PHYSICAL REVIEW APPLIED 18, 014040 (2022)

Editors’ Suggestion

Demonstration of Decentralized Physics-Driven Learning

Sam Dillavou®,* Menachem Stern®, Andrea J. Liu®, and Douglas J. Durian
Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia,
Pennsylvania 19104, USA

™ (Received 11 January 2022; revised 7 March 2022; accepted 13 June 2022; published 18 July 2022)

In typical artificial neural networks, neurons adjust according to global calculations of a central pro-
cessor, but in the brain, neurons and synapses self-adjust based on local information. Contrastive learning
algorithms have recently been proposed to train physical systems, such as fluidic, mechanical, or elec-
trical networks, to perform machine-learning tasks from local evolution rules. However, to date, such
systems have only been implemented in silico due to the engineering challenge of creating elements that
autonomously evolve based on their own response to two sets of global boundary conditions. Here, we
introduce and implement a physics-driven contrastive learning scheme for a network of variable resistors,
using circuitry to locally compare the response of two identical networks subjected to the two different sets
of boundary conditions. Using this method, our system effectively trains itself, optimizing its resistance
values without the use of a central processor or external information storage. Once the system is trained
for a specified allostery, regression, or classification task, the task is subsequently performed rapidly and
automatically by the physical imperative to minimize power dissipation in response to the given voltage
inputs. We demonstrate that, unlike typical computers, such learning systems are robust to extreme dam-
age (and thus manufacturing defects) due to their decentralized learning. Our twin-network approach is
therefore readily scalable to extremely large or nonlinear networks, where its distributed nature will be an
enormous advantage; a laboratory network of only 500 edges will already outpace its in silico counterpart.

DOI: 10.1103/PhysRevApplied.18.014040

I. INTRODUCTION

The confluence of ideas from neuroscience and machine
learning has contributed immensely to our fundamental
understanding of the nature of learning [1,2]. However,
biological neural networks differ fundamentally from stan-
dard machine-learning algorithms in an important way
[3,4]. A typical artificial neural network (ANN) requires
a processing unit (e.g., a CPU) that trains the network by
minimizing a global cost function [5], while repeatedly
storing and retrieving information from a separate elec-
tronic memory. This von Neumann architecture is very
successful but creates a severe computational bottleneck.
In contrast, the brain and other biological networks [6,7]
are more akin to extremely sophisticated and adaptive
metamaterials: they are physical systems made of repeated
locally responsive elements (e.g., neurons and synapses)
that generate learning as a highly complex emergent prop-
erty. This distribution and parallelization of computation
and memory storage allows the human brain (approxi-
mately, 10!! neurons and 10'* synapses) to function at
reasonable speeds despite signal propagation time scales
millions of times slower than modern computational clock
cycles. Furthermore, it allows the brain to recover from

*sam.dillavou@gmail.com

2331-7019/22/18(1)/014040(12)

014040-1

massive damage [8] while consuming only modest power
[9] compared to typical computers.

These advantages of the brain have spurred efforts to
imitate its features [10—13]. Several of these have only
been realized in silico [14—16] or in hybrid in situ-in silico
form [17—19]. Actual laboratory realizations of “neuro-
morphic” hardware that bypasses processors tend to mimic
either standard machine-learning algorithms (e.g., back-
propagation) [20—22] or phenomenological synaptic rules
found in the brain (e.g., spike-timing-dependent plasticity)
[23-27].

An alternative approach to learning without a proces-
sor is to exploit physical processes in tandem with simple
and local rules [28]. Laboratory mechanical networks have
been trained without any sort of processor to develop neg-
ative Poisson ratios using the process of “directed aging”
[29,30], which exploits the natural physical tendency of
a mechanical network to minimize elastic energy when a
stress is applied. “Contrastive learning” [31] compares the
response of the system to two different boundary condi-
tions to adjust the degrees of freedom; this works more
robustly than directed aging in laboratory mechanical net-
works [32] but has thus far required an external entity
to enact these local rules. The “equilibrium-propagation”
framework [15,33,34] can be viewed as combining the
concept of directed aging with contrastive learning and

© 2022 American Physical Society

https://orcid.org/0000-0001-9842-9582
https://orcid.org/0000-0003-0215-8082
https://orcid.org/0000-0002-2295-2729
https://orcid.org/0000-0003-3240-2381
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevApplied.18.014040&domain=pdf&date_stamp=2022-07-18
http://dx.doi.org/10.1103/PhysRevApplied.18.014040

DILLAVOU, STERN, LIU, and DURIAN

PHYS. REV. APPLIED 18, 014040 (2022)

specifies simple local learning rules that, in principle,
can be implemented in flow networks [15]. Equilibrium
propagation nudges the network toward the desired tar-
get solution instead of imposing it directly; in the limit
of infinitesimal nudges, the learning rule performs gradi-
ent descent on a loss function. A framework known as
“coupled learning” [35] builds on equilibrium propagation,
providing the foundation for our work. In both frame-
works, although the learning rules are spatially local, they
require simultaneous access to two distinct states of the
same system. As a result, they are not temporally local
and they require the use of memory when implemented in
silico. This issue has thus far prevented them from being
realized in the laboratory.

In this study, we report the laboratory realization of a
physical learning machine composed of a pair of variable
resistor networks. We resolve the highly restrictive and
challenging requirement of contrastive learning in physical
systems by using two identical twin networks to simultane-
ously measure responses of the “same” physical system to
two different sets of boundary conditions. When we expose
the system to training data, the physical imperative to mini-
mize energy dissipation carries out the forward calculation
to “compute” the outputs within nanoseconds, while local
rules that adjust the resistances of the edges take the place
of backpropagation, obviating the need for a processor
or memory storage. We demonstrate that such a network
can learn to perform and switch among a variety of tasks,
including allostery, regression, and classification. Finally,
we show that because the learning is fully distributed and
each edge learns individually, the network functionality is
highly robust to network changes and damage, making it
readily scalable.

II. APPROACH

In previous work, simulated and laboratory mechan-
ical networks, and simulated flow networks, have been
trained to perform desired tasks by adjusting their internal
degrees of freedom [15,29,30,32,33,35-43]. This has been
accomplished either by minimizing a global cost func-
tion [36—40] or by using local rules aided by an external
processor [15,29,30,32,33,35,41-43]. Here, we consider a
self-adjusting electronic network comprised of nodes con-
nected by variable resistors, the values of which we call
the “learning degrees of freedom.” When voltages V! are
applied at input nodes, the voltages at designated output
nodes V0 are physically determined as functions of the
input voltages and the resistance values R of the network
edges, as the system minimizes the total energy dissipa-
tion. The coupled-learning [35] framework for supervised
learning specifies local evolution rules for how each resis-
tance should evolve to produce desired output voltages. In
doing so, the system exploits the physical processes that

govern the network to perform computation and imple-
ments contrastive learning as a spatially local rule, in a
similar manner to equilibrium propagation [33].

In supervised learning, training examples determine the
inputs V7 as well as the desired output responses VP
for each example. These desired output voltages can be
achieved by adjusting the resistances of all the edges, R
(the learning degrees of freedom). During training, the R
are adjusted based on a comparison of two distinct electri-
cal states imposed on the same network. In the free state,
the network attempts the desired task: input voltages 4
are applied and the network produces output voltages VO
In the clamped state, the same inputs VI are applied but
voltages are also applied at the output nodes; those volt-
ages are clamped at values V9 closer to the desired values

than 172:

Vo=l + (1 — 72, (1)

where 0 < n < 1 is the amplitude of the nudge toward the
desired state. .

When input voltage values V7 are applied to the net-
work, physical laws dictate current flow through the net-
work, adjusting all other node voltages—which we call the
“physical degrees of freedom.” These voltages naturally
find a configuration that minimizes total energy dissipa-
tion (the “physical cost function”). Therefore, clamping
the outputs nodes away from their “free” state toward the
goal both requires additional power and creates a lower-
error electrical state. Small adjustments to the learning
degrees of freedom, R, that lower the energy dissipation
of the (higher-power) clamped state PC relative to the
(lower-power) free state P will create a new free-state
equilibrium with output voltages that lie between the old
free and clamped states. The determination of whether to
increase or decrease each resistance requires only spatially
local information, namely which state (free or clamped)
has a higher energy dissipation (voltage drop) across the
edge in question, allowing edges to update their own resis-
tance. Similar to equilibrium propagation, this algorithm
approximates global gradient descent in the limit n < 1
[35], allowing a system to train itself by repeating this
update process. However, this algorithm is not temporally
local, in that it requires simultaneous access to the response
for two distinct sets of boundary conditions which, by
definition, cannot be imposed simultaneously. It is this
requirement that makes contrastive learning in physical
systems so challenging to realize.

Here, we resolve this conundrum by building two iden-
tical electrical networks to run the free and clamped states.
We use digital variable resistors (see Appendix C) on each
edge, which have 128 possible discrete resistance values.

014040-2

DEMONSTRATION OF DECENTRALIZED...

PHYS. REV. APPLIED 18, 014040 (2022)

The original (continuous) coupled-learning update rule is,

AR; = %([AV?F —[AVEP), @)

1

where y is a learning rate and AVC and AV are the
voltage drops in edge i of the clamped and free states,
respectively. In our discrete-resistor networks, the two net-
works adjust their (identical) resistances according to an
approximation of the original rule,

+8R if|AVE| > |AVE,
—3R otherwise.

ARS = ARF = { A3)

equivalent to taking the sign of Eq. (2) multiplied by
y = §R. This now Boolean operation is carried out by
integrated circuits housed on each edge of the network;
the entire system is illustrated in Fig. 1(a) (for the details
regarding the implementation of this rule, see Appendix
C). Because the learning process is decentralized, our sys-
tem functions without a central processor and training the
network to perform a task is straightforward. The pro-
cedure is detailed in Fig. 1(b): apply the desired input
voltages to the free and clamped networks, as well as
clamped output voltages Vg to the clamped network. Edge
updates are triggered by a global clock and no further
instructions to the edges are required, as each edge is
responsible for its own evolution.

To demonstrate the operation of our learning elements,
we train a two-edge network [Fig. 2(a)] as a voltage
divider: we ask the network to produce a single desired
voltage V” at its output (middle) node, while the input
nodes (top and bottom) are held at 5 V and 0 V, respec-
tively. To train, the following algorithm is repeated every
clock cycle:

(1) Update the clamped state output-node voltage, per

Eq. (1).
(2) Every edge updates its own resistance, per Eq. (3).

In machine-learning language, the “supervisor” tells the
network the right answer through the clamped boundary
condition. The network itself decides sow to achieve this
answer, as it receives no external instructions about which
edges to push up or down in resistance. That is, shown the
right answer, the network trains itself to produce it. In this
simple example, this distinction may seem trivial, but as
we increase the size of the network, the job of the supervi-
sor does not grow in complexity; it is always given by Eq.
(1). This is in stark contrast to ANNs, where the number of
gradient calculations grows rapidly with network size.

As previously described, edges modify their resistance
to bias the electrical state of the system away from the
free state and toward the clamped state. This results in
the free-state output voltage(s) “following” the clamped

Free Network

Impose Inputs Impose Inputs

v,oo v

Clamped Network

b}
|

easure
<+ Outputs

VO=F(VLR)

mpose
<« Outputs

Vo= =) VinVP

Update Both Networks

LSRR i C F
AR, = | TR TEIAVEL> 1AV,

—6R otherwise.

FIG. 1. A physics-driven learning machine (a). An image of
the 16-edge circuitry, with the network structure overlaid in blue.
Each breadboard, like the one highlighted in white, houses com-
mensurate edges in the free and the clamped network (for the
circuitry details, see Appendix C). (b) The procedure for training
the learning machine. A supervisor (i) imposes voltages to the
inputs (red) in the free network and (ii) to the inputs and outputs
(purple) in the clamped network. The network (iii) updates its
own resistances and V¢ is “calculated” by physical laws.

state voltages, which in turn move progressively toward
the desired voltage [Fig. 2(b)]. In our voltage divider, the
desired voltage is changed every 100 training steps. At
the start, all edges are initialized at the center of their
resistance ranges (approximately 50 k€2). Two phases in
each training are evident. At first, the clamped and free
networks are quite different and the two edges evolve in
opposite directions until the desired voltage is achieved
[Fig. 2(c)]. Once the network has reduced the error suf-
ficiently, noise dominates the signal to the comparators,
resulting in occasional incorrect evaluations when com-
paring voltages differing by less than 0.01 V [as shown
in Appendix C; see also Fig. 7(e)]. These occasional errors
create an error floor but also allow the network to explore
the phase space of valid solutions; the ratio of the two
resistance values [blue line in Fig. 2(c)] remains nearly

014040-3

DILLAVOU, STERN, LIU, and DURIAN

PHYS. REV. APPLIED 18, 014040 (2022)

@ ot @ V). @ sV

Free Clamped
Network Network

= DI +w

Output O
Input ‘

Network
Structure

@@ ov

Expanded View
4 =Imposed Voltage

n=0.5
Vg =1~)7)‘/’,(.)+)7VD_

4 Clamped

0 100 200 300 400
Training Steps

FIG. 2. A self-training voltage divider. (a). A diagram of the
network structure, as depicted in later figures (left) and expanded
(right) to show both free and clamped networks. A voltage is
imposed on the input nodes (red) in both networks and on the out-
put nodes (purple) only in the clamped network. The resistance
of each edge is identical in both networks. (b) The output-node
voltage VO versus training steps for both the free (blue) and
clamped (black) networks. The desired voltage V? is shown as
a gray dashed line. Note that the clamped state effectively guides
the free state toward the desired voltage, which is changed every
100 steps, from 3.75 V, to 2.25 V, to 1 V, and finally to 2.25 V.
(c) The resistance values of the two edges in the network (grays)
and their ratio (blue) as a function of training steps. The light
blue dashed line represents the ratio that will produce the desired
network output.

constant while both resistance values drift. This stochas-
ticity may be useful for more complex networks and tasks;
similar exploration of the available solutions space can
promote generalization in both biological [44] and artificial
networks [45].

II1. RESULTS

We now demonstrate the success of our system by
training a 16-edge network [Fig. 1(a)] to perform three

types of tasks inspired by biology (allostery), mathemat-
ics (regression), and computer science (classification). We
then demonstrate its flexibility and robustness.

Allostery is a common feature of proteins [37], in which
an input signal, namely strain applied to a local region of
the protein by binding a regulatory molecule, gives rise
to a desired strain or conformational change elsewhere
in the protein, enabling or preventing binding of a sub-
strate molecule. In a related problem of “flow allostery”
[39,47,48], a pressure drop in one region of a flow network,
(e.g., across input arteries in the brain vascular network)
gives rise to desired pressure drops elsewhere in the brain
at designated output locations that can be quite distant from
the input arteries, allowing the vascular system to deliver
enhanced blood flow and therefore more oxygen to active
parts of the brain. In the context of electrical networks,
allostery corresponds to producing specified output volt-
ages in response to given input voltages. This functionality
can be useful for tasks such as allocating power to various
connected devices.

We choose a three-input three-output allosteric task as
an example [Fig. 3(a) inset]. Using a nudge of n = 0.5,
the network successfully learns to deliver 3 V at all out-
put nodes, in response to three simultaneous input node
voltages of 5, 1, and 0 V. The mean-squared error for this
task drops during the learning process by over 4 orders of
magnitude [Fig. 3(a)]. We note that in the theoretical treat-
ment, n < 1 is assumed; n ~ 1 will in effect be taking a
finite-difference gradient with a large step size and thus
will substantially degrade the accuracy [35]. However, in a
physical system, noise (order 0.01 V) will dominate the
learning process if n is too small. Thus the success of
the network at finite n is a nontrivial demonstration of its
feasibility in real systems.

Regression is a more difficult test because the desired
output voltages are not constants but, rather, functions
of the input voltages. We ask the network to solve two
equations for two unknowns, choosing the two equations

VP =015V 4+ 0205 and VD = 0.25V 4+ 0.10V2.
(4)

We generate a data set of 420 randomly chosen input pair
values between 1 and 5 V and calculate the desired volt-
age for each input pair using the above equations. We set
an additional input node at 0 V to remove the freedom for
a global shift in voltage, resulting in three input and two
output nodes [Fig. 3(b), inset]. We divide the data into a
training set (400 elements) and a test set (20 elements).
Every clock cycle, the network is shown a new example
from the training set and it updates its resistance values
accordingly. Between these examples, the network is given
the entire test set one by one and its free-state outputs are
recorded as an indication of the performance of the net-
work. Given these conditions and n = 0.2, our learning

014040-4

DEMONSTRATION OF DECENTRALIZED...

PHYS. REV. APPLIED 18, 014040 (2022)

(a) 1 : ' T
100 Allostery
o 10°[Inputs
% -~ 107" [Outputs
> 102k sum of all errors
0N =
i O _3
c E107°1
8O, 4
s 1077°)
107k
50 100 150 200
Training Steps
(b) 10° T T T —
B . Regression
§a‘; 10
T <, -1
P 510
C = 2
S ©10°
=
107
0 100 200 300 400
Training steps
(c)
3| Step 1 o Step 120 Step 400
- - . VP =0.15V{ +0.2V;
= 2 ° VP =025V + 0.1V}
o & °
T gl P =
..
e ®e
0
0123 450123450123 475
Inv
V2/V1
FIG. 3.

—_
Q.
-

Classification

1 Epoch
—{
* * * *
0 50 100 150 200 250 300

Training steps

93% ¢

© (= 5]

22 iy

ST BN Aaa

O o[2452 step 1 @%&ep 50 A%tep 300
012345 012345 012345

Sepal length (V)

One physical system performs many tasks. (a) The mean-squared error for each of three outputs and their sum (black)

versus training steps for an example allostery task. (b) The mean-squared error for each of two outputs and their sum (black) for a
two-parameter regression task for each output node. The large purple circles indicate the training steps shown in (c). (¢) Snapshots of
the values for both outputs at three steps during training for the regression task in (b). The lines indicate the desired output values.
Regression involves two parameters and thus both axes are scaled by V! to project the results into two dimensions. (d) The test-set
classification error for the iris benchmark data set [46] versus training steps (faded symbols). Smoothing of the data with a window of
30 training steps (solid line) highlights that the final plateau accuracy is above 95%. The large red circles indicate the training steps
shown in (e). The desired voltage for each class is remeasured every epoch, indicated by the gray stars (for details, see Appendix A).
(e) Snapshots of the classification success of the test set projected into the two-dimensional space of two of the four inputs (sepal
length and petal width, rescaled to 0—5 V). The species of iris is denoted by the marker shape. The gray shapes are correctly classified,

while the red shapes are incorrectly classified.

machine reduces the mean-squared error for the entire test
set by over 2 orders of magnitude [Fig. 3(b)], producing
an accurate result despite its small size [Fig. 3(c)]. Note
that during training, the network finds an extremely good
fit to the data around step 120 but cannot maintain it due to
some combination of noise, sampling error from sequen-
tial training, and small bias in the internal logic circuitry
of the edges. The observed rise in test error before the final
plateau is a common feature in machine learning [49].
Data classification is an even more stringent test of the
network. We use a benchmark data set of three species
of iris flowers [46]. The network is tasked with classify-
ing these flowers based on four measurements: the petal
and sepal length and width. We withhold 120 of the 150
flowers as a test set and train on 30 flowers, ten from
each species. We designate five input nodes (one for each

measurement plus one fixed ground) and three output
nodes [Fig. 3(d), inset]. Between training steps, the entire
test set of 120 flowers is run through the network and a
flower is considered correctly classified if its three outputs
are closest (L, norm) to the desired outputs of the correct
species. We implement a custom output scheme in which
the desired outputs for a given species are recalculated
every epoch by averaging outputs of that species. This pro-
vides protection against training toward infeasible outputs
and robustness to initial conditions (for the full task spec-
ification and training details, see Appendix A). Using this
algorithm with n = 0.1, the network is able to classify the
iris data set with over 95% accuracy [Fig. 3(d)]. For com-
parison, a linear classifier trained using logistic regression
on these data achieves a test accuracy of 98%. The small
discrepancy likely stems from the bias of the update rule

014040-5

DILLAVOU, STERN, LIU, and DURIAN

PHYS. REV. APPLIED 18, 014040 (2022)

Regression

(a) |r Classification |rAIostery

i
Output

®) . 10"
o
= 0
© 0.15 10_1 %A
5 107 §<
g 0 102 3 5
= 3 % =
= 10 o
§0.05 e 2
o Fig. 2(b
SR ,Fig. 2(b) 105
(©)100

80
C_E/ 60 1 4
"~ 40

20 3

0

900

1900 2100 2300 2500

Training steps

FIG. 4. The learning machine is flexible and retrainable. (a) The network structure, with the input (solid red) and output (purple
outlined) nodes indicated for seven distinct tasks (further details for each task are given in Appendix A). (b) The classification error
(task 1) and mean-squared error (tasks ii—vii) versus training steps. The data are smoothed over a window of 30 training steps, with raw

values of five numbered edges over the entire training process; right, the network structure with these five numbered edges highlighted.

(regularization), as well as the restrictions to resistance val-
ues, namely that they are chosen from a set of positive dis-
crete values, which limits adjustments to the hypersurfaces
separating the classes of data. The two-dimensional projec-
tion of the four-dimensional input data [Fig. 3(e)] shows
that incorrectly classified flowers lie along overlapping
edges of class clusters.

We now highlight some features of the system. The first
is the ability to learn new tasks. Unlike simulated net-
works, a physical learning machine must be physically
manufactured. Therefore, a given network is far more use-
ful if it can switch from one task to another on demand.
For our system, there is no imposed direction of informa-
tion travel as in a feed-forward neural network, so any node
can be used as an input node, output node, or hidden node.
We demonstrate this flexibility by training our network to
perform seven distinct tasks in succession, using different
input-output configurations [Fig. 4(a)]. In this sequence,
our 16-edge network performs one classification task (i),
four allosteric tasks with numbers of output nodes rang-
ing from 1 to 4 V (ii—v), and two two-parameter linear
regression tasks (vi—vii). The network successfully learns
each task in turn, as indicated by the reductions in the
mean-squared error [Fig. 4(b)]. The edges are not reset

between tasks but simply find new values as the network
adjusts to its new task and training examples [Fig. 4(c)].
Because of this ability to retrain using any input-output
combination, a network does not need to be designed
specifically to perform certain tasks—it can be trained on
any task that can be framed in terms of input and output
voltages. This flexibility stems, in part, from the abil-
ity of the system to “solve” a problem in multiple ways.
In this sequence of tasks, our 16-edge network performs
task ii, an allosteric task with one output, three different
times. Each time, the solution involves different values of
edge resistances R and, furthermore, explores this space
of approximately equally valid solutions that lie within
the noise floor [Fig. 4(c)]. We purposefully bias this drift
of resistor values to increase on average (see Appendix
C), which pushes the network to avoid high-power solu-
tions that may strain or damage hardware or waste energy.
By linearly biasing our update rule, given in Eq. (C2),
we effectively implement “lasso” regularization in our
network [50], which is known to promote test-set gener-
alization for the price of small increases in the error floor.
The network quickly erases memory of previous tasks, as
is typical in linear networks [42,51], as seen by the simi-
lar initial error in performing task ii each time [Fig. 4(b)].

014040-6

DEMONSTRATION OF DECENTRALIZED...

PHYS. REV. APPLIED 18, 014040 (2022)

(@) 100F . ————
T
80 / e
S 60 -
< <N\ Pov
o™ 40 SVAg e -
ool bo 1 Inputs 4 Edges |
Removed
0 L L L L L
(b) 10’
e 10°
S,
o =10~
?5
c E.n2
8) 10
= 403
107 : :
100 200 300 400 500 600
Training steps
FIG. 5. The learning machine is robust to damage. (a) Edge

resistance versus training steps for an allosteric task, as edges
are cut. The inset shows the network structure with edges num-
bered by order of removal. The voltage values indicate the task
being performed. The input nodes are solid red and the output
nodes are outlined in purple. (b) The mean-squared error for this
two-output allostery task versus training steps. Note the spikes
every 100 training steps, when an edge is removed, followed by
recovery.

The “capacity” of these networks (e.g., the maximum num-
ber of trainable output nodes as a function of the number
of nodes and edges in the system) and their ability to
retain memory of previous tasks are subjects for future
work.

A second useful feature of our network as a learn-
ing system is its robustness to damage. Physical systems
used to implement simulated neural networks, such as
CPUs, are often quite fragile. The breakage or removal of
part of a computer usually disables it completely. In con-
trast, biological systems can often function despite massive
damage; given the right conditions, a plucked flower not
only survives but it can generate an entirely new plant.
While our system cannot grow new edges, it can easily
recover its desired function after substantial damage. To
demonstrate this feature, we train our network to perform
a two-output allosteric task [Fig. 5(a), inset]. We track the
resistance values of five edges [Fig. 5(a)], removing one
every 100 training steps. During training, our 16-edge net-
work reduces the mean-squared error of the outputs by sev-
eral orders of magnitude from its initial value [Fig. 5(b)].
The removal of an edge can produce an immediate spike
in error as the currents adjust to the new network struc-
ture. However, the network recovers each time by finding
a novel solution to the task even after nearly one third of

the network structure is destroyed. Because the network
is homogeneous, no edge is special and no single part
of the network is essential to its proper functioning. We
note that in this demonstration, we prune edges empiri-
cally found to be important; that is, we choose edges the
removal of which produces a spike in error. In fact, a sub-
stantial fraction of edges produce only a modest change
in error when pruned, as is the case for the third pruned
edge. Even in this linear system, memories can be robust
enough against damage that retraining often is not even
needed.

IV. DISCUSSION AND CONCLUSIONS

We have built a flexible robust physics-driven learning
circuit that learns complex tasks by adjusting its internal
elements without top-down instruction from a human or
computer. Even with only 16 edges, it is capable of a vari-
ety of tasks unspecified in its design, namely classification,
regression, and allosteric functionality.

Four key concepts underlie the system. First, the edge
resistances are “learning” degrees of freedom, distinct
from the node voltages, which are “physical” degrees of
freedom. Physics constantly adjusts the physical degrees
of freedom to minimize energy dissipation, while the learn-
ing degrees of freedom are only adjusted during training.
Then they are frozen, preserving the ability to perform
the learned task. Second, there are more than enough
learning degrees of freedom even in our small system to
satisfy all the constraints applied in the task examples.
This is why the system is able to satisfy all the tasks
[39] and why it is robust to substantial damage. Third,
our approach specifies a local rule for adjusting the learn-
ing degrees of freedom that approximates minimization of
the cost function [15,35]. The cost functions themselves
are different for different learning tasks but the form of
the learning rule, i.e., the adjustment procedure of each
edge, remains the same for any task. This is why the sys-
tem can learn new tasks. Fourth, the implementation of two
identical networks resolves a nontrivial constraint for con-
trastive learning, wherein two states of a single system,
corresponding to different boundary conditions, must be
compared. Our implementation does not require any addi-
tional on-board memory storage, help from a CPU, or the
use of temporal signals to enact. As such, it is massively
scalable and robust to operate. It is also therefore robust
to manufacturing errors such as nonfunctioning edges in
both networks. This robustness could be further enhanced
by increasing the connectivity of the network, allowing for
more edges to be removed before nodes are disconnected
from one another. The robustness of our system to addi-
tional types of malfunction, such as discrepancies between
the two networks, is a subject for future work. There is
still much to be understood about even our modest 16-
edge system but the simplicity of its local rules and its

014040-7

DILLAVOU, STERN, LIU, and DURIAN

PHYS. REV. APPLIED 18, 014040 (2022)

basis in well-understood physical laws suggest the pos-
sibility of understanding exactly what and how it learns
[47,48,52]. Certainly, theoretical understanding seems less
difficult to attain for the physical learning machine than for
many other neuromorphic realizations, not to mention the
brain itself.

Although the abilities of our current prototype are mod-
est compared to artificial neural networks, the successful
realization of a physical learning machine opens up numer-
ous paths for future work. Our system allows us to explore
modes of learning that are not practical in an artificial neu-
ral networks but are present in biological systems, such as
updating learning degrees of freedom in a desynchronous
manner [53] or before the physical degrees of freedom
equilibrate [54]. From a practical perspective, potentiome-
ters with more (or continuous) states, as well as logarith-
mic or pseudologarithmic spacing of the resistance values,
will greatly improve the network flexibility and reduce the
error floor [35]. Diodes or other nonlinear circuit elements
will allow the system to perform currently prohibited oper-
ations such as mimicking an XOR gate [15,55]. Importantly,
we can improve both the network size and speed while
reducing the size of the components. Our largest network
has only 16 edges, each on its own breadboard, and takes
up several square feet. Our voltage application and mea-
surement hardware limits the network to steps at 3—5 Hz
but the network itself is capable of operating multiple
orders of magnitude faster. Furthermore, due to its Boolean
logic and simultaneous comparison of two networks, as
opposed to the use of memory or temporal signals, and its
robustness to damage and thus manufacturing defects, the
system is massively scalable. We estimate that the system
can easily be scaled up in the number of edges and in the
frequency of training steps by at least 6 orders of mag-
nitude using readily available circuit-fabrication methods
[56]. Such a circuit would have a footprint 5 orders of mag-
nitude smaller than our prototype (for back-of-envelope
calculations of these numbers, see Appendix B).

In computational neural networks, the computation time
increases rapidly with the number of edges. An exciting
feature of our system is that the addition of edges to the net-
work does not increase computation time per training step,
since all edges perform their own adjustments completely
in parallel. This feature arises because outputs are not com-
puted but are physical responses to stimuli and because the
job of imposing the clamping voltages does not increase
in complexity as the network grows. The speed of learning
depends on the physical size of the system and its inherent
(tiny) capacitance, which together determine the time scale
on which the voltages reach equilibrium (of the order of
nanoseconds in our system). In the current prototype, this
is far faster than our clock-cycle time and thus does not
affect training times. Furthermore, due to its nonspecific
structure, flexibility, and ability to withstand to damage,
the scaling of our system is robust to imperfections and

defects that invariably seep in when the number of com-
ponents increase. It is possible that this ready scalability
of physical learning machines may one day allow them
to compete with computational neural networks. Already,
with a modest increase of x 100 in network size with no
speed change, our prototype would outperform a simula-
tion implementation as in Ref. [35] due to the inherent
bottleneck in the simulation of relying on a processor
and memory. Furthermore, as seen in simulations of flow
networks [35,39,40], we expect the accuracy and compu-
tational capacity of our design to increase with the number
of edges and nodes in the system.

We can anticipate many potential uses for our sys-
tem even in a realization closer to its current mod-
est form. Our system is energy-efficient, drawing of
the order of 10 mW to “calculate” outputs, with
a rough upper bound of power = voltage? /resistance ~
(5V)?/1k2 = 25 mW. The efficiency may be improved
substantially by decreasing the voltage range of the net-
work and/or increasing the resistance of the edges by a
constant factor. Because it draws little power and does
not require separate memory storage, our system may be
preferable to a CPU- or GPU-simulated neural network
when energy or space are at a premium. Furthermore,
power consumption is not concentrated [as in a CPU or
a graphics processing unit (GPU)] but distributed evenly
across the learning machine, allowing future versions to
massively increase speeds without overheating. Because
its function is not encoded in its design, our system may
be appropriate for tasks that require on-demand flexibility;
for example, as a sensor that detects deviations from an as-
yet unspecified background signal. Furthermore, because
of this in situ training, such applications would avoid the
simulation-reality gap, training on real-world data. Cou-
pled learning may also be generalizable to encompass
other learning paradigms such as unsupervised [57] or
reinforcement [58] learning, where the cost function or
reward, respectively, could be encoded in the clamped
state. Finally, because it is robust to damage, physics-
driven learning may be useful for scenarios where a system
is exposed to danger.

Our system is robust to damage because it is composed
of many repeated identical elements that update them-
selves in response to stimuli. It is therefore a kind of
“learning material” or metamaterial in the sense that it is
a many-element system with learning as an emergent col-
lective property that is not inherent in the arrangement
of its elements, nor in the selection of input or out-
put locations. If constructed appropriately, physics-based
learning networks should be easily modifiable after con-
struction; just as the removal of arbitrarily chosen edges
does not destroy functionality, additional edges do not
require precise placement to be useful. It is not outlandish
to imagine a future adaptive realization of similar learning
circuits that would have no need for any a priori design

014040-8

DEMONSTRATION OF DECENTRALIZED...

PHYS. REV. APPLIED 18, 014040 (2022)

in order to learn and could be augmented or divided like
clay.

ACKNOWLEDGMENTS

We thank James MacArthur for advice regarding cir-
cuit design and Marc Miskin for instructive discussions,
especially regarding scalability. This work was supported
by the National Science Foundation via the University
of Pennsylvania Materials Research Science & Engineer-
ing Center (MRSEC) Grants No. DMR-1720530 (S.D.
and D.J.D.) and No. DMR-2005749 (A.J.L.) and by the
U.S. Department of Energy, Office of Basic Energy Sci-
ences, Division of Materials Sciences and Engineering
Award No. DE-SC0020963 (M.S.). A U.S. Patent Appli-
cation (No. 17/750,072) has been filed for the design of
the physics-driven learning circuit.

APPENDIX A: TASK DETAILS

The tasks listed in Fig. 4 in the main text are detailed
in Fig. 6. For allosteric tasks, the input or desired output
voltages are listed as single values. For regression tasks,
the training and test-set inputs are selected using a uni-
form random distribution between 1 and 5 V and the output
desired voltages are functions of these inputs, as listed. For
the classification task, each input (e.g., all petal widths)
is rescaled to span 0—5 V. A typical classification output
scheme in an artificial neural network (ANN) would des-
ignate one output node for each class and train toward
producing a high value (e.g., 5 V) at the node of the cor-
rect class and 0 V at all other output nodes. However, this
output basis is not feasible because our network is linear.
We instead choose an output basis as follows. At the start
of every epoch (every 30 training steps), we measure the
output response of the network to the average input values
from each species of flower in the training set. In a linear

Task Node: 1 2 3 4 5 6 7

8 9
Peta Peta Sepal Sepal
eng d o Length O | Width
5V oV

Network
Structure

Classification| O+

Allostery 4V

Allostery

=

Allostery 3V 3V 3V

v | Allostery 3V 2V 4V 1V |
. . 0.25/1 | 0.15/1

vi | Regression 0 +01% |+ 0.2 ‘
" . 0.15/ 0.2h1 +

vii| Regression +01l 0 0250

FIG. 6. The task details. The voltage specification by node
number for each task detailed in Fig. 4. The red cells are input
nodes and the purple-outlined cells are output nodes. The node
numbers correspond to the network structure as shown in the
inset.

network, this is identical to calculating the average out-
put values from all elements in the training set, as done in
previous work [43]. During the ensuing epoch, the desired
output voltage for each flower is this average response for
the appropriate species. These desired voltages evolve as
the network trains but eventually settle at consistent values.
Because these output averages depend solely on training
data, they may be useful in the future for determining when
to stop training a learning network. Furthermore, this aver-
aging method improves the initial accuracy beyond the
expected 33%, since it picks target values with a minimal
distance to the network response for a given species.

APPENDIX B: SCALING THE ELECTRONICS

Our prototype is not built with speed or scale as a
priority and, as a result, leaves much room for improve-
ment in these regards. Our system takes up several square
feet and operates at about 3—5 Hz, limited by the data-
acquisition and voltage-setting hardware. Analog networks
utilizing variable weights and comparators (without uti-
lizing “physics as computation”) have been accomplished
with under 100 transistors per edge equivalent of our pro-
totype (often referred to as synapses) [24]. State-of-the-art
CMOS fabrication can yield roughly 300 x 10° transistors
per mm?, operating on nanosecond time scales or faster
[56]. Using these estimates, a 10’-edge physical learning
network could be implemented with a footprint less than
10 mm?. Such a system would represent a 10° increase in
edge count, a 10° decrease in footprint, and a 10® increase
in speed from our prototype.

APPENDIX C: CIRCUITRY

Our electrical network uses variable resistors as edges
(AD5220 digital potentiometers wired as rheostats). These
“digipots” are not continuously adjustable as assumed
by the original coupled-learning rule [35] but, instead,
have 128 resistance values evenly spaced by &R =
100 K2/128 ~ 7812. We therefore restrict the evolution
of each edge to discrete steps £3R in either direction. The
coupled-learning rule then simplifies to

+8R if [AVE| > |AVE,

AR; =)
—S8R otherwise.

(Ch

Other learning rules that only depend on the signs of the
gradient of cost functions have been shown to be success-
ful [59]. This new rule is also easier to implement digitally,
as it only requires a Boolean comparison of voltage drops
instead of a difference in energy dissipation. However, Eq.
(C1) still requires access to both the free and the clamped
electrical state. To this end, we construct two identical
networks for comparison, one running the free state and
the other running the clamped state. The corresponding

014040-9

DILLAVOU, STERN, LIU, and DURIAN PHYS. REV. APPLIED 18, 014040 (2022)

(b) SINGLE EDGE
Digipot Clock Chip Select
Clamped Network \L v Clamped Network
<+ —_—
100 kQ
RO- Digipot RO+
Comparator
+ V>0 A\
— | D Q uiD
—p-0p Flop
100 kQ Flop Cloc
+5V
Digipot
100 kQ
oW
Free Network ,t A Free Network

Digipot Clock I Chip Select

(c) CONTROL CIRCUIT
Debouncer

Trigger
Out 1 1 — 1.0

In2 Out 2

Out 3 In3]:)Digipot Clock

’ 05

sV 4) Chip Select
7 Flop Clock

Chip Select and

— i —@
Flop Clock J

—I; ' l_ 0.5
Digipot Clock B
XOR Output || |||| || |||||||||| || ||||

Flop Output I

FIG. 7. A single edge of the network. (a) An image of an edge, as constructed on a breadboard. (b) The circuit diagram for a single
edge, which houses the circuitry for both the free and the clamped network. Comparators and an XOR gate compute the direction of
resistance change based on the relative voltage drops across the free and clamped variable resistors (digipots), and the XOR output is
stored in a D-flop before being fed back into the up-down input of the potentiometers. (c) The global clock circuitry. The control circuit
receives an ascending or descending edge from the data-acquisition card (computer) into the “Trigger” port. This produces a cascading
effect through the debouncer, changing output 1, then 2, then 3, which are fed into XOR gates. (d) This cascade results in a descending
edge in the digipot chip select and D-flop clock signal, then a descending edge in the digipot clock signal, and finally a return to high
for both signals. As a result, the XOR output of the edge circuit shown in (b) is sampled and stored by the D-flop ahead of the digipot
clock, triggering a change in resistance. This avoids feeding the potentially fluctuating XOR signal directly into the digipot. (¢) The
average resistance change as a function of the comparator voltages V¢ and (Ve — V). Ideally, we would have step functions jumping
at (V¢ — Vr) = 0 V. Noise spreads out the transition and, in this edge, comparator bias shifts the curves to the right.

0.0

<ARISR>

Vg =-0.01V

-1.0
—0.020 -0.015 —-0.010 —0.005 0.000 0.005 0.010 0.015 0.020

VeVe (V)

E Resistance Changed

edges of the free and clamped networks always have the
same resistance and are housed on the same breadboard
(Fig. 7A).

The absolute-value comparison in Eq. (C1) is still non-
trivial to evaluate electronically. A comparator produces
a signed comparison AVS > AVT but this will yield the
opposite of our desired value if both drops are negative,

which we cannot rule out a priori. We can, however,
assume that the two voltage drops have the same sign.
Empirically, we find this is nearly always the case, espe-
cially for n <« 1. We can then use a second comparison,
AVE <0, to determine if AVE > AVF is equivalent to
|AV1.C| > |AVF| (positive voltage) or its inverse (negative
voltage). Our learning rule can now be written using only

014040-10

DEMONSTRATION OF DECENTRALIZED...

PHYS. REV. APPLIED 18, 014040 (2022)

functions of common logical circuit components:

C2
—S8R otherwise. €2

: F

AR {+8R if xor [AVE > AVF,0 < AVE],
We implement Eq. (C2) with two comparators (LM339AN),
one XOR gate (SN74ALS86N), and one D-flop (TI
CD74HC73E JK flop plus SN74ALS86N XOR gate) on
every edge [Fig. 7(b)]. On each edge, the output of the XOR
gate is stored in the D-flop and fed back into the up-down
input of the digital potentiometers in both the free and the
clamped networks. During training, the resistance updates
of every variable resistor are triggered by the descending
edge of a global clock signal fed into the digital poten-
tiometers. A switch debouncer or delay (MC14490PGQ)
circuit and three XOR gates are wired to generate two
sequential descending edge signals [red and green in
Figs. 7(b)-7(d)]. The first descending edge is used to
trigger a D-flop (TI CD74HC73E JK flop plus
SN74ALS86N XOR gate) to store the output of the XOR
gate [Eq. (C2)]. Because the learning machine naturally
moves the voltage of the free and clamped networks
toward each other, this XOR output (U/D signal) will typ-
ically become dominated by noise by the end of training
and will oscillate rapidly. Storing the value in the D-
flop ensures a clean signal in the U/D port of the digital
potentiometers, as shown in Fig. 7(b). Finally, the vari-
able resistors (digipots) used in our system (AD5220 100k)
have a slight bias in their logical evaluation. As a result,
the update rule [Eq. (C2)] is imperfectly evaluated at sim-
ilar free and clamped voltage drops, as shown in Fig. 7(d).
These incorrect evaluations do not prevent our system from
functioning but do limit the error floor.

[1] B. A. Richards, ef al., A deep learning framework for
neuroscience, Nat. Neurosci. 22, 1761 (2019).

[2] U. Hasson, S. A. Nastase, and A. Goldstein, Direct
fit to nature: An evolutionary perspective on biolog-
ical and artificial neural networks, Neuron 105, 416
(2020).

[3] A. Tavanaei and A. Maida, BP-STDP: Approximating
backpropagation using spike timing dependent plasticity,
Neurocomputing 330, 39 (2019).

[4] A. Ganguly, R. Muralidhar, and V. Singh, in 20th Interna-
tional Symposium on Quality Electronic Design (ISQED)
(Institute of Electrical and Electronics Engineers, New
York, New York, 2019), p. 335.

[5] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature
521, 436 (2015).

[6] A. Tero, R. Kobayashi, and T. Nakagaki, Physarum solver:
A biologically inspired method of road-network navigation,
Physica A 363, 115 (20006).

[7]1 K. Alim, N. Andrew, A. Pringle, and M. P. Brenner, Mech-
anism of signal propagation in Physarum polycephalum,
Proc. Natl. Acad. Sci. 114, 5136 (2017).

[8] R. A. McGovern, A. N. V. Moosa, L. Jehi, R. Busch, L. Fer-
guson, A. Gupta, J. Gonzalez-Martinez, E. Wyllie, . Najm,
and W. E. Bingaman, Hemispherectomy in adults and ado-
lescents: Seizure and functional outcomes in 47 patients,
Epilepsia 60, 2416 (2019).

[9] B. Sengupta and M. B. Stemmler, Power consumption
during neuronal computation, Proc. IEEE 102, 738 (2014).

[10] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, and
Z. Lin, Towards biologically plausible deep learning,
ArXiv:1502.04156 (2015).

[11] Y. Bengio and A. Fischer, Early inference in energy-based
models approximates back-propagation, ArXiv:1510.02777
(2016).

[12] Y. Bengio, A. Fischer, T. Mesnard, S. Zhang, and Y. Wu,
From STDP towards biologically plausible deep learning,
https://www.semanticscholar.org/paper/From-STDP-towar
ds-Biologically-Plausible-Deep-Bengio-Fischer/bed43{732
8b51590433dead30116balff5fb7602 (2015).

[13] D. Markovi¢, A. Mizrahi, D. Querlioz, and J. Grollier,
Physics for neuromorphic computing, Nat. Rev. Phys. 2,
499 (2020).

[14] M. Ernoult, J. Grollier, and D. Querlioz, Using memristors
for robust local learning of hardware restricted Boltzmann
machines, Sci. Rep. 9, 1851 (2019).

[15] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio,
and B. Scellier, Training end-to-end analog neural networks
with equilibrium propagation, ArXiv:2006.01981 (2020).

[16] E. Martin, M. Ernoult, J. Laydevant, S. Li, D. Querlioz, T.
Petrisor, and J. Grollier, EqSpike: Spike-driven equilibrium
propagation for neuromorphic implementations, iScience
24, 102222 (2021).

[17] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang,
E. Montgomery, P. Lin, Z. Wang, W. Song, J. P. Strachan,
M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, and Q.
Xia, Efficient and self-adaptive in-sifu learning in multi-
layer memristor neural networks, Nat. Commun. 9, 2385
(2018).

[18] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J.
Yang, and H. Qian, Fully hardware-implemented memristor
convolutional neural network, Nature 577, 641 (2020).

[19] L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T.
Schachter, Z. Hu, and P. L. McMahon, Deep physical neu-
ral networks trained with backpropagation, Nature 601, 549
(2022).

[20] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C.
Graves, S. Lam, N. Ge, J. J. Yang, and R. S. Williams, in
2016 53nd ACM/EDAC/IEEE Design Automation Confer-
ence (DAC) (Institute of Electrical and Electronics Engi-
neers, New York, New York, 2016), p. 1.

[21] Z. Wang, C. Li, W. Song, M. Rao, D. Belkin, Y. Li, P. Yan,
H. Jiang, P. Lin, M. Hu, J. P. Strachan, N. Ge, M. Barnell,
Q. Wu, A. G. Barto, Q. Qiu, R. S. Williams, Q. Xia, and J.
J. Yang, Reinforcement learning with analogue memristor
arrays, Nat. Electr. 2, 115 (2019).

[22] W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu, M.-F. Chang,
H.-J. Yoo, H. Qian, and H. Wu, Neuro-inspired computing
chips, Nat. Electr. 3, 371 (2020).

[23] Y. Arima, M. Murasaki, T. Yamada, A. Maeda, and H. Shi-
nohara, A refreshable analog VLSI neural network chip
with 400 neurons and 40 K synapses, IEEE J. Solid-State
Circuits 27, 1854 (1992).

014040-11

https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1016/j.neuron.2019.12.002
https://doi.org/10.1016/j.neucom.2018.11.014
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.physa.2006.01.053
https://doi.org/10.1073/pnas.1618114114
https://doi.org/10.1111/epi.16378
https://doi.org/10.1109/JPROC.2014.2307755
https://arxiv.org/abs/1502.04156
https://arxiv.org/abs/1510.02777
https://www.semanticscholar.org/paper/From-STDP-towards-Biologically-Plausible-Deep-Bengio-Fischer/bed43f7328b51590433dead30116ba1ff5fb7602
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1038/s41598-018-38181-3
https://arxiv.org/abs/2006.01981
https://doi.org/10.1016/j.isci.2021.102222
https://doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1038/s41928-019-0221-6
https://doi.org/10.1038/s41928-020-0435-7
https://doi.org/10.1109/4.173115

DILLAVOU, STERN, LIU, and DURIAN

PHYS. REV. APPLIED 18, 014040 (2022)

[24] C. Schneider and H. Card, Analog CMOS deterministic
Boltzmann circuits, IEEE J. Solid-State Circuits 28, 907
(1993).

[25] S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, and W. D.
Lu, Experimental demonstration of a second-order mem-
ristor and its ability to biorealistically implement synaptic
plasticity, Nano Lett. 15, 2203 (2015).

[26] S. La Barbera, A. F. Vincent, D. Vuillaume, D. Querlioz,
and F. Alibart, Interplay of multiple synaptic plasticity fea-
tures in filamentary memristive devices for neuromorphic
computing, Sci. Rep. 6, 39216 (2016).

[27] A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein,
and T. Prodromakis, Unsupervised learning in probabilistic
neural networks with multi-state metal-oxide memristive
synapses, Nat. Commun. 7, 12611 (2016).

[28] M. Stern and A. Murugan, Learning without neurons in
physical systems, arxiv:2206.05831 (2022).

[29] N. Pashine, D. Hexner, A. J. Liu, and S. R. Nagel, Directed
aging, memory, and nature’s greed, Sci. Adv. 5, caax4215
(2019).

[30] D. Hexner, N. Pashine, A. J. Liu, and S. R. Nagel, Effect of
directed aging on nonlinear elasticity and memory forma-
tion in a material, Phys. Rev. Res. 2, 043231 (2020).

[31] J. R. Movellan, in Connectionist Models, edited by D. S.
Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton
(Morgan Kaufmann, Cambridge, MA, 1991), p. 10.

[32] N. Pashine, Local rules for fabricating allosteric networks,
Phys. Rev. Mater. 5, 065607 (2021).

[33] B. Scellier and Y. Bengio, Equilibrium propagation: Bridg-
ing the gap between energy-based models and backpropa-
gation, Front. Comput. Neurosci. 11, 13 (2017).

[34] B. Scellier, Ph.D. thesis, University of Montreal, school of
arts and sciences, 2021. Available at ArXiv:2103.09985.

[35] M. Stern, D. Hexner, J. W. Rocks, and A. J. Liu, Supervised
learning in physical networks: From machine learning to
learning machines, Phys. Rev. X 11, 021045 (2021).

[36] C.P. Goodrich, A. J. Liu, and S. R. Nagel, The Principle of
Independent Bond-Level Response: Tuning by Pruning to
Exploit Disorder for Global Behavior, Phys. Rev. Lett. 114,
225501 (2015).

[37] J. W. Rocks, N. Pashine, 1. Bischofberger, C. P. Goodrich,
A. J. Liu, and S. R. Nagel, Designing allostery-inspired
response in mechanical networks, Proc. Natl. Acad. Sci.
114, 2520 (2017).

[38] M. Stern, V. Jayaram, and A. Murugan, Shaping the topol-
ogy of folding pathways in mechanical systems, Nat.
Commun. 9, 4303 (2018).

[39] J. W. Rocks, H. Ronellenfitsch, A. J. Liu, S. R. Nagel,
and E. Katifori, Limits of multifunctionality in tunable
networks, Proc. Natl. Acad. Sci. 116, 2506 (2019).

[40] M. Ruiz-Garcia, A. J. Liu, and E. Katifori, Tuning and jam-
ming reduced to their minima, Phys. Rev. E 100, 052608
(2019).

[41] D. Hexner, A. J. Liu, and S. R. Nagel, Periodic train-
ing of creeping solids, Proc. Natl. Acad. Sci. 117, 31690
(2020).

[42] M. Stern, M. B. Pinson, and A. Murugan, Continual learn-
ing of multiple memories in mechanical networks, Phys.
Rev. X 10, 031044 (2020).

[43] M. Stern, C. Arinze, L. Perez, S. E. Palmer, and A. Muru-
gan, Supervised learning through physical changes in a
mechanical system, Proc. Natl. Acad. Sci. 117, 14843
(2020).

[44] D. Kappel, S. Habenschuss, R. Legenstein, and W. Maass,
Network plasticity as Bayesian inference, PLoS Comput.
Biol. 11, 1004485 (2015).

[45] Y. Feng and Y. Tu, The inverse variance-flatness relation
in stochastic gradient descent is critical for finding flat
minima, Proc. Natl. Acad. Sci. 118, 9 (2021).

[46] R. A. Fisher, The use of multiple measurements in taxo-
nomic problems, Ann. Eugen. 7, 179 (1936).

[47] J. W. Rocks, A.J. Liu, and E. Katifori, Revealing structure-
function relationships in functional flow networks via per-
sistent homology, Phys. Rev. Res. 2, 033234 (2020).

[48] J. W. Rocks, A. J. Liu, and E. Katifori, Hidden Topological
Structure of Flow Network Functionality, Phys. Rev. Lett.
126, 028102 (2021).

[49] Y. Yao, L. Rosasco, and A. Caponnetto, On early stop-
ping in gradient descent learning, Constr. Approx. 26, 289
(2007).

[50] R. Tibshirani, Regression shrinkage and selection via the
lasso, J. R. Stat. Soc. Ser. B 58, 267 (1996).

[51] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G.
Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A.
Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran,
and R. Hadsell, Overcoming catastrophic forgetting in
neural networks, Proc. Natl. Acad. Sci. 114, 3521 (2017).

[52] A. Holzinger, in 2018 World Symposium on Digital Intel-
ligence for Systems and Machines (DISA) (Institute of
Electrical and Electronics Engineers, New York, New York,
2018), p. 55.

[53] J. F. Wycoff, S. Dillavou, M. Stern, A. J. Liu, and D.
J. Durian, Desynchronous learning in a physics-driven
learning network, J. Chem. Phys. 156, 144903 (2022).

[54] M. Stern, S. Dillavou, M. Z. Miskin, D. J. Durian, and A.
J. Liu, Physical learning beyond the quasistatic limit, Phys.
Rev. Res. 4, L022037 (2022).

[55] M. Minsky and S. A. Papert, Perceptrons: An Introduction
to Computational Geometry (MIT Press, New York, NY,
2017).

[56] G. Yeap, et al, in 2019 IEEE International Electron
Devices Meeting (IEDM) (Institute of Electrical and Elec-
tronics Engineers, New York, New York, 2019), p. 36.7.1.

[57] H. Barlow, Unsupervised learning, Neural Comput. 1, 295
(1989).

[58] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, edited by F. Bach, Adaptive Computation and
Machine Learning Series (A Bradford Book, Cambridge,
Massachusetts, 1998).

[59] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A.
Anandkumar, signSGD: Compressed optimisation for non-
convex problems, PMLR 80, 560 (2018).

014040-12

https://doi.org/10.1109/4.231327
https://doi.org/10.1021/acs.nanolett.5b00697
https://doi.org/10.1038/srep39216
https://doi.org/10.1038/ncomms12611
https://arxiv:2206.05831
https://doi.org/10.1126/sciadv.aax4215
https://doi.org/10.1103/PhysRevResearch.2.043231
https://doi.org/10.1103/PhysRevMaterials.5.065607
https://doi.org/10.3389/fncom.2017.00024
https://arxiv.org/abs/2103.09985
https://doi.org/10.1103/PhysRevX.11.021045
https://doi.org/10.1103/PhysRevLett.114.225501
https://doi.org/10.1073/pnas.1612139114
https://doi.org/10.1038/s41467-018-06720-1
https://doi.org/10.1073/pnas.1806790116
https://doi.org/10.1103/PhysRevE.100.052608
https://doi.org/10.1073/pnas.1922847117
https://doi.org/10.1103/PhysRevX.10.031044
https://doi.org/10.1073/pnas.2000807117
https://doi.org/10.1371/journal.pcbi.1004485
https://doi.org/10.1073/pnas.2015617118
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1103/PhysRevResearch.2.033234
https://doi.org/10.1103/PhysRevLett.126.028102
https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/j.2517-6161.1996.tb02080.x
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1063/5.0084631
https://doi.org/10.1103/PhysRevResearch.4.L022037
https://doi.org/10.1162/neco.1989.1.3.295

	I. INTRODUCTION
	II. APPROACH
	III. RESULTS
	IV. DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGMENTS
	A. APPENDIX A: TASK DETAILS
	B. APPENDIX B: SCALING THE ELECTRONICS
	C. APPENDIX C: CIRCUITRY
	. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 5
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 33.84000
 33.84000
 33.84000
 33.84000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 9.00000
 9.00000
 9.00000
 9.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

