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In a moving acoustic medium, sound waves travel differently with and against the fluid flow. This well-
established acoustic effect is backed by the intuition that the fluid velocity bias imparts momentum on
the propagating acoustic waves, thus violating reciprocity. Based on this conception, fluid flow that is
transverse to the wave direction of propagation will not break reciprocity. In this paper we contrast this
common wisdom and theoretically show that the interplay between transverse mean flow and transverse
structural gliding asymmetry can yield strong nonreciprocity and even, surprisingly, one-way acoustic
waveguiding. To demonstrate that, we analyze a waveguide that comprises a few adjacent acoustic subd-
iffraction chains, i.e., linear chains of acoustic scatterers with monopolar or dipolar response. The structure
is embedded within a medium with mean flow velocity that is transverse to the waveguide axis. We find
the symmetry breaking conditions under which nonreciprocity is obtained, and we show how, under trans-
verse mean flow, with Mach numbers as low as 0.02, one-way propagation of the acoustic wave is obtained
on a sub-wavelength-thick acoustic waveguide. To demonstrate the phenomenon, we introduce two mod-
els. One in which the scatterers are assumed to be pointlike and the flow is homogeneous, and a second, in
which we accommodate the issue of possible wakes created by the presence of scatterers inside the flow.
The latter setup exhibits no direct interaction of the scatterers with the flow, by placing the waveguide in a
quiescent medium adjacent to a flowing medium. Our results push forward the understanding of acoustic
nonreciprocity, and may open another venue for the design of nonreciprocal acoustic wave devices for
various applications.
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I. INTRODUCTION

Acoustic nonreciprocity has gained a lot of attention
in recent years due to its numerous potential applications
[1,2]. It can be achieved using nonlinearities [3–5], and
by using active elements [6–8], but nevertheless, nonre-
ciprocal acoustic propagation is mostly known to occur in
moving media [9–12]. To illustrate that, assume that two
friends, Alfred and Beth, shown in Fig. 1(a), are located at
points A and B on the x axis, the distance between them is
L, and that they communicate via plane waves that travel
along the x axis in a fluid with uniform mean flow velocity
U0x̂, and acoustic wave speed c. Using simple kinematic
arguments, the time it takes for a signal from Alfred to
reach Beth is different than the time it takes for a signal to
propagate in the reciprocal direction,

τA↔B
d = L

c ± U0
. (1)

Clearly, in light of Eq. (1), nonreciprocity that is caused
due to a collinear fluid flow is rather weak at low Mach
numbers, q0 = U0/c � 1. Nevertheless, in the presence of
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sharp resonances the effect may be enhanced, giving rise
even to isolation. This has been demonstrated, for example,
using resonant cavities [13–16], waveguides connected in
a sensitive Mach-Zehnder interferometer setup [17], and
near zero index metamaterial waveguides [18]. Moreover,
faster synthetic motion and thereby stronger nonreciproc-
ity, may be emulated by space-time-modulated acoustic
metamaterials [19–24]. In contrast, if, as illustrated in
Fig. 1(b), the fluid flows transverse to the direction of
propagation, that is, if, for instance, Alfred and Beth are
located on the x axis as before, but the fluid flow veloc-
ity is U0ẑ, the time delay for a plane wave to propagate
between them is

τA↔B
d = L

c
, (2)

as in a stationary fluid [25]. The exact results in Eqs. (1)
and (2) are highly intuitive from the kinematic point of
view, which implies, allegedly, that in the presence of a
uniform mean flow, the communication between Alfred
and Beth will be nonreciprocal only if the wave that propa-
gates between them has some wavevector component that
is parallel to the fluid stream.
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FIG. 1. (a) If the medium between Alfred and Beth is flowing
in the same direction as the waves that propagate between them,
different wave behavior is expected when the propagation is from
left to right or vice versa. (b) If the medium between Alfred and
Beth is flowing transversely to the waves that propagate between
them, the waves are expected to propagate reciprocally.

In contrast with this common wisdom, in this paper we
show that, under certain conditions, it is also possible to
achieve strong nonreciprocity for waves that are propa-
gating along a direction that is transverse to the mean
flow velocity of the ambient medium. As we show below,
this is achieved by the near field interplay between the
transverse flow and structural transverse gliding asym-
metry. Remarkably, in this way we demonstrate below
one-way guiding with low Mach number flow and along a
sub-wavelength-thick waveguide. Under these conditions,
Alfred will be heard by Beth, while Beth will not be heard
by Alfred, or vice versa, although the flow is transverse to
the communication channel between them.

II. LINEAR CHAINS OF POINT SCATTERERS
INSIDE UNIFORM FLOW

A. Description of the model

We consider a waveguide that comprises N periodic lin-
ear chains of acoustic scatterers that are surrounded by a
medium with uniform transverse flow with respect to the
waveguide axis. All the scatterers are assumed to be point-
like and thus with low Reynolds number, introducing no
wakes in the uniform flow. Later in Sec. III this assumption
will be lifted. All the chains are located on the y = 0 plane,
parallel to the x axis, and consist of a periodic arrangement
of scatterers (modeled by their acoustic susceptibilities as
point sources) that are equally spaced with acoustically
small interscatterer spacing d < λ/2 [26], where λ is the
acoustic wavelength. See the illustration in Fig. 2 with
N = 3. The nth scatterer of chain number i (i = 1, . . . , N )
is located at ri

n = (di
x + nd, 0, di

z). Here, di
z denotes the z

coordinate of the ith chain, where d1
z = 0 so that the first

chain is located right on the x axis. And, di
x is the glid-

ing distance of the ith chain with respect to the origin. For
the first (i = 1) chain, d1

x = 0. Thus, the spacing between

Ẑ Ẑ

FIG. 2. A periodic waveguide structure with transverse asym-
metry. As an example, we consider one chain of monopoles
and two chains of longitudinal dipoles. The entire structure is
embedded in a medium with mean transverse flow. Here d is
the interscatterer spacing along each one of the chains, and
dz = 0.33d is the distance between chains. The lattice gliding
asymmetry is determined by the chain gliding parameters that
in this example are d12

x = 0.66d and d13
x = 0.5d.

the chains i and j is given by dij
z = dj

z − di
z, and the rela-

tive gliding between them reads dij
x = dj

x − di
x. The entire

structure is surrounded by a medium with a uniform mean
flow velocity U0 = U0ẑ that is transverse to the waveguide
axis x.

The acoustic scatterers are modeled as point sources,
and therefore all interactions between the scatterers and the
flow are neglected. We assume that the scatterers exhibit
either a dominant monopole or dipole response. For exam-
ple, in Fig. 2, chain i = 1 consists of monopole scatterers
while chains i = 2, 3 consist of dipole scatterers with a
response that is polarized along the x axis. The scatter-
ers are characterized by their acoustic susceptibilities, αmm

and αdd
ξ , which link the local field, i.e., the field in the

scatterer’s location but in the absence of the scatterer
itself, to the resulting scattering response. Specifically, the
monopole is characterized by a volume V (in units of m3)
and is induced by a local pressure P, while the dipole is
characterized by a dipole moment Dξ (in units of m4) and
is induced by the space derivative of the local pressure in
the direction ξ = x, y, z. Thus,

V = αmmP, Dξ = αdd
ξ

∂P
∂ξ

. (3)

Note that in a quiescent medium (U0 = 0) the induced
dipole moment is proportional to the pressure gradient that
is proportional to the particle velocity. The latter is not
true in a medium with mean fluid flow [12]. The dipole is
excited by the pressure gradient, and, therefore, we asso-
ciate directly the induced dipole moment with the pressure
spatial derivative.

Once the induced source on the scatterer is known, the
scattered field generated by the scatterer is given via the
corresponding Green’s function. To derive this relationship
mathematically, we consider a time-harmonic monopole
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source with volume V located at the origin and surrounded
by a medium with wave velocity c0, and a uniform mean
flow velocity U0 = U0ẑ. The velocity potential of the
source reads [12]

�m(ρ, z) = j ωV
e−jk

√
q2ρ2+z2/q2

4π
√

q2ρ2 + z2
ej (kq0z/q2+ωt), (4)

where ρ2 = x2 + y2, k = ω/c0 is the wave number in sta-
tionary medium, q0 = U0/c0 is the flow Mach number, and
q2 = 1 − q2

0. The pressure field is given by

P = j ωρ0�m + U0ρ0
∂�m

∂z
, (5)

where ρ0 is the medium density. For the dipoles, we use
the fact that the pressure generated by the dipole is the spa-
tial derivative of the pressure generated by the monopole,
with respect to the coordinate along which the dipole is
polarized (see Appendix A). Thus, we use the function �m
and its derivatives to obtain the relationship between the
source terms (V, Dx, and Dz) and the resulting acoustic
fields. This is compactly formulated into a dyadic Green’s
function as

⎛

⎝
P

∂xP
∂zP

⎞

⎠ =
⎛

⎝
Gmm Gdm

x Gdm
z

Gmd
x Gdd

xx Gdd
zx

Gmd
z Gdd

xz Gdd
zz

⎞

⎠

⎛

⎝
V
Dx

Dz

⎞

⎠ , (6)

where ∂xP = ∂P/∂x, ∂zP = ∂P/∂z, and the first and sec-
ond superscripts (d for dipole and m for monopolar) of the
terms in G denote the source and excited scatterer types,
respectively. We use this notation because later on it will
be of interest to calculate the local fields in the waveguide,
where monopoles and dipoles affect each other. Also, these
functions will be used to construct mathematical expres-
sions for the effect of the waveguide chains on each other.
For full analytical expressions of Green’s functions, see
Appendix A.

The acoustic scatterers are assumed to be passive and
lossless; therefore, the susceptibilities, αmm and αdd

ξ in
Eq. (3), are subject to energy conservation. This implies
for example that, for αmm, given a local pressure field P
that induces a monopole source with acoustic volume V,
the power invested by the field for the scatterer excitation,
−(ω/2)Im(V∗P), has to be equal to the power radiated by
the scatterer, (ω3kρ0/8πq4)|V|2. Thus, an energy conserv-
ing scatterer with monopolar response will by represented
by αmm that satisfies

Im
(

1
αmm

)
= − ω3ρ0

4πq4c0
. (7)

This relation is known as the radiation correction of the
scatterer’s susceptibility, here, for a scatterer in a mov-
ing fluid. Similarly, for the longitudinal x dipole and the

transverse z dipole,

Im
(

1
αdd

x

)
= − ω5ρ0

12πq6c3
0

, (8)

Im
(

1
αdd

z

)
= − ω5ρ0

12πq8c3
0
(1 + 5q2

0). (9)

A full derivation of the radiation correction can be found
in Appendix B. Note that the fluid flow has to be taken into
account precisely in the calculation of this radiation correc-
tion in order to properly find the dispersion relation of the
propagating modes on the lattice. As opposed to the imag-
inary part of the inverse of the susceptibilities, which, for
lossless scatterers, is independent of the scatterer’s geom-
etry and material, the real parts Re(1/αmm) and Re(1/αdd

ξ )

depend on the particular scatterer’s characteristics. Such a
scatterer may for instance be a Helmholtz resonator [12] or
some variation over it [27]. In our simulations, the suscep-
tibility values are characterized as a Lorentzian function of
frequency:

1
α

= A(ω2 − ω2
r ) + j Im

(
1
α

)
. (10)

Here ωr is the resonance frequency, A is an amplitude
constant, and the imaginary part is selected to satisfy the
radiation correction of the source type (V, Dx, and Dz)
as per Eqs. (7)–(9). Selected parameters for the proposed
waveguide are

A = 10, ωr = 7070 rad/s (monopole parameters),

A = 0.001, ωr = 21 210 rad/s (dipole parameters).

The waveguide behavior is simulated around the frequency
f0 = 1125 Hz (ω0 = 7070 rad/s). The parameter selection
above generates a resonant behavior of the monopoles at
ω = ω0, while the dipoles show no resonance around this
frequency. Susceptibility plots are shown in Fig. 3.

B. Guided modes

Since the lattice is infinite, we assume that the induced
sources on the scatterers behave in a Bloch form, i.e.,
exhibiting a wave behavior

X i
n = X i

0e−j βnd, (11)

where β is an unknown complex constant. Henceforth,
we use X i

n to denote the moment of scatterer n in chain
i, which may be a monopole (V) or a dipole (Dx or Dz).
Given a specified spatial configuration of the waveguide,
such as in Fig. 2, our interest is to find the guided modes
that may propagate through it, and are characterized by the
propagation constant β.

064058-3



OHAD SILBIGER and YAKIR HADAD PHYS. REV. APPLIED 17, 064058 (2022)

(a) (b)

(c) (d)

/ 0

1.81.00.6 1.00.6

1.00.61.00.6

1.4
/ 0

1.81.4

/ 0

1.81.4
/ 0

1.81.4

4

0

− 4

− 8

× 10 − 9
1.2

0.8

0.4

0

× 10 −8

0

− 2

− 4

× 10 −13

9

6

3

0

× 10 −10

R
e

m
3

pa
m

3

pa

m
5

pa
m

5

pa

Im

R
e

Im

FIG. 3. Monopole and dipole susceptibility functions used in
the numerical simulations.

Given two scatterers, X1 and X2, that are located at r1
and r2 in a homogeneous medium with mean flow veloc-
ity U0ẑ, we denote by G12 the Green’s function that relates
the source X1 to the field that excites X2. For example, if the
scatterers are both monopoles then X1 = V1, X2 = V2, and
G12 is defined such that P(r2) = G12(r2 − r1)V1. Thus, for
two chains with indices i and j , we define their mutual
Green’s function Sij as the local field at X j

0 , caused by
chain i:

Sij (β) =
∞∑

n=−∞
Gij (dij

x − nd, dij
z )e−j βnd, (12)

Sii(β) =
∑

n�=0

Gii(−nd, 0)e−j βnd. (13)

To calculate the series in Eqs. (12) and (13), we have used
common summation techniques, leading to polylogarithms
(for Sii) and using Poisson summation (for Sij ). A full
derivation can be found in Appendices C and D. Thus, the
modal dynamics of a waveguide with N parallel chains is
governed by the linear system

⎡

⎢
⎣

α1 0 · · ·
...

. . .
0 αN

⎤

⎥
⎦

⎡

⎢
⎣

S11 S12 · · ·
...

. . .
SN1 SNN

⎤

⎥
⎦

⎡

⎢
⎣

X 1
0
...

X N
0

⎤

⎥
⎦ =

⎡

⎢
⎣

X 1
0
...

X N
0

⎤

⎥
⎦ ,

(14)

where αi is the susceptibility of the scatterers that comprise
chain i. The waveguide modes are nontrivial solutions
of homogeneous system (14) and, as such, satisfy the

dispersion relation

det[α(ω)−1 − S(ω, β)] = 0. (15)

Nontrivial real β solutions will exist only if d < λ/2 [26],
implying sub-wavelength-mode width, as expected by a
subdiffraction waveguide (see Refs. [28–30] for reciprocal
and nonreciprocal similar waveguides in optics). Impor-
tantly, as shown in the following, the properties of S are
affected by the transverse mean flow U0 = U0ẑ and hence
determine the structure’s reciprocity and even enable one-
way guiding along the x axis.

In a reciprocal waveguide, for each frequency, propa-
gation is allowed in both directions with equal phase and
group velocities. Therefore, in such a waveguide, for each
frequency, if β is a solution to Eq. (15), so is −β. As will
be shown, under certain conditions, the transverse mean
flow yields nonreciprocal propagation along the waveg-
uide axis. This nonreciprocal behavior is manifested in the
properties of S. If q0 = 0, reciprocity of the waveguide
is expected. In this case, the symmetry (or antisymmetry)
of all Green’s functions Gij with respect to x and z leads
readily to the conclusion that S(−β) = ST(β), and there-
fore, for any given frequency ω, if β solves Eq. (15), so
does −β. See Appendix E for a full proof. Moreover, if the
waveguide contains zero or half-step gliding for any num-
ber of chains, i.e., if, for all i �= j , dij

x = 0 or dij
x = d/2,

the waveguide is symmetric for propagation towards the
positive or negative x axis. In this case spatial symmetry
also imposes reciprocity when transverse flow is present.
It requires transverse flow and spatial asymmetry in the
form of gliding to breach reciprocity. This longitudinal
nonreciprocity originates from the interplay between trans-
verse gliding asymmetry and the transverse nonreciprocal
interaction between the scatterers due to the mean flow.
Lastly, it should be emphasized that if the chains are distant
from each other (dz � d), the off-diagonal terms of S are
negligible relative to the diagonal terms, thus making the
waveguide negligibly nonreciprocal. This implies that this
nonreciprocal behavior cannot be explained using kine-
matic arguments that are applied on plane waves or that
may be applied on local plane waves propagating along
ray trajectories between adjacent scatterers (see Sec. IV for
a kinematic analysis). Instead, the transverse microscale
dynamics of the mode plays an important role in this strong
nonreciprocal effect.

C. One-way guiding

In any case when the waveguide is introduced with
transverse flow as well as transverse gliding asymmetry,
it will be nonreciprocal. However, this behavior is not
always strong enough to be observed, especially in low
flow speeds. To maximize this nonreciprocal effect, the
structure in Fig. 2 is purposed. The structure consists of a
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chain of monopoles and two chains of longitudinal dipoles,
while asymmetry is introduced by shifting the middle
chain by 0.66d. The medium is air with c0 = 343 m/s
and ρ0 = 1.2 kg/m3. The monopoles are resonant around
the frequency f0 = 1125 Hz, while the dipoles exhibit no
resonance around this frequency (see Fig. 3). By solv-
ing Eq. (15) numerically we find the dispersion relation
ω(β) that is plotted in Fig. 4 for a number of cases. In
the absence of medium flow and when the structure is
transversely symmetric, the dispersion relation is symmet-
ric in β, as shown in Fig. 4(a), and the waveguide is
reciprocal. Reciprocity and thereby symmetric dispersion
is also maintained for d12

x = 0 or d/2 and d13
x = 0 or d/2

but q0 �= 0 [as an example, see Fig. 4(b)] and for d12
x , d13

x �=
0 or d/2 but q0 = 0 [as an example, see Fig. 4(c)]. How-
ever, as soon as transverse flow is introduced simulta-
neously with a transversely gliding asymmetric structure,
d12

x , d13
x �= 0 or d/2 and q0 �= 0, then reciprocity in the lon-

gitudinal direction is broken and the dispersion relation
becomes asymmetric, as shown in Fig. 4(d). In the latter
case, for the gliding parameters, we used d12

x = 0.66d and

0 = 0; 12 , 13 = 0(a)

0 = 0.02

0 = 0.10

(b)

(c) (d)
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FIG. 4. Dispersion plots for a waveguide comprised three scat-
terer chains; see Fig. 2. (a) In a quiescent medium with no chain
gliding, the propagating mode is symmetric, i.e., both solutions
have equal phase and group velocities, but in opposite direc-
tions. (b) Adding transverse flow while maintaining zero gliding
changes the dispersion plots very slightly, without affecting the
reciprocal nature of the waveguide. (c) Introducing chain gliding
in a quiescent medium changes the dispersion curves, but does
not break reciprocity. (d) Combination of chain gliding asym-
metry and transverse flow generates substantial nonreciprocity in
the waveguide.

d13
x = 0.5d, and spacing dz = 0.33d, where the interscat-

terer spacing is given by d = 0.1λ0 with λ0 = c0/f0. For
the proposed structure, observable nonreciprocity can be
obtained in Mach numbers as low as q0 ∼ 0.02, as shown
in Fig. 4(d). With a moderate Mach number, q0 = 0.1, by
the dispersion diagram we see that, remarkably, the waveg-
uide allows propagation only in the positive direction of
the x axis as only positive group velocity is present. As the
flow velocity becomes larger, so does the one-way band-
width, as evident by comparing the dispersion diagrams
for the q0 = 0.02 and q0 = 0.1 cases.

Physical manifestation of this one-way guiding can be
observed in a chain of finite length. Given N chains of M
scatterers each, the local field at each scatterer is defined
via summation of the external field contributions of all
neighboring scatterers. The amplitude of X j

n satisfies

X j
n = αj P0(rj

n) + αj
N∑

i=1

M∑

m=1

Gij [dij
x + (m − n)d, dij

z ]X i
m,

(16)

where P0 is the external field that excites the scatterer and
Gij is Green’s function that relates the source X i

m to the
field that excites X j

n . Formulating this equation for every
scatterer, we obtain a system of MN equations with MN
unknowns. To formulate this in matrix form, we represent
the scatterer amplitudes in the waveguide as a vector X of
size [MN × 1], so that elements 1, . . . , N correspond to the
scatterers in chain 1, elements N + 1, . . . , 2N correspond
to the scatterers in chain 2, and so on. Thus, X i

m is mapped
to X[(i − 1)N + m]. Then, from Eq. (16), X should satisfy

[α−1 − G]X = P0, (17)

where P0 is the vector of the external field acting on each
scatterer, corresponding to X, and the matrix G represents
the mutual effect of the scatterers through the free-space
proper Green’s function.

To demonstrate one-way guiding, a finite chain is
excited by applying a localized external pressure field on
a monopole scatterer in the middle of chain i = 1. Then,
the resulting excitation amplitudes of all the scatterers
are solved numerically via matrix inversion. The result
of such a calculation is shown in Fig. 5 for a waveguide
with 400 unit cells. The lattice parameters used here are
those that were used to calculate Fig. 4(d), with Mach
number q0 = 0.1 and at frequency ω = 1.4ω0 [marked
in Fig. 4(d)]. This result nicely demonstrates how, under
transverse mean flow, with low Mach number, longitudi-
nal one-way rightward propagation of the acoustic wave
is obtained, while leftward propagation is practically pro-
hibited. Instead, rapid exponential decay takes place in the
forbidden direction, indicating that a complex leaky mode
is excited in this direction. Furthermore, the plateau level

064058-5



OHAD SILBIGER and YAKIR HADAD PHYS. REV. APPLIED 17, 064058 (2022)

1

2

0 = 0.1

inc

= 1.4 0

Scatterer index

E
xc

ita
tio

n 
am

pl
itu

de
 (

dB
)

0

− 20

− 40

− 60

− 80
100 200 300 400

FIG. 5. Amplitudes of monopole and dipole strengths along a
chain with 400 scatterers, due to a local external pressure field
Pinc applied on a single monopole scatterer in the middle of chain
i = 1. Only propagation to the right is allowed, consistent with
the dispersion diagram predicted by the infinite chain model, as
shown in Fig. 4(d).

that is reached beyond the fast decay is a consequence of
a weakly excited continuous spectrum wave (also termed
lateral wave) along the lattice. A detailed analysis of this
excitation problem should follow Green’s function devel-
opment for the waveguide under study here. Related work
may be found in Hadad and Steinberg [31], and in Hadad
et al. [32], who discuss the Green’s function of a plasmonic
subdiffractive waveguide under magnetic biasing.

III. LINEAR CHAINS OF SCATTERERS INSIDE A
STATIONARY MEDIUM DUCT WITH

PERIPHERAL FLOW

A. Description of the model

In Sec. II we showed how a waveguide composed of
point-source scatterers (monopoles and dipoles) can sup-
port nonreciprocal and even one-way guiding through
a combination of transverse flow and transverse spatial
asymmetry. However, physical implementation of such a
waveguide should require the scatterers to be of finite
size, thus obstructing the flow and maybe even changing
the flow nature from laminar to turbulent at high enough
Reynolds numbers. In the following, we suggest another
scheme, under which there is no direct interaction between
the scatterers and the flow. Using the same techniques, we
reproduce the effects observed in the waveguide embed-
ded in a medium with uniform flow, in a waveguide that is
embedded in a stationary medium with peripheral flow.

Consider a waveguide similar to the waveguide pre-
sented before (see Fig. 2), located inside a duct with a
quiescent (stationary) medium that is sandwiched between
two half-spaces with uniform flow with velocity U0ẑ. We

FIG. 6. A periodic waveguide with transverse asymmetry (left
shows the side view, right shows the top view). As an exam-
ple, the waveguide consists of three chains of acoustic scatterers,
and is located in stationary fluid, between two half-spaces with
mean transverse flow with velocity U0ẑ. Here d is the interscat-
terer spacing along each one of the chains, and dz is the distance
between chains. The lattice gliding asymmetry is determined by
the chain gliding parameters, d12

x and d13
x . The waveguide is

infinite in the x direction; three unit cells are shown.

assume that the density ρ0 and the wave velocity c0 are uni-
form in the entire space. Thus, the duct is created merely
due to the inhomogeneous medium flow; see Fig. 6 for an
illustration. This may be achieved using thin, acoustically
transparent membranes placed at the interfaces, y = −L/2
and y = L/2. The boundary condition for this scheme has
been extensively studied in, e.g., Ref. [33].

The equations governing the dynamics of the waveg-
uide in the duct are exactly the same as those that govern
the waveguide embedded in uniform flow. The dispersion
relation in Eq. (15) is the same, and so is the calcula-
tion of the elements of S, as per Eqs. (12) and (13). The
only difference is the expression of the scatterers’ Green’s
functions. These Green’s functions take into account the
“direct” wave interaction between the scatterers, as well
as the interaction by waves reflected from the bound-
aries with the uniform flow domains. Lastly, it should be
noted that the radiation correction in this case uses q0 = 0
[see Eqs. (7)–(9)], as the scatterers are surrounded by a
stationary medium.

B. Green’s function—stationary medium between two
half-spaces with uniform flow

Here we derive the analytical expression for the pressure
field generated by an acoustic monopole scatterer in a sta-
tionary medium, sandwiched between two half-spaces with
uniform flow. We start by introducing the reflection coeffi-
cient for a plane wave impinging on an interface between
two media, each flowing with a different velocity, parallel
to the interface. Then we represent the pressure field gen-
erated by the monopole as a spectrum of plane waves and
calculate the spectrum of the field inside the duct as a sum-
mation of infinite plane-wave reflections. Lastly, we use
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the inverse Fourier transform to calculate Green’s func-
tion in space. The first two steps are calculated analytically,
while the third and final step is evaluated numerically.

Assume two media with densities ρ1, ρ2 and sound
speeds c1, c2, flowing with mean velocities U1 = U1ẑ and
U2 = U2ẑ, respectively. Medium 1 fills the half-space y <

0 and medium 2 fills the half-space y > 0 [see Fig. 7(a)]. If
a plane wave with angular frequency ω travels in medium
1 and impinges upon the boundary at y = 0, the bound-
ary conditions that need to be satisfied on the interface at
y = 0 will cause reflections, which will be nonsymmetric
for waves coming from the positive or negative side of the
z axis. The reflection coefficient from this boundary was
presented in Ref. [33]. For an acoustic plane-wave field,
the velocity potential in both media reads

φ1 = ej (kxx+ky1y+kzz) + Rej (kxx−ky1y+kzz), (18)

φ2 = Tej (kxx+ky2y+kzz), (19)

where

ki = ω − Uikz

ci
, ki

y =
√

k2
i − k2

x − k2
z , i = 1,2. (20)

The boundary conditions at y = 0 render

R = 1 − A
1 + A

and A = ρ1(c1k1)
2ky2

ρ2(c2k2)2ky1
(21)

Now we consider the three-layer medium in Fig. 6. The
middle layer, bounded between y = −L/2 and y = L/2,
contains a stationary medium, with density ρ0 and sound
speed c0. At y = −L/2 and y = L/2 acoustically trans-
parent membranes are placed. Above the top membrane
and below the bottom membrane, a similar medium flows
with velocity U0 = U0ẑ. An acoustic monopole is placed
at the origin. In this scheme, the acoustic field generated

(a) (b)

FIG. 7. (a) Reflection from a boundary between two flowing
media. (b) The pressure field generated by a monopole source
in a stationary medium, placed between two half-spaces with a
flowing medium, is contributed to by (1) a “direct wave” and
(2–4) an infinite number of reflected waves.

by the monopole can be treated as a superposition of two
contributions—the field contributed directly by the source,
without any reflections, and the field reflected from the
boundaries—see Fig. 7(b). To calculate the field, we use
the two-dimensional spectral decomposition of the wave
generated by the monopole in free space:

gmm
FS (y; kx, kz) = 1

4π2

∫∫ ∞

−∞
Gmm

FS (x, y, z)ej (kxx+kzz)dx dz.

(22)

Here Gmm
FS is the monopole’s Green’s function in free

space [12]:

Gmm
FS (x, y, z) = −ω2ρ0

e−jkr

4πr
(23)

with r =
√

x2 + y2 + z2 and k = ω/c0 the wave number in
free space. Thus, the spectral decomposition reads

gmm
FS (y; kx, kz) = j ω2ρ0

e−jky |y|

8π2ky
, (24)

where ky = √
k2 − k2

x − k2
z .

For the total field, we can consider four kinds of plane
waves propagating from the monopole source to the obser-
vation point: (1) waves that propagate directly, without any
reflections; (2) waves that experienced one reflection from
the top boundary; (3) waves that experienced one reflection
from the bottom boundary; and (4) waves that experi-
enced two reflections [see Fig. 7(b)]. The mathematical
representation of these waves’ spectrum is

j ω2ρ0

8π2ky
[1 + Re−jky (L−y) + Re−jky (L+y) + R2e−jky (2L−|y|)].

(25)

To that we add the waves that experienced 2n more
reflections—n reflections from each boundary, before
reaching the observation point. Each such (double) reflec-
tion multiplies the amplitude of the wave by R2 and adds
a phase of −2kyL. Also, the fields of interest are confined
to the plane y = 0. Performing this substitution in Eq. (25)
gives the total spectrum

gmm(0; kx, kz) = j ω2ρ0

8π2ky
[1 + 2Re−jky L + R2e−2jky L]

×
∞∑

n=0

(R2e−2jky L)n, (26)

which can be simplified to

gmm(kx, kz) = j ω2ρ0

8π2ky

1 + Re−jky L

1 − Re−jky L . (27)
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Then we can apply the inverse transform to obtain the field

Gmm(x, z) =
∫∫ ∞

−∞
gmm(kx, kz)e−j (kxx+kzz)dkx dkz. (28)

The integral in Eq. (28) should be calculated numerically.
For practical reasons, it is easier to break the expression
for the spectral Green’s function given in Eq. (26) into
two—one will consider the direct waves and the other will
consider the reflected waves only. This is because adding
the contribution of the direct waves into the numerical
calculation causes convergence issues; however, it can be
calculated very easily analytically. Therefore, we write

gmm(0; kx, kz) = j ω2ρ0

8π2ky

[
1 + 2Re−jky L

1 − Re−jky L

]
. (29)

The first element in Eq. (29) is the contribution of the direct
waves. This element will be excluded from the numeri-
cal integration, and calculated from the free-space Green’s
function in Eq. (23). To summarize,

Gmm(x, z) = Gmm
FS (x, z) + Gmm

r (x, z), (30)

where

Gmm
FS (x, z) = −ω2ρ0

e−jk
√

x2+z2

4π
√

x2 + z2
, (31)

Gmm
r (x, z) = j ω2ρ0

8π2

∫∫ ∞

−∞

2Re−jky L

ky(1 − Re−jky L)

× e−j (kxx+kzz)dkx dkz. (32)

Expressions for the other Green’s functions are obtained
from Gmm through differentiation.

C. One-way guiding

Here we repeat the process of numerically solving
Eq. (15) to find the dispersion relation ω(β), while using
the Green’s functions derived for the duct. For full expres-
sions and derivations of the terms of the matrix S, see
Appendices F and G. The dispersion plots in Fig. 8 are
an example of a waveguide in which this effect is strong
to the extent that one-way guiding is obtained at low Mach
numbers. In this case the structure consists of two chains of
monopoles and three chains of longitudinal dipoles, shifted
relative to one another to produce gliding asymmetry. The
medium is air with c0 = 343 m/s and ρ0 = 1.2 kg/m3.
The susceptibilities are the same as before; see Fig. 3. In
the absence of medium flow (q0 = 0) or when the struc-
ture is transversely symmetric (for all i, j , dij

x = 0 or d/2),
the dispersion relation is symmetric (in β), as shown in
Figs. 8(a)–(c), and the waveguide is reciprocal. It is only
when transverse flow is introduced simultaneously with a

0 = 0; 12 , 13 = 0
(a) (b)

(c)

0 = 0.1; 12 , 13 = 0

0 = 0; 12 , 13 0 0 = 0.1; 12 , 13 0

/
0

/
0

/
0

/
0

1.8

1.4

1.0

1.8
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FIG. 8. Dispersion plots for a waveguide comprised five scat-
terer chains—two chains of monopoles and three chains of
longitudinal dipoles. (a) With no flow above and below the
duct and no chain gliding, the propagating mode is symmetric,
i.e., both solutions have equal phase and group velocities, but
in opposite directions. (b) Adding transverse flow while main-
taining zero gliding changes the dispersion plots very slightly,
without affecting the reciprocal nature of the waveguide. (c)
Introducing chain gliding in a quiescent medium changes the
dispersion curves, but does not break reciprocity. (d) Combina-
tion of chain gliding asymmetry and transverse flow generates
substantial nonreciprocity in the waveguide.

transversely gliding-asymmetric structure that reciprocity
in the longitudinal direction is broken and the dispersion
relation becomes asymmetric, as shown in Fig. 8(d).

Again, we may formulate a finite excitation problem
to demonstrate this nonreciprocal behavior. For a finite
waveguide with M scatterers in each chain, we may formu-
late a system of equations as per Eq. (17), with 5M equa-
tions in this case. Figure 9 shows the excitation amplitudes
along a waveguide with 400 unit cells upon excitation of a
single monopole in the center of chain 1. The simulation is
performed at excitation frequency ω = 1.6ω0 [marked in
Fig. 8(d)] and with q0 = 0.1. As predicted by the disper-
sion plot, propagation of the wave to the left is allowed,
while the wave decays exponentially in the right direction.
Here we should note that the finite chain calculation adds
numerical complexity, due to the integral in Eq. (32); see
the elaboration in Appendix H.

IV. THE FAILURE OF KINEMATIC MODELS

In the previous sections we have shown that a cou-
pled resonator waveguide that is placed in the vicinity
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FIG. 9. Amplitudes of monopole and dipole strengths along a
waveguide with five chains, 400 scatterers in each chain, due to
a local external pressure field Pinc applied on a single monopole
scatterer in the middle of chain i = 1. The blue line denotes V1

n,
the orange line denotes D2

zn, the yellow line denotes D3
zn, the

magenta line denotes V4
n, and the green line denotes D5

zn. The
lattice parameters used are the same as in Fig. 8(d), with Mach
number q0 = 0.1 and at frequency ω = 1.6ω0. Only propaga-
tion to the left is allowed, consistent with the negative group
velocity obtained from the dispersion diagram in Fig. 8(d) at this
frequency.

of a moving medium with flow velocity that is trans-
verse with respect to the waveguide axis may become
strongly nonreciprocal and even enable one-way prop-
agation. These results cannot be predicted using mere
kinematic arguments, and instead require to account for the
field distribution. To show that, we consider here a kine-
matic coupled mode model that clearly fails to predict the
main results of this paper. In such a model, the propagation
may be considered as a hopping process between adjacent
resonators.

Consider a coupled mode model for such a system.
The coupling coefficients will be affected by the flow.
Specifically, in the model shown in Fig. 10,

κ12 = |κ12|ej φ12 = κ∗
21, (33a)

κ23 = |κ23|ej φ23 = κ∗
32, (33b)

κ31 = |κ31|ej φ31 = κ∗
13. (33c)

Note that κ12 = κ∗
21 for energy conservation [34]. The mag-

nitudes of the coupling coefficients are determined by the
distance, orientation, and type of scatterers. Importantly, in
this frequency domain representation, the phase term, for
example, φ12, corresponds to the difference in the “time
of flight” of the acoustic wave that propagates between
resonators 1 and 2. Similarly for φ23 and φ31 between res-
onators 2 and 3, and 3 and 1, respectively. This difference
in the time delay is due to the flow. In the case where two
coupled resonators are located on a line perpendicular to

3

2

1

0

12
21

32

23

31

Ẑ

13

FIG. 10. Kinematic coupled resonator model.

the flow, then the phase will be zero—namely, there will
be no difference in the time delay for propagation from
resonator 1 to 2, and vice versa. As opposed to that, if the
coupled resonators are located in line with the flow, the
difference in the time delays will be maximized, and there-
fore so will the phase. Now, the coupled mode equations
that govern the lattice dynamics can be readily formulated
as

ωa(1)
n = ω1a(1)

n + κ21a(2)
n + κ31a(3)

n−1, (34a)

ωa(2)
n = κ12a(1)

n + ω2a(2)
n + κ32a(3)

n , (34b)

ωa(3)
n = κ13a(1)

n+1 + κ23a(2)
n + ω3a(3)

n , (34c)

where a(i)
n is the mode amplitude on scatterer number n

on chain number i and ωi is the resonance frequency of
the scatterers on chain number i. Because of the structural
periodicity, we anticipate a Bloch-form solution. That is,
a(i)

n = a(i)
0 e−jnϕ , where n is the unit-cell index, i is the chain

index, and ϕ is the phase that is accumulated during the
propagation along the lattice. By substituting the Bloch
solution into system (34), a homogeneous system for the
mode amplitudes a(i)

0 is obtained:

⎛

⎝
ω1 − ω κ21 κ31ej ϕ

κ12 ω2 − ω κ32
κ13e−j ϕ κ23 ω3 − ω

⎞

⎠

⎛

⎜
⎝

a(1)

0

a(2)

0

a(3)

0

⎞

⎟
⎠ = 0. (35)

The dispersion relation ϕ(ω) for the modes that are
supported by such a lattice is found by setting the homoge-
neous system determinant to zero, which guarantees non-
trivial solutions. This immediately yields the dispersion
relation

(ω1 − ω)(ω2 − ω)(ω3 − ω)

− [|κ32|2(ω1 − ω) + |κ13|2(ω2 − ω) + |κ21|2(ω3 − ω)]

+ 2|κ12||κ23||κ31| cos(ϕ + φ12 + φ23 + φ31) = 0.
(36)

In the absence of flow, φ12 = φ23 = φ31 = 0, and, hence,
in light of the evenness of the cos(ϕ) function, if ϕ solves
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the equation, so does −ϕ and hence the dispersion is sym-
metric, as expected by a reciprocal guiding structure. Now,
in the presence of flow the phase terms are not zero any-
more. This will yield a shift in the dispersion diagram.
However,

1. even in this case—at any frequency, where a real
solution ϕ1 can be found—there is necessarily also another
real solution ϕ2 with opposite group velocity; thus, no
one-way guiding band can be predicted by the kinematic
model;

2. since the phase terms are proportional to the time-
delay difference for propagation between two adjacent
resonators, the phase terms that correspond to coupling
along the flow or against the flow have opposite signs. This
implies that in the presence of transverse flow

φ12 + φ23 + φ31 ≈ 0. (37)

This implies that, using kinematic arguments, a system
under transverse flow is practically reciprocal.

In a complete contrast with this intuitive behavior, we
showed in the sections above that not only may such a
system be strongly nonreciprocal, it may also exhibit a
one-way guiding. This is a direct consequence of taking
into account not only the time delays but also the actual
field distributions. Then, as we show in the main text,
only under an interplay between a simultaneous struc-
tural gliding asymmetry and the transverse flow, when
taking into account the complete field form, is this unique
phenomenon obtained. Finally, the kinematic model we
provide here can be easily augmented to any number of
parallel chains, and, moreover, to any order of “hopping”
between the resonators. Using this model, the main result,
under transverse flow, will always be the same due to
Eq. (37). Namely, practically, no nonreciprocity is pre-
dicted in the case of transverse flow using the intuitive
kinematic arguments. Therefore, the results in this paper
stand as a counterexample against the intuitive picture that
was adopted in the Introduction, namely, that acoustic non-
reciprocity is caused by momentum bias that imparts from
the flow to the acoustic wave. Instead, the physics may get
more complex.

V. CONCLUSIONS

We have theoretically shown that a sub-wavelength-
thick acoustic waveguide can yield substantial nonre-
ciprocity and even one-way guiding when it is surrounded
by mean flow at low Mach numbers, transverse to the
waveguide axis. This effect is demonstrated for point-
source scatterers in uniform flow, as well as for general
monopole and dipole scatterers placed between two media
with transverse mean flow velocity. This counterintuitive

phenomenon stems from the interplay between the struc-
tural transverse gliding asymmetry and the transverse non-
reciprocal interaction between the scatterers that comprise
the waveguide. In that sense this phenomenon may be
regarded as the acoustic analog to one-way optical waveg-
uiding that is based on the Voigt magneto-optical config-
uration such as in Ref. [35]. The proposed phenomenon
may be used to implement compact, strongly nonrecipro-
cal one-way waveguides for a variety of applications in
acoustics, such as for full-duplex communication, energy
harvesting, and liquid flow sensing, just to name a few.
Lastly, due to the similarity between the physical mecha-
nisms, we expect that our proposed concept for one-way
waveguides may also be extended to systems with trans-
verse synthetic motion along the waveguide cross section
(e.g., by space-time modulation), and thereby also to other
physical realms such as electromagnetics and optics.
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APPENDIX A: GREEN’S FUNCTION IN A
HOMOGENEOUS MEDIUM WITH UNIFORM

FLOW

Here we derive closed-form expressions for the ele-
ments of the dyadic Green’s function that is defined in
Eq. (6), for the case of point sources in a homogeneous
medium with uniform laminar flow.

Denote by Gmm the Green’s function that connects a
monopole source of volume V to the acoustic pressure P
measured at the observer. The pressure derivatives in x and
z due to a monopole source will obviously be given via the
Green’s function:

Gmd
x = ∂xGmm, Gmd

z = ∂zGmm. (A1)

Next, since a dipole source with moment Dx or Dz can be
considered as the limiting of two adjacent monopoles with
opposite monopole volume, then obviously the pressure
caused by such a monopole source can be expressed as the
negative derivative of the Green’s function Gmm according
to the source coordinates. However, the derivative accord-
ing to the source coordinate can be replaced by a derivative
according to the observer [36]. Therefore,

Gdm
x = −Gmd

x , Gdm
z = −Gmd

z . (A2)

The remaining four terms are the x and z derivatives of the
pressure due to x and z polarized dipoles. Then, it reads

Gdd
xx = ∂xGdm

x , Gdd
zz = ∂zGdm

z , Gdd
xz = Gdd

zx = ∂zGdm
x .
(A3)
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In a medium with uniform flow with velocity U0 = U0ẑ,
the pressure Green’s function for a monopole source V
located at the origin and for an observer located on y = 0
reads

Gmm(r) = −ω2ρ0

4π

[
1

q2r
− q0z

q2r2 + jq0z
kr3

]
ejk(q0z−r)/q2

,

(A4)

where r = (x, 0, z). Here we have assumed that the
monopole is located at the origin and y = 0 and r =√

q2x2 + z2; k is the wave number in free space (k =
ω/c0); q2 = 1 − q2

0, where q0 is the flow’s Mach number,
q0 = U0/c0; and ρ0 is the medium density.

Below are complete analytical expressions for all
Green’s functions, for both media, limited to the case
where both the source and the observer are located on
the y = 0 plane. In the expressions below r =

√
q2x2 + z2.

Expressions up to the second-order derivative are pre-
sented. In a medium with uniform flow

Gmd
x = −ω2ρ0x

4π

[
− jk

q2r2 − 1
r3 + jkq0z

q2r3 + 3q0z
r4 − 3jq2q0z

kr5

]

× ejk(q0z−r)/q2
, (A5)

Gmd
z = −ω2ρ0

4πq2

[
jkq0

q2r
− q0

r2 − jk(1 + q2
0)z

q2r2 − (1 + q2
0)z

r3

+ jkq0z2

q2r3 + jq0q2

kr3 + 3q0z2

r4 − 3jq0q2z2

kr5

]

× ejk(q0z−r)/q2
. (A6)

APPENDIX B: RADIATION CORRECTION FOR
AN ACOUSTIC SCATTERER IN A

HOMOGENEOUS MEDIUM WITH UNIFORM
FLOW

For a passive and lossless scatterer, the power used by
an external field to excite the scatterer should be equal to
the power radiated by the scatterer:

Pext = Prad. (B1)

To find the radiated power, we perform integration of
Poynting’s vector PU∗ on a cylindrical surface of radius
ρ, which stretches from z = −∞ to ∞:

Prad = 1
2

Re
[ ∫ ∞

z=−∞

∫ 2π

φ=0
PUρρ dφ dz

]
. (B2)

Given the velocity potential of a monopole scatterer in a
uniform medium with mean flow [see Eq. (4)], the velocity

of the medium particles is given by

U = −∇�m. (B3)

For an integration on an infinite cylinder, nonzero power
flux is only obtained from the radial component of Poynt-
ing’s vector, which corresponds to the radial velocity Uρ =
−(∂�m/∂ρ). Thus, the radial component of Poynting’s
vector for a monopole in mean flow reads

PU∗
ρ = ω3ρ0ρ

16π2

[
1

q2r
− q0z

q2r2 + jq0z
kr3

][
k
r2 + q2j

r3

]
|V|2,

(B4)

where k = ω/c0 is the wave number in stationary
medium. This expression should be integrated according
to Eq. (B2). We exclude the pressure terms that are odd in
z as well as the terms that result with imaginary power and
obtain

Pm
rad = |V|2 1

2
Re

∫ ∞

z=−∞

ω3ρ0ρ
2

8π

k
q2r3 dz, (B5)

which results in

Pm
rad = ω3kρ0

8πq4 |V|2. (B6)

Upon excitation by an external pressure field P0, the power
the field applies on the particle is Pext = −P0V̇. For a time-
harmonic external field, the averaged power is

Pm
ext = −ω

2
Im(V∗P0). (B7)

For a passive particle, Pext = Prad. The monopole suscep-
tibility is defined as V = αmmP0. Comparing Eqs. (B6)
and (B7) we get the radiation correction for αmm:

Im
(

1
αmm

)
= − ω3ρ0

4πq4c0
. (B8)

For a z-polarized dipole in mean flow, the radial compo-
nent of Poynting’s vector reads

PU∗
ρ = ω3ρ0ρ

16π2q2

[
jkq0

q2r
− q0

r2 − jk(1 + q2
0)z

q2r2 − (1 + q2
0)z

r3

+ jkq0z2

q2r3 + jq0q2

kr3 + 3q0z2

r4 − 3jq0q2z2

kr5

]

×
[

− jk2q0

q2r2 + jk2z
q2r3 + kq0

r3 − 3kz
r4 − 3jq2z

r5

]
|Dz|2.

(B9)
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Losing imaginary and z-odd components yields

Pd
rad = |Dz|2

2
Re

∫ ∞

z=−∞

ω3ρ0ρ
2

8π

[
q2

0k3

q6r3 + k3(1 + 2q2
0)z

2

q6r5

]
dz.

(B10)

Integration gives

Pd
rad = ω3k3ρ0

24πq8 (1 + 5q2
0)|Dz|2. (B11)

As the dipole is basically two monopoles, its excitation
power can be written as the sum of excitation powers for
both monopoles:

Pd
ext = 1

2 Re(−P1V̇∗
1 − P2V̇∗

2).

The monopoles are at a distance 2l from each other and
have a phase difference of π , so the expressions for
pressure and dipole strength are

P1 = P0(z + l), V̇∗
1 = V̇(r), (B12)

P2 = P0(z − l), V̇∗
2 = −V̇(r). (B13)

Substituting these relations into the above equation for Pd
ext

yields

Pd
ext = 1

2
Re(−P0(z + l)V̇∗ + P0(z − l)V̇∗)

= −1
2

Re
(

P0(z + l) − P0(z − l)
2l

2lV̇∗
)

= −ω

2
Im

(
∂P0

∂z
D∗

z

)
, (B14)

where the dipole moment Dz is defined as Dz = 2lV,
and in the last equality we took the limit l → 0. Using
Dz = αdd

z ∂P0/∂z and comparing Eqs. (B14) and (B11), we
obtain

Im
(

1
αdd

z

)
= − ω5ρ0

12πq8c3
0
(1 + 5q2

0). (B15)

For an x-polarized dipole in mean flow, the radial compo-
nent of Poynting’s vector reads

PU∗
ρ = ω3ρ0x

16π2 ρ cos2(φ)

×
[

− jk
q2r2 − 1

r3 + jkq0z
q2r3 + 3q0z

r4 − 3jq2q0z
kr5

]

×
[

k
r2 + j (q2 + k2ρ2)

r3 − 3kq2ρ2

r4 − 3jkq2ρ2

r5

]
.

(B16)

Losing imaginary and z-odd components yields

Prad = |Dx|2 1
2

Re
∫ ∞

z=−∞

ω3ρ0k3ρ4

16πq2r5 dz. (B17)

Integration gives

Pd
rad = ω3k3ρ0

24πq6 |Dx|2. (B18)

Using the exact same process as for the z-polarized dipole
and defining Dx = αdd

x ∂P0/∂x, we obtain

Im
(

1
αdd

x

)
= − ω5ρ0

12πq6c3
0

. (B19)

APPENDIX C: CALCULATION OF THE
DIAGONAL ELEMENTS (Sii) of S—UNIFORM

FLOW

Here we calculate the terms of S that together with the
susceptibility matrix α govern the dynamics of the waveg-
uide, according to the dispersion relation in Eq. (15). Here
we address the case where the medium is homogeneous,
with mean flow U0 = U0ẑ, that is, calculating the series
in Eqs. (12) and (13), using Green’s functions derived
in Appendix A. Calculations are based on the methods
presented in Ref. [37].

The matrix S expresses the local fields in the waveguide,
calculated at scatterer 0 in each chain. We start with the
diagonal elements of the matrix—element Sii expresses the
contribution of the elements in chain i to the local field at
scatterer 0 of chain i. If chain i is composed of monopoles,

Sii =
∑

n�=0

Gmm(nd, 0)e−j βnd. (C1)

Henceforth, we adopt the notation of a single scatterer’s
Green’s function, where the first and second superscripts
of S will denote the exciting and excited scatterers, respec-
tively. Thus, in this case we have Sii = Smm. Using
Eq. (A4) with r = q|nd|, z = 0 yields

Smm =
∑

n�=0

− ω2ρ0

4πq3|nd|e−j k|nd|/qe−j βnd. (C2)

Separating the series into two, we obtain

Smm = − ω2ρ0

4πq3d

[ ∞∑

n=1

1
n

e−j (k/q+β)nd +
∞∑

n=1

1
n

e−j (k/q−β)nd
]

,

(C3)

Smm = − ω2ρ0

4πq3d

[
Li1[e−j (k/q+β)d] + Li1[e−j (k/q−β)d]

]
,

(C4)

where Li1 is polylogarithm of order 1.
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For a z-polarized dipole, we define

L̃im = Lim[e−j (k/q+β)d] + Lim
[
e−j (k/q−β)d]. (C5)

In the exact same manner as for the monopole, and using
Gdd

z on the x axis, we obtain

Sdd
zz = − k2q2

0

4πq7d
L̃i1 − jk(1 + 2q2

0)

4πq6d2 L̃i2 − 1 + 2q2
0

4πq5d3 L̃i3;

(C6)

for an x-polarized dipole, we have

Sdd
xx = − k2

4πq5d
L̃i1 + 2jk

4πq4d2 L̃i2 + 2
4πq3d3 L̃i3. (C7)

APPENDIX D: CALCULATION OF THE
OFF-DIAGONAL ELEMENTS (Sij ) of

S—UNIFORM FLOW

The off-diagonal elements in S represent the effect of
one chain on the other. Throughout this section, dz will
denote the distance between chains and dx will denote the
chain gliding. The velocity potential contributed by a chain
monopole scatterers at (dx, dz) reads

S� =
∞∑

n=−∞
e−j βndG�(dx − nd, dz), (D1)

which is expressed explicitly as

S� =
∞∑

n=−∞
j ω

e−j βr
√

q2(dx−nd)2+d2
z

4π
√

q2(dx − nd)2 + d2
z

ej βzdz e−j βnd. (D2)

Letting x′ = dx − nd,

S� = j ω
4π

ej (βzdz−βdx)

∞∑

n=−∞

e−j βr
√

q2x′2+d2
z

√
q2x′2 + d2

z

ej βx′
. (D3)

Expression (D3) converges slowly. A better analytical rep-
resentation is obtained via Poisson summation, using the
formula

∞∑

n=−∞
f (x′) = 1

d

∞∑

n=−∞
e−j 2πndx/d

∫ ∞

−∞
f (x′)ej 2πnx′/ddx′.

(D4)

Using the integral result

∫ ∞

−∞

e−j βr
√

q2x′2+d2
z

√
q2x′2 + d2

z

ej (β+2πn/d)x′
dx′

= π

qj
H (2)

0

[
βrdz

√

1 −
(

β

βrq
+ 2πn

βrqd

)2]
, (D5)

we define

βn = β + 2πn
d

, (D6a)

kn = βr

√

1 −
(

βn

qβr

)2

, (D6b)

Fn = π

qj
H (2)

0 [kndz], (D6c)

and the velocity potential Green’s function reads

S� = j ω
4πd

ej βzdz

∞∑

n=−∞
e−j βndx Fn. (D7)

The sign of the square root should be selected based on
the physical solution, i.e., as n → ∞, the argument kndz
(which is pure imaginary) should tend to −∞. The pres-
sure Green’s function is derived from the velocity potential
by Eq. (5); thus, Smm can be written as

Smm = j ωρ0S� + U0ρ0
∂S�

∂dz
. (D8)

The derivative of S� reads

∂S�

∂dz
=

∞∑

n=−∞

∂

∂dz
[Fn(dz)ej βzdz ]. (D9)

We define the derivative of Fn as

∂Fn

∂dz
= Fn1, (D10)

Fn1 = − π

qj
knH (2)

1 [kndz], (D11)

and so

∂

∂dz
[Fn(dz)ej βzdz ] = Fn1 + j βzFn. (D12)

So Smm reads

Smm = j ωρ0

[
j ω

4πd
ej βzdz

∞∑

n=−∞
e−j βndx Fn

]

+ U0ρ0

[
j ω

4πd
ej βzdz

∞∑

n=−∞
e−j βndx (Fn1 + j βzFn)

]
,

(D13)

and, after some rearrangement,

Smm = −ω2ρ0

4πd
ej βzdz

∞∑

n=−∞
e−j βndx

[
1
q2 Fn − jq0

k
Fn1

]
.

(D14)
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To obtain ∂P/∂z generated by the monopole, we have to
differentiate Smm, following the same process as above:

Smd
z = ∂Smm

∂dz
. (D15)

The second derivative of Fn is

∂2Fn

∂d2
z

= Fn2, (D16)

Fn2 = − π

qj

[
k2

nH (2)

0

[
kndz

] − kn

|dz|H (2)

1

[
kndz

]]
, (D17)

∂2Fn

∂d2
z

[
Fn(dz)ej βzdz

] = Fn2 + 2j βzFn1 − β2
z Fn. (D18)

Substituting these relations into Eq. (D15) and rearranging

Smd
z = −ω2ρ0

4πd
ej βzdz

∞∑

n=−∞
e−j βndx

×
[

− jkq0

q4 Fn − 1 + q2
0

q2 Fn1 + jq0

k
Fn2

]
. (D19)

The nth summand on the Poisson summation is a Fourier
transform of f (x′) at frequency βn; therefore, we can uti-
lize the Fourier transform property of differentiation on
Smm and obtain

Smd
x =−ω2ρ0

4πd
ej βzdz

∞∑

n=−∞
e−j βndx (−j βn)

[
1
q2 Fn − jq0

k
Fn1

]
.

(D20)

Repeating the exact same process as was done to calculate
Smd

z , we define

∂3Fn

∂d3
z

= Fn3, (D21)

Fn3 = π

qj

[
k3

nH (2)

1 [kndz] − k2
n

|dz|H (2)

2 [kndz]
]

, (D22)

∂3Fn

∂d3
z

[Fn(dz)ej βzdz ] = Fn3 + 3j βzFn2 − 3β2
z Fn1 − j β3

z Fn,

(D23)

obtaining, for Sdd
zz ,

Sdd
zz = −ω2ρ0

4πd
ej βzdz

∞∑

n=−∞
e−j βndx

[
−k2q2

0

q6 Fn

− jk(2q0 + q3
0)

q4 Fn1 − 1 + 2q2
0

q2 Fn2 + jq0

k
Fn3

]
.

(D24)

Differentiating with respect to x′ multiplies each summand
of Sdm

z by −j βn, resulting in

Sdd
zx = −ω2ρ0

4πd
ej βzdz

∞∑

n=−∞
e−j βndx (−j βn)

×
[

jkq0

q4 Fn + 1 + q2
0

q2 Fn1 − jq0

k
Fn2

]
. (D25)

Differentiating Sdm
x with respect to x′ gives

Sdd
xx = −ω2ρ0

4πd
ej βzdz

∞∑

n=−∞
e−j βndxβ2

n

[
1
q2 Fn − jq0

k
Fn1

]
.

(D26)

Lastly, from the relationships in Eqs. (A2) and (A3),

Sdm
z = −Smd

z , Sdm
x = −Smd

x , Sdd
xz = Sdd

zx . (D27)

APPENDIX E: SYMMETRY CONDITIONS

Here we outline the circumstances under which the
waveguide is nonreciprocal. In a reciprocal waveguide, β

and −β both solve or do not solve Eq. (15), so for a fre-
quency for which β solves the dispersion relation but −β

does not, the waveguide will be nonreciprocal.

1. Quiescent medium

In a uniform, quiescent medium (q0 = 0), symmetry
relations apply between the scatterer’s Green’s functions.
Denoting by Gd the dyadic Green’s function from Eq. (6)
we have

Gd(−x, −z) = Gd(x, z)T. (E1)

While the diagonal terms of S do not change, under
these relations, S shows symmetry with respect to β. For
example, for two monopole chains,

Sij (β) =
∞∑

n=−∞
Gmm(x = dx − nd, z = dz)e−j βnd

=
∞∑

n=−∞
Gmm(x = dx + nd, z = dz)ej βnd

=
∞∑

n=−∞
Gmm(x = −dx − nd, z = −dz)ej βnd

= Sji(−β). (E2)

This applies to every waveguide geometry and every selec-
tion of sources, which implies that S(−β) = ST(β), and
therefore |α−1 − S(β)| = |α−1 − S(−β)|.
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2. Glided waveguide

For any chain configuration, the self-terms of S are
symmetric with respect to β, so nonreciprocity can stem
only from the off-diagonal terms. If dij

x = 0 or dij
x =

d/2, Sij may be symmetric or antisymmetric. For Smm,
Smd

z , Sdm
z , Sdd

zz , Sdd
xx , we have Sij (β) = Sij (−β), whereas for

Smd
x , Sdm

x , Sdd
xz , Sdd

zx , we have Sij (β) = −Sij (−β).
If we have N chains of monopoles and transverse

dipoles, for every q0, S is symmetric, i.e., S(−β) = S(β),
and the determinant is obviously symmetric. If we replace
chain i with a chain of longitudinal dipoles, the cross
terms of the chain with monopoles or transverse dipoles
will all be antisymmetric. Mathematically, this means that
the elements in the ith row and ith column of S(−β)

are the negatives of the same elements in S(β) (except
Sii). In this case S(−β) �= S(β); however, |α−1 − S(β)| =
|α−1 − S(−β)|. For example, for a waveguide with three
chains and no gliding, consisting of only monopoles and
transverse dipoles,

S(β) = S(−β) =
⎡

⎣
S11(β) S12(β) S13(β)

S21(β) S22(β) S23(β)

S31(β) S32(β) S33(β)

⎤

⎦ .

So obviously |α−1 − S(β)| = |α−1 − S(−β)|.
By replacing row 2, for example, by a row of longitudi-

nal dipoles we affect elements S12, S21, S22, S23, S32. Now
we get

S(−β) =
⎡

⎣
S11(β) −S12(β) S13(β)

−S21(β) S22(β) −S23(β)

S31(β) −S32(β) S33(β)

⎤

⎦ .

Even though the matrices are different, |α−1 − S(β)| =
|α−1 − S(−β)|. This means that, under these conditions,
if β is a solution, so is −β. These properties are only vio-
lated when at least one of the chains is shifted to create
transverse asymmetry, i.e., with dij

x �= 0, d/2.

APPENDIX F: CALCULATION OF THE TERMS IN
S FOR A STATIONARY MEDIUM BETWEEN TWO
HALF-SPACES WITH UNIFORM FLOW—DIRECT

WAVES

Here we perform the same process as in Appendices C
and D, that is, calculating the terms of the matrix S,
while Green’s functions are those of a stationary medium
between two half-spaces with uniform flow. The direct
wave contribution is the contribution of the waves trav-
eling directly from other scatterers, without any reflec-
tions. The expressions here are similar to those derived in

Appendices C and D, with q2 = 1:

Smm = −ω2ρ0

4πd

[
Li1[e−j (k+β)d] + Li1[e−j (k−β)d]

]
, (F1)

Sdd
zz = − k2

4πd
L̃i1 − jk

4πd2 L̃i2 − 1
4πd3 L̃i3, (F2)

Sdd
xx = − k2

4πd
L̃i1 + 2jk

4πd2 L̃i2 + 2
4πd3 L̃i3. (F3)

For the off-diagonal elements, we define

βn = β + 2πn
d

, (F4a)

kn =
√

k2 − β2
n , (F4b)

Fn = −j πH (2)

0 [kndz], (F4c)

Fn1 = j πknH (2)

1 [kndz], (F4d)

Fn2 = j π
[

k2
nH (2)

0 [kndz, ] − kn

|dz|H (2)

1 [kndz]
]

. (F4e)

We have

Smm = −ω2ρ0

4πd

∞∑

n=−∞
e−j βndx Fn, (F5)

Smd
z = −Sdm

z = −ω2ρ0

4πd

∞∑

n=−∞
e−j βndx Fn1, (F6)

Smd
x = −Sdm

x = −ω2ρ0

4πd

∞∑

n=−∞
(−j βn)e−j βndx Fn. (F7)

For dipole-dipole interactions, we have

Sdd
zz = ω2ρ0

4πd

∞∑

n=−∞
e−j βndx Fn2, (F8)

Sdd
zx = Sdd

xz = −ω2ρ0

4πd

∞∑

n=−∞
(−j βn)e−j βndx Fn1, (F9)

Sdd
xx = −ω2ρ0

4πd

∞∑

n=−∞
e−j βndxβ2

n Fn. (F10)

APPENDIX G: CALCULATION OF THE TERMS
IN S FOR A STATIONARY MEDIUM BETWEEN

TWO HALF-SPACES WITH UNIFORM
FLOW—REFLECTED WAVES

Here we derive the contribution of the reflected waves
only. In this case, the contribution of the particle itself is
not excluded, and hence the summation here is performed
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according to

Sij
r (β) =

∞∑

n=−∞
Gij

r (x = dij
x − nd, z = dij

z )e−j βnd. (G1)

This is true for the diagonal terms of S as well as the
off-diagonal terms. We start with the case where both the
exciting and excited scatterers are monopoles, meaning
that we need to calculate the local reflected pressure at
particle X j

0 , contributed by chain i of monopoles:

Pr(x = dij
x , z = dij

z )

=
∞∑

n=−∞
Gmm

r (x = dij
x − nd, z = dij

z )X i
0e−j βnd. (G2)

Thus, we define

Sij
r (β) =

∞∑

n=−∞
Gmm

r (x = dij
x − nd, z = dij

z )e−j βnd. (G3)

From here on we define, for simplicity, dij
x = dx, dij

z = dz.
Also, we replace the notation Sij with Smm, to give a gen-
eral expression for Sr when both chains are composed of
monopoles. Thus, the full expression of Smm

r is

Smm
r (β) =

∞∑

n=−∞

j ω2ρ0

8π2

∫∫ ∞

−∞
gmm

r (kx, kz)e−j (kx(dx−nd)+kzdz)

× e−j βnddkx dkz, (G4)

where gmm
r is the spectrum of the reflected field,

gmm
r (kx, kz) = 2Re−jky L

ky(1 − Re−jky L)
. (G5)

Inverting the order of summation and integration yields

Smm
r (β) = j ω2ρ0

8π2

∫∫ ∞

−∞
gmm

r (kx, kz)e−j (kxdx+kzdz)

×
∞∑

n=−∞
ej (kx−β)nddkx dkz. (G6)

We use the identity

∞∑

n=−∞
ej (kx−βnd) =

∞∑

n=−∞

2π

d
δ(kx − βn), (G7)

where βn = β + 2πn/d. After using the identity and inte-
grating dkx we get

Smm
r (β) = j ω2ρ0

4πd

∞∑

n=−∞

∫ ∞

−∞
gmm

r (βn, kz)e−j (βndx+kzdz)dkz.

(G8)

The relationships between Green’s functions in
Eqs. (A1)–(A3) apply in this case as well, so we can readily
obtain expressions for other exciting and excited scatterers
through the differentiation properties of Fourier transform.
For example,

Smd
xr (β) = j ω2ρ0

4πd

∞∑

n=−∞

∫ ∞

−∞
−j βngmm

r (βn, kz)

× e−j (βndx+kzdz)dkz, (G9)

Smd
zr (β) = j ω2ρ0

4πd

∞∑

n=−∞

∫ ∞

−∞
−jkzgmm

r (βn, kz)

× e−j (βndx+kzdz)dkz. (G10)

The fact that the chain is infinite allows us to calculate the
elements of S using one-dimensional integration instead
of two-dimensional integration. For βn with |n| > 0, the
integrand decays very rapidly, so summing only a few
elements is enough to get accurate results.

APPENDIX H: FINITE CHAIN
SOLUTION—NUMERICAL ASPECTS

When solving a finite excitation problem for a waveg-
uide in a stationary medium between two flowing half-
spaces, we need to solve system (17), where the elements
of matrix G read

G[k, l] =
{

Gij
FS(r

k − rl) + Gij
r (rk − rl), k �= l,

Gij
r (rk − rl), k = l.

(H1)

Here, rk and rl are the locations of scatterers X[k] and X[l],
and i, j are the chain numbers of scatterers k, l, respec-
tively. While Gij

FS has an analytical expression and is easy
to calculate, Gij

r should be calculated numerically accord-
ing to the integral in Eq. (32). This numerical integration
is hard to perform with accuracy for two reasons:

1. gij
r has pole singularities where Re−jky L = 1;

2. as per Eq. (32), for large values of x, the integrand
becomes very oscillatory.

The second reason is what makes simulation of long chains
harder. To integrate more accurately, we use complex inte-
gration. In Eq. (32), we change the integration path dkρ

from the interval [0, ∞] to a path over the curve:

kρ = k
(

ξ + j
2�

π
arctan ξ

)
(H2)

with ξ : 0 → ∞. Following this curve avoids the singular-
ity on the real axis; the smaller |�| is, the closer the curve
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is to the singular point. However, if |�| is too large, the
integrand will turn very large. Therefore, a gentle selection
of � should be made, as well as a very fine spectral dis-
cretization. The results presented here are obtained using
brute-force integration, and are verified for accuracy and
stability. Another approach would be the replacement of
the original integration path by integration around singular
points in the complex plane, i.e., poles, and branch cuts.
Since we seek an exact solution, the integration complex-
ity around the branch cuts will remain similar to what we
currently have. Therefore, it does not suggest a significant
improvement. For asymptotic evaluation though, it will
be superior. Other expedite numerical recipes for Green’s
function calculations may also be applicable here [38–42],
but since it is not the heart of this work, we decided to use
a more expensive albeit brute-force approach.
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