL
MODEL

In this appendix we present the link between the mean
and variance of the parent normal distribution (γ and
σ 2), and the mean and variance of the truncated normal
distribution (γ̃ and σ̃ 2). For this purpose, we define

α = λ− γ

σ
and β = �− γ

σ
, (D1)

so that we can make a mapping between the two [57],
having

γ̃ = γ − σ
φ(0, 1;β)− φ(0, 1;α)
�(0, 1;β)−�(0, 1;α)

,

FIG. 5. Representation of a TG distribution with γ = 0.5 and
σ = 0.1 for three different values of the truncation range. Shorter
truncation intervals lead to a larger difference between σ and
σ̃ . Note that, with �− λ = 6σ , the Gaussian shape of the
distribution is preserved after truncation.

σ̃ 2 = σ 2
[

1 − βφ(0, 1;β)− αφ(0, 1;α)
�(0, 1;β)−�(0, 1;α)

−
(
φ(0, 1;β)− φ(0, 1;α)
�(0, 1;β)−�(0, 1;α)

)2 ]
, (D2)

where �(0, 1;α) and φ(0, 1;α) are defined in Eq. (39).
To gain intuition about the form of this distribution and

the effect that the truncation range has on σ̃ , in Fig. 5 we
plot it for a couple of different intervals [λ,�] centered
in the mean value. Note that, in this way, the mean is not
affected by the truncation.

FIG. 6. Effect of the parameter t in the secret key rate cor-
responding to the TG model. The curves with t = 2, 4, and 6
essentially overlap with each other. A bigger t leads to a greater
δmax and, as a consequence, the results corresponding to the
model-independent case are worse. The three cases assume the
same input values: γ̃ , σ̃ , and [λ,�].
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To compare this model with the model-independent
case, we need to relate the truncation interval and δmax,
which we recall that fully characterizes the model-
independent setting. For this matter, we take (λ,�) =
(γ̃ − tσ̃ , γ̃ + tσ̃ ). We state the relation between δmax and
the parameter t as γ̃ (1 − δmax) = γ̃ − tσ̃ . In other words,
we demand that the maximum relative deviation matches
the extreme of the truncation. Note that, ideally, the inter-
val (λ,�) could be measured experimentally.

Regarding the value of t, for the sake of comparison with
the model-independent case in the main text, we use t = 4.
It is also worth mentioning that modifying the value of t
has a negligible effect on the secret key rate K∞, as shown
in Fig. 6.

[1] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Secure
quantum key distribution with realistic devices, Rev. Mod.
Phys. 92, 025002 (2020).

[2] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D.
Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo,
and C. Ottaviani, et al., Advances in quantum cryptography,
Adv. Opt. Photonics 12, 1012 (2020).

[3] H.-K. Lo, M. Curty, and K. Tamaki, Secure quantum key
distribution, Nat. Photonics 8, 595 (2014).

[4] G. S. Vernam, Cipher printing telegraph systems for secret
wire and radio telegraphic communications, Trans. Am.
Inst. Electr. Eng. XLV, 295 (1926).

[5] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K.
Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, and
A. Tanaka, et al., Field test of quantum key distribution in
the Tokyo QKD network, Opt. Express 19, 10387 (2011).

[6] D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N.
Gisin, L. Henzen, P. Junod, G. Litzistorf, and P. Monbaron,
et al., Long-term performance of the swissquantum quan-
tum key distribution network in a field environment, New
J. Phys. 13, 123001 (2011).

[7] J. F. Dynes, A. Wonfor, W. W. S. Tam, A. W. Sharpe, R.
Takahashi, M. Lucamarini, A. Plews, Z. L. Yuan, A. R.
Dixon, and J. Cho, et al., Cambridge quantum network,
npj Quantum Inf. 5, 101 (2019).

[8] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao,
J. Zhang, K. Chen, J. Yin, J.-G. Ren, and Z. Chen, et al.,
An integrated space-to-ground quantum communication
network over 4,600 kilometres, Nature 589, 214 (2021).

[9] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G.
Ren, J. Yin, Q. Shen, Y. Cao, and Z.-P. Li, et al., Satellite-
to-ground quantum key distribution, Nature 549, 43 (2017).

[10] H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M.
Kitamura, M. Sasaki, and M. Toyoshima, Satellite-to-
ground quantum-limited communication using a 50-kg-
class microsatellite, Nat. Photonics 11, 502 (2017).

[11] S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin,
L. Zhang, D. Rauch, M. Fink, J.-G. Ren, and W.-Y.
Liu, et al., Satellite-Relayed Intercontinental Quantum
Network, Phys. Rev. Lett. 120, 030501 (2018).

[12] J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang,
J.-G. Ren, W.-Q. Cai, W.-Y. Liu, and S.-L. Li, et al.,

Entanglement-based secure quantum cryptography over
1120 km, Nature 582, 501 (2020).

[13] X. Wang, X. Sun, Y. Liu, W. Wang, B. Kan, P. Dong,
and L. Zhao, Transmission of photonic polarization states
from geosynchronous Earth orbit satellite to the ground,
Quantum Eng. 3, e73 (2021).

[14] P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita,
M. Fujiwara, M. Sasaki, H. Terai, M. Tanner, C. Natara-
jan, R. Hadfield, J. O’Brien, and M. Thompson, Chip-
based quantum key distribution, Nat. Commun. 8, 13984
(2017).

[15] D. Bunandar, A. Lentine, C. Lee, H. Cai, C. Long, N. Boyn-
ton, N. Martinez, C. DeRose, C. Chen, M. Grein, D. Trotter,
A. Starbuck, A. Pomerene, S. Hamilton, F. Wong, R. Cama-
cho, P. Davids, J. Urayama, and D. Englund, Metropolitan
Quantum Key Distribution with Silicon Photonics, Phys.
Rev. X 8, 021009 (2018).

[16] T. Paraïso, I. De Marco, T. Roger, D. Marangon, J. Dynes,
M. Lucamarini, Z. Yuan, and A. Shields, A modulator-free
quantum key distribution transmitter chip, npj Quantum Inf.
5, 42 (2019).

[17] L.-C. Kwek, L. Cao, W. Luo, Y. Wang, S. Sun, X. Wang,
and A. Q. Liu, Chip-based quantum key distribution,
AAPPS Bull. 31, 15 (2021).

[18] W.-Y. Hwang, Quantum Key Distribution with High Loss:
Toward Global Secure Communication, Phys. Rev. Lett.
91, 057901 (2003).

[19] X.-B. Wang, Beating the Photon-Number-Splitting Attack
in Practical Quantum Cryptography, Phys. Rev. Lett. 94,
230503 (2005).

[20] H.-K. Lo, X. Ma, and K. Chen, Decoy State Quantum Key
Distribution, Phys. Rev. Lett. 94, 230504 (2005).

[21] C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden,
Concise security bounds for practical decoy-state quantum
key distribution, Phys. Rev. A 89, 022307 (2014).

[22] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, Experimental
Quantum Key Distribution with Decoy States, Phys. Rev.
Lett. 96, 70502 (2006).

[23] Z. L. Yuan, A. W. Sharpe, and A. J. Shields, Uncondition-
ally secure one-way quantum key distribution using decoy
pulses, Appl. Phys. Lett. 90, 011118 (2007).

[24] D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett,
C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and
J. E. Nordholt, Long-Distance Decoy-State Quantum Key
Distribution in Optical Fiber, Phys. Rev. Lett. 98, 10503
(2007).

[25] C.-Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H.
Yin, H.-P. Zeng, T. Yang, X.-B. Wang, and J.-W. Pan,
Experimental Long-Distance Decoy-State Quantum Key
Distribution Based on Polarization Encoding, Phys. Rev.
Lett. 98, 010505 (2007).

[26] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F.
Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurt-
siefer, and J. G. Rarity, et al., Experimental Demonstration
of Free-Space Decoy-State Quantum Key Distribution over
144 km, Phys. Rev. Lett. 98, 10504 (2007).

[27] A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A.
J. Shields, Gigahertz decoy quantum key distribution with
1 mbit/s secure key rate, Opt. Express 16, 18790 (2008).

[28] Y. Liu, T.-Y. Chen, J. Wang, W.-Q. Cai, X. Wan, L.-
K. Chen, J.-H. Wang, S.-B. Liu, H. Liang, and L. Yang,

044069-20

https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1364/aop.361502
https://doi.org/10.1038/nphoton.2014.149
https://doi.org/10.1109/T-AIEE.1926.5061224
https://doi.org/10.1364/oe.19.010387
https://doi.org/10.1088/1367-2630/13/12/123001
https://doi.org/10.1038/s41534-019-0221-4
https://doi.org/10.1038/s41586-020-03093-8
https://doi.org/10.1038/nature23655
https://doi.org/10.1038/nphoton.2017.107
https://doi.org/10.1103/PhysRevLett.120.030501
https://doi.org/10.1038/s41586-020-2401-y
https://doi.org/10.1002/que2.73
https://doi.org/10.1038/ncomms13984
https://doi.org/10.1103/PhysRevX.8.021009
https://doi.org/10.1038/s41534-019-0158-7
https://doi.org/10.1007/s43673-021-00017-0
https://doi.org/10.1103/physrevlett.91.057901
https://doi.org/10.1103/physrevlett.94.230503
https://doi.org/10.1103/physrevlett.94.230504
https://doi.org/10.1103/physreva.89.022307
https://doi.org/10.1103/physreva.92.032305
https://doi.org/10.1063/1.2752766
https://doi.org/10.1103/physrevlett.98.010503
https://doi.org/10.1103/physrevlett.98.010505
https://doi.org/10.1103/PhysRevLett.98.010504
https://doi.org/10.1364/oe.16.018790


SECURITY OF DECOY-STATE QUANTUM KEY DISTRIBUTION. . . PHYS. REV. APPLIED 18, 044069 (2022)

et al., Decoy-state quantum key distribution with polarized
photons over 200 km, Opt. Express 18, 8587 (2010).

[29] B. Fröhlich, M. Lucamarini, J. F. Dynes, L. C. Coman-
dar, W. W.-S. Tam, A. Plews, A. W. Sharpe, Z. Yuan, and
A. J. Shields, Long-distance quantum key distribution
secure against coherent attacks, Optica 4, 163 (2017).

[30] Z. Yuan, A. Murakami, M. Kujiraoka, M. Lucamarini,
Y. Tanizawa, H. Sato, A. J. Shields, A. Plews, R. Taka-
hashi, and K. Doi, et al., 10-mb/s quantum key distribution,
J. Lightwave Tech. 36, 3427 (2018).

[31] A. Boaron, G. Boso, D. Rusca, C. Vulliez, C. Autebert,
M. Caloz, M. Perrenoud, G. Gras, F. Bussières, and M.-J.
Li, et al., Secure Quantum Key Distribution over 421 km
of Optical Fiber, Phys. Rev. Lett. 121, 502 (2018).

[32] H.-K. Lo, M. Curty, and B. Qi, Measurement-Device-
Independent Quantum Key Distribution, Phys. Rev. Lett.
108, 130503 (2012).

[33] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields,
Overcoming the rate-distance limit of quantum key distri-
bution without quantum repeaters, Nature 557, 400 (2018).

[34] S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P.
Ye, Y. Zhou, G.-J. Fan-Yuan, F.-X. Wang, and Y.-G. Zhu,
et al., Twin-field quantum key distribution over 830-km
fibre, Nat. Photonics 16, 154 (2022).

[35] K. I. Yoshino, M. Fujiwara, A. Tanaka, S. Takahashi, Y.
Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, and
M. Sasaki, et al., High-speed wavelength-division multi-
plexing quantum key distribution system, Opt. Lett. 37, 223
(2012).

[36] J. Mora, W. Amaya, A. Ruiz-Alba, A. Martinez, D. Calvo,
V. G. Muñoz, and J. Capmany, Simultaneous transmission
of 20 × 2 WDM/SCM-QKD and 4 bidirectional classical
channels over a PON, Opt. Express 20, 16358 (2012).

[37] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D.
J. Gauthier, Provably-secure and high-rate quantum key
distribution with time-bin qudits, Sci. Adv. 3, e1701491
(2017).

[38] F. Grünenfelder, A. Boaron, D. Rusca, A. Martin, and
H. Zbinden, Performance and security of 5 GHz repetition
rate polarization-based quantum key distribution, Appl.
Phys. Lett. 117, 144003 (2020).

[39] T. Kobayashi, A. Tomita, and A. Okamoto, Evaluation of
the phase randomness of a light source in quantum- key-
distribution systems with an attenuated laser, Phys. Rev. A
90, 032320 (2014).

[40] G. Roberts, M. Pittaluga, M. Minder, M. Lucamarini, J.
Dynes, Z. Yuan, and A. Shields, Patterning-effect mitigat-
ing intensity modulator for secure decoy-state quantum key
distribution, Opt. Lett. 43, 5110 (2018).

[41] K.-I. Yoshino, M. Fujiwara, K. Nakata, T. Sumiya, T.
Sasaki, M. Takeoka, M. Sasaki, A. Tajima, M. Koashi,
and A. Tomita, Quantum key distribution with an efficient
countermeasure against correlated intensity fluctuations in
optical pulses, npj Quantum Inf. 4, 8 (2018).

[42] M. Pereira, G. Kato, A. Mizutani, M. Curty, and K. Tamaki,
Quantum key distribution with correlated sources, Sci. Adv.
6, 9 (2020).

[43] Y. Nagamatsu, A. Mizutani, R. Ikuta, T. Yamamoto, N.
Imoto, and K. Tamaki, Security of quantum key distribution
with light sources that are not independently and identically
distributed, Phys. Rev. A 93, 042325 (2016).

[44] A. Mizutani, G. Kato, K. Azuma, M. Curty, R.
Ikuta, T. Yamamoto, N. Imoto, H.-K. Lo, and K.
Tamaki, Quantum key distribution with setting-choice-
independently correlated light sources, npj Quantum Inf. 5,
8 (2019).

[45] V. Zapatero, A. Navarrete, K. Tamaki, and M. Curty, Secu-
rity of quantum key distribution with intensity correlations,
Quantum 5, 602 (2021).

[46] H.-K. Lo and J. Preskill, Security of quantum key distri-
bution using weak coherent states with nonrandom phases,
Quantum Inf. Comput. 7, 431 (2007).

[47] S. Nahar and N. Lütkenhaus, in Poster Presented at
the International Conference on Quantum Cryptography
(QCRYPT) (Amsterdam, 2021).

[48] M. Lucamarini, I. Choi, M. B. Ward, J. F. Dynes, Z.
Yuan, and A. J. Shields, Practical Security Bounds Against
the Trojan-Horse Attack in Quantum Key Distribution,
Phys. Rev. X 5, 031030 (2015).

[49] K. Tamaki, M. Curty, and M. Lucamarini, Decoy-state
quantum key distribution with a leaky source, New J. Phys.
18, 065008 (2016).

[50] A. Navarrete and M. Curty, Improved finite-key security
analysis of quantum key distribution against Trojan-horse
attacks, Quantum Sci. Technol. 7, 035021 (2022).

[51] A. Huang, A. Mizutani, H.-K. Lo, V. Makarov, and K.
Tamaki, Characterisation of state preparation uncertainty in
quantum key distribution, ArXiv:2205.11870 (2022).

[52] G.-J. Fan-Yuan, S. Wang, Z. Yin, W. Chen, D. He,
G. Guo, and H.-W. Li, Afterpulse analysis for passive
decoy quantum key distribution, Quantum Eng. 2, e56
(2020).

[53] M. Christandl, R. König, and R. Renner, Postselection
Technique for Quantum Channels with Applications to
Quantum Cryptography, Phys. Rev. Lett. 102, 020504
(2009).

[54] R. Renner, Symmetry of large physical systems implies
independence of subsystems, Nat. Phys. 3, 645 (2007).

[55] R. Renner, Security of quantum key distribution, Int. J.
Quantum Inf. 6, 1 (2008).

[56] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-
H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, and W.-J.
Zhang, et al., Measurement-Device-Independent Quantum
Key Distribution Over a 404 km Optical Fiber, Phys. Rev.
Lett. 117, 190501 (2016).

[57] N. Johnson, S. Kotz, and N. Balakrishnan, Continuous
Univariate Distributions, Vol. 1 (Wiley-Interscience, New
York, 1994), 1st edn.

044069-21

https://doi.org/10.1364/OE.18.008587
https://doi.org/10.1364/optica.4.000163
https://doi.org/10.1109/jlt.2018.2843136
https://doi.org/10.1103/PhysRevLett.121.190502
https://doi.org/10.1103/physrevlett.108.130503
https://doi.org/10.1038/s41586-018-0066-6
https://doi.org/10.1038/s41566-021-00928-2
https://doi.org/10.1364/OL.37.000223
https://doi.org/10.1364/OE.20.016358
https://doi.org/10.1126/sciadv.1701491
https://doi.org/10.1063/5.0021468
https://doi.org/10.1103/PhysRevA.90.032320
https://doi.org/10.1364/OL.43.005110
https://doi.org/10.1038/s41534-017-0057-8
https://doi.org/10.1126/sciadv.aaz4487
https://doi.org/10.1103/physreva.93.042325
https://doi.org/10.1038/s41534-018-0122-y
https://doi.org/10.22331/q-2021-12-07-602
https://doi.org/10.48550/ARXIV.QUANT-PH/0610203
https://doi.org/10.1103/physrevx.5.031030
https://doi.org/10.1088/1367-2630/18/6/065008
https://doi.org/10.48550/ARXIV.2202.06630
https://arxiv.org/abs/2205.11870
https://doi.org/10.1002/que2.56
https://doi.org/10.1103/physrevlett.102.020504
https://doi.org/10.1038/nphys684
https://doi.org/10.48550/ARXIV.QUANT-PH/0512258
https://doi.org/10.1103/physrevlett.117.190501

	I. INTRODUCTION
	II. RELATION WITH PREVIOUS WORK
	III. ASSUMPTIONS
	IV. QUANTIFYING THE EFFECT OF INTENSITY CORRELATIONS ON THE DECOY-STATE PARAMETER ESTIMATION PROCEDURE
	V. MODEL-INDEPENDENT CORRELATIONS
	A. Characterization
	B. Decoy-state method
	C. Linear programs for parameter estimation
	D. Simulations

	VI. TRUNCATED NORMAL MODEL
	A. Characterization
	B. Linear programs for parameter estimation
	C. Simulations

	VII. CONCLUSIONS
	ACKNOWLEDGMENTS
	A. APPENDIX A: CAUCHY-SCHWARZ CONSTRAINT
	B. APPENDIX B: DERIVATION OF v0,w0,…v, n
	1. Model-independent correlations
	2. Truncated normal model

	C. APPENDIX C: REFERENCE VALUES FOR THE LINEARIZED CAUCHY-SCHWARZ CONSTRAINTS
	D. APPENDIX D: THE TRUNCATED NORMAL MODEL
	. References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


