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A common scientific inverse problem is the placement of magnets that produce a desired magnetic field
inside a prescribed volume. This is a key component of stellarator design and recently permanent magnets
have been proposed as a potentially useful tool for magnetic field shaping. Here, we take a closer look
at possible objective functions for permanent-magnet optimization, reformulate the problem as sparse
regression, and propose an algorithm that can efficiently solve many convex and nonconvex variants.
The algorithm generates sparse solutions that are independent of the initial guess, explicitly enforces
maximum strengths for the permanent magnets, and accurately produces the desired magnetic field. The
algorithm is flexible, and our implementation is open source and computationally fast. We conclude with
two permanent-magnet configurations for the NCSX and MUSE stellarators. Our methodology can be
additionally applied for effectively solving permanent-magnet optimizations in other scientific fields, as
well as for solving quite general high-dimensional constrained sparse-regression problems, even if a binary
solution is required.
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I. INTRODUCTION

Magnet design is required in a large number of scien-
tific domains but it is a fundamentally ill-posed problem
because many different magnet designs can produce an
identical target magnetic field via the Biot-Savart law.
An extreme case for magnetic design comes from plasma
experiments that are investigating nuclear fusion; these
experiments often require very strong and complex mag-
netic coils. One class of plasma experiments in particular,
stellarators, relies on sophisticated coil-design algorithms
in order to produce ideal magnetic fields for confin-
ing plasma [1,2]. These three-dimensional (3D) magnetic
fields must be carefully shaped in order to provide high-
quality confinement of charged particle trajectories and
many other physics objectives. Stellarator optimization is
usually divided into two stages. The first is a configuration
optimization using fixed-boundary magnetohydrodynamic
(MHD) equilibrium codes to obtain MHD equilibria with
desirable physics properties [3–5].

After obtaining the optimal magnetic field in this first
stage, coils must be designed to produce these fields, sub-
ject to a number of engineering constraints such as a
minimum coil-to-coil distance, maximum forces on the
coils [6], maximum curvature on the coils, and many other
requirements [7]. The result is that stellarator coils are
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often very complex 3D shapes, raising the cost and dif-
ficulty of manufacturing. The primary cost of the W-7X
stellarator program was the manufacture of these com-
plex coils with very tight engineering tolerances [8]. The
NCSX stellarator was never finished, in large part because
of similar fabrication and assembly obstacles [9].

A. A role for permanent magnets

Until recently, the highly shaped and precise nature of
stellarator equilibria has implied the necessity of these
very complex coils. One way to circumvent this require-
ment (see Ref. [10]) is to simplify stellarator-coil designs
by surrounding a stellarator with a manifold of permanent
magnets that can provide significant portions of the mag-
netic field. These permanent magnets cannot be used to
generate a net toroidal flux, so traditional magnetic coils
are still required. Instead, the permanent magnets allow
for significant reductions in the coil complexity and cost.
Moreover, permanent magnets operate without power sup-
plies, require minimal cooling, ameliorate magnetic ripple
due to discrete coils, and facilitate improved diagnostic
access to the plasma chamber. However, there are also
some potential disadvantages, including the inability to
turn off the field, the possibility of demagnetization, and
an upper limit on the achievable field strength; material
science advances [11] for permanent magnets could sig-
nificantly address the latter two disadvantages. Despite
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these potential setbacks, the low cost and simple manufac-
ture of permanent-magnet stellarators are tantalizing, espe-
cially for university-laboratory-scale experiments. There is
already a promising experimental effort to produce a very
cheap but practical permanent-magnet stellarator [12]. In
the present work, we show that permanent-magnet stel-
larators have an additional advantage. Unlike filamentary-
coil optimization, the permanent-magnet optimization
problem can be expressed as sparse regression. Due to
the prolific scientific interest in variations of sparse regres-
sion, permanent-magnet optimization can subsequently be
relatively well understood and rapidly solved. Moreover,
traditional stellarator-coil optimization using a winding
surface [13], even with complicated requirements on coil-
coil forces [6], can also be formulated as sparse regression.

B. Motivation

The simplification of coils through the utilization of per-
manent magnets comes with its own challenges. Sophis-
ticated algorithms are still required to find high-quality
configurations of permanent magnets. Optimization for
determining the optimal placement of permanent mag-
nets (subject to minimizing the cost of the magnets and
various engineering constraints) is in a somewhat early
stage. There are currently several different formulations
and associated algorithms for addressing the permanent-
magnet optimization problem [14–19] but the relationships
between them are often unclear. Some of the optimization
problems are multistage or use discrete optimization and
the “best” set of loss terms is an open question. These non-
convex problems seem to exhibit many local minima and
high sensitivity to the initial conditions. Often, additional
postprocessing optimization steps are taken to further
improve the initial optimization solutions. Despite these
methods relying on some heuristics and postprocessing,
they often produce very high-quality solutions. Similarly,
genetic algorithms have been used to generate permanent-
magnet configurations in the magnetic-resonance-imaging
(MRI) community [20,21]. Here too, there have been few
conclusions about optimality and the algorithms are not
always extensible when future work necessitates higher-
dimensional problems or additional constraints.

If the permanent-magnet optimization could be better
understood and more efficiently solved in the stellarator
community, “off-the-shelf” permanent-magnet stellarators
could be rapidly designed for cheap university-laboratory-
scale experiments with very simple toroidal-field (TF)
coils. If such stellarators can be constructed and widely
distributed, stellarator expertise could be rapidly culti-
vated and the parameter space of quasisymmetric and
quasi-isodynamic stellarators could be rapidly explored.
Multistage stellarator optimization has recently gener-
ated highly quasisymmetric configurations [22,23] and
near-axis expansions [24–28] have facilitated efficient

numerical explorations and new discoveries within a very
large parameter space of quasisymmetric stellarator con-
figurations. Outside the stellarator-optimization commu-
nity, improvements in understanding and algorithms for
permanent-magnet optimization problems would have sig-
nificant repercussions for better permanent-magnet config-
urations in MRI, automobile design, and other industrial
uses.

C. Contributions of the present work

With the aim of working toward rapid design and
distribution of cheap permanent-magnet stellarators, this
work hopefully provides a foundation for understanding
the permanent-magnet optimization problem by show-
ing that it can be reformulated as sparse regression.
Then, we provide a computationally efficient, easy-to-use,
generally applicable, and open-source code for comput-
ing permanent-magnet configurations for stellarators. The
algorithm produces sparse solutions that are independent
of the initial guess, explicitly enforces hard constraints
on the dipole moment magnitudes, and illustrates that
continuous optimization is sufficient for generating high-
performance permanent-magnet stellarators. It is one of
a small number of sparse-regression algorithms that can
effectively solve problems with O(106) optimization vari-
ables and it is additionally capable of handling a simi-
lar number of convex constraints and producing binary
solutions. We can regularly solve permanent-magnet opti-
mizations that depend on dense matrices of billions of
elements.

In particular, we provide a relax-and-split method for
general permanent-magnet optimization in the open-source
SIMSOPT code [5]. Unlike previous work, the entirety of
the permanent-magnet pipeline, i.e., the geometry, opti-
mization tools, postprocessing, etc., is contained in this
single open-source tool. The effectiveness of this algorithm
is demonstrated by finding and illustrating two high-
performance permanent-magnet stellarator configurations.

D. Permanent-magnet optimization as sparse
regression

The sparsity-promoting optimization problems that
appear in this work are the foundation of the field of sparse
regression, which encompasses sparse-system identifica-
tion [29–31], compressed sensing [32], and many other
tasks in signal and image processing [33]. This fundamen-
tal relationship with optimization problems occurring in
sparse regression means that efficient and well-understood
algorithms can be immediately brought to bear on the
permanent-magnet problem.

There are two primary differences between the opti-
mization problem that we solve in this paper and the
many corresponding sparse-regression problems in other
scientific fields. First, the latter typically has O(102) or
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fewer unknowns, while realistic permanent-magnet coil
optimizations can easily have O(105) unknowns [with a
corresponding O(105) constraints]. It follows that, unlike
most sparse-regression applications, permanent-magnet
optimization requires algorithms that scale well with the
number of unknowns and the number of constraints. A
notable exception is that sparse regression for image and
signal processing is often very high dimensional and
in this case approaches to this problem typically either
(1) convexify the problem, e.g., with the l1 norm, or (2) use
a “greedy” algorithm that iteratively and rapidly solves the
problem, albeit often with weak guarantees on optimality
[33]. Both of these approaches can struggle to solve binary
problems, e.g., the desired solution for permanent-magnet
optimization is not just a sparse set of magnets but one
in which the magnets are all either maximum strength or
exactly zero.

Second, even the convex formulation of permanent-
magnet optimization, which omits any engineering
requirements on the permanent magnets, often gives rise
to different initial conditions converging to different final
solutions. This pseudoparadox is simply a result of the
strong ill-posedness of the optimization problem; one
should imagine the optimization landscape as a convex
space but with a very large flat valley containing many
quasiminima. It is well known that this issue is addressed
with regularization. Indeed, without sufficient regulariza-
tion, each new initial condition will result in a quasiminima
solution that is correct to numerical precision. This prob-
lem is so ill posed that the quasiminima often look like
extremely different configurations of permanent magnets.
Figure 1 shows that modest Tikhonov regularization fully
circumnavigates this qualitative behavior, although the
regularization may make it more difficult to access the
desired parameter space of sparse binary solutions.

This type of ill-posedness also occurs in varieties of
sparse regression. A notable example occurs in sparse-
system identification, where the goal is to search through
very large libraries of candidate functions. In that case, the
goal is to discover the underlying equations of a dynam-
ical system; there is a right answer. In the context of
permanent-magnet optimization, this strong ill-posedness
can be seen as a strength rather than a weakness, since
(modulo engineering constraints) there is no right answer;
any permanent-magnet configuration that produces neg-
ligible magnetic field errors on the plasma surface is a
suitable solution. In other words, there are significant
degrees of freedom available for incorporating additional
requirements regarding the configuration of magnets.

However, even in the permanent-magnet problem, there
are some potential downsides of ill-posedness. Coupled
with true local minima in the nonconvex setting, ill-
posedness can have significant consequences regarding the
number, manufacture, and cost of the permanent magnets.
It also impedes conclusions about the possible parameter

space of configurations; it is possible that higher-quality
or easier-to-engineer configurations are available but have
not been found. These problems can be compounded by
a poor choice of loss terms in the objective function or
because such configurations cannot be easily found with
the algorithms used to minimize the objective.

A relax-and-split algorithm is ideal for high-dimensional
constrained sparse regression. In a relax-and-split
approach, an iterative solve is set up between a convex sub-
problem over any set of convex constraints and an “easy”
nonconvex subproblem that renders the overall approach
very computationally efficient. The relax-and-split iter-
ations continue until the convex and nonconvex sub-
problems both converge. The relax-and-split formulation
exhibits excellent and well-understood local convergence
properties [34], circumnavigates the initial guess sensitiv-
ity of previous work (justified later in Sec. II E), and can be
easily extended in various ways from the baseline imple-
mentation in the open-source PySINDy code [35,36] that
is used for sparse-system identification. Variants of relax-
and-split have been used in Champion et al. [30] to solve
system-identification problems with affine constraints in
the optimization variables, extended for additional con-
straints and nonconvex loss terms in Kaptanoglu et al.
[37,38], recently used as a denoising strategy in Hokan-
son et al. [39], and increasingly contribute to optimization
problems found outside the field of system identification
[40–42]. Our implementation for permanent magnets can
also be used to rapidly solve complex sparse-regression
problems with O(104)—O(106) unknowns and a similar
number of constraints. The solution of such large con-
strained optimization problems with the l0 norm has been
largely infeasible with current algorithm implementations
in the sparse-regression field until very recent work [43–
45]. By framing permanent-magnet optimization as sparse
regression, we build a bridge to these powerful tools.

II. METHODOLOGY

Permanent magnets can be approximated as magnetic
dipoles if the distance between the field-evaluation point
and the center of the permanent magnet is substantially
larger than the size of the permanent magnet. This is a
substantial advantage for optimization because the mag-
netic field generated by a magnetic dipole exhibits a simple
analytic expression that is independent of the geometry of
the permanent magnet and linear in the dipole moment m.
Green’s functions can also be used for fully calculating
the near fields of permanent magnets with simple shapes
such as spheres and cubes, while retaining the linearity in
m. Moreover, the dipole moment of the permanent magnet
is approximately independent of the external field if the
permanent-magnet permeability is low.
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FIG. 1. Permanent-magnet manifolds (rows 1, 2, 4, and 6) and B · n̂ on the plasma surface (rows 3, 5, and 7), generated by solving
Eq. (5) for the MUSE permanent-magnet stellarator. The toroidal-field coils are omitted from the illustration. Tikhonov regularization
with λ = {0, 10−10, 10−8} and three different initial conditions are used, until a high-performance value fB ∼ 10−8 is achieved. Despite
the convexity, the ill-posedness of the optimization results in vastly different permanent-magnet configurations (and some variation in
B · n̂ on the plasma surface) depending on the initial condition. Only with sufficient regularization can we break the degeneracy from
the ill-posedness.
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Together, these approximations facilitate a very simple
form for the total magnetic field. It follows that a straight-
forward way to imagine placing permanent magnets is to
approximate the magnets as magnetic dipoles, discretize
a large computational domain into elements of a mesh,
and represent each element as a single dipole at the cen-
ter (again assuming that the element size is substantially
smaller than the distance between the element and the
plasma). If the total number of discrete dipoles mi is D,
then the total magnetic field BM is simply a sum over all
the dipoles:

BM = μ0

4π

D∑

i=1

(
3mi · ri

‖ri‖5
2

ri − mi

‖ri‖3
2

)
. (1)

Here, μ0 is the vacuum permeability, ri is the vector
between the evaluation point and the ith dipole, and Sys-
teme International (SI) units are used throughout this work.
Critically, Eq. (1) is linear in the dipole moments mi. The
primary target for stage-2 coil optimization is to, together
with the traditional magnetic coils, use the permanent
magnets to fully match the desired magnetic fields at the
plasma-boundary surface:

fB =
∫ (

(BM + BP + BC) · n̂
)2 d2x. (2)

That is, we use the permanent magnets to minimize the
value of fB. Here, n̂ is the normal vector to the plasma
boundary and BP and BC are the magnetic fields generated
by plasma current and the traditional coils, respectively.
For the purposes of this work, BP is the field from a stage-
1 optimized plasma boundary and BC is the field generated
from a minimal set of basic coils that produce the net
toroidal flux. Equation (2) is convex because it can be writ-
ten as a linear least-squares term in the mi, as we show
explicitly in Appendix A.

Next, we assume a straightforward grid of permanent-
magnet locations. Cartesian (x, y, z), cylindrical (r, φ, z),
and simple toroidal (rminor, φ, θ) coordinate systems are
implemented in the code. Rectangular cubes, curved
square bricks, and simple toroidal shells are ideal shapes
for permanent magnets because they facilitate cheap mass
manufacturing and straightforward assembly. Cylindrical
coordinates are used in Sec. III A and simple toroidal coor-
dinates are used in Sec. III B. Equation (2) is independent
of the coordinate-system choice; the coordinate system
here primarily serves to specify which coordinate direc-
tions are considered grid aligned, since this is an attractive
engineering property to promote.

As in Hammond et al. [46], we define the volume as the
space between two toroidal limiting surfaces. The inner
surface that encloses the plasma is usually chosen to be
the experimental vacuum vessel. If there is no designed
vacuum vessel, a simple transformation can be used to

generate an inner toroidal surface as follows. The plasma-
boundary normal vectors in cylindrical coordinates are
projected onto the r-z plane of the corresponding quadra-
ture point (so that the new surface locations are defined
at identical poloidal cross sections) and then multiplied by
an overall offset value to generate a surface for the inner
toroidal boundary of the permanent-magnet configuration.
The outer limiting surface is generated similarly, using the
projected normal vectors on the inner toroidal surface. For
moderately shaped equilibria, these simple transformations
work well to generate the permanent-magnet volume. Any
curved square bricks that are not between the inner and
outer surfaces are eliminated. Custom grids are also admis-
sible and future work could straightforwardly implement
additional grid-generation schemes.

As discussed in Sec. I D, the linear least-squares part of
the permanent-magnet problem is strongly ill posed. Typ-
ically, Tikhonov regularization with strength λ is added to
the stage-2 permanent-magnet optimization for regulariza-
tion of fB,

fm = λ

D∑

i=1

‖mi‖2
2, (3)

and this term is also convex in the mi. A downside of this
term is that it tends to select for solutions with weak but
nonzero magnets. For more general regularization terms,
we consider

fm = λ

D∑

i=1

R(mi), (4)

where the sum over i could also be chosen to be inside
the regularizer R. Here, R(mi) is smooth and convex, such
as the commonly used l2 norm; nonsmooth and noncon-
vex regularizers are discussed below but we denote these
separately.

A. Optimization objectives

Before formulating the full optimization problem to
solve, it is illustrative to be explicit about the goals of
the optimization. Consider the following objectives that
we would like to promote or impose in the optimization
problem:

(1) Fit the MHD equilibrium fields: minimize fB.
(2) Regularize fB: minimize fm.
(3) Avoid magnetic dipole values above the maximum

magnetization of the material: impose the hard constraints
that ‖mi‖2 ≤ mmax

i , where the maximum value for dipole
moment i is defined through the remanence field Brem
and the cell volume Vcell

i , mmax
i = μ−1

0 BremVcell
i . For this

work, we assume Brem = 1.465 T to match the value used
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for FAMUS runs of the MUSE stellarator. MUSE uses
commercial “N52” neodymium-iron-boron (Nd2Fe14B)
magnets.

(4) Produce a sparse binary solution. Bias the dipoles
toward either satisfying ‖mi‖2 = 0 or ‖mi‖2 = mmax

i for
all i, so that permanent magnets are either omitted or
placed with approximately maximum strength. Moreover,
minimize the cost of the permanent magnetic configuration
by using as few magnets as possible.

(5) Promote properties that reduce the engineering
complexity of the magnet configuration, such as constrain-
ing the direction of each dipole to be “grid aligned,” i.e.,
perpendicular to the face of each grid element.

Below, we start with a convex formulation that is sufficient
for objectives 1–3 in Secs. II B–II C and then add in non-
convexity for promoting sparse configurations of perma-
nent magnets that address objectives 4–5 in Secs. II D–II E.

B. A first attempt at formulating the optimization

We now propose a first objective function that
accomplishes the optimization objectives 1–3. First,
we define the vector of optimization variables, m =
[mx

1, my
1, mz

1, mx
2, . . . , mz

D]. Then, the proposed objective
function can be formulated:

arg min
m

1
2
‖Am − b‖2

2 + λR(m)

‖mi‖2
2 ≤ (

mmax
i

)2 , i = 1, . . . , D. (5)

The quadratic constraints are convex since each mi vec-
tor must be contained in a l2 ball in R

3. For the remainder
of the work, we denote as Sm the hypersurface spanned
by the intersection of the spherical constraints. Critically
for efficiency, the constraints are separable. Unlike most
stellarator-optimization problems, we do not convert these
constraints into a related loss term—we impose them as
hard constraints. Interior-point methods (IPMs) may also
be used here, where the inequality constraints would be
converted into barrier functions in the loss terms, but
IPMs usually do not scale very well to high-dimensional
settings. Fortunately, for convex problems with a large
number of separable convex constraints, there are other
fast algorithms.

Before moving on to an algorithm for Eq. (5), we
note here that the demagnetization effects from finite
permanent-magnet coercivity could also be modeled as
convex constraints. These constraints could be critical for
accurate modeling of stellarators with large magnetic field
strengths. If the dipole at position xi demagnetizes if the
external field strength is greater than Bmax, this can be
posed as

‖BM (m, xi) + BP(xi) + BC(xi)‖2
2 ≤ B2

max. (6)

It should be clear that the field from the ith dipole is
excluded from the expression given in Eq. (6) when eval-
uated at xi and that for permanent magnets that are very
close to the ith permanent magnet, there are significant
errors introduced by the dipole approximation (however,
these errors can be avoided with spherical permanent mag-
nets or accounted for if other simple shapes are used).
There are constraints of the Eq. (6) type from all the dipole
locations, adding another D constraints to the values in
m if each constraint is active. Each constraint is a con-
vex but not separable constraint on the mi and could be
implemented with barrier functions in future work.

C. An algorithm for simple permanent-magnet
optimization

The optimization problem in Eq. (5) is a convex problem
with separable convex spherical constraints. Therefore,
it can be solved with many different algorithms and the
global minimum can be found. The primary issues are the
high dimension of the problem and the large number of
constraints. The problem in Eq. (5) forms the backbone of
the present work, so we first provide an algorithm that can
efficiently solve this problem despite the high dimension.

Many algorithms have been considered for quadratic
programs with quadratic constraints [47]. It is only recently
that fast solvers have been devised for exactly the case
of high-dimensional convex optimization problems with
a large number of spherical constraints [48]. In partic-
ular, an algorithm is proposed in Bouchala et al. [49]
that can optimally solve these problems and we adopt
this algorithm for our purposes. An extended algorithm
and other variations [50] are also available if additional
equality constraints are present. The algorithm is essen-
tially projected-gradient descent (the standard algorithm
for high-dimensional smooth constrained optimization)
with a conjugate-gradient acceleration and, as such, it
relies on a explicit form for the projection operator:

PSm(m) = arg min
y∈Sm

‖m − y‖2
2. (7)

The projection can be decomposed as

PSm(m) = [P(m1), . . . , P(mD)], (8)

by the separability of the constraints and each of the
projections satisfies

P(mi) = arg min
‖y‖2

2≤(mmax
i )

2
‖mi − y‖2

2 = mi

max
(

1, ‖mi‖2
mmax

i

) . (9)

Lastly, we typically initialize the algorithm with an ini-
tial guess for the dipoles as all zeros. The natural guess
is m(0) = PSm(A†b), where A† denotes the pseudoinverse
of A, but we find that this often generates very poor initial
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guesses when the constraints are very active. Alternatively,
when the problem is strongly ill posed, it is often useful
to start with the dipoles at maximum strength to prefer-
ence the algorithm toward solutions with strong magnets.
Regardless, the algorithm requires that m(0) ∈ Sm. Many
other initial conditions are tested to verify that, with suf-
ficient regularization, the algorithm correctly converges to
the minimum of this convex problem, as in Fig. 1.

D. Sparse optimization for permanent-magnet design

Unfortunately, the formulation in Eq. (5) is not sufficient
for a sparse binary solution. These are attractive proper-
ties to promote, since it means that only a sparse collection
of maximum-strength permanent magnets can be used. We
begin this section with a discussion of one of the foun-
dations of sparsity-promoting optimization: the l0 “norm,”
which is simply an operator that counts up the number of
nonzero terms in a vector. The l0 norm is seldom used for
permanent-magnet optimization because it appears very
challenging to address with traditional optimization. For
instance, the l0 norm is nonsmooth, preventing the straight-
forward application of generic algorithms for nonconvex
optimization based on gradient and Hessian information
such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) [51].
The high dimension of the problem and large number of
constraints further reduces the number of fast algorithms
that are suitable for addressing objective functions with the
l0 norm. Nonetheless, we define an objective function with
the l0 norm and borrow recent ideas from the field of sparse
regression to effectively solve it:

arg min
m∈Sm

1
2
‖Am − b‖2

2 + λ‖m‖2
2 + α‖m‖0. (10)

We show below that the formulation in Eq. (10) now sat-
isfies all of the requirements for the permanent-magnet
optimization problem and that the partial convexity of the
objective function can be utilized. Moreover, the objec-
tive function in Eq. (10) can be altered without significant
changes in procedure; substitutions for the l0 norm in
Eq. (10) can be made for other regularizers, depending
on the optimization goals. Examples include the l1, group
l2,1, and group l0,1 norms. For instance, the nonoverlapping
group l0,2 or l0,1 operators [52] could be used to enforce
an l0 normlike structure on the magnitudes of each dipole,
allowing for dipoles that do not align with any of the grid
directions [53]. These operators can also be used in the
algorithm proposed below but we focus on the l0 norm
in this work both for concreteness and because it satis-
fies all the requirements for generating sparse high-quality
configurations of permanent magnets. As we detail our
algorithm, it should become apparent that the l1 loss term,
the typical choice for a relaxation of the l0 loss term, is not
sufficient for generating sparse and binary solutions.

Beyond the connection with sparse regression, it may
not be clear yet why this formulation of the permanent-
magnet optimization problem could be preferable to for-
mulations proposed in previous works. In Sec. II E, we
show that we can use the structure appearing in our for-
mulation to design a hopefully fast, flexible, and easy-to-
understand solution to placing a sparse set of permanent
magnets for stellarator field shaping.

E. Proposed relax-and-split algorithm

An algorithm is required for effectively solving the var-
ious proposed objective functions that can be used for
permanent-magnetic optimization. The backbone of all
these objective functions is a linear least-squares prob-
lem with a convex regularizer, subject to a large number
of separable spherical constraints. Nonconvex optimiza-
tion problems with convex constraints can be effectively
solved with the relax-and-split formulation [34] of the
optimization problem if the proximal operator,

proxαN (m) ≡ arg min
y

[
1
2
‖m − y‖2

2 + αN (y)

]
, (11)

of the nonconvex (and/or nonsmooth) part of the objec-
tive function, N (m), is known or easily approximated. In
the present work, it is assumed that an analytic expression
is known for the proximal operator (as is the case for the
l0, l1, nonoverlapping group l0,1, etc.), which significantly
simplifies our task and additionally implies that, despite
the notation, N (m) is not an arbitrary function. There are
also nonconvex loss terms without known analytic proxi-
mal operators that nonetheless can be rapidly numerically
computed.

To see how the proximal operator enters into the opti-
mization, we first introduce a proxy variable w ∼ m. This
proxy is kept reasonably close to the values in m by the
inclusion of a new least-squares term ν−1‖m − w‖2

2, with
the value of the hyperparameter ν determining how closely
the two variables should match. The goal is now to solve
the following optimization problem:

arg min
w,m∈Sm

[‖Am − b‖2
2

2
+ ‖m − w‖2

2

2ν
+ λR(m)

]
+αN (w).

(12)

We can solve this problem effectively by using variable
projection [54]. We solve the inner optimization problem
over m at fixed w, then solve the outer optimization over w
at fixed m, and iterate between these solves until conver-
gence is found. The inner optimization problem is convex
over the original dipole variables in m. Fix the initial
guess for w(0) and denote the solution after the first convex
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iteration,

m(1) ≡ arg min
m∈Sm

[‖Am − b‖2
2

2
+ ‖m − w(0)‖2

2

2ν
+ λR(m)

]
,

(13)

so that the remaining optimization problem is

w(1) ≡ arg min
w

[
1

2ν
‖m(1) − w‖2

2 + αN (w)

]

= proxναN (m(1)). (14)

In other words, the remaining optimization problem is
equivalent to computing the proximal operator. The proxi-
mal operator for the l0 norm is hard thresholding, detailed
briefly in Appendix B. The hard thresholding naturally
generates sparse vectors. Now we can iterate between the
convex and nonconvex optimization subproblems, so that
the full algorithm can be summarized in Algorithm 1.

We find empirically that it often works very well to start
with weak values of the hard threshold used in the l0 norm
(the threshold is proportional to

√
α), converge this prob-

lem, and then use the solution as an initial guess to a new
problem with a larger value of α. This is repeated until α

is large enough to threshold off essentially all of the mag-
nets that are not maximum strength. Since the magnets are
all essentially maximum strength by the final optimiza-
tion loop, they are also all grid aligned by virtue of the
l0 loss term. To see this, note that the algorithm thresholds
off components of each mi that are below some minimum

Algorithm 1. Relax-and-split with the l0 loss term

strength, subject to the constraints on the maximum dipole
magnitudes. For instance, if components of mi with less
than 97.5% of the maximum strength are thresholded, it
follows that this dipole must either be exactly zero or have
a single nonzero vector component.

There are some significant advantages of Algorithm 1.
The convex and nonconvex parts of the optimization prob-
lem can both be efficiently solved, additional convex
equality and inequality constraints can be added straight-
forwardly, and the requirements on m are split between
m and the proxy variable w, allowing the algorithm to
“relax” into satisfying the constraints. The formulation as
sparse regression allows for the rapid adoption of concepts,
algorithms, and expertise from the prolific field of sparse
regression.

Moreover, if the problem is reasonably well posed (e.g.,
Tikhonov regularized), the initial permanent-magnet con-
figuration is unimportant—whatever it is, it is erased by the
convex optimization in the first step, fully circumnavigat-
ing part of the initial guess issues present in the other non-
convex algorithms for permanent-magnet optimization. It
may appear at first that this insensitivity to the initial con-
dition may cause the algorithm to only explore a reduced
space of configurations but we now also have additional
hyperparameters and by sweeping the value of these hyper-
parameters, we have a systematic way to explore a very
wide space of permanent-magnet configurations.

III. RESULTS

We now present optimized permanent-magnet configu-
rations for the NCSX and MUSE stellarators. Both exam-
ples are run with a set of high-resolution quadrature points
on the unique part of the plasma boundary—64 points in θ

and 64 points in φ (×2Nfp for all Nfp field periods). Both
of the following considered stellarators are stellarator sym-
metric and field-period symmetric, so it is only required to
design dipoles for 1/2Nfp of the toroidal angle extent and
then to repeat this configuration around the torus.

A. NCSX

NCSX was a planned quasiaxisymmetric stellarator that
was partially built at the Princeton Plasma Physics Labora-
tory. It was originally designed with 18 modular coils and
18 planar coils. The equilibrium of interest, C09R00, was
scaled to have an on-axis magnetic field strength of 0.5 T,
which is the maximum field produced by the existing pla-
nar coils. C09R00 also exhibits a threefold field symmetry,
a major radius of 1.44 m, a minor radius of 0.32 m, and
volume-averaged plasma beta 〈β〉 = 4.09%. However, for
direct comparison with the FAMUS solution in Ref. [16],
the C09R00 shape is used but with no plasma current,
i.e., 〈β〉 = 0, and the toroidal field is taken to be perfectly
toroidal with no ripple.
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FIG. 2. A comparison between FAMUS and relax-and-split solutions on an example NCSX permanent-magnet manifold. Note that
the relax-and-split dipoles are aligned with the cylindrical grid.

For a direct comparison with the FAMUS [14] method,
Algorithm 1 is used in a cylindrical coordinate system
with the l0 norm and Tikhonov regularization is omit-
ted. Tikhonov regularization is simply not required for
a high-quality solution (and the relax-and-split term, ∝
‖m − w‖2

2, is an additional source of regularization).
The FAMUS grid of allowed dipole locations has a res-

olution of 14 points radially, so A ∈ R
4096×172032. We use

the same grid for our optimizations in SIMSOPT. FAMUS is
used with a level of regularization for a plausible solu-
tion fB ≈ 1.6 × 10−6 T2m2. An effective volume of the
permanent-magnet region can be defined by

Veff =
D∑

j =1

‖mj ‖2

M0
, M0 ≡ Brem

μ0
(15)

and the result is 2.29 m3 out of a maximum available vol-
ume of 3.23 m3. To measure how binary a solution is, we
also define the binary fraction

fδ = 1 − N {i|δ ≤ ‖mi‖2 ≤ 1 − δ}
D

. (16)

There is no postprocessing optimization done to the FAMUS
solution, so there is significant “pile-up” near dipole mag-
nitudes at 0 and 1 and f0.01 = 0.57.

A representative SIMSOPT m∗ solution achieves a similar
fB ≈ 1.6 × 10−6 T2m2 with a very similar effective volume

of 2.34 m3 and a substantially improved f0.01 = 0.84. This
improvement with SIMSOPT occurs despite the fact that
the relax-and-split method also produces a cylindrically
grid-aligned solution. This solution is compared with the
FAMUS solution in Figs. 2 and 3. The w∗ solution achieves
a poor value of fB but nonetheless still successfully pulls
m∗ toward a high-quality solution that is approximately
sparse. The relax-and-split and FAMUS solutions have some
qualitative similarities in the strength of the permanent

FAMUS

w*

m*

FIG. 3. The distributions of the dipole magnitudes for the
relax-and-split solutions and FAMUS. Significant numbers of
weak magnets seem to be required for low-error configurations
with this NCSX permanent-magnet manifold.
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FIG. 4. Comparisons between the convex algorithm, the FAMUS solution, and the relax-and-split solutions for MUSE. The sparse
relax-and-split w∗ produces a slightly larger fB error than FAMUS but uses fewer magnets.

magnets. It is noteworthy that in Fig. 3, both solutions
appear to require a set of weak magnets for low-error
configurations of this NCSX example. This lends some

evidence to the following propositions: that the permanent-
magnet grid choice can be reasonably important for finding
high-performance solutions and that the low errors in fB
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FIG. 5. Histograms of the dipole magnitudes as the algorithm progresses (red) compared with the optimized FAMUS solution for
MUSE (green). Slowly increasing the thresholding has the effect of pushing all the magnets to magnitudes of zero or one.
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are quite sensitive to small changes in the magnets. Over-
all, the major takeaway is that we find a relax-and-split
solution that provides fB performance similar to that of
the FAMUS solution, despite being significantly sparser and
grid aligned.

B. The MUSE stellarator

MUSE is a table-top stellarator experiment using per-
manent magnets that is currently under construction [19].
MUSE is optimized for a high degree of quasisymmetry
and the permanent-magnet configuration of the experi-
ment is optimized to have good flux surfaces with the
FAMUS code [12] to fB ≈ 5.17 × 10−8 T2 m2. The dipoles
are constrained to point only in the minor radial direction
in simple toroidal coordinates. Diagnostic ports and other
spatial restrictions are used to represent the real permanent-
magnet configuration. Spatial restrictions only eliminate a
portion of the grid from consideration and, importantly,
do not change the properties of the optimization problem.
After the permanent magnets are optimized, the combined
magnetic field from the magnets and coils is used to com-
pute Poincaré plots in order to verify the quality of the flux
surfaces. Substantial discrete optimization is used in post-
processing steps to achieve engineering constraints while
preserving the physics objectives, as described in Qian
et al. [19].

We use the same stage-1 optimized plasma surface, the
same 16 planar TF coils, and the same MUSE permanent-
magnet grid array of four toroidal quadrants [19] (i.e., the
dipole locations are identical in the FAMUS and SIMSOPT
optimizations) with a simple toroidal coordinate system.
The grid provides for the inclusion of four vertical ports
and 12 horizontal ports. We solve both the convex and the
nonconvex optimization problem from Eqs. (5) and (10)
and compare with the FAMUS solution. For these optimiza-
tions, the number of dipoles is 75 460 (×4 via symmetries),
each with three vector components, so A ∈ R4096×226 380.
Tikhonov regularization is used with strength λ = 10−8

for the convex problem; these results are identical to the
last two rows of Fig. 1. Tikhonov regularization is omitted
for the SIMSOPT solution with the l0 term included, for the
same reason as in Sec. III A.

The results comparing the convex optimization in
Eq. (5), the FAMUS solution, and the relax-and-split solu-
tions m∗ and w∗ are shown in Fig. 4. The toroidal-field
coils are shown in green, the normalized permanent-
magnet strength is indicated in the blue-red color bar, and
the normal component of the residual field errors is illus-
trated in the purple-yellow color bar. The optimization
begins by truncating magnets with strengths below 5% and
the threshold parameter (proportional to α0) is increased
until magnets below 97.5% strength are truncated. The
algorithm progress is visualized in Figs. 5 and 6, showing
that the optimization successfully transforms a nonsparse

FIG. 6. An illustration of the optimization objective as the
relax-and-split algorithm progresses. Increases in the hard thresh-
old causes sudden spikes in the objective value but the algorithm
quickly recovers to prethresholding error levels. At the end of the
algorithm, when only magnets of strength 97.5% remain in the
MUSE permanent-magnet manifold, the error is roughly equal to
the error at the beginning, when dipole magnitudes could vary
between 0 and 1.

solution of weak dipoles to a very sparse solution of
maximum-strength dipoles.

The m∗ solution achieves fB ≈ 2.8 × 10−8 and the w∗
solution achieves fB ≈ 1.5 × 10−7, using nonzero dipole
magnitudes for only 14.6% of the permanent magnets. It

FIG. 7. Distributions of all the permanent-magnet optimiza-
tion variables for the relax-and-split and FAMUS solutions for
MUSE. The vast majority of the dipoles are zeroed and relax-
and-split uses fewer full-strength magnets. An enlarged view
illustrates the magnet “stragglers” in m∗, while w∗ fully zeroes
out magnets below the hard threshold.
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FIG. 8. The different components of the MUSE m solutions in Cartesian and simple toroidal coordinates illustrate the different grid
alignments used in FAMUS (top row) and in SIMSOPT (the middle and bottom rows are the relax-and-split dipole solutions grid aligned
with Cartesian coordinates and grid aligned with simple toroidal coordinates, respectively). The FAMUS magnets are constrained to
point inward or outward in the minor radial direction and in the toroidal relax-and-split case, the magnets point in one of the three
simple toroidal directions and yet qualitatively reproduce the magnet structures seen by FAMUS.

is interesting to note that w∗ produces five times the fB
value compared to m∗. Yet the m∗ and w∗ distributions
appear at first to be virtually identical in Fig. 7 and in 3D
visualization as in the top row of Fig. 4. Focusing on the
origin of Fig. 7, we can see that m∗ actually breaks the
grid alignment of the dipoles in w∗, with a large number of
very weak components. Summing over the absolute values
of all of these very weak but nonzero components actually
amounts to the equivalent contribution of approximately
600 (×4 for symmetries) full-strength grid-aligned perma-
nent magnets (modulo the important directionality but this
is a rough estimate anyway). This “straggler” issue is seen
elsewhere in sparse regression and in fact motivates the
postprocessing and postoptimization that is performed to
improve FAMUS permanent-magnet solutions. It is a sub-
stantial strength that w∗ does not suffer from this issue
but it comes at the cost of increased fB error. Moreover,
this sensitivity to very weak nonzero components in the
otherwise grid-aligned dipoles motivates a stochastic opti-
mization approach, outlined in Appendix C, in order to

search for configurations that are robust to small changes
in the solution.

FAMUS uses approximately 16.8% of the permanent
magnets, or exactly 6608 additional magnets [55] with
respect to the relax-and-split solution w∗. Additional
hyperparameter tuning could be done to obtain a compari-
son with FAMUS using the exact same number of dipoles
but the relax-and-split solution is already sparse, high-
quality, and therefore suitable enough for this example
configuration. The extra FAMUS postprocessing precludes
a perfect comparison with the relax-and-split method any-
way. Moreover, as is illustrated in Fig. 8, the FAMUS
solution constrains the dipoles to point in the minor
radial direction, while the relax-and-split solution pro-
duces dipoles that are aligned with one of the three simple
toroidal directions. Despite these extra degrees of freedom,
the solution qualitatively reproduces the dipole structures
seen in the FAMUS solution. In contrast, the relax-and-split
solution with Cartesian grid-aligned dipoles in Fig. 8 pro-
duces another excellent solution but looks qualitatively

TABLE I. A summary of the comparison between FAMUS and relax-and-split on the NCSX and MUSE examples.

Stellarator Solution fB Veff (m3) f0.01 Grid alignment

NCSX FAMUS 1.6 × 10−6 2.29 0.57 None
NCSX SIMSOPT m∗ 1.6 × 10−6 2.34 0.84 cylindrical
NCSX SIMSOPT w∗ 4.7 × 10−4 2.30 1 cylindrical
MUSE FAMUS 5.7 × 10−8 3.245 × 10−3 1 rminor
MUSE SIMSOPT m∗ 2.8 × 10−8 2.906 × 10−3 0.92 toroidal
MUSE SIMSOPT w∗ 1.5 × 10−7 2.822 × 10−3 1 toroidal
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FIG. 9. Poincaré plots for MUSE solutions, with the target plasma boundary in black.

quite different. The relax-and-split and FAMUS solutions
for both examples are summarized in Table I and Poincaré
plots for each of the solutions are illustrated in Fig. 9. The
surfaces generated with m∗ look slightly improved over
those of FAMUS but the w∗ surfaces look slightly degraded.

Consider the remarkable fact that the FAMUS and relax-
and-split toroidally aligned solutions qualitatively match.
The two algorithms have different degrees of freedom and
solve very different nonconvex optimization problems, yet
the solutions are qualitatively very similar. There are two
effects that seem like plausible reasons for this conver-
gence between algorithms. First, certain grid locations may
be essential for properly minimizing fB, e.g., locations
near highly shaped magnetic fields. Second, the require-
ment of maximum-strength binary magnets effectively
regularizes much of the permanent-magnet optimization
space. In other words, there may be a vast number of
permanent-magnet configurations that minimize fB to high-
performance levels but far fewer such configurations have
binary distributions.

IV. CONCLUSIONS

We show that permanent-magnet optimization can be
formulated as sparse regression. This scientific problem is
common to many fields, including automobile manufactur-
ing, MRI, ship degaussing, and many other applications.
We classify a number of loss terms that can be effec-
tively used in permanent-magnet optimization and propose
a relax-and-split algorithm that takes advantage of the par-
tial convexity, addresses an important class of nonsmooth
and nonconvex optimization loss terms, and allows for
additional convex equality and inequality constraints to be
added to future objective functions. The algorithm is gen-
erally applicable and our implementation is computation-
ally efficient and open source. It can be immediately used
or extended for winding-surface stellarator-coil optimiza-
tion and high-dimensional sparse regression across many
scientific domains. We conclude by discovering accurate
and sparse solutions for two stellarators. Interestingly, the

relax-and-split algorithm qualitatively matches the FAMUS
solution for the MUSE stellarator example, despite the
significant differences between the algorithms and their
associated optimization problems. This may be an indica-
tion that the requirement of sparse binary-magnet solutions
may regularize the optimization enough to leave only a
few high-quality minima, despite the nonconvexity of the
problem.

Future work should further explore the parameter space
of possible permanent-magnet configurations on a variety
of stage-1 plasma equilibria. More sophisticated physical
and engineering objectives can be built into the optimiza-
tion by modeling the permanent-magnet deviation from
a dipole field, adding constraints for the demagnetization
upper bound in Eq. (6), calculating the errors induced by
the permeability of the permanent-magnet material, and
using stochastic optimization as outlined in Appendix C.
Soft rather than hard constraints on the dipole magnitudes
might allow for a significantly faster convex step in the
iterative relax-and-split algorithm, although we find empir-
ically that high-quality configurations can often be com-
puted without requiring that full convergence is achieved
during each convex solve.

The addressing of the remaining optimization questions
is an important task—beyond this barrier, permanent-
magnet stellarators would be ideal laboratory experiments
that can be constructed easily and inexpensively, while
providing vital small-scale stellarator insights for inform-
ing the design of full-scale stellarators that can have
construction costs amounting to billions of dollars.

All of the methodology and results of the present work
can be found in the open-source SIMSOPT code [5].

ACKNOWLEDGMENTS

A.A.K. would like to acknowledge important conver-
sations with Christopher Hansen, Aleksandr Aravkin, and
Steven Brunton. Caoxiang Zhu is thanked for help with
FAMUS. This work was supported by the U.S. Depart-
ment of Energy under Award No. DEFG0293ER54197

044006-13



ALAN A. KAPTANOGLU et al. PHYS. REV. APPLIED 18, 044006 (2022)

and through a grant from the Simons Foundation (560651,
M.L.). This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility
located at Lawrence Berkeley National Laboratory, oper-
ated under Contract No. DE-AC02-05CH11231.

APPENDIX A: LEAST-SQUARES FORM OF fB

Here, we derive how the fB term can be put into a least-
squares form, following Zhu et al. [14] but with some
minor changes. First, we define the geometric factor,

gi(φiφ , θiθ ) = μ0

4π

(
3ri · n̂
‖ri‖5

2
ri − n̂

‖ri‖3
2

) √

φiφ
θiθ ‖n‖2.

(A1)

Here, (φiφ , θiθ ) define a set of quadrature points on the
plasma surface in toroidal coordinates, (iφ , iθ ) index these
points, (
φiφ , 
θiθ ) denote the grid spacing, and n is
shorthand for the normal vector at these locations, niφ ,iθ .
The number of points in each direction are Nφ and Nθ .
Stack all of these factors together for an overall matrix
A ∈ R

NφNθ×3D:

A(φiφ , θiθ )

= [
g1 · · · gD

]

= [
gx

1 gy
1 gz

1 · · · gx
D gy

D gz
D

]

=

⎡

⎢⎣
gx

1(φ1, θ1) gy
1(φ1, θ1) gz

1(φ1, θ1) · · ·
...

...
...

gx
1(φNφ

, θNθ
) gy

1(φNφ
, θNθ

) gz
1(φNφ

, θNθ
) · · ·

⎤

⎥⎦ .

(A2)

This factor encodes all of the geometry, is independent of
the dipoles mi, and can be computed once before optimiza-
tion begins. To see why this is a useful definition, note that
if m = [mx

1, my
1, mz

1, mx
2, . . . , mz

D], we can write

fB =
∫ (

(BM + BP + BC) · n̂
)2 d2x,

=
∑

iφ

∑

iθ


φiφ
θiθ

(
BM · n̂ − Bn

)2 ‖n‖2, (A3)

where the normal component of the coil-plus-plasma mag-
netic fields (on the plasma surface) is denoted −Bn ∈
R

NφNθ here. Then convert the double sum to a single sum
with the relabeling i = iφ + Nφ(iθ − 1):

fB =
∑

iφ

∑

iθ

((
BM · n̂ − Bn

)√

φiφ
θiθ ‖n‖2

)2

=
∑

i

(
Aij mj − bi

)2 = ‖Am − b‖2
2. (A4)

Therefore, fB can be written as a least-squares term in
the m vector representing the optimization variables. We
can enforce field-period and stellarator symmetries into
these equations while using only the original m represent-
ing a half-period of the permanent-magnet manifold. The
coordinate system for the permanent-magnet manifold is
chosen to inherit the symmetries. For BM to exhibit field-
period symmetry, m is rotated so that the angle between m
and ri is preserved at the new point.

If both coordinate systems are also stellarator symmet-
ric, it follows that the new vector r′

i = [xi, −yi, −zi] is the
transformation of ri under the symmetry. If each mi is cho-
sen to be stellarator symmetric, then m′

i = [−mx, my , mz]
and this is sufficient for BM to be stellarator symmetric.

The transformation of A is the inverse of the transforma-
tion of m. For instance, if the new vector m′

i is the result of
flipping the mr component from a reflection RS via stellara-
tor symmetry, followed by a rotation Rfp by the appropriate
angle for field-period symmetry, then A should be rotated
by the negative angle and then the resulting vector should
be transformed by the stellarator symmetry. In total then,
the least-squares term Am that is actually used in the code
is

[
A(ri) + A(RSri)RT

S + A(Rfpri)RT
fp + · · ·

]
m, (A5)

which is now calculating the contributions of all of
the magnets (around the full torus) to a half-period of
the plasma surface, while only using the half-period
variables m.

APPENDIX B: THE l0 PROXIMAL OPERATOR

Proximal operators are useful tools for optimization
over nonsmooth and/or nonconvex terms that otherwise
have relatively simple structure. The proximal operator is
defined as

proxαN (m) ≡ arg min
y

[
1
2
‖m − y‖2

2 + αN (y)

]
. (B1)

The advantage of this formulation is that it can be ana-
lytically or rapidly numerically computed for a number of
common nonconvex functions. The proximal operator of
the l0 “norm” is well known as hard thresholding:

proxα‖(.)‖0
(m) = H√

2α(m1) × · · · × H√
2α(m3D), (B2)

H√
2α(mi) =

{
0, |mi| <

√
2α,

mi, |mi| ≥ √
2α.

(B3)

In practice, we actually hard threshold the normalized m
(note that the l0 norm is invariant to a global rescaling of
all the m components before optimization begins), since
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otherwise the hard thresholding will preferentially remove
small magnets, even if those magnets are at full strength
and very important to the solution. The maximum strength
of the permanent magnets is usually proportional in some
way to the geometry (for instance, directly proportional to
the cylindrical radius) and therefore an unnormalized hard
thresholding would tend to remove the geometrically small
magnets first.

APPENDIX C: STOCHASTIC OPTIMIZATION
WITH PERMANENT MAGNETS

It may not be immediately clear that the relax-and-split
algorithm can be extended for more advanced optimiza-
tion techniques such as stochastic optimization. Stochastic
optimization is a useful technique for generating config-
urations that are robust to random and systematic errors
in the coil shapes (traditional coil optimization) and the
permanent-magnet magnitudes and directions (permanent-
magnet optimization). In this appendix, we briefly illus-
trate that typical forms of stochastic optimization preserve
all the loss-term structure needed for relax-and-split. Con-
sider a vector of independent normally distributed random
variables ξ as in Wechsung et al. [56]. The goal is to
minimize the expectation E of the B · n̂ errors over the
distribution of perturbations ξ :

min
m

E(fB(m + ξ)) + λR(m) + αN (m). (C1)

Alternatively, one can optimize for the worst-case sce-
nario:

min
m

max
ξ

E(fB(m + ξ)) + λR(m) + αN (m). (C2)

The point of the regularization terms is to simplify the
manufacturing, so they are relevant before any perturba-
tions are introduced. For instance, if a dipole has zero
magnitude, a magnet will not be placed and therefore
there are no manufacturing errors to consider at this loca-
tion. The expectation value can be approximated using
the sample average approximation; drawing S independent
realizations of ξ and using

E(fB(m, ξ)) ≈ 1
S

S∑

s=1

fB(m + ξs) (C3)

to achieve O(S− 1
2 ) approximation error. The ξs are fixed,

so Eqs. (C1) and (C2) are optimizations using deterministic
sums of the original objectives. Sums of convex terms are
also convex and thus relax-and-split can be applied in this
setting.
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