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A numerical security proof technique is used to analyze the security of continuous-variable quantum
key distribution (CV-QKD) protocols with phase-shift keying (PSK) modulation against collective attacks
in the asymptotic limit. We argue that it is sufficient to consider protocols with a maximum of eight sig-
nal states and analyze different postselection strategies for protocols with four (QPSK) and eight (8PSK)
signal states for untrusted ideal and trusted nonideal detectors. We introduce a cross-shaped postselection
strategy, and show that both cross-shaped and radial and angular postselection clearly outperform a radial
postselection scheme (and no postselection) for QPSK protocols. For all strategies studied, we provide
analytical results for the operators defining the respective regions in phase space. We outline several use
cases of postselection, which can easily be introduced in the data processing of both new and existing
CV-QKD systems. Motivated by the high computational effort for error correction, we study the case
when a large fraction of the raw key is eliminated by postselection and observe that this can be achieved
while increasing the secure key rate. Postselection can also be used to partially compensate the disadvan-
tage of QPSK protocols over 8PSK protocols for high transmission distances, while being experimentally
less demanding. Finally, we highlight that postselection can be used to reduce the key rate gap between
scenarios with trusted and untrusted detectors while relying on less assumptions on Eve’s power.
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I. INTRODUCTION

Quantum key distribution (QKD) enables two remote
parties to expand a short symmetric preshared secret key
into a long secret key without any assumptions on the
computational power of a potential adversary. Perhaps the
most famous cryptographic protocol based on quantum
mechanics, BB84, was published by Bennett and Bras-
sard [1] in 1984 and is based on (discretely) polarized
photons. Discrete-variable QKD (DV-QKD) protocols like
BB84 rely on single-photon detectors that are rather expen-
sive components. In contrast, continuous-variable QKD
(CV-QKD) protocols are based on the field quadratures
of light that are measured by homodyne or heterodyne
detection using much cheaper photodiodes. Continuous-
variable QKD goes back to Ralph in 1999 [2] and is
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based on discrete modulation. Postselection (i.e., selec-
tion of certain signals for further processing based on
measurement results) can increase the secure key rate for
CV-QKD protocols by reducing the information avail-
able to an adversary [3]. Postselection areas for multiletter
phase-shift keying (PSK) protocols in linear channels are
discussed in [4]. References [5–7] give comprehensive
reviews of the entire field of quantum key distribution,
implementations, and security proofs.

The process of finding a lower bound on the achiev-
able secure key rate is called security proof. Analytical
attempts to prove the security of a certain QKD protocol
are usually very technical, introduce looseness in the lower
bounds and are often difficult to generalize. In contrast,
numerical attempts are typically more flexible concerning
changes in the protocol structure, but have only finite pre-
cision, and it cannot be expected that the optimization tasks
involved achieve the optimum with arbitrary accuracy. In
particular, for CV protocols, we have to approximate phys-
ical quantities living in infinite-dimensional Hilbert spaces
by finite-dimensional representatives to make the key-
rate-finding problem computationally feasible. Finally, as
the most interesting discrete modulated (DM) CV-QKD
protocols involve four or more states, the numerical
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tasks are high-dimensional, hence computation time is
crucial.

Several security proofs for DM CV-QKD protocols in
the asymptotic limit are known. Analytical approaches are
restricted to certain scenarios such as linear quantum chan-
nels [4,8], or a fixed number of signal states [9,10]. A
general attempt [11] gives an analytical lower bound on the
secure key rate of DM CV-QKD protocols with arbitrary
modulation, but is loose for a low number of signal states
and does not consider postselection. In contrast, numerical
approaches [12–15] are more flexible, but suffer from high
computational complexity and assume that it is sufficient
to solve the key rate finding problem occurring by truncat-
ing the infinite Fock space. This so-called photon-number
cutoff assumption was removed in [16].

While these security proofs are valid in the limit of
infinitely long keys, establishing general security in the
finite-size regime is an open problem. Recently, [17]
proved the finite-size security of a QKD protocol with dis-
crete encoding under the restriction of collective Gaussian
attacks, while [18] introduced a general security proof of a
special two-state DM CV-QKD protocol.

A. Contribution

In the present work we adapt a numerical framework to
calculate secure key rates of DM CV-QKD protocols under
the assumption of collective attacks in the asymptotic
limit [12,13] and use it to analyze and optimize different
phase-shift keying protocols. We consider both untrusted
and trusted detector scenarios. Furthermore, we reduce the
computation time and increase the accuracy of the calcu-
lated key rates by replacing numerical approximations for
certain operators with analytical expressions.

We point out why it is not useful to consider more than
eight PSK signal states for phase-shift keying modulation
protocols using state-of-the-art postselection strategies.
Backed by considerations about the bit-error probability
for heterodyne measurement outcomes, we introduce a
simple postselection strategy for QPSK protocols (cross-
shaped postselection) and show that it clearly outperforms
state-of-the-art radial [14] postselection in terms of the
achievable secure key rate and performs comparably with
radial and angular postselection. We show how postselec-
tion can be used to reduce the amount of raw key (i.e., data
that must be error-corrected) significantly, tackling a well-
known bottleneck in practical implementations, at the cost
of only a much smaller decrease in the amount of secure
key. We highlight how a smart choice of the postselection
strategy can also reduce the gap in the key rate between
QPSK and 8PSK modulation.

B. Organization

The remainder of this work is structured as follows.
In Sec. II we give a brief summary of the numerical

security proof approach we use, including the changes
necessary to consider trusted detectors. In Sec. III we intro-
duce a general phase-shift keying protocol and motivate
our particular choices for the number of signal states and
the postselection strategies. This is followed by Sec. IV
where we comment on details of the implementation. In
the main part of the paper, Sec. V, we present and dis-
cuss our results for both untrusted and trusted detectors.
We show that postselection is an important improvement to
discretely modulated CV-QKD. Section VI concludes the
paper. Detailed explanations, calculations and additional
examinations are provided in the appendices.

C. Choice of Units

Throughout the paper, we use natural units, that is, the
quadrature operators are defined by q̂ := 1√

2
(â† + â), p̂ :=

i√
2
(â† − â), where â and â† are the bosonic ladder oper-

ators and the commutation relation between the q- and
p-quadrature operators has the form [q̂, p̂] = i.

II. THE SECURITY PROOF APPROACH

First, we give a brief overview of the numerical security
proof approach against collective attacks in the asymp-
totic limit, following [13,14]. Interested readers will find
a more detailed discussion in Appendix C. The physical
intuition of the key rate finding problem is the following:
we search for the optimal attack, that is, the density matrix
of Alice’s and Bob’s joint quantum state that (1) mini-
mizes the achievable secure key rate while (2) matching
expected values of experimentally accessible observables
(e.g., quadrature amplitudes, photon numbers). The well-
known Devetak-Winter formula [19] gives the secret key
rate in the asymptotic limit. In the case of reverse reconcil-
iation, it can be reformulated [13] in terms of the quantum
relative entropy D(ρ||σ) := Tr

[
ρ
(
log2(ρ)− log2(σ )

)]
, a

quantity measuring the distinguishability of two states ρ
and σ , the sifting probability ppass, and the amount of infor-
mation leakage per signal in the error-correction phase δEC
as follows:

R∞ = min
ρAB∈S

D (G(ρAB)||Z(G(ρAB)))− ppassδEC. (1)

Here, G is a completely positive, trace- nonincreasing map
describing classical postprocessing steps, and Z is a pinch-
ing quantum channel required to “read out” the results of
the key map. We note that ppass is contained implicitly in
the first term of the target function. A more detailed expla-
nation is given in [14]. The set S is the feasible set of the
minimization, which is a subset of the set of density oper-
ators D(HAB), where HAB = HA ⊗ HB, and is defined by
a set of linear constraints,

S := {ρAB ∈ D(HAB)|∀i ∈ I : Tr [�iρAB] = γi} , (2)
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with Hermitian operators �i, real numbers γi and some
finite set I . In what follows, we denote the objective
function of this minimization by f .

Using Lindblad’s theorem [20] and the linearity of G
and Z , it can be shown that we face a convex minimization
problem, with linear and semidefinite constraints, hence a
semidefinite program (SDP). The present problem requires
optimization over a subset of the set of all density oper-
ators, which is an infinite-dimensional vector space. In
order to make the problem computationally feasible, we
approximate it by a finite-dimensional vector space. While
Bob’s infinite-dimensional state space is spanned by the
basis of Fock states {|n〉 : n ∈ N}, following the photon-
number cutoff assumption in [14], we approximate the
infinite-dimensional state space by HNc

B := span{|n〉 : 0 ≤
n ≤ Nc}, where Nc ∈ N is the cutoff number. In contrast
to most minimization problems, for the present problem
it is not sufficient to come close to the minimum as this
would give us only an upper bound on the secure key rate.
Therefore, the approach in [13] tackles the key rate finding
problem in a two-step process. First, a numerical solving
algorithm is applied to find an eavesdropping attack that is
close to optimal. Then, in a second step, this upper bound
of the secure key rate is converted into a lower bound,
taking numerical imprecision into account.

To start the key generation process, Alice prepares |ψx〉
drawn from a set of NSt states with probability px and
sends them to Bob, using the quantum channel. Thanks
to the source-replacement scheme [21,22], equivalently
the corresponding formulation in the entanglement-based
scheme can be considered, where Alice prepares the bipar-
tite state |�〉AA′ = ∑

x
√

px|x〉A|ψx〉A′ . A denotes the reg-
ister that is kept by Alice and the state labeled with A′
is sent to Bob. The quantum channel is modeled as a
completely positive trace- preserving map EA′→B. Hence,
the bipartite state shared by Alice and Bob reads ρAB =
(1A ⊗ EA′→B) (|�〉〈�|AA′).

Bob performs heterodyne measurements, hence deter-
mines the first and second moments of q̂ and p̂ . These
observations can be used to calculate the mean photon
number n̂ = 1

2

(
q̂2 + p̂2 − 1

)
and d̂ = q̂2 − p̂2 to constrain

the density matrix ρAB. Furthermore, we know that Eve has
no access to Alice’s system and, hence, cannot modify the
states held by Alice. That can be expressed mathemati-
cally as TrB [ρAB] = ∑NSt−1

x,y=0
√pxpy〈ψy |ψx〉|x〉〈y|A, which

is a matrix-valued constraint, where px is the probability
that the state |�x〉 is prepared, for x ∈ {0, . . . , NSt − 1}.
Therefore, we have the following SDP: [14],

minimize D(G(ρAB)||G(Z(ρAB)))

subject to

Tr
[
ρAB

(|x〉〈x|A ⊗ q̂
)] = px〈q̂〉x,

Tr
[
ρAB

(|x〉〈x|A ⊗ p̂
)] = px〈p̂〉x,

Tr
[
ρAB

(|x〉〈x|A ⊗ n̂
)] = px〈n̂〉x,

Tr
[
ρAB

(
|x〉〈x|A ⊗ d̂

)]
= px〈d̂〉x,

TrB [ρAB] =
NSt−1∑

i,j =0

√
pipj 〈ψj |ψi〉 |i〉〈j |A,

ρAB ≥ 0, (3)

where x ∈ {0, . . . , NSt − 1}.

A. Trusted, nonideal detector approach

Up to now, we have assumed that Bob performs mea-
surements with an ideal, noiseless, heterodyne detector
having unit detection efficiency. However, detectors used
in QKD devices are not ideal, but are noisy and have
an efficiency smaller than unity. These deviations from
the ideal model can be included in the security analysis
differently.

Firstly, in the most conservative scenario, we assume
that Bob always uses an ideal detector and all nonideal
detector properties occur on the transmission line (effec-
tively increasing the transmission loss and excess noise)
[23]. This is easily done in theory as it does not need
any change to the security proof. However, it leads to
much lower key rates and maximal achievable distances
compared with the next scenario.

Secondly, as the detector is located in Bob’s lab, it may
less conservatively be assumed that Eve cannot improve
the detector’s efficiency and cannot reduce or control its
electronic noise. In [24], the numerical security proof
method is extended to this second, so-called “trusted,”
detector scenario. We give a brief summary of the adap-
tations introduced there: A nonideal heterodyne detector is
modeled by two homodyne detectors and a beam splitter,
where each of the homodyne detectors has nonunit detector
efficiency ηq, ηp and suffers from electronic noise νq, νp .
Similar to the excess noise, the electronic noise is mea-
sured in shot noise units. The quantum optical model by
Lodewyck [25] includes these quantities in the following
way (see Fig. 1). After the input signal is split into two
parts at a 50 : 50 beam splitter (where it is mixed with the
vacuum state) each part of the signal passes another beam
splitter with transmissions ηq and ηp (hence, reflectances
of 1 − ηq and 1 − ηp ), respectively. There, we mix each
part of the split signal with a thermal state with mean
photon number nq and np . If we choose the mean pho-
ton numbers to be ni = νi/2(1 − ηi), i ∈ {q, p}, we relate
each thermal state to the observed amount of electronic
noise introduced by the corresponding detector. Finally,
two ideal homodyne detectors measure the signals.
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FIG. 1. Sketch of the realistic (nonideal) QKD experiment, where on Bob’s side we depict the physical model of an imperfect,
trusted, noisy heterodyne detector (for an ideal detector, remove the blue and light-red beam splitter). We denote the local oscillator by
LO and the random number generator in Alice’s lab by RNG.

III. PHASE-SHIFT KEYING PROTOCOLS

We consider prepare-and-measure (P&M) phase-shift
keying protocols, which are generalizations of “Protocol 2”
in [14] which is a QPSK protocol with radial (and angular)
postselection.

Therefore, we consider two distant parties, the sender
Alice and the receiver Bob, who want to establish a sym-
metric key. They are connected by an authenticated classi-
cal channel and a quantum channel. Eve, an adversary, can
listen to the classical communication and manipulate and
store signals that are exchanged via the quantum channel.
In what follows, we denote the number of signal states by
NSt, and the raw key block size by N ∈ N.

(1) Alice prepares for every n ≤ N one out of NSt coher-
ent states |�n〉 = ∣

∣|α|ei[(2k+1)π/NSt]
〉

corresponding to the
symbol xn = k, where |α| > 0 (arbitrary but fixed) is the
coherent state amplitude and k ∈ {0, . . . , NSt − 1}, accord-
ing to some probability distribution (see Fig. 2). In the
present work, this is chosen to be the uniform distribution.
This phase is called state preparation. After preparing one
of these states, Alice sends it to Bob using the quantum
channel.

(2) Once the state is transmitted to Bob, he performs
a heterodyne measurement and obtains some complex
number yn. This is called the measurement phase.

(3) Alice and Bob agree via the classical channel to
choose some random subset ITest ⊂ {n ∈ N : n ≤ N } and
reveal the corresponding sent symbols xl and measurement
results yl for l ∈ ITest to perform parameter estimation, that

is, they determine the expected values of the first and sec-
ond moments in Eq. (3). The remaining rounds IKey :=
{n ∈ N : n ≤ N } \ Itest will be used for key generation. For
simplicity, assume that IKey contains the first m := |IKey|
rounds that can be used for key generation (this can be
assumed without loss of generality, as we always find some
bijective map that reorders the set). After this step, Alice
holds a key string X := (x1, . . . , xm).

(4) In the simplest case, Bob applies a key map to obtain
his key string Z = (zj )j ∈IKey . He maps each of his mea-

surement outcomes yl for rounds l ∈ IKey to an element in
a finite set {0, . . . , NSt − 1}. .

(4*) In a more sophisticated version of the protocol,
Bob is allowed to additionally perform postselection, that
is, he can discard certain rounds according to some rule.
He applies a modified key map to obtain his key string
Z = (zj )j ∈IKey . He adds an additional symbol ⊥ to his
finite set {0, . . . , NSt − 1, ⊥}, and maps discarded rounds
to ⊥ while kept rounds are treated as described in (4).

(5) After having sent and transmitted a block of sym-
bols, Alice and Bob perform classical error correction.
For example, as considered in the present paper, Bob may
transmit information about his key string and Alice cor-
rects her key string according to his information, which
is called reverse reconciliation (since the information flow
is in the opposite direction to the quantum signals sent).
The error correction routine used cannot be expected to
work perfectly, but with an efficiency of 0 ≤ β ≤ 1. After
finishing the error correction, Alice and Bob use almost
universal hash functions to upper-bound the probability
that the error-correction phase has failed. They omit the
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(a)

(b)

FIG. 2. Illustration of the prepared coherent states in phase
space. The yellow points represent the prepared coherent states
with coherent state amplitude |α|. The numbers correspond to
the bit values associated with the symbols, which are not the
binary representation of the numbers used to label the regions
in the phase space. In (a) the most significant bit (MSB) is 0
if the symbol is in the upper half-plane and 1 if it is located in
the lower half-plane. Similarly, the least significant bit (LSB) is
0 for symbols lying in the right half-plane and 1 for symbols
in the left half-plane. Thus, the error probabilities for bit-flips
in each of the bits are independent, and the channels for the
MSB and the LSB can be modeled as binary symmetric chan-
nels (BSCs). Note that in (b) neighboring symbols differ only in
one bit.

key if the hash values do not coincide and restart the key
generation process.

(6) Finally, Alice and Bob apply privacy amplifica-
tion algorithms to reduce Eve’s knowledge about their
common information by omitting parts of their shared
key, for example, by using seeded randomness extractor
algorithms.

A. Practical choices for the number of signal states

Recent works on protocols with phase-shift keying mod-
ulation [10,14,15,26,27] have focused on protocols with
two, three, or four signal states. Since there is no obvious
upper limit on the number of signal states, we general-
ized an analytical security proof [8] for loss-only channels
to an arbitrary number of signal states (for details, see
Appendix A) to investigate the effect of varying NSt.

For the key map in step (4) of the protocol, we divide the
phase space into NSt equally sized wedges and associate
each wedge with an element in the set {0, . . . , NSt − 1}.

We examined the effect of different numbers of signal
states and depict our findings in Fig. 3. There, we plot the
secure key rate as function of the distance for 4, 8, 16,
and 32 signal states. For each distance, the coherent state
amplitude α is optimized. Although our approach is not
restricted to powers of 2, similarly to classical commu-
nication, only 2NSt states can be mapped directly to NSt
bits; for other values the generation of binary keys is sig-
nificantly more complicated. Furthermore, it turned out
to be sufficient and practical to find the maximal num-
ber of signal states NSt that still increase the secure key
rate noticeable. Our results show that using eight PSK
signal states increases the secure key rate considerably
compared with the QPSK protocol for loss-only channels,
while increasing the number of signal states further has
no significant impact on the secure key rate. Additionally,
for comparison, we added the secure key rate for proto-
cols with Gaussian modulation [28–31]. The gap in the
secure key rate between PSK and Gaussian modulation
can be explained by the additional amplitude modulation
for Gaussian protocols. Hence, higher key rates than with
discretely modulated CV protocols can be obtained with

FIG. 3. Secure key rates for phase-shift keying protocols with
4, 8, 16, and 32 signal states in loss-only channels. For compar-
ison, the achievable secure key rate for Gaussian modulation is
shown.
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a combination of phase and amplitude modulation, for
example, by adding signals on a second circle with a radius
greater than |α|.

B. Phase shift keying with four or eight signal states
and postselection

Since doubling the number of signal states quadruples
the dimension of the problem (see [32] for a more detailed
discussion), backed by our finding in the previous subsec-
tion, we focus on protocols with four and eight signal states
(arranged on one circle with arbitrary but fixed radius
|α|) with our numerical method, as we do not expect a
significant improvement of the secure key rate for noisy
channels as well. Constellations with additional amplitude
modulation are left for future work.

In what follows, we motivate and discuss postselection
for QPSK and 8PSK protocols and describe the key maps
of the resulting protocols.

1. Motivation for the postselection strategies

It is well known that the bit-error rate (BER) is a major
source for key rate reduction in DM CV-QKD at higher
distances. In Fig. 4, we plot the contour lines of the bit-
error probability for a four-state protocol without noise.
Since adding noise increases the probability of bit errors
further, in reality, we expect even higher BERs near the
axes. Based on this observation, it seems reasonable to dis-
card certain measurement results before proceeding with
the key-generation process on the remaining ones. This is
known as postselection. Optimally, a postselection strategy
which omits signals in regions bounded by lines similar
to the contour lines in Fig. 4 would be chosen. It would
be subject to optimization to determine the exact parame-
ters of the boundary. Unfortunately, for computational and

FIG. 4. Contour plot of the expected bit-error rate for het-
erodyne measurement without noise for the QPSK protocol for
coherent state amplitude |α| = 0.8.

numerical reasons, it is not possible to calculate secure key
rates for postselection areas with this shape directly. There-
fore, inspired by the bit-error probability contour plot, we
consider simplified postselection schemes which remove
measurement results close to the axes. Technically, this is
realized by adding an additional symbol (⊥) to the key
map which is assigned whenever a signal lies within the
discarded area. A more detailed explanation of the BER,
its calculation and a discussion of numerical and compu-
tational reasons for working with simplified postselection
strategies can be found in Appendix B.

2. Description of protocols with postselection

For protocols with postselection, we proceed with step
(4*) of the protocol description above. Based on our con-
siderations in the previous subsections, in the rest of the
paper we focus on protocols with four or eight signal states
(see Fig. 2 for a sketch in phase space). As outlined above,
choosing postselection regions bounded exactly by a con-
tour line of the bit-error probability is not feasible. Instead,
we consider postselection strategies that discard signals
close to the (symmetry) axes of the protocol. We consider
the following three different postselection strategies:

(a) QPSK radial and angular postselection (raPS).
Fix some 0 ≤ �r ∈ R and 0 ≤ �a ∈ R and determine
Bob’s key string according to Fig. 5(a). Note that radial
postselection (rPS) is the special case where we set
�a = 0.

(b) QPSK cross-shaped postselection (cPS). Fix some
0 ≤ �c ∈ R and determine Bob’s key string according to
Fig. 5(b).

(c) 8PSK radial postselection (8rPS): Fix some 0 ≤
�r ∈ R. Bob obtains his key string as shown in Fig. 5(c).

The corresponding areas associated with the logical sym-
bols are illustrated in Fig. 5. We note that initially we also
examined angular postselection for 8PSK, but we did not
observe an increase in the secure key rate. A more for-
mal description of the postselection areas can be found
in Appendix D 1. Setting �r = �a = 0 in (a) or �c = 0
in (b) results in the same protocol, QPSK without post-
selection (noPS). Likewise, setting in (c) �r = 0 results
in the 8PSK without postselection (8noPS) protocol. Fur-
thermore, we note that, in contrast to [14], we rotated the
signal states for QPSK protocols by π/4 in the p , q plane
such that they are not located on the axes but on the diag-
onals. This is in accordance with the constellation of the
signal states in classical QPSK schemes and makes it eas-
ier to consider cross-shaped postselection. As outlined in
the protocol description, postselection can be introduced
by modifying the key map. Mathematically, the key map
is included in the postprocessing map G, which is part of
the objective function of the present optimization problem
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(a)

(b)

(c)

FIG. 5. Key maps for QPSK protocols with (a) radial and
angular postselection, (b) cross-shaped postselection, and (c)
radial postselection for the 8PSK protocol. Bob’s measurement
outcomes γ ∈ C that are in one of the blue-shaded areas are
dropped (i.e., are assigned the symbol ⊥). The remaining out-
comes are assigned the bit values that are associated with the
corresponding areas. �r is the radial and �a is the angular
postselection parameter, and �c denotes the parameter for the
cross-shaped postselection strategy.

[see Eq. (3)]. In the upcoming section, we give analyti-
cal expressions for the so-called region operators, which
represent the key map within the frame of the present secu-
rity proof method. For details about how exactly the region
operators are used to calculate secure key rates, we refer to
Appendix D.

C. Region operators for the untrusted detector

We start with the untrusted detector scenario for QPSK
protocols. As Bob performs heterodyne measurement
of the incident quantum states, the positive operator-
valued measure (POVM) of an ideal, untrusted homodyne
detector has the form {Eγ = (1/π)|γ 〉〈γ | : γ ∈ C} [33].
Then the measurement operators, called region operators,
corresponding to the symbol z = k, k ∈ {0, 1, 2, 3}, are
defined by

Rra
z :=

∫

Ara
z

Eγ d2γ = 1
π

∫

Ara
z

|γ 〉〈γ |d2γ , (4)

Rc
z :=

∫

Ac
z

Eγ d2γ = 1
π

∫

Ac
z

|γ 〉〈γ |d2γ . (5)

As we later approximate the infinite-dimensional problem
by a problem living in a finite-dimensional Fock space, we
express the region operators in the number basis,

Rra
z =

∞∑

n=0

∞∑

m=0

〈n|Rra
z |m〉|n〉〈m|, (6)

Rc
z =

∞∑

n=0

∞∑

m=0

〈n|Rc
z |m〉|n〉〈m|. (7)

Then, once it comes to numerical treatment, we may
replace the upper limit in the sums by the cutoff num-
ber Nc (see Sec. II). It remains to find expressions for
the matrix elements 〈n|Rra

z |m〉 in Eq. (6) and 〈n|Rc
z |m〉 in

Eq. (7). We show in Appendix E that they can be calculated
analytically and have the form

〈n|Rra
z |m〉

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�
(

n+1,�2
r

)

π(n!)

(
π
4 −�a

)
, n = m,

�
(

[(m+n)/2]+1,�2
r

)

π(m−n)
√

n!
√

m!
e−i(m−n)[z+(1/2)](π/2)

× sin
[(
π
4 −�a

)
(m − n)

]
, n �= m,

(8)
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〈n|Rc
z |m〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
4π(n!)

∑n
j =0

(
n
j

)
�
(
j + 1

2 ,�2
c

)
�
(
n − j + 1

2 ,�2
c

)
, n = m,

1
4π

√
n!

√
m!

∑n
j =0

∑m
k=0

(
n
j

)(
m
k

)
�
(

j +k+1
2 ,�2

c

)
�
(

n+m−j −k+1
2 ,�2

c

)
D(z)

j ,k,m,n, n �= m,
(9)

where

D(z)
j ,k,m,n = in−m+k−j ·

⎧
⎪⎪⎨

⎪⎪⎩

1, z = 0,
(−1)k−j , z = 1,
(−1)n−m, z = 2,
(−1)n−m+k−j , z = 3.

(10)

By a similar calculation with adapted angular integration, we obtain for the present 8PSK protocol

〈n|R8ra
z |m〉 =

⎧
⎪⎨

⎪⎩

�
(

n+1,�2
r

)

π(n!)

(
π
8 −�a

)
, n = m,

�
(

[(m+n)/2]+1,�2
r

)

π(m−n)
√

n!
√

m!
e−i(m−n)z(π/4) sin

[(
π
8 −�a

)
(m − n)

]
, n �= m,

(11)

where now z ∈ {0, . . . , 7}.

D. Region operators for the trusted detector

In this section we give analytical expressions for the region operators in the trusted detector scenario. Since we mainly
discuss only trusted detectors for QPSK protocols, we derive the operators only for protocols with four signal states.
However, the radial and angular case can be generalized easily to NSt states.

Similarly, for Gy , the POVM corresponding to the trusted detector [see Eq. (D7)], we need to express the region
operators

Rra,tr
z :=

∫

Ara
z

Gγ d2γ , (12)

Rc,tr
z :=

∫

Ac
z

Gγ d2γ , (13)

for the trusted noise scenario in the number basis,

Rra,tr
z =

∞∑

n=0

∞∑

m=0

〈n|Rra,tr
z |m〉|n〉〈m|, (14)

Rc,tr
z =

∞∑

n=0

∞∑

m=0

〈n|Rc,tr
z |m〉|n〉〈m|. (15)

We show in Appendix F that the coefficients for the trusted noise scenario have the form

〈n|Rra,tr
z |m〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn,n
(
π
4 −�a

)∑n
j =0

(
n
n − j

)
�(j +1,a�2

r )

aj +1bj j !
, n = m,

Cn,m
(m−n)a(m−n)/2 e−i(m−n)[z+(1/2)](π/2) sin

[
(m − n)

(
π
4 −�a

)]

×∑n
j =0

(
m
n − j

)
�
(

j +1+[(m−n)/2],a�2
r

)

aj +1bj j !
, n < m,

〈m|Rra,tr
z |n〉, n > m,

(16)
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〈n|Rc,tr
z |m〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn,n
∑n

j =0

(
n
n − j

)
1

aj +1bj j !

∑j
k=0

(
j
k

)
�
(
k + 1

2 , a�2
c

)
�
(
j − k + 1

2 , a�2
c

)
, n = m,

Cn,m
4a(m−n)/2

∑n
j =0

(
m
n − j

)
1

aj +1bj j !

∑m−n
k=0

(
m − n
k

)
D(z)

k,m,n

×∑j
l=0

(
j
l

)
�
(
l + k+1

2 , a�2
c

)
�
(
j − l + m−n−k+1

2 , a�2
c

)
, n < m,

〈m|Rc,tr
z |n〉, n > m,

(17)

where Cn,m := 1/{πηd[(m − n)/2] + 1}√n!/m!nn
d/

(1 + nd)
m+1, a := 1/ηd(1 + nd), b := ηdnd(1 + nd), and

D(z)
k,m,n = im−n−k ·

⎧
⎪⎪⎨

⎪⎪⎩

(−1)m−n−k, z = 0,
(−1)m−n, z = 1,
(−1)k, z = 2,
1, z = 3.

(18)

We note that [24] derives an expression for nonrotated
signal states (i.e., signal states lying on the axis) for the
case with only radial postselection, relying on Taylor series
expansion. In contrast, our result for the radial and angu-
lar case is more general, as it additionally includes angular
postselection. Furthermore, we give a direct expression
that does not require Taylor series coefficients. Again, both
results have been validated with numerical solutions of the
relevant integrals with MATLABTM, version R2020a.

Furthermore, for the sake of completeness, we give ana-
lytical expressions for the Fock-basis representation of
the first- and second-moment observables F̂Q, F̂P, ŜQ, ŜP in
Appendix F 3.

Not relying on numerical integration is not only sig-
nificantly faster but also more accurate and eliminates
integration errors, which have not been considered in the
security analysis so far.

The main advantage of cross-shaped postselection over
radial and angular postselection is its simplicity since it
can be described by merely one parameter (�c) while
the radial and angular strategy requires two parameters
(�r,�a). Therefore, the parameter space for optimizations
for radial and angular postselection is twice as large as
the parameter space for cross-shaped postselection. Fur-
thermore, depending on just one parameter makes it easier
to grasp the influence of postselection on the raw key (see
Sec. V B 2).

IV. DETAILS AND OPTIMIZATION OF THE
IMPLEMENTATION

In this section we comment briefly on the details and
parameters of our implementation. The numerical method
used is explained in Sec. II (and a more detailed expla-
nation can be found in Appendix C). In Appendix D we

derive analytical expressions for operators used to model
the problem. We note that the usage of the analytical
expressions instead of numerical solutions of the inte-
grals is highly recommended, as (1) the time saving even
for small systems is formidable, (2) the numerical pre-
cision is higher, and (3) the influence of errors due to
numerical integration on the key rate has not yet been con-
sidered, representing a gap between the security proof and
its numerical implementation. The coding is carried out in
MATLABTM, version R2020a, and we used CVX [34,35] to
model the linear SDPs that appear in steps 1 and 2 of the
method and employed the MOSEK solver (Version 9.1.9)
[36] as well as SDPT3 (Version 4.0) [37,38] to conduct the
SDP optimization tasks. It turned out that the line search at
the end of every (modified) Frank-Wolfe step,

minimizet∈[0,1] f (ρi + t�ρ),

can be solved efficiently by bisection.
We found an initial value required to start the Frank-

Wolfe algorithm in two different ways. The first method
utilizes the SDP solver, where we formulate the problem
exactly as in Eq. (3) but replace the target function by
f (ρ) = 1. Then the SDP solver returns a density matrix
that satisfies all constraints, hence lying in the feasible
set S . The second method uses a model for a two-mode
Gaussian channel (see [39]) with excess noise ξ and trans-
mittance η to calculate a density matrix on Bob’s side,
given Alice’s density matrix. The first method is faster,
in particular for systems with cutoff numbers Nc = 10 and
larger. On the other hand, the second method is numer-
ically more stable and yields density matrices with only
positive eigenvalues, even for very “exotic” parameter
regimes (e.g., very low ξ , very high L), where solver
imprecisions cause slightly negative eigenvalues for the
first method.

Unless mentioned otherwise, we used the cutoff num-
ber Nc = 12 for QPSK protocols and Nc = 14 for 8PSK
protocols, which turned out to be an ideal compromise
between accuracy and computation speed for most of the
reasonable parameter inputs. A more detailed discussion
of that choice can be found in Appendix G. Therefore, all
infinite-dimensional operators and quantities are replaced
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by their finite-dimensional representations in Fock spaces
of size Nc. For example, the upper limit of the sum appear-
ing in the Fock representation of the region operators
is replaced by Nc. The maximal number of Frank-Wolfe
steps for QPSK protocols is chosen between NFW = 30
and NFW = 150, and for 8PSK protocols between NFW =
30 and NFW = 200, depending on the system parameters
applied. In general, NFW is chosen as small as possible
under the condition that the bound obtained for the key rate
does not improve significantly for higher values of NFW.
We used εFW = 10−7 for the threshold of the Frank-Wolfe
algorithm and ε̃ = 10−11 for the perturbation.

In the present work, we performed all calculations with
the following model for the transmittance, η = 10−0.02L.
That is a transmittance of −0.2 dB or about 95.5% per
kilometer, which is realistic for practical implementations.
Recall that both the excess noise ξ and the electronic
noise νel are measured in shot noise units. Unless men-
tioned otherwise, we work with a reconciliation efficiency
of β = 0.95.

Secure key rates in the present paper are obtained by
optimizing over |α| and �r, �c or �r, and �a, respec-
tively (depending on postselection strategy). In general, |α|
is varied in steps of 0.05 in the interval |α| ∈ [0.4, 1.2] for
QPSK and in the interval |α| ∈ [0.7, 2.0] for 8PSK pro-
tocols. For given transmission distance, the interval can
be narrowed down significantly (see discussion in Sec.
V A). The postselection parameters are varied in steps of
0.025 in the intervals �c ∈ [0, 0.45], �r ∈ [0, 0.70], and
�a ∈ [0, 0.35], unless mentioned otherwise.

In Appendix A, we validate our implementation by com-
paring it with analytical results for loss-only channels. We
observe that steps 1 and 2 (hence, the upper and lower
bounds obtained on the secure key rate) are separated only
by negligible gaps. Therefore, in the rest of the work we
omit the curves for step 1 and plot only step 2, which is the
relevant (lower) bound, for the sake of clarity.

V. RESULTS

Recall that throughout the paper we work with a rec-
onciliation efficiency of β = 0.95, unless mentioned oth-
erwise, and measure the excess noise ξ in shot noise
units.

A. Optimal coherent state amplitude

Before we investigate the influence of postselection, we
enquire about the influence of |α| on the secure key rate,
as the optimal choice of the postselection parameter might
heavily depend on the chosen |α|. In Fig. 6 we investi-
gate the optimal choice of the coherent state amplitude |α|
for both QPSK and 8PSK protocols and an excess noise
level of ξ = 0.01 and compare the results with the analyt-
ical prediction for ξ = 0 (see Appendix A for details). We

FIG. 6. Optimal choice of the coherent state amplitude |α| for
ξ > 0 obtained by coarse-grained search compared with pre-
dicted optimal choice of loss-only channel for QPSK and 8PSK
protocol. As our results for ξ = 0.01 and ξ > 0.01 do not differ
significantly, we plot only the data points for ξ = 0.01 to improve
clarity. In what follows, we use these optimal values for |α|.

note that, according to our observations, the optimal coher-
ent state amplitudes for ξ = 0.02 do not differ significantly
from those for ξ = 0.01. We examined transmission dis-
tances up to 180 km for QPSK and up to 250 km for 8PSK.
Since in the latter case both the values of the analytical
prediction and the results of our numerical investigation
remain constant for transmission distances higher than 80
km and 160 km respectively, we omit the part of the plot
exceeding 180 km. As expected, the optimal coherent state
amplitude for noisy channels is slightly lower than that for
a loss-only channel. We observe that the optimal choice
for the coherent state amplitude decreases with increasing
transmission distance, hence with increasing losses. This
is in accordance with our expectations, as for high channel
losses, Eve can theoretically receive a much stronger sig-
nal than Bob (Eve is assumed to extract Alice’s signal right
after leaving her lab). Hence, the amplitude has to be small
for high transmission distances to keep Eve’s advantage as
small as possible.

The QPSK values for 20, 50, 80, and 100 km match
the values reported by [14] for a similar protocol with
rotated signal states. For example, they report optimal val-
ues of about 0.78 for 20 km and 0.66 for 80 km while
we obtained 0.80 and 0.65, respectively. Within the frame
of the accuracy of our coarse-grained search with steps of
�|α| = 0.05, this coincides with our results. Furthermore,
we observe that there are only minor differences between
the optimal values found for different values of excess
noise. Therefore, we can later limit the search for

∣∣αopt
∣∣

to a restricted interval around the optimal coherent state
amplitude, obtained from the noiseless case.
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B. Postselection strategies in the untrusted detector
scenario

In this section we present numerical results and findings
for the so-called untrusted detector scenario in which Alice
and Bob attribute any detector imperfection to the channel
which is under Eve’s control. Without loss of generality we
assume in this section ideal detectors with efficiency ηd =
1 and zero electronic noise. However, untrusted, nonideal
detectors can easily be modeled by multiplying the channel
transmission by the detector efficiency ηd, and adding the
detector noise to the channel noise. Therefore, for example,
curves in key rate versus transmission distance plots will
be shifted to the left for nonideal detectors compared with
ideal detectors.

1. Secure key rates for QPSK and 8PSK

In this section, we examine optimal postselection strate-
gies for QPSK and 8PSK protocols and compare their
performance for transmission distances up to 200 km. Our
numerical examinations showed that the optimal coherent
state amplitudes obtained without performing postselec-
tion (see Sec. V A) remain optimal or very close to optimal
with nonzero postselection parameters. Therefore, all data
points in this section represent key rates optimized over the
coherent state amplitude α and the postselection parame-
ter(s) corresponding to the chosen postselection strategy.
The optimizations over the postselection parameters are
carried out as fine-grained searches in steps of 0.025.

We first examine four-state protocols. In Fig. 7 we plot
the calculated (lower bounds on the) secure key rate for
three different postselection strategies (rPS, cPS, raPS).
Recall that radial postselection (rPS) is the special case
of radial and angular postselection (raPS) where �a = 0.
Therefore, the key rates obtained by radial postselection
are always lower than or equal to the key rates obtained
by radial and angular postselection. However, since radial
postselection is the best-known postselection strategy for
QPSK protocols, we plot the curves for radial postselec-
tion separately to enable better comparison and to highlight
the outperformance of radial and angular postselection and
cross-shaped postselection over radial postselection. On
the secondary (right) y axis, we plot the relative improve-
ments of the examined postselection strategies compared
with the secure key rates obtained without performing
postselection (noPS). Note that the (black) noPS curve
is equivalent to the secure key rates without postselec-
tion reported in [14] for the same four-state protocol with
both signal states and key map rotated by π/4. It can be
observed that performing radial postselection improves the
secure key rate only slightly by about 10%, while radial
and angular postselection performs similar to radial posts-
election up to distances of 60 km. For longer transmission
distances, radial and angular postselection shows a clear
outperformance which increases with increasing distance,

FIG. 7. Secure key rates for the untrusted detector scenario
without postselection (reference curve), as well as for radial,
cross-shaped, and radial and angular postselection for ξ = 0.01.
The noPS curve is equivalent to the results in [14]. Further-
more, we plotted relative differences (right y axis) between the
secure key rates obtained with different postselection strategies
and secure key rates obtained without performing postselection.

leading to a relative improvement of 88% at 170 km for the
radial and angular strategy compared with the no postse-
lection scenario. For distances less than 60 km the optimal
angular postselection parameter�a is zero, which explains
why there is no improvement compared with radial posts-
election for short distances. Finally, the cross-shaped post-
selection strategy does not improve the secure key rates
for distances up to 50 km (as the optimal cross-shaped
postselection parameter�c = 0) and performs comparably
to the radial and angular scheme for longer transmission
distances.

Next we study how the picture changes when we
increase the number of states from four to eight. In Fig. 8,
we compare the secure key rates obtained for the 8PSK
protocol with those for the QPSK protocol for two dif-
ferent values of excess noise (ξ = 0.01 and ξ = 0.02) and
without performing postselection. In Fig. 8(a) we chose the
reconciliation efficiency β to be 0.90, while in Fig. 8(b) β
is 0.95. The results for noisy channels confirm our obser-
vations for loss-only channels in Fig. 3 as the secure key
rates for the 8PSK protocol in all scenarios are clearly
higher than those for the QPSK protocol. The relative
improvement for ξ = 0.01 and β = 0.95 is between 60%
and 95% (depending on the transmission distance) while
for ξ = 0.01 and β = 0.90 the relative differences are
between 45% and 70%. The advantage of 8PSK increases
even more for higher values of excess noise, as the secure
key rates for QPSK begin to drop steeply at 160 km (for
β = 0.95) and at 130 km (for β = 0.90) while the secure
key rates for the 8PSK protocol remain stable. Addition-
ally, this results in longer achievable maximal transmission
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(a)

(b)

FIG. 8. Comparison of the secure key rates for the 8PSK and
QPSK protocol without postselection for ξ = 0.01 and ξ = 0.02
and two different values for the reconciliation efficiency β ∈
{0.90, 0.95}. The (red) QPSK curves in (b) are equivalent to the
results in [14].

distances with the 8PSK protocol than with the QPSK
protocol for those cases where the QPSK key rates drop.
Similar to the four-state protocol, the secure key rates for
the 8PSK protocol can be improved further by applying
additional postselection. For 8PSK protocols our consid-
erations focus on the radial scheme. This is because we
selectively examined the influence of additional angular
postselection and did not observe a significant impact
for eight signal states. Since the computational effort of
our numerical method is already very high for the eight-
state protocol, we therefore did not investigate angular
postselection parameters �a > 0 for all data points.

In Fig. 9 we plot the secure key rates obtained with radial
postselection (8rPS) and without postselection (8noPS) for
two different values of excess noise (ξ = 0.01 and ξ =
0.02) for fixed reconciliation efficiency of β = 0.95. The

FIG. 9. Comparison of the secure key rates obtained for the
8PSK protocol with radial postselection (8rPS) and without
postselection (8noPS) for ξ = 0.01 and β = 0.95.

secondary y axis represents the relative difference between
the secure key rates with and without postselection for
fixed excess noise. We observe a moderate improvement
in the medium to high single-digit percent range for short
transmission distances and up to 28% for medium to long
transmission distances (and ξ = 0.01). Furthermore, it is
remarkable that the protocol with 8rPS is able to generate
nonzero secure key rates for transmission distances up to
at least 250 km.

Finally, we summarize the results of our investigations
in Fig. 10, where we plot the best postselection strategy for
four-state protocols, which is radial and angular postselec-
tion (raPS), and the best postselection strategy for eight-
state protocols, which is radial postselection (8rPS). For
reference, we also plot the curve representing the achiev-
able secure key rate for the four-state protocol obtained
without performing postselection. Note that, again, this
curve corresponds to the results reported in [14] for a
rotated version of the four-state protocol examined. There-
fore, the relative differences plotted in Fig. 10 display the
improvements achieved in the present work. As described
earlier, performing radial and angular postselection for the
four-state protocol increases the secure key rate consid-
erably, compared with not performing any postselection,
where the advantage increases with increasing transmis-
sion distances, peaking at an outperformance of 88% for
170 km and 180 km. Recall that the cross-shaped post-
selection strategy performs comparably, in particular for
medium to long transmission distances. However, for clar-
ity, we plotted only the results for radial and angular posts-
election. The secure key rates for eight signal states with
radial postselection are between 80% and 100% higher
than those for four signal states without performing post-
selection. We observe that the relative advantage of 8PSK
with radial postselection over QPSK without postselection
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FIG. 10. Comparison of the best postselection strategies for
both modulation schemes for ξ = 0.01 and β = 0.95. Note
that the (black) QPSK key rate curve without postselection is
equivalent to the results in [14].

remains approximately stable over the examined range for
the transmission distance L, while the advantage of QPSK
with radial and angular postselection over QPSK with-
out postselection increases with L. For distances greater
than 140 km, QPSK with radial and angular postselection
(as well as QPSK with cross-shaped postselection) per-
forms comparably to 8PSK with radial postselection. Thus,
for high transmission distances, the advantage of a higher
number of signal states can be compensated by a suitable
postselection strategy. This is relevant both from a the-
oretical and an applied point of view. On the one hand,
calculating the secure key rates for a higher number of
signal states is computationally costly. On the other hand,
preparing coherent states which differ in phase by a smaller
angle with high accuracy is experimentally more challeng-
ing. Both tasks can be circumvented by introducing radial
and angular (or cross-shaped) postselection to a four-state
protocol which requires only minor software adaptations
and can be implemented easily.

2. Dependency of the secure key rate on the probability
of passing the postselection step

In step (5) of the protocol, Alice and Bob perform
error correction to reconcile their raw keys and obtain
keys which are identical. This task, in general, is compli-
cated and computationally expensive and therefore often a
bottleneck in many practical implementations.

To address this issue, we examine the influence of post-
selection on the fraction of the raw key which passes the
postselection phase (i.e., the fraction of the raw key which
has to be error-corrected). We begin with the QPSK pro-
tocol, where we fix the excess noise at ξ = 0.01 and the
coherent state amplitude |α| = 0.70 and examine trans-
mission distances of L = 50 km and L = 100 km. Note

(a)

(b)

FIG. 11. Secure key rates versus probability of passing the
postselection phase for radial and cross-shaped postselection
schemes for QPSK with |α| = 0.7. The excess noise is set to
ξ = 0.01 and we plot curves for β = 0.95 and β = 0.90. Note
that ppass = 1 indicates the case without postselection.

that, according to Fig. 6, |α| = 0.70 is the optimal value
for 50 km and very close to the optimal choice for 100
km. We compare radial postselection and cross-shaped
postselection since both strategies depend merely on one
postselection parameter (in contrast to radial and angular
postselection, which depends on �r and �a). We varied
the postselection parameters in the intervals �r ∈ [0, 2]
and �c ∈ [0, 1.125] in steps of size 0.025 and plotted the
secure key rate achieved against the probability of passing
the postselection phase ppass. Note that 1 − ppass corre-
sponds to the fraction of the raw key which is removed by
the postselection procedure. In Fig. 11 we plot our results
for two different values of the reconciliation efficiency
β ∈ {0.90, 0.95}.
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For L = 50 km [see Fig. 11(a)], we observe that the
maximal secure key rate is achieved with radial postse-
lection (which confirms our earlier results that for short
distances rPS yields slightly higher key rates than cPS) at
ppass = 0.75, while the cross-shaped postselection strategy
increases monotonically, reaching its maximum at ppass =
1, that is, for the case without postselection (which, again,
confirms our earlier results in Sec. V B 1 that the optimal
choice at 50 km is �c = 0). For ppass � 40% radial post-
selection yields slightly higher secure key rates than the
cross-shaped scheme .

We discover the opposite for L = 100 km [see
Fig. 11(b)], where the cross-shaped postselection strat-
egy yields higher secure key rates than the radial scheme,
which, again, is in accordance with our earlier results in
Sec. V B 1. The cross-shaped strategy obtains its maxi-
mum at ppass ≈ 0.55, while the (much lower) maximum of
the radial postselection scheme is obtained at ppass = 0.80.
Note that using the cross-shaped postselection strategy
increases the secure key rates by about 35%, although the
raw key is reduced by almost 50% (i.e., the part of the raw
key which has to be error-corrected is halved compared
with the protocol without postselection). This shows the
clear advantage of the cross-shaped over the radial postse-
lection scheme, where the raw key is only reduced by 20%,
while the secure key rate increases by merely 10%.

Assume we aim to obtain the same secure key rate
as without performing postselection (corresponding to
ppass = 1) while removing as much raw key as possi-
ble. For L = 100 km, performing radial postselection can
remove about 53% of the raw key without decreasing the
secure key rate, while with cross-shaped postseletion 77%
of the raw key can be removed such that only 23% of the
raw key needs to be error-corrected [see the dashed lines
in Fig. 11(b)].

With the aim of reducing the data that has to be error-
corrected drastically, this idea can be taken even further. To
reduce the raw key by, for example, 80% (or even more)
the cross-shaped postselection scheme yields higher key
rates than the radial scheme for both transmission distances
examined, L = 50 km and L = 100 km. For 100 km and
cross-shaped postselection, the secure key rates obtained
are even almost equal to those obtained without postselec-
tion, while the key rates for the radial scheme are clearly
lower. Since, according to earlier examinations, the cross-
shaped strategy remains superior for higher transmission
distances, we expect similar results for all L ≥ 50 km. This
shows the clear advantage of cross-shaped postselection, in
particular for medium to long transmission distances, and
the potential application to reduce the data that has to be
error-corrected.

For the 8PSK protocol and radial postselection, we
investigated the secure key rates for L = 50 km and |α| =
0.90 (which is the optimal choice for 50 km) for four dif-
ferent values of excess noise ξ ∈ {0.01, 0.02, 0.03, 0.04}

(a)

(b)

FIG. 12. Secure key rate versus the probability of passing the
postselection phase ppass for radial postselection and four differ-
ent values of excess noise and a fixed transmission distance of
L = 50 km. The underlying data are calculated by varying the
postselection parameter �r in the interval [0, 2.15] with a step
size of 0.025. The reconciliation efficiency is fixed to β = 0.95.

and two different values for the reconciliation efficiency
β ∈ {0.90, 0.95}. In Fig. 12 we plot the achievable secure
key rates for β = 0.95 against the probability of passing
the postselection for QPSK modulation [Fig. 12(a)] and for
8PSK modulation [Fig. 12(b)]. Qualitatively similar curves
are obtained for β = 0.90 (not shown).

We observe that the secure key rates obtained with 8PSK
modulation are in all scenarios clearly higher than those
for QPSK modulation, confirming our earlier results. For
both modulation schemes, the maximal secure key rate is
obtained at lower ppass for increasing excess noise, indi-
cating that the advantage of postselection increases with
increasing noise. The curves in Fig. 12 again motivate var-
ious strategies to increase the achievable secure key rate
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TABLE I. Maximal achievable secure key rate for QPSK and
8PSK protocols at L = 50 km with radial postselection for four
different values of excess noise and two values for the reconcili-
ation efficiency. The values of ppass at which the maximal secure
key rate is obtained are given in parentheses.

Max. key rate at (ppass)

β = 0.90 β = 0.95

ξ QPSK 8PSK QPSK 8PSK

0.01 0.0086 (0.73) 0.014 (0.75) 0.0110 (0.75) 0.019 (0.76)
0.02 0.0049 (0.69) 0.010 (0.71) 0.0074 (0.71) 0.015 (0.73)
0.03 0.0018 (0.49) 0.007 (0.67) 0.0042 (0.64) 0.011 (0.70)
0.04 . . . 0.003 (0.51) 0.0014 (0.37) 0.079 (0.63)

maximally and/or reduce the secure key rate significantly,
similarly to our QPSK discussion. We summarize the key
rates, associated with various scenarios for both modu-
lation schemes, both reconciliation efficiencies, and four
different values of excess noise in Tables I–III. For β =
0.90 and ξ = 0.04 the secure key rates for QPSK modula-
tion are zero, therefore the corresponding table entries are
empty.

C. Postselection strategies in the trusted detector
scenario

It is a well-known fact [and has been confirmed in the
previous subsection; see, for example, Figs. 12(b) and 8]
that high noise levels negatively influence the secure key
rate, as well as the maximum distance. If noise sources are
assumed not to be under Eve’s control (“trusted noise”)
we expect higher key rates for systems than for systems
with the same overall noise level where we cannot trust
any noise. In this section we examine our three differ-
ent postselection strategies in the trusted noise scenario
with nonideal detectors for QPSK protocols. We expect
a similar relation between QPSK and 8PSK results to
that already seen in the previous section, hence we only
investigate QPSK to avoid redundancies. To reduce the
number of parameters in the presentation and to simplify
the analytical results, we chose ηq = ηp =: ηd = 0.72 and

TABLE II. The values of ppass at which the secure key rate
when performing radial postselection is equal to the secure key
rate obtained without performing postselection. We consider two
different values of β and four different values of excess noise.
The transmission distance L is fixed at 50 km.

ppass

β = 0.90 β = 0.95

ξ QPSK 8PSK QPSK 8PSK

0.01 0.48 0.50 0.51 0.51
0.02 0.41 0.44 0.44 0.47
0.03 0.17 0.36 0.32 0.43
0.04 . . . 0.21 0.07 0.34

TABLE III. Relative change in the secure key rate when omit-
ting 70% of the raw key compared with the secure key rate
obtained without performing postselection for two different val-
ues of β, four different values of excess noise, and L = 50
km.

Change in secure key rate

β = 0.90 β = 0.95

ξ QPSK 8PSK QPSK 8PSK

0.01 −19% −20% −20% −21%
0.02 −13% −16% −15% −19%
0.03 +25% −8% −3% −14%
0.04 – +19% +109% −8%

νq = νp =: νel = 0.04 in our detector model (see also [40])
which correspond to early-stage data of an experimental
CV-QKD system at AIT Austrian Institute of Technology.

The parameter |α| is optimized via coarse-grained
search in steps of 0.05, and it turned out that the optimal
value of the coherent state amplitude |α| in the untrusted
detector scenario (cf. Fig. 6) and in the trusted detector
scenario is identical. In what follows, we fix the reconcili-
ation efficiency β = 0.95 and examine two different levels
of excess noise ξ ∈ {0.01, 0.02}.

In Fig. 13(a) (ξ = 0.01) and, Fig. 13(b) (ξ = 0.02) we
display the secure key rates obtained for all three post-
selection strategies and without postselection (noPS), as
well as the relative differences to the key rates obtained
without postselection (right y axis). For reference, we addi-
tionally added curves representing the secure key rates for
untrusted detectors with the same overall noise level [so,
ξ = 0.05 for Fig. 13(a) and ξ = 0.06 for Fig. 13(b)] and
detector efficiency ηd = 0.72.

Similarly to our examinations for untrusted detectors,
we observe a clear outperformance of the cross-shaped and
radial and angular scheme over no postselection and the
radial postselection strategy. For ξ = 0.01 [see Fig. 13(a)]
the radial postselection strategy performs about 10% bet-
ter than no postselection, while the cross-shaped and radial
and angular schemes perform clearly better for distances
greater than 80 km, peaking at relative improvements of
72% and 79% respectively for a transmission distance
of 180 km. These advantages intensify for ξ = 0.02 [see
Fig. 13(b)], where cross-shaped and radial and angular
postselection improve the secure key rates by factors of
up to 7–9.

For both levels of excess noise, we observe a clear
improvement in the secure key rate for trusted detec-
tors over those for untrusted detectors with the same
overall noise level, in particular, compared with the no
postselection and radial postselection curves for untrusted
detectors, where the key rate curves drop steeply already
at short transmission distances. In contrast, the secure
key rates for untrusted detectors with radial and angular
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(a)

(b)

FIG. 13. Secure key rate versus transmission length L for dif-
ferent postselection schemes and with detector parameters ηd =
0.72 and νel = 0.04 and reconciliation efficiency β = 0.95. Dot-
ted lines represent the key rates without trusting any noise,
obtained with the same overall noise level (trusted plus untrusted
noise) and the same total loss (for the same transmission dis-
tance) as the solid curves. We plotted relative (dot-dashed lines)
differences between the trusted key rates obtained with radial
postselection, cross-shaped postselection, and radial and angu-
lar postselection, where the reference is the trusted secure key
rate obtained without postselection, on the right y axis.

postselection remain nonzero up to 150 km. We observe
that in the untrusted scenario, the optimal angular postse-
lection parameter is nonzero for distances greater than 20
km for ξ = 0.05 and greater than 15 km for ξ = 0.06, com-
pared with 80 km (for ξ = 0.01 and νel = 0.04) and 70 km
(for trusted detectors with ξ = 0.02 and νel = 0.04). This
can be seen in Fig. 13, where the difference between the
dotted blue line and the solid blue line decreases slightly
between 20 km and 80 km [Fig. 13(a)] and between 15 km
and 70 km [Fig. 13(b)]. Higher untrusted noise requires
postselection already at shorter transmission distances, as
expected. It is remarkable that for an overall noise level

of ξ = 0.06 the curve for the untrusted detector scenario
with radial and angular postselection performs comparably
to the trusted curve with radial postselection for transmis-
sion distances of 120–150 km. Therefore, we conclude
that in some scenarios radial and angular postselection for
untrusted detectors yields key rates comparable with that
for trusted detectors without or with radial postselection.
Note that if we do not trust any noise, the security state-
ment obtained is stronger. We expect similar results for
cross-shaped postselection.

Although we conducted our analysis in the asymptotic
limit, we are confident that our ideas apply as well to the
finite-size regime. There are several techniques known to
establish security against general attacks (providing secu-
rity against collective attacks has been proven) [41–43].
These methods have the potential to lift our analysis. How-
ever, since finite-size analysis against general attacks is not
the focus of the present paper, more detailed investigations
are left for future work.

VI. CONCLUSIONS

In this work, we have adapted and improved the numer-
ical security analysis of [14] and analyzed and optimized
continuous-variable quantum key distribution (CV-QKD)
protocols with phase-shift keying (PSK) modulation with
and without postselection. We have shown that having
more than eight signal states does not lead to a signifi-
cant improvement in the secure key rate, and thus we have
concentrated on QPSK and 8PSK modulation.

Our examinations for untrusted ideal detectors (Sec.
V B) have shown that for protocols with four signal states,
both radial and angular postselection and cross-shaped
postselection increase the secure key rate considerably
compared with not performing postselection and perform
clearly better than radial postselection. For low noise lev-
els (ξ = 0.01), using cross-shaped or radial and angular
postselection, the secure key rates can be improved by up
to 70–80%, while for medium noise (ξ = 0.02) the secure
key rates can be enhanced by up to 800%.

The key rates for the 8PSK protocols, without or with
radial postselection, are always superior to the key rates
for the QPSK protocol with the same postselection strat-
egy. The improvement is about 80% for transmission
distances up to 200 km and low noise and up to 300%
for medium to high noise levels, in particular, for longer
transmission distances, where the QPSK key rates drop.
However, radial and angular and cross-shaped postselec-
tion for QPSK perform comparably to 8PSK with radial
postselection for long transmission distances, in particular
for medium to high noise. This highlights that for certain
scenarios, proper postselection, which is easy to imple-
ment, can have the same effect on the secure key rate
as increasing the number of signal states, which is more
challenging from an experimental point of view.
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For trusted, nonideal detectors (Sec. V C), effects of
postselection similar to those for untrusted detectors could
be observed. Radial and angular postselection and cross-
shaped postselection increase both the key rate and the
maximal achievable transmission distance. We have com-
pared the secure key rates in the trusted and untrusted
detector noise scenarios with the same overall noise level.
Secure key rates of protocols using radial and angular post-
selection and untrusted detectors are comparable to those
without postselection but trusting the detectors. Therefore,
postselection can achieve comparable secure key rates with
weaker security assumptions.

Postselection can reduce the computational bottleneck
in error correction for CV-QKD (Sec. V B 2) because it
can be used to reduce the length of the raw key (i.e., the
data that have to be error-corrected). Within this context,
we showed that cross-shaped postselection is superior to
radial postselection and pointed out how postselection can
be applied to practical problems.

Finally, we wish to highlight that postselection can be
implemented easily both in new and existing QKD systems
since it does not require additional hardware. Therefore,
the aforementioned advantages can be utilized in any QKD
system with PSK modulation.
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APPENDIX A: ANALYTICAL VALIDATION FOR
THE NOISELESS CHANNEL

In this appendix we briefly summarize our analytical
calculations for loss-only channels. We use these results
in Sec. III A to argue that it is sufficient to consider only up
to eight signal states. Furthermore, in what follows, we use
these analytical results to validate our numerical method.

1. Calculation of the secure key rate for loss-only
channels

We generalized the analytical approach from [8] to the
general NSt signal states for the protocols introduced in
Sec. III (where we do not perform postselection). It is

shown there that in the absence of channel noise, it is suffi-
cient to consider the generalized beam-splitter attack, that
is, Bob receives a coherent state whose amplitude is low-
ered by a factor of

√
η, while Eve obtains another coherent

state whose amplitude is reduced by a factor of
√

1 − η,
|αx〉A �→ |√ηαx〉B ⊗ |√1 − ηαx〉E . The secure key rate is
given by the Devetak-Winter formula [19],

R∞ = βI(A : B)− χ(B : E),

where I(A : B) is the mutual information between Alice
and Bob and χ is the Holevo information, an upper
bound for Eve’s information about Bob’s signal. There-
fore, the secure key rate can be obtained by calculating
these quantities for the given situation.

Let us denote the states held by Eve by |εx〉 :=
|√1 − ηαx〉 for x ∈ {0, . . . , NSt−1}. Our goal is to
describe Eve’s system by an orthonormal system
{|e0〉, . . . , |eNSt−1〉}. The idea is now to divide N0 into con-
gruence classes of 0, . . . , NSt − 1 (mod NSt) and to find
basis vectors using only number states being in the same
congruence class,

|ẽk〉 =
∞∑

n=0

(√
1 − η|α|)NStn+k

√
(NStn + k)!

(−1)n|NStn + k〉 (A1)

for k ∈ {0, . . . , NSt−1}. These vectors are pairwise orthog-
onal by construction. After defining

|ek〉 := 1
√〈ẽk|ẽk〉

|ẽk〉,

we obtain an orthonormal basis BON := {|e0〉, . . . , |eNSt−1〉}.
Note that the normalization constants can be expressed in
terms of trigonometric and hyperbolic functions, hence can
be calculated conveniently.

The Holevo information is given by χ(B : E) :=
H(ρE)− ∑NSt−1

j =0 P(z = j )H(ρE,j ), where ρE,j is Eve’s
conditional state given that Bob measured the symbol
labeled j , defined as

ρE,j :=
NSt−1∑

i=0

P(x = i, z = j )
P(z = j )

|εi〉〈εi|,

and ρE is Eve’s mixed state ρE = ∑NSt−1
j =0 P(z = j )ρE,j .

After expressing |εi〉 in terms of the basis vectors in
BON, we obtain (NSt − 1)× (NSt − 1) matrices and can
calculate the Holevo information. The mutual information

I(A : B) := H(ρA)+ H(ρB)− H(ρA, ρB)

can be calculated directly. Substituting these values in the
Devetak-Winter formula yields the secure key rate for loss-
only channels. The maximal achievable secure key rate is
then obtained by optimizing R∞ over α while holding the
transmission distance constant.
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2. Analytical versus numerical secure key rates

We compared the theoretical model for a loss-only chan-
nel (ξ = 0) presented in the previous appendix with our
numerical implementation for very low noise (ξ = 10−5).
We must choose a low but nonzero ξ to guarantee numer-
ical stability. We fix the photon cutoff number at Nc = 12
for the QPSK protocol and Nc = 14 for the 8PSK proto-
col. While data points with low coherent state amplitude
|α| could have been calculated with a lower cutoff num-
ber, states with high coherent state amplitudes demand
higher cutoff numbers to obtain reliable and tight results
for the secure key rate. This is plausible because states
with high coherent state amplitude have a high average
photon number, hence it requires more photon states to
represent those states properly. A brief discussion about
the choice of the photon cutoff can be found in Sec. G. We
examined the achievable secure key rate for transmission
distances between 0 and 180 km by varying the coher-
ent state amplitude in steps of �|α| = 0.05. In Fig. 14 we
plot the obtained upper (step 1) and lower bounds (step
2) on the secure key rates for four different transmission
distances. It can be observed that the gaps between the
upper and lower bounds are very small, indicating tight
key rates. Therefore, we may omit the curves for step 1
in the present paper and plot only step 2, which is the rele-
vant (lower) bound, to improve lucidity. The maxima of the
curves in Fig. 14 represent the maximal achievable secure
key rates and match perfectly with the predictions of the
aforementioned analytical model. Note that the maximal
secure key rate for L = 50 km is about ten times higher
than the maximal secure key rate for L = 100 km, which
meets the expectation for channel losses of 0.2 dB/km.

In Fig. 15(a) we compare the optimal coherent state
amplitude obtained by analytical calculations with those

FIG. 14. Secure key rate versus coherent state amplitude |α|
for a noiseless channel (to achieve numerical stability we used
ξ = 10−5) for L = 20, 50, 70, 100 km (from top to bottom).

obtained by our numerical implementation. The analytical
coherent state amplitude is found by fine-grained search
over different |α| for fixed transmission distance L in
steps of 0.005. We observe excellent agreement for both
four- and eight-state protocols. In Fig. 15(b) we com-
pare the theoretical prediction for the secure key rate with
our numerical lower bound. Again, we observe excellent
agreement between our results and the analytical predic-
tion with only minor deviations of less than 1% (QPSK)
and less than 0.5% (8PSK) for all data points except
those for the shortest and longest transmission distance
displayed, where the deviations are slightly higher. This
can be explained by small numerical instabilities for very
low and very high transmission distances at low values of
excess noise. We did not observe such effects for practi-
cal values of excess noise. Summing up, our numerical
results are very satisfying and confirm the predictions by
the analytical model.

APPENDIX B: DISCUSSION OF THE CHOSEN
POSTSELECTION REGIONS

In Sec. III B 1 we motivated our choice for the postse-
lection regions via the BER for four-state protocols. These
considerations naturally generalize to eight-state protocols
by considering the corresponding sectors instead of quad-
rants. Bit-flips occur if signals that are prepared in one
quadrant are measured in another quadrant. The probabil-
ity density function for measuring a coherent state |αk〉 at
γ ∈ C is given by P(Y = γ |X = αk) = (1/π)e−|αk−γ |2 , in
accordance with the (untrusted) POVM given in Eq. (D3).
By Bayes’ theorem, the probability that the state |αk〉 is
sent conditioned on Bob measured γ is given by

P(X = αk|Y = γ ) = P(Y = γ |X = αk)P(X = αk)

P(Y = γ )
.

(B1)

Then P(Y = γ ) is given by

P(Y = γ ) =
4∑

k=1

P(Y = γ |X = αk)P(X = αk), (B2)

and P(X = αk) = 1
4 since Alice prepares her state follow-

ing the uniform distribution.
To obtain the bit-error probability for the first quadrant,

we additionally need to take into account that errors aris-
ing from different signals contribute differently, depending
on the encoding of our QPSK scheme. Note that the ideas
presented in what follows generalize easily to the other
quadrants as well. We consider a symmetric scheme, where
“horizontal” and “vertical” bit-flips contribute equally.
This constellation is sketched in Fig. 2(a). Measuring |α3〉
in the first quadrant causes a bit-flip both in the MSB and
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(a) (b)

FIG. 15. Comparison between analytical prediction and numerical results for the secure key rate (almost) without noise and without
performing postselection. The analytical curves are obtained by performing a fine-grained search in steps of �|α| = 0.005 (red line)
and the numerical results are obtained by numerical calculations and fine-grained search in steps of �|α| = 0.02 (blue dots). The
investigation shows that optimal coherent state amplitudes obtained by numerical calculation match the analytical prediction perfectly
and that the secure key rates obtained coincide with high accuracy. (a) Optimal analytical |α| for different transmission distances L
and for ξ = 0. (b) Optimal analytical secure key rates for various modulation schemes and numerical lower bounds on the secure key
rates for QPSK and 8PSK for transmission distances up to 180 km. The displayed lower bounds on the secure key rates (step 2) are
obtained by optimizing over |α|. The relative differences refer to the differences between numerical and analytical results for the same
modulation scheme.

the LSB, while bit-flips from the second and forth quad-
rants cause only single bit-flips (in the LSB for |α2〉 and
in the MSB for |α3〉). Therefore, we build the weighted
sum of the probabilities P(X = αk|Y = γ ) with weights
w1 = 0, w2 = 1, w3 = 2, w4 = 1 and divide the result by 2
since we are interested in the probability of bit errors in
any bit. Note that w1 = 0 because measuring the first sig-
nal in the first quadrant does not contribute to the BER. We
obtain for the (expected value of) the BER

〈BER〉 = 1
2

∑4
k=1 wke−|αk−γ |2
∑4

k=1 e−|αk−γ |2 . (B3)

As outlined in the main text, the postselection regions
can be chosen along the contour line (which contour line
is subject to an optimization) corresponding to the bit-
error probability. However, there are two issues. First, a
priori, the exact shape of such a contour line is not ana-
lytically known and it is not immediately clear that the
shape remains the same once we consider noisy channels.
Second, even if the shape is (approximately) known we
cannot expect to describe it by an easy and elementary
function, but require more than two postselection parame-
ters to be parametrized. Besides this, computing secure key
rates for postselection strategies with complicated shapes
and a large number of postselection parameters is compu-
tationally very costly for two reasons: first, the operators
for the exact postselection regions need to be calculated
numerically (instead of using analytical results, as derived

in Appendices E and F); and second, the search for the
optimal set of parameters would involve a much larger
parameter space. Furthermore, we observed that region
operators, obtained by numerical integration (in particu-
lar, if the integrations range over regions with “exotic”
boundaries) lead to a less stable algorithm.

The reason for this is as follows. Small numerical devi-
ations/errors in the matrix elements of the region opera-
tors tend to intensify over many iterations of the present
algorithm. This often causes a couple of slightly negative
eigenvalues. Since density matrices are required to be posi-
tive semidefinite, negative eigenvalues have to be removed
by a transformation. Due to this transformation, the density
matrix obtained is altered slightly, causing small constraint
violations. In order to obtain secure lower bounds, step 2 of
the present algorithm transforms the upper bound obtained
from step 1 into a reliable lower bound. Part of this pro-
cess is to take the influence of constraint violations into
account, using a relaxation theorem. Therefore, the whole
security proof critically demands low constraint violations,
as otherwise the secure key rate drops significantly.

APPENDIX C: EXPLANATION OF THE
TWO-STEP PROCESS OF THE SECURITY PROOF

For completeness, in this appendix, we give details of
the two-step process that was introduced in [13] to cal-
culate the secure key rate and specify the optimization
problem related to the protocols examined in the present
work.

034073-19



FLORIAN KANITSCHAR and CHRISTOPH PACHER PHYS. REV. APPLIED 18, 034073 (2022)

Algorithm 1. Modified Frank-Wolfe for step 1.

1. Finding an almost optimal attack

In the first step of the method, we have to find an attack
that is close to optimal. The objective function f (ρ) =
D(G(ρ)||Z(G(ρ))) is nonlinear. Therefore, we tackle the
problem iteratively by approximating f to first order by
solving a linear semidefinite program (SDP). Since we
face a constrained optimization problem, we require an
iterative algorithm that is guaranteed to stay in the feasi-
ble set, like the Frank-Wolfe algorithm [44] (alternatively,
we may apply an algorithm that leaves the feasible set,
combined with a projection that brings us back). The clas-
sical Frank-Wolfe algorithm can be expedited if a line
search towards the optimal direction found is added. The
following algorithm is suggested in [13].

The optimization problem can be put in a more advanta-
geous form. Following [13], we orthonormalize the (cutoff
representation of) observables �i and obtain an orthonor-
mal set {�i : i ∈ I}, which we extend to an orthonormal
basis {�i : i ∈ I} ∪ {�j : j ∈ J } of D(HNc

AB) with respect
to the Hilbert-Schmidt norm, where HNc

AB := HA ⊗ HNc
B

and J is another finite set. The expected values of the
ith orthonormalized operator are denoted by γ i. Then the
feasible set can be reformulated as

S =
⎧
⎨

⎩

∑

i∈I

γ i�i +
∑

j ∈J

ωj�j

∣∣∣∣∣∣
�ω ∈ R

|J |

⎫
⎬

⎭
, (C1)

where the first part represents the subspace fixed by the
constraints, and the second part represents the free sub-
space. Finally, the present minimization problem (with
objective function f ) at every Frank-Wolfe step reads [13]

�ω′ = arg min �ω
∑

j ∈J

ωj Tr
[
��

j ∇f (ρi)
]

(C2)

subject to
∑

j ∈J

ωj�j + ρi ∈ D(HNc
AB), (C3)

and the next iterate can be obtained by

ρi+1 = ρi + λ
∑

j ∈J

ω′
j�j , (C4)

where λ ∈ [0, 1] can be found by a line search to speed up
the algorithm (or set to 1 otherwise). For λ = 2/(k + 2),

it is known [45] that the Frank-Wolfe algorithm with tar-
get function f satisfies f (ρk)− f (ρ∗) ≤ O (1/k), where
ρ∗ is the optimal solution and ρk is the kth iterate. As per-
forming a line search includes the case of λ = 2/(k + 2),
the Frank-Wolfe algorithm combined with a line search is
known to converge at least at that rate. For our application,
we observed that the Frank-Wolfe algorithm with addi-
tional line search converges considerably faster. As men-
tioned earlier, for our implementation we use the bisection
method.

2. Obtaining a tight lower bound on the key rate

The second step aims to convert the upper bound,
obtained in step 1, into a lower bound. We only state the
basic idea, following [13], where step 2 is justified by a
sequence of three theorems.

The basic idea of step 2 is to convert every upper bound
on the secure key rate for a feasible ρ, obtained from step 1,
into a lower bound on the secure key rate by linearization
and solving the dual problem of the relevant SDP. There-
fore, both step 1 and step 2 involve the evaluation of the
gradient of f , which might not exist for every ρ (e.g., if G
does not have full rank). To address this issue, a perturbed
map

Gε̃ (ρ) := Dε̃ (G(ρ)) (C5)

is introduced, where 0 < ε̃ < 1 and

Dε̃ (ρ) := (1 − ε̃)ρ + ε̃
1

dim(G(ρ))1Nc . (C6)

Computational evaluations and differences between the
exact constraints and their representation due to finite pre-
cision can introduce small numerical errors in the secure
key rate calculations and therefore have to be taken into
account for a reliable security proof. Let us denote the
computer representation of variables with tildes; for exam-
ple, �̃i is the representation of �i. It is shown in [13]
that if the constraints are satisfied up to some small num-
ber ε′ ∈ R, for all i ∈ I such that

∣∣
∣Tr

[
�̃iρ − γ̃i

]∣∣
∣ ≤ ε′, the

following statement holds.

Theorem. Let ρ ∈
{
ρ ∈ D(HA ⊗ HNc

B ) :
∣
∣∣Tr

[
�̃iρ − γ̃i

]∣∣∣

≤ ε′} where ε′ > 0 and 0 < ε ≤ 1/[e(dim(G(ρ))− 1)].
Then

min
ρ∈S

f (ρ) ≥ βεε′(ρ)− ζε (C7)
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where ζε := 2ε(dim(G(ρ))− 1) log [dim(G(ρ))/ε(dim(G
(ρ))− 1)] and

βε,ε′(σ ) := fε(σ )− Tr
[
σ�∇fε(σ )

] + max
(�y,�z)∈S̃∗

ε (ρ)

×
(

�̃γ · �y − ε′
|I |∑

i=1

zi

)

. (C8)

The set S̃∗
ε (σ ) is given by

S̃∗
ε (ρ) :=

{

(�y, �z) ∈ (R|I |, R|I |)| − �z ≤ �y

≤ �z,
|I |∑

i=1

yi�̃
�
i ≤ ∇fε(σ )

}

. (C9)

APPENDIX D: DETAILS OF THE
IMPLEMENTATION

1. Specifying the optimization problem

To formulate the relevant optimization problem, we
need to specify the quantities appearing in (3), that is, we
require �i as well as the right-hand sides γi to formulate
the constraints, and the postprocessing map G as well as
the pinching channel Z to fully characterize the objective
function.

We start by briefly explaining the constraints in the opti-
mization problem (3). The constraints in (3) have two
different origins. First, some of the constraints arise from
Bob’s measurement results, depending on the state Alice
has sent. If Eve manipulates the quantum channel (which
is assumed to be under her control), she has to do it in such
a way that the communicating parties do not recognize her
actions. Therefore, the density matrix is constrained by
4NSt equations from Bob’s measurements. Second, since
we assume that Eve cannot access Alice’s lab, her share of
the state (in the entanglement-based picture) is fixed. This
gives a matrix-valued constraint, which is transformed by
quantum state tomography (see, for example, [46]) into N 2

St
scalar-valued constraints. Thereby, the basis of Alice’s sys-
tem is chosen in a way such that the set of constraints (4NSt
from the measurements, N 2

St from the state tomography) is
sufficient to linearly combine the trace-equal-to-one condi-
tion with sufficient numerical precision. Hence, in contrast
to [14], we do not add the constraint Tr [ρAB] = 1 since the
resulting density matrix already has trace equal to 1 with
required numerical accuracy without requiring this condi-
tion explicitly. For numerical reasons, it is beneficial to
avoid (almost) linearly dependent conditions in our set of
constraints.

Next, we discuss the postprocessing maps. In this work,
we follow the (postprocessing) framework of [14] and
the indices A, B, and R label Alice’s and Bob’s system

and a classical register, respectively. Therefore, the post-
processing map G(σ ) := KσK† is defined by the Kraus
operator

K :=
NSt−1∑

z=0

|z〉R ⊗ 1A ⊗
(√

Rz

)

B
, (D1)

where (Rz)z∈{0,...,NSt−1} are the so-called region operators,
whose form depends on the actual key map (as specified in
Sec. III). If Ey denotes the POVM of Bob’s measurements,
they are given by

Rz :=
∫

Az

Eyd2y, (D2)

where Az is the set corresponding to the symbol z in the
key map. For ideal homodyne measurements the corre-
sponding POVM [33] is given by

Ey = 1
π

|y〉〈y|. (D3)

According to the definition of the postselection maps
(raPS, cPS, 8raPS) in Sec. III, we define the following
subsets of the phase space (C):

Ara
k :=

{
ζ ∈ C : arg(ζ ) ∈

[
kπ
2

+�a,
(k + 1)π

2
−�a

)

∧|ζ | ≥ �r} , (D4)

for k ∈ {0, 1, 2, 3} and

Ac
0 := {ζ ∈ C : �(ζ ) ≥ �c ∧ �(ζ ) ≥ �c} ,

Ac
1 := {ζ ∈ C : �(ζ ) ≤ −�c ∧ �(ζ ) ≥ �c} ,

Ac
2 := {ζ ∈ C : �(ζ ) ≤ −�c ∧ �(ζ ) ≤ −�c} ,

Ac
3 := {ζ ∈ C : �(ζ ) ≥ �c ∧ �(ζ ) ≤ −�c}

(D5)

for four-state protocols and

A8ra
k :=

{
ζ ∈ C : arg(ζ ) ∈

[
(2k − 1)π

8

+ �a,
(2k + 1)π

8
−�a

)
∧ |ζ | ≥ �r

}
, (D6)

for k ∈ {0, . . . , 7} in the case of eight signal states. Here,
the superscript labels the chosen postselection strategy,
and the subscript labels the symbol we associate with the
defined set. Note that the radial postselection scenario is
included in the radial and angular case by setting �a =
0 and the no postselection scenario is included in both
schemes by setting all postselection parameters to zero.
Therefore, we do not need to define separate sets for the
radial scheme and for no postselection.
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For trusted detectors, we cannot use the POVM of ideal
detectors. Hence, we have to replace Ey in Eq. (D2) by
a POVM corresponding to the aforementioned detector
model. In [24] the POVM elements

Gy = 1
ηdπ

D̂
(

y√
ηd

)
ρth

(
1 − ηd + νel

ηd

)
D̂†

(
y√
ηd

)

(D7)

are derived, where D̂ is the displacement operator and
ρth(n) denotes a thermal state with mean photon number
n.

Finally, the pinching channel Z is given by

Z(σ ) :=
NSt−1∑

j =0

(|j 〉〈j |R ⊗ 1AB) σ (|j 〉〈j |R ⊗ 1AB) . (D8)

Hence, we have completely specified the objective func-
tion f (ρ). We refer to Sec. III D for our explicit analytical
expressions for the region operators for untrusted ideal
detectors, as well as to Sec. III C for our explicit analytical
expressions for the region operators for trusted nonideal
detectors for each of the proposed postselection strate-
gies. The detailed derivations are given in Appendix E
(untrusted) and Appendix F (trusted). Using these analyti-
cal expressions instead of calculating the matrix elements
for the region operators numerically increases the accuracy
of our results, speeds up the whole algorithm consider-
ably and eliminates the (so far not considered) influence
of inaccuracies of numerical integration on the secure key
rate.

2. Channel model

It remains to specify the right-hand sides of the con-
straints of the present optimization problem. Therefore,
we simulate the quantum channel connecting Alice and
Bob as a phase-invariant Gaussian channel with transmit-
tance η and excess noise ξ , which is a common model for
optical fibres. The right-hand sides of the constraints can
be found similarly to [14], where the expected values of
QPSK states on the axes are calculated using Husimi Q-
functions. The rotation in the phase space that transforms
the arrangement of the states on the axes to our “QPSK-
like” constellation does not lead to significant changes
in that approach. Furthermore, this idea can be general-
ized easily to NSt signal states. Recall that we measure the
excess noise in multiples of the shot noise. The expected

values read

〈q̂〉x =
√

2η�(αx), (D9)

〈p̂〉x =
√

2η�(αx), (D10)

〈n̂〉x = η|αx|2 + ηξ

2
, (D11)

〈d̂〉x = η
(
α2

x + (α∗
x )

2) , (D12)

for x ∈ {0, . . . , NSt − 1}, where αx is a complex number
associated with the coherent state Alice prepares. Note that
n̂ and d̂ are related to the second-moment observables q̂2

and p̂2. Therefore, the constraints for 〈n̂〉x and 〈d̂〉x can be
replaced by expressions for 〈q̂2〉x and 〈p̂2〉x.

For trusted detectors, the POVM, given in Eq. (D7), is
used to define first- and second-moment observables [24]

F̂Q =
∫

y∗ + y√
2

Gyd2y, (D13)

F̂P =
∫

i
y∗ − y√

2
Gyd2y, (D14)

ŜQ =
∫ (

y∗ + y√
2

)2

Gyd2y, (D15)

ŜP =
∫ (

i
y∗ − y√

2

)2

Gyd2y, (D16)

with expected values

〈F̂Q〉x =
√

2ηdη �(αx), (D17)

〈F̂P〉x =
√

2ηdη �(αx), (D18)

〈ŜQ〉x = 2ηdη (�(αx))
2 + 1 + 1

2
ηdηξ + νel, (D19)

〈ŜP〉x = 2ηdη (�(αx))
2 + 1 + 1

2
ηdηξ + νel. (D20)

Hence, for the trusted detector model, we face a slightly
modified problem, where changes occur in the con-
straints due to measurements and the objective function
(as the map G depends on the region operators, hence
on the POVM). For details regarding the trusted detector
approach, we refer the reader to [24].

3. Information leakage during reconciliation

Finally, it remains to calculate the information leakage
in the error-correction phase and the probability of pass-
ing the postselection. By construction, the probability that
Bob obtains the symbol z = k conditioned on Alice having
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prepared the state x = l is given by

P(z = k|x = l) = Tr
[
ρ l

BRk
]

, (D21)

where

ρ l
B = 1

pl
TrA [ρAB (|l〉〈l|A ⊗ 1B)] (D22)

and Rk denotes one of the region operators introduced and
specified in the previous appendices. By knowing this and
taking the error-correction efficiency into account, we can
calculate the information leakage during reconciliation per
signal δEC and the probability that a signal passes the post-
selection phase ppass. If we are able to perform information
reconcilation at the Slepian-Wolf limit [47], then δEC =
H(Z|X) = H(Z)− I(X : Z) would hold, where H(Z) is
the von Neumann entropy of the string Z, H(Z|X) is the
conditioned von Neumann entropy, and I(X : Z) denotes
the mutual information between the strings Z and X. As we
assume we perform error correction with efficiency β < 1
(depending on the error- correction procedure), we replace
the mutual information between Z and X by βI(X : Z) and
then rewrite the expression in terms of entropies again.
Therefore, we obtain

δEC = H(Z)− β (H(Z)− H(Z|X))
= (1 − β)H(Z)+ βH(Z|X). (D23)

The entropies can be calculated using the probabilities
given in Eq. (D21) and the law of total probability.

Furthermore, we obtain the probability that a signal
passes the postselection phase,

ppass =
NSt−1∑

l=0

NSt−1∑

k=0

plP(z = k|x = l), (D24)

where pl denotes the probability that Alice prepares the
state corresponding to the symbol l (which is given in the
protocol description; for symmetry reasons, we choose for
all l ∈ {0, . . . , NSt − 1} : pl = 1/NSt).

APPENDIX E: FOCK STATE REPRESENTATION
OF REGION OPERATORS FOR THE UNTRUSTED

NOISE SCENARIO

Here we present the explicit calculations leading to to
the matrix representations of the region operators with
respect to the Fock basis, as stated in Sec. D 1. For the
calculation of both the radial and angular and the cross-
shaped postselection strategy, the projection of a coherent

state with amplitude |α| and phase θ on a number state

〈|α|eiθ
∣∣ n〉 = e−(|α|2/2) |α|ne−inθ

√
n!

, (E1)

or, in Cartesian coordinates |α|eiθ = x + iy,

〈x + iy|n〉 = e−[(x2+y2)/2] (x − iy)n√
n!

(E2)

will be useful. This relation is obtained readily by express-
ing the coherent state in the number basis and applying the
inner product with |n〉.

Before we start with the calculation, we derive an inte-
gral that occurs multiple times in the following derivations.
For p > 0 and k > 0 we have

∫ ∞

�

γ pe−kγ 2
dγ = 1

2k(p+1)/2�

(
p + 1

2
, k�2

)
. (E3)

This can be seen by using the substitution z := kγ 2,
∫ ∞

�

γ pe−kγ 2
dγ = 1

2k(p+1)/2

∫ ∞

k�2
z(p−1)/2e−z

dz = 1
2k(p+1)/2

∫ ∞

k�2
z[(p+1)/2]−1e−zdz.

According to the definition of the incomplete gamma
function, the integral in the last line is equal to
�
(
(p + 1)/2, k�2

)
.

1. Radial and angular postselection

We start with the expression for the region operators
given in Eq. (4) and insert the definition of the sets
Ara

0 , Ara
1 , Ara

2 and Ara
3 from (D4),

Rra
z = 1

π

∫ ∞

�r

∫ (π/2)(z+1)−�a

(π/2)z+�a

γ |γ eiθ 〉〈γ eiθ |dθdγ . (E4)

Note that we transformed the integral to polar coordi-
nates, which explains the additional γ coming from the
Jacobi determinant. By using the completeness relation,
1 = ∑

n |n〉〈n|, twice, we obtain

Rra
z = 1

π

∫ ∞

�r

∫ ((z+1)π/2)−�a

(zπ/2)+�a

∑

n,m

|n〉〈m|γ 〈n|γ eiθ 〉

× 〈γ eiθ |m〉dθdγ

= 1
π

∑

n,m

|n〉〈m|
∫ ∞

�r

γ n+m+1e−γ 2

√
m! n!

× dγ
∫ [(z+1)π/2]−�a

(zπ/2)+�a

eiθ(n−m)dθ .
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The radial integral can be expressed by the incomplete gamma function �(x, a) using the integral given in Eq. (E3):

∫ ∞

�r

γ n+m+1e−γ 2

√
m!n!

dγ = 1

2
√

m! n!
�

(
m + n

2
+ 1,�2

r

)
.

If m = n, the angular integral simplifies to (π/2)− 2�a. For the case m �= n we obtain 2/(m − n)e−i(m−n)[z+(1/2)](π/2)
sin {[(π/4)−�a] (m − n)}.

Summing up, we have

Rra
z := 1

2π

∑

n

∑

m

�(((m + n)/2)+ 1,�2
r )√

m!n!
|n〉〈m|

×
{
π
2 − 2�a, m = n,

2
m−n e−i(m−n)[z+(1/2)](π/2) sin {[(π/4)−�a] (m − n)} , n �= m. (E5)

Similarly, The corresponding expression for the 8PSK radial and angular protocol can be obtained similarly—only the
angular integral needs to be adapted.

2. Cross-shaped postselection

We start by using the definition of the region operators in Eq. (5) and the sets Ac
0, Ac

1, Ac
2 and Ac

3 from Eq. (D5):

Rc
0 = 1

π

∫ ∞

�c

∫ ∞

�c

|x + iy〉〈x + iy|dydx,

Rc
1 = 1

π

∫ −�c

−∞

∫ ∞

�c

|x + iy〉〈x + iy|dydx,

Rc
2 = 1

π

∫ −�c

−∞

∫ −�c

−∞
|x + iy〉〈x + iy|dydx,

Rc
3 = 1

π

∫ ∞

�c

∫ −�c

−∞
|x + iy〉〈x + iy|dydx.

All their integrals have the same form and differ only in their boundaries. Hence, we derive only the expression for Rc
0

and describe what is need to obtain the remaining integrals. We start by using the completeness relation, 1 = ∑
n |n〉〈n|,

twice and obtain

Rc
0 = 1

π

∑

n,m

|n〉〈m|
∫ ∞

�c

∫ ∞

�c

〈n|x + iy〉〈x + iy|m〉dydx

= 1
π

∑

n,m

|n〉〈m|√
n!

√
m!

∫ ∞

�c

∫ ∞

�c

e−(x2+y2)(x + iy)n(x − iy)mdydx.

For m = n we find

∫ ∞

�c

∫ ∞

�c

e−(x2+y2)(x2 + y2)ndydx =
n∑

k=0

(
n
k

)∫ ∞

�c

e−x2
x2kdx

∫ ∞

�c

e−y2
y2(n−k)dy

= 1
4

n∑

k=0

(
n
k

)
�

(
k + 1

2
,�2

c

)
�

(
n − k + 1

2
,�2

c

)
,

where we used Eq. (E3) to express the integrals in terms of the incomplete gamma function.
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For m �= n, we deduce

∫ ∞

�c

∫ ∞

�c

e−(x2+y2)(x + iy)n(x − iy)mdydx

=
n∑

j =0

m∑

k=0

(
n
j

)(
m
k

)∫ ∞

�c

e−x2
xj +kdx

∫ ∞

�c

e−y2
yn+m−j −k(−1)m−kin+m−j −kdy

= 1
4

n∑

j =0

m∑

k=0

(
n
j

)(
m
k

)
(−1)m−kin+m−j −k�

(
j + k + 1

2
,�2

c

)
�

(
n + m − j − k + 1

2
,�2

c

)
,

where we again used Eq. (E3). Note that (−1)m−kin+m−j −k = in+3m−j −3k = in−m+k−j . Including this in the expression for
the region operator, we obtain

Rc
0 =

∑

n,m

|n〉〈m|
4π

√
n!

√
m!

·

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑n
j =0

(
n
j

)
�
(
j + 1

2 ,�2
c

)
�
(
n − j + 1

2 ,�2
c

)
, n = m,

∑n
j =0

∑m
k=0

(
n
j

)(
m
k

)

×�
(

j +k+1
2 ,�2

c

)
�
(

n+m−j −k+1
2 ,�2

c

)
in−m+k−j , n �= m.

(E6)

We observe that the integral for the case m = n consists only of squares of x and y, hence this part is not sensitive to sign
changes and therefore equal for all four operators Rc

z , z = 0, 1, 2, 3.
For m �= n, when we calculate Rc

1, we face an integral of the same form as for Rc
0 once we substitute x �→ −x̃. This

leads to
∫ −�c

−∞
e−x2

xj +kdx = (−1)j +k
∫ ∞

�c

e−x̃2
x̃j +kdx̃.

So, this substitution introduces a factor of (−1)j +k, leaving the remaining expression unchanged. If we substitute y �→ −ỹ,
as required for the calculation of Rc

3, we find

∫ −�c

−∞
e−y2

yn+m−j −kdy = (−1)n+m−j −k
∫ ∞

�c

e−ỹ2
ỹn+m−j −kdỹ.

Here, we obtain a factor of (−1)n+m−j −k. Finally, the calculation of Rc
2 requires two substitutions, namely x �→ −x̃ and

y → −ỹ, which introduces a factor of (−1)j +k(−1)m+n−j −k. Let us denote the power of −1 that occurs in the expression
for the region operator z by D(z)

j ,k,m,n. According to the consideration above, we find

D̃(0)
j ,k,m,n = 1,

D̃(1)
j ,k,m,n = (−1)j +k = (−1)k−j ,

D̃(2)
j ,k,m,n = (−1)j +k(−1)m+n−j −k = (−1)m+n = (−1)n−m,

D̃(3)
j ,k,m,n = (−1)m+n−j −k = (−1)n−m+k−j .

To include the power of i in this factor, we define D(z)
j ,k,m,n := D̃(z)

j ,k,m,nin+m−j −k. Therefore, we finally arrive at

Rc
z =

∑

n,m

|n〉〈m|
4π

√
n!

√
m!

·

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑n
j =0

(
n
j

)
�
(
j + 1

2 ,�2
c

)
�
(
n − j + 1

2 ,�2
c

)
, n = m,

∑n
j =0

∑m
k=0

(
n
j

)(
m
k

)

×�
(

j +k+1
2 ,�2

c

)
�
(

n+m−j −k+1
2 ,�2

c

)
D(z)

j ,k,m,n, n �= m.

(E7)
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APPENDIX F: FOCK STATE REPRESENTATION OF REGION OPERATORS FOR THE TRUSTED
DETECTOR SCENARIO

First, we express the POVM element, given in Eq. (D7), in the number basis, where we use Eqs. (6.13) and (6.14)
in [48]. After defining Cn,m := {1/πηd[(m − n)/2] + 1}√n!/m!(nn

d/(1 + nd)
m+1), a := 1/ηd(1 + nd) and b := ηdnd(1 +

nd), we obtain, for n ≤ m,

〈n|Gy |m〉 = Cn,me−a|y|2(y∗)m−nL(m−n)
n

(
−|y|2

b

)
, (F1)

where

Lαk (x) =
k∑

j =0

(−1)j
(

k + α

k − j

)
xj

j !
(F2)

is the generalized Laguerre polynomial of degree k and with parameter α [49].

1. Radial and angular postselection

We start with the expression for the region operators given in Eq. (4), where we replaced the POVM for the ideal
homodyne detector by that for the nonideal, trusted detector, and inserted the definition of the sets Ara

0 , Ara
1 , Ara

2 and Ara
3

from Eq. (D4),

Rra,tr
z =

∫ ∞

�r

∫ (π/2)(z+1)−�a

(π/2)z+�a

γGγ eiθ dθdγ =
Nc∑

n=0

Nc∑

m=0

|n〉〈m|
∫ ∞

�r

∫ (π/2)(z+1)−�a

(π/2)z+�a

γ 〈n|Gγ eiθ |m〉dθdγ .

Substituting the expression for Gy from Eq. (F1) yields

Rra,tr
z =

Nc∑

n=0

Nc∑

m=0

Cn,m|n〉〈m|
∫ ∞

�r

e−aγ 2
γ m−n+1L(m−n)

n

(
−γ

2

b

)
dγ

∫ (π/2)(z+1)−�a

(π/2)z+�a

e−iθ(m−n)dθ .

For n = m the angular integral simplifies to (π/2)− 2�a and the radial integral can be expressed as

∫ ∞

�r

e−aγ 2
γL(0)n

(
−γ

2

b

)
dγ =

n∑

j =0

(
n
n − j

)
1

bj j !

∫ ∞

�r

γ 2j +1e−aγ 2
dγ ,

where we used the sum representation (F2) of the generalized Laguerre polynomials. Using Eq. (E3), we obtain

〈n|Rra,tr
z |n〉 = Cn,n

2

(π
2

− 2�a

) n∑

j =0

(
n
n − j

)
1

aj +1bj j !
�
(
j + 1, a�2

r

)
.

For n �= m, we obtain for the angular integral 2/(m − n)e−i(m−n)[z+(1/2)](π/2) sin {(m − n) [(π/4)−�a]} and derive for the
radial integral

∫ ∞

�r

e−aγ 2
γ m−n+1L(m−n)

n

(
−γ

2

b

)
dγ =

n∑

j =0

(
m
n − j

)
1

bj j !

∫ ∞

�r

γ 2j +m−n+1e−aγ 2
dγ

= 1
2

n∑

j =0

(
m
n − j

)
1

aj +1+[(m−n)/2]bj j !
�

(
j + 1 + m − n

2
, a�2

r

)
.

We do not need to calculate the matrix element for m < n separately, as the region operator has to be Hermitian.
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In conclusion, we find for Rra,tr
z = ∑∞

n=0
∑∞

m=0〈n|Rra,tr
z |m〉|n〉〈m| the matrix elements

〈n|Rra,tr
z |m〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn,n
2

[
π
2 − 2�a

]∑n
j =0

(
n
n − j

)
�(j +1,a�2

r )

aj +1bj j !
, n = m,

Cn,m
m−n e−i(m−n)[z+(1/2)](π/2) sin

[
(m − n)

(
π
4 −�a

)]

×∑n
j =0

(
m
n − j

)
�
(

j +1+[(m−n)/2],a�2
p

)

aj +1+[(m−n)/2]bj j !
, n < m,

〈m|Rra,tr
z |n〉, n > m.

(F3)

Similarly, we obtain the corresponding expression for the 8PSK radial and angular protocol, where only the angular
integral has to be adapted accordingly.

2. Cross-shaped postselection

Similarly to the calculations for the untrusted scenario, we start by using the definition of the region operators in Eq.
(5) and the sets Ac

0, Ac
1, Ac

2 and Ac
3 from Eq. (D5),

Rc,tr
0 =

∫ ∞

�c

∫ ∞

�c

Gx+iydydx,

Rc,tr
1 =

∫ −�c

−∞

∫ ∞

�c

Gx+iydydx,

Rc,tr
2 =

∫ −�c

−∞

∫ −�c

−∞
Gx+iydydx,

Rc,tr
3 =

∫ ∞

�c

∫ −�c

−∞
Gx+iydydx.

Again, all integrals have the same form and differ only in their boundaries. Hence, we derive only the expression for Rc,tr
0

and describe the changes required to obtain the remaining integrals.
For n ≤ m we obtain

Rc,tr
0 =

∑

n,m

|n〉〈m|
∫ ∞

�c

∫ ∞

�c

〈n|Gx+iy |m〉dydx

=
∑

n,m

|n〉〈m|Cn,m

∫ ∞

�c

∫ ∞

�c

e−a(x2+y2)(x − iy)m−nL(m−n)
n

(
−x2 + y2

b

)
dydx,

where we inserted the expression for Gy from Eq. (F1) in the last line.
First, we treat the case m = n, where we have

〈n|Rc,tr
0 |m〉 = Cn,n

∫ ∞

�c

∫ ∞

�c

e−a(x2+y2)L(0)n

(
−x2 + y2

b

)
dydx

= Cn,n

n∑

j =0

(
n
n − j

)
(−1)j

j !

∫ ∞

�c

∫ ∞

�c

e−a(x2+y2) (x
2 + y2)j

bj (−1)j dydx

= Cn,n

n∑

j =0

(
n
n − j

)
1

bj j !

j∑

k=0

(
j
k

)∫ ∞

�c

e−ax2
x2kdx

∫ ∞

�c

e−ay2
y2(j −k)dy.

For the second equality we inserted the sum representation of the Laguerre polynomials (F2), and for the third equality
we used the binomial theorem to express (x2 + y2)j as a sum. Both the integrals over x and y are of the same form as
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discussed in Eq. (E3), therefore we obtain

〈n|Rc,tr
0 |n〉 = Cn,n

n∑

j =0

(
n
n − j

)
1

bj j !

j∑

k=0

(
j
k

)
1

aj +1�

(
k + 1

2
, a�2

c

)
�

(
j − k + 1

2
, a�2

c

)
. (F4)

Second, we deal with n < m. We have

〈m|Rc,tr
0 |n〉 = Cn,m

∫ ∞

�c

∫ ∞

�c

e−a(x2+y2)L(m−n)
n

(
−x2 + y2

b

)
dydx

= Cn,m

n∑

j =0

(
m
n − j

)
1

bj j !

∫ ∞

�c

∫ ∞

�c

e−a(x2+y2)(x − iy)m−n(x2 + y2)j dydx

= Cn,m

n∑

j =0

(
m
n − j

)
1

bj j !

j∑

l=0

(
j
l

) m−n∑

k=0

(
m − n
k

)
(−i)m−n−k

×
∫ ∞

�c

e−ax2
xk+2ldx

∫ ∞

�c

e−ay2
y2j −2l+m−n−kdy.

For the second equality we inserted the sum representation of the Laguerre polynomials (F2), and for the third equality
we used the binomial theorem twice: first, to express (x2 + y2)j as a sum, and second, to write (x − iy)m−n as a sum also.
Again, the integrals are of the form given in Eq. (E3). Therefore, we obtain

〈m|Rc,tr
0 |n〉 = Cn,m

4

n∑

j =0

(
m
n − j

)
1

bj j !

j∑

l=0

(
j
l

)

×
m−n∑

k=0

(
m − n
k

)
im−n−k(−1)m−n−k

aj +1+[(m−n)/2]

× �

(
l + k + 1

2
, a�2

c

)
�

(
j − l + m − n − k + 1

2
, a�2

c

)
. (F5)

As the region operators have to be Hermitian, we do not need to calculate the matrix elements for n > m separately.
Summing up, we find for Rc,tr

0 = ∑
n,m |n〉〈m|〈n|Rc,tr

0 |m〉 the matrix elements

〈n|Rc,tr
0 |m〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn,n
∑n

j =0

(
n
n − j

)
1

bj j !

∑j
k=0

(
j
k

)
1

aj +1

×� (k + 1
2 , a�2

c

)
�
(
j − k + 1

2 , a�2
c

)
, n = m,

Cn,m
4

∑n
j =0

(
m
n − j

)
1

bj j !

∑j
l=0

(
j
l

)
∑m−n

k=0

(
m − n
k

)

× im−n−k(−1)m−n−k

aj +1+[(m−n)/2] �
(
l + k+1

2 , a�2
c

)
�
(
j − l + m−n−k+1

2 , a�2
c

)
, n < m,

〈m|Rc,tr
z |n〉, n > m.

(F6)

Similarly to the cross-shaped postselection in the untrusted scenario, we observe that the integral for m = n contains only
even powers of x and y. Hence, this part is not affected by sign changes in the boundaries of the integrals. In contrast, for
n < m we have odd powers of x and y, so we expect additional powers of −1 in the expressions for 〈n|Rc,tr

z |m〉, z ∈ 1, 2, 3,
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compared with 〈n|Rc,tr
0 |m〉. By similar considerations to those set out in Sec. E 2, we obtain

D̃(0)
k,m,n = (−1)m−n−k,

D̃(1)
k,m,n = (−1)m−n

D̃(2)
k,m,n = (−1)k,

D̃(3)
k,m,n = 1,

where D̃(z)
m,n,k denotes the power of −1 that occurs in the expression for the region operator z. Note that we have already

included the factor (−1)m−n−k, which occurs in the expression for all z. We define D(z)
m,n,k := D̃(z)

m,n,kim−n−k and obtain for
Rc,tr

z = ∑
n,m |n〉〈m|〈n|Rc,tr

z |m〉 the representation with respect to the number basis

〈n|Rc,tr
z |m〉 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn,n
∑n

j =0

(
n
n − j

)
1

aj +1bj j !

×∑j
k=0

(
j
k

)
�
(
k + 1

2 , a�2
c

)
�
(
j − k + 1

2 , a�2
c

)
, n = m,

Cn,m
4a(m−n)/2

∑n
j =0

(
m
n − j

)
1

aj +1bj j !

∑j
l=0

(
j
l

)

×∑m−n
k=0

(
m − n
k

)
D(z)

k,m,n�
(
l + k+1

2 , a�2
c

)
�
(
j − l + m−n−k+1

2 , a�2
c

)
, n < m,

〈m|Rc,tr
z |n〉, n > m.

. (F7)

3. First- and second-moment observables

For the sake of completeness, we give explicit number-basis representations of the first- and second-moment observ-
ables, defined in Eqs. (D13)–(D16). We note that [24] gives explicit representations in the appendix, too, which again
depend on some Taylor expansion coefficients. In contrast, we give explicit expressions and solve the integrals similar
to our calculations for the region operators in the preceding appendices. In what follows, we give only expressions for
n ≤ m, as all operators need to be Hermitian, hence 〈k|Ô|l〉 = 〈l|Ô|k〉 gives the missing matrix elements.

We start with F̂Q, whose matrix elements with respect to the number basis are given by

〈n|F̂Q|m〉 = 1√
2

∫
(y + y∗)〈n|Gy |m〉.

Choosing polar coordinates and inserting the expression for Gγ eiθ from Eq. (F1) leads to

〈n|F̂Q|m〉 = Cn,m√
2

∫ 2π

0

(
eiθ + e−iθ) e−iθ(m−n)dθ

∫ ∞

0
γ m−n+2e−aγ 2

L(m−n)
n

(
−γ

2

b

)
dγ

= 2πCn,m√
2

δm,n±1

∫ ∞

0
γ m−n+2e−aγ 2

L(m−n)
n

(
−γ

2

b

)
dγ

= 2πCn,m√
2

δm,n±1

n∑

j =0

(
m
n − j

)
(−1)j

bj j !

∫ ∞

0
γ m−n+j +2e−aγ 2

dγ .

The remaining integral can be solved using (E3) for the special case where � = 0. Therefore, we obtain

〈n|F̂Q|n + 1〉 = πCn,n+1√
2

n∑

j =0

(
n + 1
n − j

)
1

aj +2bj j !
�(j + 2) = πCn,n+1√

2

n∑

j =0

(
n + 1
n − j

)
j + 1
aj +2bj (F8)
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and 〈n|F̂Q|m〉 = 0 for m �= n ± 1, where we used the
definition of the gamma function. Similarly, starting from
Eq. (D14), we derive

〈n|F̂P|n + 1〉 = i
πCn,n+1√

2

n∑

j =0

(
n + 1
n − j

)
j + 1
aj +2bj

= i〈n|F̂Q|n + 1〉 (F9)

and 〈n|F̂P|m〉 = 0 if m �= n ± 1.
The matrix elements of the second-moment observables

read

〈n|ŜQ|n〉 = −〈n|ŜP|n〉 = πCn,n

n∑

j =0

(
n
n − j

)
j + 1
aj +2bj ,

(F10)

〈n|ŜQ|n + 2〉 = −〈n|ŜP|n + 2〉

= πCn,n+2

n∑

j =0

(
n + 2
n − j

)
(j + 2)(j + 1)

aj +3bj ,

(F11)

and 〈n|ŜQ|m〉 = 〈n|ŜP|m〉 = 0 otherwise.

APPENDIX G: CHOICE OF THE CUTOFF
NUMBER Nc

In this appendix we briefly discuss our choice of the
photon cutoff number Nc. Following [14], we use the first
Nc Fock states to approximate Bob’s infinite-dimensional
Hilbert space with sufficient accuracy. Choosing Nc too
small leads to inaccurate results, while choosing Nc too
large increases the run time unnecessarily (the problem
size increases quadratically with increasing Nc). There-
fore, we examined the change in the secure key rate when
increasing Nc for different transmission distances and dif-
ferent postselection parameters for fixed parameters β =
0.95 and ξ = 0.01. The examinations in this appendix are
carried out for QPSK protocols by way of example, but
a similar behavior can be observed for eight-state proto-
cols as well. The result is visualized in Fig. 16, where it
can be seen that the secure key rate remains (almost) con-
stant for Nc ≥ 12 for all three curves. The relative changes
between neighboring data points for Nc ≥ 12 are lower
than 0.5% and for Nc ≥ 14 lower than 0.2%. This fluctu-
ations are mainly caused by the gap between steps 1 and
2, which is more sensitive to numerical errors. The relative
differences between neighboring data points of the results
for the first step are smaller than 0.01% for Nc ≥ 12. This
motivates our choice of Nc = 12 for the QPSK protocols in
the present paper, being a good compromise between accu-
racy and computational feasibility. Similarly, we chose

FIG. 16. Secure key rate versus chosen cutoff number Nc for
QPSK protocols and three different distances and choices of post-
selection parameter. For all three curves, we set β = 0.95 and
ξ = 0.01.

Nc = 14 as a sound compromise for 8PSK. The reason
for the higher cutoff compared with protocols with four
signal states is the slightly higher optimal coherent state
amplitude for 8PSK protocols, hence higher average pho-
ton numbers. In general, higher coherent state amplitudes
lead to higher non-negligible Fock number states, which
increases the required cutoff.
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