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Effective low-energy theories represent powerful theoretical tools to reduce the complexity in modeling
interacting quantum many-particle systems. However, common theoretical methods rely on perturbation
theory, which limits their applicability to weak interactions. Here we introduce the Variational Adiabatic
Gauge Transformation (VAGT), a nonperturbative hybrid quantum algorithm that can use nowadays quan-
tum computers to learn the variational parameters of the unitary circuit that brings the Hamiltonian to either
its block-diagonal or full-diagonal form. If a Hamiltonian can be diagonalized via a shallow quantum cir-
cuit, then VAGT can learn the optimal parameters using a polynomial number of runs. The accuracy
of VAGT is tested through numerical simulations, as well as simulations on Rigetti and IonQ quantum
computers.
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I. INTRODUCTION

Low-energy approximations permeate many-body
physics. Systems as diverse as cold atoms in optical lat-
tices [1], solid-state spin systems [2], and even current
superconducting quantum computers [3] are accurately
described by low-energy theories. Powerful theoreti-
cal methods have been developed to obtain low-energy
Hamiltonians from perturbative expansions, such as the
Schrieffer-Wolff transformation [4], or nonperturbative
methods [5]. However, due to the exponentially large
Hilbert space, numerical calculations rapidly become
unfeasible when the dimensionality of the Hilbert space
increases, while analytical results are limited to toy
models.

Quantum computers and simulators [6,7] are starting to
become experimentally available, even in the cloud [8].
It has been shown that quantum computers can accurately
approximate the ground state of many-particle systems [9–
11], estimate molecular energies [12], molecular docking
configurations [13], and even some excited states [14].
One of the main challenges in quantum simulation is com-
puting the dynamics of quantum many-particle systems
without having to resort to exact diagonalization or con-
ventional perturbation theory. Algorithms based on the
Suzuki-Trotter decomposition [7,15] have been adapted
to better exploit the capabilities of current noisy hard-
ware [16], while accurate evolutions for longer times
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can be obtained using variational fast-forwarding [17] or
Hamiltonian diagonalization [18,19] methods.

Here we introduce a hybrid variational quantum
algorithm for either block or full diagonalization of
N -qubit Hamiltonians, where complex calculations in
exponentially large Hilbert spaces are performed on a
quantum hardware while, when some assumptions are met,
the classical part of the algorithm scales polynomially in
N . Our algorithm provides an efficient way of finding
a variational circuit that brings the Hamiltonian to the
desired diagonal or block-diagonal form, which can be
used to extract low-energy interactions or estimate quan-
tum dynamics as in fast forwarding. Our method is based
on recent advances [20–24] in the context of adiabatic
gauge potentials (AGPs), which are infinitesimal gener-
ators of a unitary transformation diagonalizing a given
Hamiltonian. The AGP is nonperturbative, it can recover
Schrieffer-Wolff transformation in the perturbative limit,
and it is tightly connected to the Wegner Hamiltonian flow
[25], also called the similarity renormalization group [26].
Some works [20–24] propose a variational approach to find
an approximate AGP, and then use it to find an approxima-
tion of the diagonalizing unitary. Moreover, under some
assumptions, they show that the approximate AGP leads to
a unitary rotation that block diagonalizes the Hamiltonian,
instead of fully diagonalizing it. However, in these works
the parameters of the AGP are found using classical algo-
rithms or, for simple models, analytical arguments, leaving
the problem of exponentially large Hilbert spaces open.

For these reasons, here we introduce a different formula-
tion of the AGP theory, called Variational Adiabatic Gauge
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Transformation (VAGT), where we directly parametrize
the diagonalizing unitary as a shallow parametric quan-
tum circuit. Although AGP and VAGT share the same
cost function, the main result of this paper is to show
that VAGT optimization can be performed via a hybrid
classical-quantum algorithm, where a quantum computer
is used to manipulate the many-body operators and Hamil-
tonians, while a classical device processes the quantum
measurement outcomes to update the parameters, with-
out dealing with exponentially large Hilbert spaces. We
show that VAGT yields an accurate block diagonaliza-
tion with few variational parameters (low depth) when
the Hamiltonian has some energy separated or symme-
try separated blocks, and full diagonalization when the
number of parameters increases. Finally, the feasibility
of our method on current noisy intermediate-scale quan-
tum (NISQ) devices [6] is tested with experiments on the
Rigetti Aspen-9 and IonQ 11-qubit quantum processors.

Our paper is organized as follows. In Sec. II we intro-
duce VAGT optimization and the necessary quantum cir-
cuits and classical routines to obtain a good approximation
of the optimal parameters. In Sec. III we test VAGT via
numerical simulations on a classical computer, by simu-
lating the low-energy sector of different many-body spin
Hamiltonians, while in Sec. IV we present our simula-
tions on the Rigetti Aspen-9 and IonQ 11-qubit quantum
processors. Conclusions are drawn in Sec. V.

II. VARIATIONAL ADIABATIC GAUGE
TRANSFORMATION

We focus on the diagonalization, or block diagonaliza-
tion, of a Hamiltonian H , assuming that there is another
Hamiltonian H0 whose eigenvalues and eigenstates are
known, and possibly easy to prepare on a quantum device.
We thus split H as

H ≡ Hλ = H0 + λV, (1)

where λV = H − H0, and λ models the strength of the
correction. A good approximation of the ground state of
H can be prepared thanks to the adiabatic theorem [27],
by starting from the ground state |g0〉 of H0 and then
slowly increasing the interaction strength λ. For an evo-
lution time T, the approximate ground state is obtained as
|g〉 = T exp

(
−i

∫ T
0 Hμ(t)dt

)
|g0〉, where μ(t) is a function,

typically linear in t, satisfying μ(0) = 0 and μ(T) = λ.
Notice that we choose � = 1, and so we do throughout
this work. Such adiabatic preparation of the ground state
is accurate and efficient when the ground state of Hμ is
nondegenerate and well separated from the excited states
for all μ ∈ [0, λ].

A generalization of the adiabatic ground-state prepara-
tion is given by the adiabatic gauge potential [20,21,28],
which defines the infinitesimal generators of a unitary

transformation that allows the estimation of more eigen-
values, in some cases even performing full diagonaliza-
tion—see also Appendix A for more details. Consider
some infinitesimal generators Aμ for μ ∈ [0, λ], set the
unitary

Uμ = Tν exp
(
−i

∫ μ

0
Aνdν

)
⇐⇒ Aμ = i(∂μUμ)U†

μ,

(2)

and the rotated Hamiltonian

H̃μ := U†
μHμUμ, (3)

with Tν denoting the ordering with respect to ν. Depend-
ing on the problem, we want to reach a diagonal or block
diagonal H̃μ at the end of the evolution, when μ = λ [see
Fig. 1(a)]. We assume for the sake of simplicity that H0 has
two blocks, which, in the easiest case, correspond to two
degenerate eigenvalues hP and hQ of H0, with hP � hQ,
that are possibly split by the term λV, as in Fig. 1(b)—the
extension to Hamiltonians with more blocks is straightfor-
ward. In such a case, we call P and Q, respectively, the
projectors on the low-energy and high-energy sectors, but
in general P and Q can also be projectors on symmetry
sectors of the Hamiltonian H0. Note that, following the
AGP literature [29], we supposed that subspaces P and Q
are well defined; that means the strength of the perturba-
tion λ is small enough to not mix different energy sectors
arising from degenerate levels of H0 [see Fig. 1(b)]. For
block diagonalization we should impose that all the ele-
ments of the off-diagonal blocks are zero, i.e., PH̃μQ = 0.
Differentiating such an equation with respect to μ, we get

PU†
μGμUμQ = 0, Gμ := V+ i[Aμ, Hμ]. (4)

The latter equation can also be written as [U†
μGμUμ, H0] =

0 when H0 = hPP + hQQ has only two degenerate eigen-
values, as in Fig. 1.

The adiabatic gauge potential is a particular choice of
Aμ that satisfies the operator equation

[Gμ, Hμ] = 0, (5)

see Appendix A for more details. Such an equation is
stronger than Eq. (4) and, when exactly satisfied, the result-
ing H̃μ has no off-diagonal elements. Approximations of
the above exact solution were proposed in Refs. [20,21,29–
32], based on a variational approximation of the Aμ, with
optimal parameters obtained by variationally minimizing,
on a classical computer, either ‖[Gμ, Hμ]‖ or ‖Gμ‖, where
‖ · ‖ is the Hilbert-Schmidt norm. With some assumptions,
such a variational approximation of the AGP is efficient
in suppressing matrix elements between states that belong
to different energy sectors or that are well separate in
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FIG. 1. Pictorial representation of the action of the adiabatic
gauge transformation U, which performs a block diagonalization
of H = H0 + λV separating the low-energy (P) and high-energy
(Q) Hilbert spaces. (a) Example matrix elements of H before
(left) and after (right) the action of U. (b) Example structure of
H0 and V: the term V breaks the symmetries of H0 and splits its
degenerate eigenvalues, still maintaining them in two separate
subspaces with suitably large energy separation �.

the basis defined by the symmetries of H0, effectively
resulting in a block diagonalization of the Hamiltonian.
Therefore, the AGP can also be applied when low-energy
and high-energy sectors are a priori unknown.

In this work we propose a different variational approach,
whose parameters can be optimized in NISQ hardware.
Before entering in the details of the quantum algorithm,
we remark that the optimization procedure for AGP (see,
e.g., Ref. [24]) is entirely classical. Instead, in what fol-
lows, we define a hybrid optimization procedure that finds
the (block) diagonalizing unitary Uμ by taking advantage
of a quantum hardware to avoid dealing with exponentially
large spaces.

Taking inspiration from the success of hybrid varia-
tional quantum algorithms [33,34], we consider a vari-
ational quantum circuit ansatz for the adiabatic gauge
transformation (AGT) Uμ defined in Eq. (2), namely we
write

Uμ(α) = U0

L∏
�=1

e−iα�μB� , (6)

where α�μ are variational parameters, L is the number of
layers in the circuit ansatz, and B� are local operators.
Given the available gates in current quantum hardware we
choose B� such that eiαB� is either a one- or two-qubit gate.
If the Hamiltonian H0 is diagonal in the chosen basis, then
U0 = 1, otherwise we assume that U0 may be efficiently
expressed as a known quantum circuit. Each parameter
α�μ is a continuous function of the running parameter μ ∈
[0, λ]. By dividing such interval in T steps δμ we create a

discrete set of T values for μ:

μ ∈ [0, λ]→ {μt}Tt=1, μt = tδμ, t ∈ N. (7)

As a result we now have a discrete set of LT varia-
tional parameters {α�t }. Within precision δμ, defined by
the choice of the number of time slice T, the potential
Aμ = i(∂μUμ)U

†
μ at step t can be approximated via finite

differences as

Aμt 

L∑
�=1

α�t+1 − α�t
δμ

O�
t , (8)

where O�
t := U�

t B�(U�
t )

†, U�
t := U0

∏→
k<� e−iαk

t Bk
. We set

α�0 = 0 at step t = 0 for 1 ≤ � ≤ L and, starting from this
initial configuration, we iteratively impose either Eq. (4)
or (5), to get firstly α�1 and then the optimal parameters α�t
at all steps t. More precisely, as we clarify in the next sec-
tions, setting β�t = (α�t+1 − α�t )/δμ those equations can be
written as Xt · βt = Yt, for some operators Xt and Yt. Call-
ing β̃t the solution of such an operator equation we get the
gradientlike update rule

α�t+1 = α�t + β̃�t δμ, (9)

where all β̃�t are obtained by classical postprocessing of
quantum measurement results. We notice that, although
Eq. (9) resembles a gradient-ascent update rule, it is
obtained from a completely different route. Parametric
quantum circuits like the one in Eq. (6) can give rise to bar-
ren plateau in the cost function landscape [35–37] when the
parameters are randomly initialized or for global cost func-
tions. However, in the VAGT algorithm the cost function
is local and all the parameters are initialized to zero and
then evolved to the optimal values, a strategy that has been
found to address the barren plateau problem [37,38]. Some
more details are provided in Appendix B. An update rule
similar to Eq. (9), namely based on the solution of linear
system of equations with coefficients estimated via quan-
tum hardware, was discussed in the context of the quantum
imaginary-time-evolution algorithm [33,39], but the result-
ing circuits are entirely different. In the following sections
we study different applications that can be done efficiently
on a quantum hardware.

A. Quantum circuit implementation

Since H acts on a Hilbert space whose dimension expo-
nentially increases with the number of qubits, in general
the diagonalization or block diagonalization of the Hamil-
tonian is exponentially hard. Here we show that, provided
H can be accurately diagonalized by a shallow circuit,
such diagonalizing unitary can be found in polynomial
time using a hybrid quantum classical algorithm that can
nowadays be run on NISQ devices. Our algorithm is based
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on the minimization of the norm ‖Gμ‖ that, as we show
in Appendix B 1, is equivalent to the solution of the lin-
ear system

∑
� X l,�

t β�t = bl
t of L equations, from which we

can update the variational parameters following Eq. (9).
In order to define a quantum circuit to measure the coeffi-
cients X l,�

t and bl
t in a quantum computer, we first expand

V and Hμt in terms of Pauli operators

V =
∑

j

vj σj Hμt =
∑

j

hjtσj , (10)

where σj ≡ σ kj
1 ⊗ · · · ⊗ σ kj

N are strings of Pauli operators,
kj

i ∈ {0, x, y, z} and, in principle, the sum index runs up to
4N where N is the number of qubits. However, in most
physical relevant cases the Hamiltonian contains only a
limited number of terms, so most coefficients hjt and vj are
null. The quantum algorithm we are about to define does
not require to run a quantum circuit corresponding to such
zero coefficients. In Eq. (10) we also drop the dependence
on μt of hj to simplify notation.

We call computational basis the basis in which all
the Pauli operators σ z

k are diagonal. In terms of such
coefficients we find

bl
t = −

∑
j ,k

vj hktTr(σj i[Ul
tB

lUl†
t , σk]), (11)

X l,�
t =

∑
j ,k

hjthktTr(i[U�
t B�U�†

t , σj ] i[Ul
tB

lUl†
t , σk]), (12)

where the sums are restricted to non-null values of hkt and
vj . The detailed derivation of the last equations is reported
in Appendix B 2, where we also show how such quanti-
ties can be estimated on a quantum computer using the
circuits given in Fig. 2, where |φN 〉 is the maximally entan-
gled state that can be constructed using O(N ) operations
as in Fig. 2(c). Therefore, the number of operations in each
circuit is at most O(N + L).

The scaling efficiency of the method depends on the
connectivity of the Hamiltonians H0 and V, namely on
the number of terms NV and NH associated to a non-null
coefficient in the two quantities in Eq. (10). Suppose that
max(NV, NH ) = O(N γ ): for instance, if the Hamiltonians
contain just single-qubit terms, then γ = 1; for nearest-
neighbor interactions γ = 1, too; on the other hand, γ = 2
if H or V contain all possible two-qubit interactions. For
each step t, the number of circuits needed to evaluate all
terms, Eqs. (11) and (12), is, respectively, Nb = O(N 2γL),
NX = O(N 2γL2), where L is the number of layers in
Eq. (6). Therefore, the number of measurements to be per-
formed on the quantum device to calculate all variational
parameters through Eq. (9) is

O(N 2γL2T), (13)

Z

N

N

|0〉 H Rx

|φN〉
σk U †

l
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σj
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FIG. 2. Suitable quantum circuits to evaluate the VAGT trace
operations, appearing in Eqs. (11)–(12): (a),(b) show, respec-
tively, the quantum circuits to measure the quantities appearing
in b�t and X l,�

t ; (c) sample circuit to generate the maximally entan-
gled input states |φN 〉when N = 2 – see also the definition in Eq.
(B23); (d) circuit to measure the expectation values in Eq. (16),
where a product of single qubit rotations Rj is used to transform
σk ⊗ σ̃j into a product of Z measurements.

while the solution of all linear systems of equations is at
most O(L3) for each step t. Therefore, for shallow circuits
with L = poly(N ), both the algorithmic and measurement
complexities scale polynomially in the number of qubits N
and linearly in the number of steps T. Finally, we remark
that, when dealing with real quantum hardware, we have
also to take into account the shot cost S, namely the number
of times one has to repeat the same quantum measurement
to evaluate an expectation value with precision that scales
as 1/
√

S.

III. NUMERICAL RESULTS

A. Low-energy approximation

When well-defined energy sectors exist for the prob-
lem at hand, as in Fig. 1, the projected block-diagonalized
Hamiltonian PH̃P can be interpreted as a low-energy
effective Hamiltonian, that can be useful in the context
of many-body physics, where the original Hamiltonian
may be unmanageable for many purposes, such as calcu-
lating dynamics. Assume that P is known, and that the
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low-energy block can be expanded in the Pauli basis as

H eff = PH̃P =
∑

j̃

heff
j̃ σ̃j̃ , (14)

where σ̃j̃ are Pauli operators acting on N eff qubits, then
the expansion coefficients heff

j̃
can be obtained using a sim-

ple quantum circuit. Indeed, using the decomposition, Eq.
(10), we get

heff
j̃ =

∑
j

hjT

2N eff tr[U†
λσj UλPσ̃j̃ P], (15)

and such coefficients can be evaluated in hardware using a
simple circuit like the one in Fig. 2. Indeed, suppose that
P = 1N eff ⊗ |π〉N−N eff〈π | and that σ̃j̃ nontrivially acts only
in the P subspace, then we may write

tr[U†
λσj UλPσ̃j̃ P]

2Neff
= 〈πφNeff |U†

λσj Uλ ⊗ σ̃ ∗j̃ |πφNeff〉 ,
(16)

which can be measured using the circuit shown in Fig. 2(d).
In the above equations Uλ ≡ Uλ(αopt) and αopt are the opti-
mal parameters obtained at the end of the iteration, namely
with t = T. Therefore, provided that the number NP of non-
null expansion coefficients heff

j̃
in Eq. (14) is suitably small,

the effective Hamiltonian can be efficiently obtained.
We test our framework using the following three-qubit

model Hamiltonian

H = hσ z
3 + λ

[
(�σ1 · �σ3 + �σ2 · �σ3)− (σ x

1 + σ x
2 )

]
, (17)

with h = −5. For λ = 0 the Hamiltonian is diagonal in
the computational basis with only two degenerate, well-
separated energy levels. As λ grows, the off-diagonal part
of H is designed to completely remove the degeneracy,
while keeping the levels in two separate subspaces, as
showed in Fig. 3(b). In the Hamiltonian, Eq. (17), qubits
1 and 2 do not interact directly, but can effectively com-
municate via qubit 3. Qubit 3 is the one that define energy
sectors, so we can easily identify the low-energy projector
P in the computational basis as

P = 112 ⊗ |0〉3〈0| , (18)

where |0〉 is the eigenstate of σ z
3 with eigenvalue +1. This

means that, at the end of the process, one can obtain an
effective low-energy Hamiltonian that couples qubits 1
and 2, with interactions mediated by qubit 3 without hav-
ing to take into account its evolution at all. Even if this
is just a toy model, it is reminiscent of quantum com-
munication schemes [40–42]: if qubit 3 is replaced by a

(a)

(c)

(b)

Time

FIG. 3. Results obtained from the model Hamiltonian (17) via
numerical simulation with λ = 1, h = −5, T = 100 and L = 36.
(a) Absolute value of transformed Hamiltonian components |H̃ |jk
in the eigenbasis of H0. (b) Energy sectors defined by the Hamil-
tonian (17) as μ is running from 0 to λ = 1. (c) State fidelity
F1 between the time-evolved state and the one obtained from the
effective model, and fidelity F2 between the evolved and initial
states, as defined in Eq. (20), for different random initial states.
Solid lines represent the mean value and colored regions the 95%
confidence interval.

multiqubit communication channel, forming for example
a qubit chain, then this method can be used to find an
effective Hamiltonian for the sender and receiver qubits
only [43].

In Fig. 3 we present the results obtained with λ =
1 and T = 100. We use a variational ansatz composed
by two blocks of layers: the first one is made by three
layers of single-qubit rotations around the x, y, and z
axis, respectively, for each qubit; the second one is made
of parametrized two-qubit gates, σ x ⊗ σ x, σ y ⊗ σ y , and
σ z ⊗ σ z, for different pairs of qubits. Since the Hamilto-
nian, Eq. (17), is symmetric with respect to the exchange of
qubits 1 and 2, we employ a symmetric ansatz where each
operator B� in Eq. (6) satisfies [B�, S12] = 0, being S12 the
swap operator. Considering such symmetry and alternating
and repeating each block three times, we get L = 36 free
parameters. Figure 3(a) shows the absolute value of trans-
formed Hamiltonian components |H̃jk|, where the block
structure due to energy sectors [Fig. 3(b)] is clearly vis-
ible. The resulting effective interaction between qubits 1
and 2 is

H eff 
 −1.1 (σ x
1 + σ x

2 )+ 1.0 (σ z
1 + σ z

1 )+
− 0.2 (σ x

1σ
x
2 + σ y

1 σ
y
2 )+ 0.1 (σ y

1 σ
z
2 + σ z

1σ
y
2 ), (19)
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where only the terms larger than 0.1 have been shown, the
full Hamiltonian can be found in Appendix C. Figure 3(c)
shows the state fidelity F1 between the time-evolved state
according to the full Hamiltonian (17) and the one obtained
from the effective model, together with the fidelity F2
between the evolved and initial states

F1(t) = 〈ψeff
12 (t)| ρ12(t) |ψeff

12 (t)〉 ,
F2(t) = 〈ψeff

12 (0)| ρ12(t) |ψeff
12 (0)〉 ,

(20)

where ρ12(t) = tr3 |ψ123(t)〉〈ψ123(t)|,

|ψ123(t)〉 = e−itHλ |ξ12, 03〉 , |ψeff
12 (t)〉 = e−itHeff |ξ12〉 ,

|ξ12〉 are randomly generated two-qubit state, and t is varied
from 1 to 1000. As shown Fig 3(c), F2 displays a nontriv-
ial behavior, signaling a nontrivial dynamics. Since F1 ∼ 1
for t ≤ 1000, such dynamics is accurately reproduced by
the effective model for remarkably long times.

B. Block diagonalization

We now study the performance of the VAGT algorithm
with symmetry-defined blocks, by focusing on the follow-
ing spin-chain Hamiltonian with open boundary conditions

Hλ =
N−1∑
i=1

(
σ x

i σ
x
i+1 + σ y

i σ
y
i+1 + hσ z

i

)+ λ
N∑

i=1

σ x
i , (21)

where N is the number of qubits, while h and λ are, respec-
tively, the transverse and longitudinal fields. For λ = 0 the
model is exactly solvable, so eigenvalues and eigenvectors
can be found in O(poly(N )) time. For this Hamiltonian the
blocks can be identified as different magnetization sectors,
as H0 commutes with

∑
i σ

z
i , without necessarily being far

away in energy.
In Fig. 4 we present the results obtained with N = 4,

h = 4.5, λ = 1, and T = 100 by numerical simulation of
the quantum circuits. The VAGT in Eq. (6) is composed
of two blocks of layers, the first block contains two lay-
ers of parametrized single-qubit rotation gates around the
x and y axes, while the second block contains two lay-
ers of parametrized two-qubit gates. For the latter we
choose only nearest-neighbor σ y ⊗ σ y and σ z ⊗ σ z inter-
actions, and we alternate and repeat both blocks of layers
10 times, resulting in L = 140. Even if such an ansatz is
obviously not universal for a four-qubit system, the small
off-diagonal terms at the end of the optimization, as shown
in the left panel of Fig. 4(a), confirm the validity of our
algorithm. The solution can also be improved by using
deeper circuits and finer slicing, i.e., higher T. In Fig. 4(a),
we also show (right panel) the transformed Hamiltonian in
the magnetization basis, where the block structure associ-
ated with the different magnetization sectors defined by the
original symmetry is clearly apparent.

(a)

(b)

FIG. 4. (a) Results obtained from Hamiltonian, Eq. (21), for
N = 4, λ = 1, h = 4.5, T = 100, and L = 140. The transformed
Hamiltonian H̃ is shown both in the eigenbasis of H0 (left) and
in the magnetization eigenbasis of σ z

i (right). (b) Magnetization
sectors naturally defined by the symmetries of H0 are split for
nonzero μ. Values are obtained by analytically computing the
expectation value of

∑N
i σ

z
i on the eigenvectors of Hμ from

Eq. (21), for μ ∈ [0, λ] and λ = 1.

IV. IMPLEMENTATION ON NISQ DEVICES

We now discuss the implementation of our algorithm on
real quantum hardwares, the Rigetti Aspen-9 quantum pro-
cessor with 31 qubits, and IonQ quantum processor with
11 qubits, that we access through the cloud-based Ama-
zon Braket service [8]. In order to simplify the experiment,
we focus on two-qubit Hamiltonians, as in such a case, as
shown in Appendix D, we can fully exploit some specific
properties to minimize the number of gates employed, and
accordingly the simulation cost. With this simplification,
valid for N = 2, each circuit requires at most five qubits.
In order to fully exploit Aspen-9’s 31 qubits and reduce
cost, we run four different experiments in parallel, still
guaranteeing the presence of one or two “garbage” qubits
between different experiments to reduce possible crosstalk.
On the IonQ’s 11-qubits hardware we run instead two
experiments in parallel. In numerical simulations, the full
circuits shown in Fig. 2 are implemented. Using a univer-
sal variational ansatz the circuit depth is L = 15, but lower
depths are possible by using an ansatz suitably designed
for the specific Hamiltonian problem at hand. For this pur-
pose, we choose to test our method on quantum hardware
with the highly nondiagonal Hamiltonian defined below:

H0 = σ z
1 + σ z

2 , (22)
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V = v1σ
x
1 + v2σ

x
2 + v3σ

y
1 + v4σ

y
2 + v5σ

x
1σ

x
2+

+ v6σ
x
1σ

y
2 + v7σ

y
1 σ

x
2 + v8σ

y
1 σ

y
2 , (23)

with λ = 1 and where the vk coefficients are randomly
chosen between 0 and 1. Due to the lack of well-defined
sectors, whether they are defined by energy, magnetiza-
tion, or other physical quantities, we do not expect block
diagonalization in any basis, though thanks to the univer-
sal variational ansatz, we can expect full diagonalization in
the computational basis.

In Fig. 5 we show the results of our numerical simula-
tion and hardware experiments [44]. Figure 5(a) shows the
exact energy levels for different λ and the energy levels
obtained via VAGT with T = 10 discretization steps and
S = 100 measurement shots. We see that, in spite of the
finite discretization steps, finite measurement shots, and
imperfect gate implementation, results on the IonQ hard-
ware are very accurate, while simulations on Aspen-9 did
not converge. We run different experiments on Aspen-9,
always getting similar outcomes, though numerical sim-
ulations with Rigetti’s decoherence and dephasing times
show results comparable with IonQ. We believe that the
high errors on Rigetti’s hardware are possibly due to
the qubit connectivity, which requires extra compilation
steps in order to implement the nonlocal gates required
by the VAGT circuits. On the other hand, all qubits in
IonQ’s hardware are fully connected, so better results
are expected. Indeed, we see in Fig. 5 that the accuracy
obtained with IonQ hardware is very high.

In order to study the accuracy of the computed diago-
nal forms, rather than focusing on operator norms or other
mathematical distances, we focus on the study of physi-
cal quantities, like time-evolved correlation functions. In
Fig. 6 we plot the real part of the time-evolved correlation
function on the ground state:

Cα(t) = Re 〈g0|U†
λσ

α
1 e−itH̃λσ α1 Uλ |g0〉 , (24)

where α = x, z, |g0〉 is the ground state of H0, so that
Uλ |g0〉 is our approximation of the ground state of the
Hamiltonian; H̃λ is the Hamiltonian in its diagonal form,
reconstructed from either experimental or simulation data.
In Fig. 6 we see that all simulations provide an accu-
rate description of the dynamics, with the exception of the
simulations on the Rigetti hardware.

V. DISCUSSION AND CONCLUSION

We define the VAGT hybrid quantum algorithm for
block and full diagonalization of many-body Hamiltoni-
ans. It can be used to extract low-energy effective theo-
ries in complex many-particle systems or to approximate
long-time evolutions, e.g., using fast forwarding.

(a)

(b)

FIG. 5. (a) Energy levels for Hamiltonians, Eqs. (22) and (23),
as a function of μ ∈ [0 · · · λ] with λ = 1. (b) Absolute value
of the transformed Hamiltonian components |H̃ |jk, as obtained
with numerical simulations, and simulations on Rigetti’s or
IonQ’s hardwares. All simulations are performed with T = 10
discretization steps and S = 100 shots per measurement.

The VAGT is based on the AGP, a nonperturbative
method that generalizes the adiabatic theorem to multi-
ple energy levels. The AGP has been successfully used in
both analytical calculations with toy models and numerical
simulations with classical computers, which are neverthe-
less limited to few-body operators, because of the expo-
nentially large Hilbert space. The VAGT algorithm, on
the other hand, is specifically made for hybrid quantum-
classical simulations, where the complex calculations in
exponentially large spaces are efficiently performed by
the quantum hardware. It uses a variational quantum cir-
cuit approximation of the unitary transformation generated
by the AGP, whose optimal parameters are iteratively
obtained by merging outcomes from purpose-built quan-
tum measurements with simple classical postprocessing
routines. When a Hamiltonian can be transformed into a
(block-) diagonal form using a shallow parametric circuit,
then the VAGT algorithm can find the optimal parame-
ters efficiently, using a number of classical and quantum
operations that scale polynomially in the number of qubits.

We remind that the algorithm relays on the use of a
suitable ansatz for the choice of the shallow parametric
circuit: how to find such an ansatz, or even understand if
it can exist for a given target Hamiltonian, are obviously
rather relevant questions, which are out of the scope of the
present paper.

To show the performance of the VAGT algorithm,
we consider both random and physically motivated
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(a)

(b)

Time

Time

FIG. 6. Time-evolved correlation functions, as defined in Eq.
(24), obtained with different methods, using the Hamiltonians,
Eqs. (22)–(23). The ground states and time-evolution operators
are either computed exactly (exact, analytic), through numeri-
cal simulations with shot noise (simulation), or in the quantum
hardware (Aspen-9, IonQ). More precisely, in the exact line
we employ analytically computed ground states of H , obtain-
ing |gexact〉 and plot Cαexact = Re 〈gexact| σα1 e−itHσα1 |gexact〉. In all
the other cases we use instead the correlation function in the
form of Eq. (24), where the AGP is obtained using T steps and
L layers, using the same model and parameters of Fig. 5. The
analytic red line refers to a completely classical simulation of
our method, where quantum measurements are replaced with
analytically computed expectation values, the simulation green
line refers to a classical simulation of our algorithm on an ideal
quantum processor, where we implement also a quantum mea-
surement process simulation, using S = 100 shots. Note that an
ideal quantum processor is, by definition, unaffected by noise.
The Aspen-9 and IonQ purple and brown lines show quantities
computed from experimental data, obtained using real quantum
hardware.

Hamiltonians, where the block structure may come from
separated energy bands or may be defined by the sym-
metries of the problem. We perform both exact numerical
simulations and simulations with realistic error sources
(e.g., measurement shots), always obtaining convergence
after a few iterations. Moreover, we have also run our
algorithm on Rigetti and IonQ quantum computers, find-
ing very accurate results on the latter, possibly thanks to
its all-to-all qubit connectivity.
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APPENDIX A: ADIABATIC GAUGE POTENTIAL

Here we briefly review the theoretical derivation of the
AGP [24]. Consider a system evolving under the Hamil-
tonian Hμ(t) defined in Eq. (1), which is time dependent
through the parameter μ(t) and is written as a matrix in the
computational basis where all σ z

j are diagonal. We define
Uμ(t) the instantaneous unitary operator that diagonalizes
the Hamiltonian at time t

H̃μ(t) = U†
μ(t)Hμ(t)Uμ(t) ∀t, (A1)

with respect to an eigenbasis of H0, and we use the tilde
to denote operators in this reference frame. For the mov-
ing observer in the instantaneous eigenbasis of Ĥμ(t) the
effective Hamiltonian ruling the dynamics is [21]

Ĥ eff = H̃μ(t) − μ̇Ãμ(t), (A2)

where Ãμ(t) is the AGP in the moving frame:

Ãμ(t) = iU†
μ(t)∂μUμ(t); (A3)

the AGP in the standard frame is

Aμ(t) = Uμ(t)Ãμ(t)U
†
μ(t) = i∂μUμ U†

μ. (A4)

It is possible to show [21,24] that

i(∂μHμ + Fad) = [Aμ, Hμ], (A5)

where

Fad =
∑

n

(
∂με

n
μ

) |nμ〉 〈nμ| (A6)

is the adiabatic, or generalized force, operator [21], |nμ(t)〉
being the instantaneous nth eigenstate of Hμ(t).

Let us now suppose we want to diagonalize the Hamilto-
nian Hμ(t) at any time t. Instead of calculating directly the
unitary operator Uμ, we can search for its instantaneous
generator, the AGP. We use a variational approach, in the
sense that we make a hypothesis of a suitable form of Aμ,
Aμ(α), depending on some variational parameters α. Once
again, here we follow the approach of Ref. [24]. Let us now
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define

Gμ(α) = ∂μHμ + i[Aμ(α), Hμ]; (A7)

from Eq. (A5), if there is a set α∗ of variational parameters
such that Gμ = −Fad we also have

Aμ(α∗) = Aμ + Dμ, (A8)

where Dμ is an operator that commutes with Hμ.
In Ref. [24] it is also formally demonstrated that search-

ing for the operator Aμ, which minimizes the distance from
Gμ and Fad, that is searching for the best approximation of
the AGP, is equivalent to finding the variational parameters
that minimize Gμ(α) operator norm:

min
α
||Gμ(α)|| = min

α
||∂μHμ + i[Aμ(α), Hμ]||. (A9)

We remind that solving this equation leads to the best
approximation of the AGP, except for the diagonal part,
which is undetermined by construction, as we explicitly
state by Eq. (A8).

APPENDIX B: OUR VARIATIONAL ANSATZ

Taking inspiration from variational hybrid quantum
classical computation [33,34], we propose to use a “quan-
tum circuit”-type ansatz of the operator Uμ:

Uμ(α) = U0

L→∏
l=1

e−iαl
μBl

, (B1)

where L is the number of layers in the circuit ansatz, the
B operators are one- or two-local operators (loosely speak-
ing, eiαB is a one- or two-qubit gate); and the arrow over
the product sign defines the order of the product itself:
specifically,

L→∏
l=1

Ul := U1 U2 · · ·UL, (B2)

L←∏
l=1

Ul := UL UL−1 · · ·U1. (B3)

Note that in this paper we suppose to know the eigenvalues
and eigenstates of the H0 Hamiltonian defined in the main
text in Eq. (1), meaning we can efficiently construct the
quantum circuit realizing the rotation U0 such that

D0 = U†
0H0U0 (B4)

is diagonal, and consequently it is a constant element in the
definition of our variational circuit ansatz above.

We can compute the generator of Uμ, which is our vari-
ational hypothesis for Aμ, from its definition in Eq. (A4):

Aμ(α) = U0

L∑
k=1

[ →∏
l<k

e−iαl
μBl dαk

μ

dμ
Bk

←∏
l<k

eiαl
μBl

]
U†

0. (B5)

Equations (B1) and (B5) are valid for any value of μ. If we
want to (block) diagonalize the Hamiltonian in Eq. (1) we
can assume that μ is a running parameter, μ ∈ 0 · · · λ, and
iteratively find the generator Aμ for all points μ ∈ 0 · · · λ.

At this level, each parameter αl
μ is a continuous function

of the running parameter μ. If we now divide the interval
0 . . . λ in T intervals δμ, we create a discrete set of T values
for μ:

μ ∈ 0 . . . λ→ {μt}Tt=1,

μt = tδμ , t ∈ {1 . . . T} ∈ N.
(B6)

As a result, we now have a discrete set of variational
parameters, {α}L,T

l,t ; Uμt at the step t is expressed as a para-
metric evolution, depending on variational parameters αt,
and the expression of the generator at the step t is now

Aμt(αt,αt+1) =
L∑

k=1

αk
t+1 − αk

t

δμ
Ok

t , (B7)

where we use the finite-difference form for the derivative
of α with respect to μ and we define

Uk
t := U0

→∏
l<k

e−iαl
tB

l
, (B8)

Ok
t := Uk

t Bk(Uk
t )

†. (B9)

Since the Hamiltonian H0 in Eq. (1) is diagonalized by U0,
we can take advantage of the fact that U(μt = 0)|{α}=0 =
U0: this means that we know that the optimized parameters
{α}L,N

l,t=0 at the step t = 0 are all zero.
Moreover, Aμt(αt,αt+1) is a function of only the sub-

set of {α}Ll,t and {α}Ll,t+1 at the step t and t+ 1, respec-
tively. These two facts lead to an iterative method to solve
Eq. (A9):

(a) first compute Eq. (A9) at the step t = 0 with
{α}Ll,t=0 = 0, that we know are optimized already;

(b) this gives a function of only {α}Ll,t=1, the subset
of parameters at t = 1, that can be easily optimized (see
Appendix B 1 for more details);

(c) once the optimal parameters for t = 1 have been
obtained, one has to repeat the previous two steps in order
to obtain the optimal parameters for t = 2 and so on, until
one reaches the last step t = T, that corresponds to μ = λ
and the correct generator A(λ) for the unitary operator
U(λ) is finally obtained.
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1. Analytic minimization

As we said previously, at the time step t we want to
optimize the cost:

Cμt(αt+1,αt) = ||∂μtHμt + i[Aμt(αt+1,αt), Hμt]||2 (B10)

with respect to αt+1, since αt’s are optimized already.
Using the form, Eq. (B7), and Eq. (1) for the Hamilto-

nian, we find

Cμt(αt+1,αt) =
∥∥∥∥∥V+

L∑
l=1

αl
t+1 − αl

t

δμ
i[Ol

t, Hμt]

∥∥∥∥∥
2

= Tr(VV)+ 2
δμ

L∑
l=1

(αl
t+1 − αl

t)Tr(VQl
t)+

+ 1
δμ2

L∑
l,�

(αl
t+1 − αl

t)(α
�
t+1 − α�t )

× Tr(Ql
tQ
�
t ), (B11)

where we use the fact that V is Hermitian and we define

Ql
t = (Ql

t)
†=i[Ol

t, Hμt]. (B12)

In order to minimize the cost, Eq. (B11), we can now
calculate the gradient and set it to zero:

∂Cμt(αt+1,αt)

∂α�t+1
= 0 ∀� ∈ 1 · · · L, (B13)

L∑
l=1

(αl
t+1 − αl

t)

δμ
Tr(Q�

t Ql
t) = −Tr(VQ�

l ) ∀� ∈ 1 · · · L.

(B14)

Equation (B14) is a linear system that we can solve
numerically: once the solution for

β l
t ≡

(αl
t+1 − αl

t)

δμ
(B15)

is found, we can write the optimized parameters α�t+1 ∀� as

α�t+1 = α�t + δμβ�t . (B16)

2. Quantum circuits

For every step t ∈ 1 · · · T the method involves the solu-
tion of the linear system, Eq. (B14), so, at each step, we

need to compute

bl = −Tr(VQl), (B17)

X �,l = Tr(Q�Ql) (B18)

∀ �, l,∈ 1 · · · L, where we drop the t step index to sim-
plify the notation.

In order to evaluate them through a quantum computer,
let us suppose

V =
∑

j

vj σj Hμ =
∑

j

hj σj , (B19)

where σk are strings of Pauli operators ∀ k that forms a
complete basis of SU(N ) (eventually, some coefficients vj
and hj may be zero, depending on the specific model). Our
quantities become

bl = −
∑
j ,k

vj hkTr(σj i[UlBlUl†, σk]), (B20)

X �,l =
∑
j ,k

hj hkTr(i[U�B�U�†, σj ] i[UlBlUl†, σk]), (B21)

where we use also Eqs. (B9) and (B12), again dropping t
labels.

We are now left with the task of evaluating on a quantum
computer the following two types of terms:

1. Tr(σj i[UlBlUl†, σk]),
2. Tr(i[U�B�U�†, σj ] i[UlBlUl†, σk]) .

For this aim, we consider the identity below:

Tr(AB) = 2N 〈φ|AT ⊗ B |φ〉 , (B22)

where A and B are Hermitian operators acting on a 2N -
dimensional Hilbert space H, T indicates the transpose,
and |φ〉 is the maximally entangled state defined as

|φ〉 = 1√
2N

2N−1∑
i=0

|ii〉 ∈ H⊗H, (B23)

and {|i〉} is a orthonormal basis for H. Using Eq. (B22) we
can now express our target terms as

1. 2N 〈φ| σ T
j ⊗ i[UlBlUl†, σk] |φ〉,

2. 2N 〈φ| (i[U�B�U�†, σj ])T ⊗ i[UlBlUl†, σk] |φ〉 .

The choice of employing the 2N maximally entangled
state, Eq. (B23), in order to evaluate a trace as quan-
tum measurement output is guided by convenience. Others
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[18], use the maximally mixed state of N qubits ρ =
I/2N : even if it may seem an easier route, thanks to the
fewer qubits employed, we remark that preparing ρ usu-
ally involves preparing its purification, which happens to
be the state, Eq. (B23), and tracing out half of the quantum
register.

Note that σj are strings of Pauli operators, so σ T
j =

(−1)n
y
j σj , where ny

j is the number of σ y in σj . Furthermore,

(i[U�B�U�†, σj ])
T = −i[(U�†)

T
(B�)

T
(U�)

T
, σ T

j ]. (B24)

We can choose a variational ansatz where (B�)T ≡ B� ∀l
(in other words, we can use an ansatz in which σ y appear
an even number of times in each operator B�), so

(i[U�B�U�†, σj ])T = −i(−1ny
j )[V�†B�V�, σj ], (B25)

where V is our variational ansatz U, defined in Eq. (B8),
taken in the reverse order, i.e.,

Uk :=
→∏
l<k

e−iαlBl
,

Vk = (Uk)
T =

←∏
l<k

e−iαl(Bl)T =
←∏
l<k

e−iαlBl
;

(B26)

[of course one can choose an ansatz in which Bl too is not
symmetric, in this case a factor (−1)n

y
l , where ny

l is the
number of σ y in Bl, must be inserted in the exponential in
the equation above, as well as in Eq. (B25)].

Our target terms can now be written as

1. 2N (−1)n
y
j 〈φ| σj ⊗ i[UlBlUl†, σk] |φ〉,

2. 2N (−1)n
y
j +1 〈φ| i[V�†B�V�, σj ]⊗ i[UlBlUl†, σk] |φ〉.

For the first type of terms, we can consider the quantum
circuit of Fig. 2(a), where Rx is

Rx = 1√
2
(I− iσ x), (B27)

and the construction of the state |φ〉 from the standard ini-
tial state |00 · · · 0〉 is made by applying the Hadamard gate
on the first N qubit, followed by N CNOT gates, controlled
by the first N qubit with the second half of the register as
a target. In particular, for N = 2 the quantum circuit is the
one of Fig. 2(b), which constructs the state |φ〉 and can be
used as an input to the circuit above. Once the ancilla qubit
is measured in the σz basis, the probability pA(0) of getting
the outcome 0 is linearly related to the target:

〈φ| σj ⊗ i[UlBlUl†, σk] |φ〉 = 2− 4pA(0). (B28)

Similarly, the circuit of Fig. 2(c) can be employed to eval-
uate the second type of terms, as their values are encoded

in the probability of getting the outcome 0 from the first
ancilla qubit measurement through the relationship

〈φ| i[V�†B�V�, σj ]⊗ i[UlBlUl†, σk] |φ〉 = −4+ 8pA(0).
(B29)

3. Discussion about barren plateau

The update rule, Eq. (9), resembles gradient ascent, with
β playing the role of the gradient. In Ref. [35] it was shown
that as the number of qubits increases it becomes more
likely to start the evolution in flat areas of the parameter
space where the gradient is very small, severely slowing
down the optimization of the parameters. In spite of the
similarities with gradient ascent, our β is an entirely dif-
ferent quantity, resulting from the analytic minimization
of Eq. (B10). Nonetheless, it is interesting to study the
strength of the βt vector, because if βt is very small we
may end up having the same problems of gradient ascent.

To formally study this point, we derive a lower bound
for the solution of the linear system of equations X β = b
(we drop the dependence on t to simplify the formulae).
Let X = UλV† be the singular value decomposition of X ,
where U, V are unitary matrices and λ is diagonal with
λii ≡ λi > 0. Then, using the �2 norm we find

‖β‖2 = ‖Vλ−1U†b‖2 = ‖λ−1U†b‖2 =

=
∑

j

λ−2
j |(U†b)i|2 ≥ 1

λ2
max

∑
j

|(U†b)i|2 =

= ‖U
†b‖2

λ2
max

= ‖b‖
2

λ2
max

, (B30)

where λmax = maxj λj . Hence ‖β‖ ≥ ‖b‖/λmax. In order
to have an estimate of such quantities we note that
[U�B�U�†, σj ] =∑

k w�jk σk, namely that each commutator
can be expanded in the Pauli basis with σk different from
the identity. Since tr[σk] = 0 the only nonzero terms in
Eqs. (B20)–(B21) are those due to tr[σkσk] = 2N (see also
the discussion in the above section to see how these expo-
nential factors are treated after the measurements). There-
fore, as long as w�jk �= 0, both ‖Y‖ and λmax are O(2N )

and accordingly ‖β‖ � O(1). We now study the oppo-
site regime where w�jk 
 0. Indeed, barren plateau appears
when the evolutions are exponentially close to their
average value, namely when Uσj U† 
 ∫

dU Uσj U† = 0,
where dU is the Haar measure. More precisely, assuming
that the U� are independent for different � and using the
formulae from Ref. [35] we find

∫
dUb� = 0, (B31)

∫
dUX �,l = 2δl�

∑
jk

hj hktr[σj σk], (B32)
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so in the worst case one might expect a small β. However,
we note that the above analytic results come after several
assumptions: first, it is assumed that all U� form a 2-design,
and this is clearly not true since for small times the U� are
close to an identity operator, since we start with U� = 1;
then it is assumed that the operators U� for different �
are independent, and also this assumption does not seem
realistic. Finally, we note that the average of β = X −1b
is different from (

∫
dU X )−1(

∫
dU b), so even when Eq.

(B31) holds it is unclear if β 
 0. Because of all these dif-
ferences, it remains an open question to formally assess
whether barren plateaus may affect the performance of the
VAGT algorithm. As we discuss in the main text, since our
initialization is not random and the cost function is local,
heuristic arguments [38] suggest that the VAGT may be
free from the vanishing gradient problem.

APPENDIX C: FULL RESULTING
HAMILTONIANS

The full effective Hamiltonian (19) is

Heff ∼ −1.10 σ x
1 + 0.06 σ y

1 + 1.03 σ z
1

− 1.10 σ x
2 + 0.06 σ y

2 + 1.03 σ z
2

− 0.19 σ x
1 ⊗ σ x

2 − 0.04 σ x
1 ⊗ σ y

2

− 0.03 σ x
1 ⊗ σ z

2 − 0.04 σ y
1 ⊗ σ x

2

− 0.16 σ y
1 ⊗ σ y

2 + 0.10 σ y
1 ⊗ σ z

2

− 0.03 σ z
1 ⊗ σ x

2 + 0.10 σ z
1 ⊗ σ y

2 − 0.04 σ z
1 ⊗ σ z

2 ,
(C1)

where only two decimals are significant, consistently with
the choice of T = 100 and δμ ∼ 1/T.

APPENDIX D: SAVING MONEY: AN APPROACH
FOR N = 2

Even if the algorithm proposed in the previous section
is feasible on NISQ devices within reasonable limits, the
real costs of running experiments on real devices can be
high if a cost is charged for circuit reconfiguration, that
is implicit at any step in our variational approach. Conse-
quently, we develop an alternative method to reduce the
number of quantum circuits employed by the algorithm
itself: although this method can lead to lower costs (and
we actually use it in our experiments), we remark that it
is not efficient from the point of view of scalability, so
that it is practically useful for very small values of N only.
Dropping again the step index t, let us consider Eq. (B11):

C(αt+1,αt) =
∥∥∥∥∥V+

L∑
l=1

βlQl

∥∥∥∥∥
2

, (D1)

where we use definitions, Eqs. (B12) and (B15), for Ql and
βl.

We can expand the operators V and Ql ∀l on the basis of
Pauli strings, obtaining expressions with at most 4N oper-
ators (this expansion is exponentially inefficient, but for
N = 2 it leads to a 16-term expansion, that we can afford
easily):

V =
4N∑
i=0

viσi, (D2)

Qk =
4N∑
j=0

qkj σj , (D3)

where σi is a Pauli string of two operators and, by definition

yi = 1
2N Tr(Vσi), (D4)

qkj = 1
2N Tr(Qkσj ). (D5)

After some calculations, recalling that

Tr(σiσj ) = 2N δij (D6)

we obtain

C(αt+1,αt) = 2N (V +Qβ)T(V +Qβ), (D7)

where V is the vector of vi’s, Q is the matrix composed
by qkj and β is the vector of βi’s. We recall that the cost
function, as it is expressed in Eq. (D7) is the well-known
least-squares loss function of a multiple linear regression
classical problem, which can be solved efficiently.

Therefore, our goal is now to estimate efficiently the
elements of V and Q defined in Eqs. (D4) and (D5),
respectively.

For what concerns yi, they are already known in our
setting, since they are coefficients in Pauli decomposi-
tion of the operator V, the hard-to-diagonalize part of the
Hamiltonian.

Let us focus on qkj . Decomposing

Hμ =
∑

l

hlσl (D8)

and taking into account Eqs. (B12) and (B22) the quantity
we want to estimate is

qkj = 1
2N Tr(Qkσj ) =

= 2N

2N (−1)n
y
j
∑

l

hl 〈φ| σj ⊗ i[UkBkUk†, σl] |φ〉 , (D9)

where ny
j is the number of σ y Pauli operators in the string

σj . We already know that we can estimate this quantity via
the first type of quantum circuit presented in Appendix B 2.
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FIG. 7. Three quantum circuits carrying the same information:
in (a) the original circuit employed in the general method pre-
sented in Appendix B 2; in (b) a completely equivalent circuit,
with the same output; in (c) a further simplification of the circuit,
where we use the information about SU(4) algebra’s structure
coefficients.

Even for N = 2, the method presented above seems to
perform worse than the one presented in Appendix B 2. In
fact, the number of circuits we have to execute, we have

O(N γ L 4N T), (D10)

where N γ is the number of terms in the decomposition, Eq.
(D8), L is the length of the variational ansatz, T is the num-
ber of steps in the discretization of the parameterμ, and the
highly inefficient factor 4N comes from the decomposition
of Qk.

On the other hand, by this method we have only a quan-
tum circuit of the type shown in Fig. 2(a), which can be
reduced. In fact, consider Fig. 7: (a) shows the quantum
circuit we have to execute in order to calculate qkj , while
(b) shows a completely equivalent quantum circuit.

The probabilities of getting the outcome 0 on the ancilla
qubit are, respectively,

Pljk
(a)(0) =

1
2
− 1

4
〈φ| σl ⊗ i[UkBkUk†, σj ] |φ〉

Pljk
(b)(0) =

1
2
− 1

4
〈φ| i[σ T

l , σj ]⊗ UkBkUk† |φ〉 (D11)

and the equivalence between them follows from identity,
Eq. (B22), and from now on we simply denote both of them
with Pljk(0).

TABLE I. Rigetti Aspen-9 calibration data.

Qubits 32

Median T1 33 μs
Median T2 16 μs
Median 1Q fidelity 99.39%
Median 2Q fidelity 94.28%

As we can see also from Eq. (D11) the second circuit
gives a probability connected with the commutator

�lj = [σ T
l , σj ] = Fljhσh, (D12)

where Fljh are the structure coefficients of the algebra.
Using the last equation in Eq. (D11) we obtain

Pljk(0) = 1
2
− 1

4
iFljh 〈φ| σh ⊗ UkBkUk† |φ〉 . (D13)

From the equation above it is clear that, although in princi-
ple one has to run all different N γ · 4N circuits in Fig. 7(b)
with different �lj , since the latter is just a commutator of
two σ strings there are not so many different results for
�lj , and so there are not so many different quantum cir-
cuits one has to really run. Indeed, one can compute the
structure coefficients F classically and run only 16 (4N for
N = 2) circuit of the type showed in Fig. 7(c), where σh is
one of the 16 elements of the SU(4) basis. Keeping trace
of the original lj th term corresponding to a given σh one
can recover the information about the original probability
Pljk(0).

Note that, in the quantum circuit in Fig. 7(c) the rotation
of the ancilla qubit right before the measurement process
is different than that in Figs. 7(a) and 7(b):

Ry = 1√
2
I− i√

2
σy , (D14)

and the output probability of getting 0 from the ancilla
qubit is

Pkh
(c)(0) =

1
2
+ 1

2
〈φ| σh ⊗ UkBkUk† |φ〉 , (D15)

and we finally recover the originally searched for probabil-
ity via

Pljk(0) = 1
2
− 1

4
iFljh(2Pkh

(c) − 1). (D16)

Finally, we remark that in the quantum circuit in Fig. 7(c)
it is possible to replace the indirect measurement with a
direct one: in other words, it is possible to remove the
ancilla qubit, replacing the control Bk and control σh gates
with measurements of the expectation value of Bk ⊗ σh on
the principal register. This is possible only because both
Bk and σh for all k and h’s are Pauli strings, so they are
observables.
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TABLE II. IonQ 11 qubit processor calibration data.

Qubits 11

Median T1 > 107 μs
Median T2 2× 105 μs
Median 1Q fidelity 99.5%
Median 2Q fidelity 97.5%

APPENDIX E: CALIBRATION DATA

We use real quantum processors for this work. We report
in the tables calibration data for both hardwares: Rigetti
Aspen-9 (Table I) and IonQ 11 qubit processor (Table II).
Data are available at the Rigetti website [45] and in Ref.
[46] as well as in website [47] for IonQ.
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