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We study quantum secure direct communication using a general preshared quantum state and a gener-
alization of dense coding. In this scenario, Alice is allowed to apply a unitary operation on the preshared
state to encode her message, and the set of allowed unitaries forms a group. To decode the message,
Bob is allowed to apply a measurement across his system and the system he receives. In the worst sce-
nario, we guarantee that Eve obtains no information for the message even when Eve accesses the joint
system between the system that she intercepts and her original system of the preshared state. For a practi-
cal application, we propose a concrete protocol and derive an upper bound of information leakage in the
finite-length setting. We also discuss how to apply our scenario to the case with discrete Weyl-Heisenberg
representation when the preshared state is unknown.
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I. INTRODUCTION

Dense coding is known as an attractive quantum infor-
mation protocol. While the original study considers the
noiseless setting [1], many subsequent studies extended
this result to more general settings [2–7]. However, all of
them focused only on the communication speed in vari-
ous noisy settings. While dense coding with the noiseless
setting realizes twice the communication speed, it also
realizes quantum secure direct communication (QSDC) as
follows [8]. In dense coding, the sender, Alice, and the
receiver, Bob, share perfect Bell states and Alice encodes
her message by application of a unitary. Since Alice’s
local state is a completely mixed state, the eavesdropper,
Eve, cannot obtain any information about the message
even when Eve intercepts the transmitted quantum state.
However, it is not easy to prepare a perfect Bell state
between Alice and Bob. In fact, when we apply entangle-
ment distillation or entanglement concentration [9–12], we
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can generate a perfect Bell state or its approximation. Such
entanglement distillation operations can be combined with
conventional quantum key distribution (QKD) [13–15].
However, such operations require extra quantum opera-
tions in addition to quantum operations for QSDC. Hence,
it is preferable to find a protocol to realize secure com-
munication without generating a perfect Bell state. Since
secure information transmission over quantum channels is
one of major topics in quantum information, it is more
important to investigate secure communication via dense
coding in a realistic noisy setting. Of course, QSDC can
also be realized without dense coding [16–18].

In addition, the preceding studies [2,3,6] allowed Alice
to use any quantum operation on a single input sys-
tem. However, implementing arbitrary quantum operations
even on a single quantum system is difficult and unneces-
sary. From a practical viewpoint, it is sufficient to restrict
allowed quantum operations to only a subset of unitaries.
Since a combination of several possible unitaries is also
available, it is natural that such a subset forms a group
G. When the message-encoding operations are limited to
a subgroup of unitary operators, the limit of information
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transmission has been studied by exploiting the resource
theory of asymmetry [3,5,7,19–25]. However, their anal-
yses did not cover the secrecy analysis. Therefore, it
is desirable to investigate secure information transmis-
sion via preshared entanglement in the framework of the
resource theory of asymmetry. On the other hand, many
existing studies [2,3,6,26–29] addressed the asymptotic
analysis, which shows only the transmission rate. How-
ever, no upper bound or finite-length effect for this setting
were given. In this paper, we derive an upper bound for
information leakage under a finite-length practical code
and the corresponding asymptotic transmission rate.

Now, we present our communication model in detail.
Alice and Bob are assumed to share n copies of a quan-
tum state τAB on HA ⊗ HB, and Eve has her own system
HE correlated to the above state. Hence, their total state
is n copies of a quantum state τABE . To send her message,
Alice is allowed to apply unitaries from the set {Ug}g∈G,
where Ug forms a projective unitary representation on HA
of a group G. Then, after the application of her unitaries,
Alice sends her encoded system to Bob. In the worst case,
Eve intercepts the transmitted quantum system via a noise-
less channel and keeps it. If the transmitted state is not
intercepted, Bob receives the quantum system as the out-
put of n times use of a certain quantum channel �A. Bob
decodes the message from the joint system composed of
his original system and his receiving system. Finally, to
check the correct decoding, Alice and Bob apply the error
verification. If the verification fails, the communication
aborts.

In this scenario, we have two requirements. The first is
completeness, in which, the communication aborts with
low probability when the transmitted state is not inter-
cepted and the channel from Alice to Bob is the chan-
nel �A. The second is soundness, which is composed of
secrecy and reliability. Even when Eve intercepts the trans-
mitted quantum system via a noiseless channel, the amount
of information leakage to Eve is negligible [secrecy; see
(S1) below]. Here information leakage is evaluated using
the trace distance. If the communication does not abort,
Bob can recover the message correctly with high probabil-
ity [reliability; see (S2) below].

Although QKD is also required to satisfy these require-
ments [30–33], our method is different from QKD in the
following point. Our method requires a prior shared quan-
tum state, but QKD does not require it. Because of this
difference, our method has the following advantages. In
QKD, Eve can intercept all the states sent by Alice and
the state information leaks out inevitably. Because of this
possibility, QKD can be used only for random number
distribution and cannot be used for sending messages.
However, in our model, even when Eve intercepts the
quantum channel from Alice to Bob, Eve cannot obtain
any information about Alice’s message while Bob cannot
recover it.

To satisfy reliability, Alice and Bob apply error verifi-
cation, which requires a negligible amount of secure keys
shared by Alice and Bob [34, Section VIII]. This method
allows Bob to verify whether he can recover the message
correctly. Hence, if the above two conditions of sound-
ness are satisfied, even if Bob cannot recover the message,
Alice and Bob can repeat the same procedure because there
is no information leakage. Therefore, the above pair of
requirements is reasonable.

Indeed, some existing papers studied a similar problem
setting [8,35–38],[39, Chapter 7] and proposed a corre-
sponding coding scheme [40,41]. However, their anal-
ysis is limited to the asymptotic analysis in a special
example, and did not cover the finite-length setting or
the general case. Some of the above studies employed
the classical-quantum (CQ) wire-tap channel model
[26,27,42,43], which is a quantum analogue of the wire-tap
channel model [44–46] and is composed of two channels:
the CQ channel WB from Alice to Bob and the CQ channel
WE from Alice to Eve. In the above scenario, we dis-
cuss the channel WE to guarantee secrecy [(S1) below],
and the channel WB to guarantee the reliability require-
ment [(S2) below]. Using the wire-tap channel model, we
derive an achievable transmission rate dependently of the
shared entangled state and the channel from Alice to Bob.
This achievable transmission rate is given as the differ-
ence between the error correcting rate and the sacrificed
rate. In addition, we derive finite-length evaluations depen-
dently of the error correcting rate and the sacrificed rate. In
the evaluation of information leakage, we derive a finite-
length bound for information leakage for the quantum
wire-tap channel.

Usually, to achieve the above transmission rate, the
receiver is required to apply measurement across many
received quantum systems. Such a measurement is called
a collective measurement and its implementation is quite
difficult. However, when all encoded states on the joint
system consisting of a received system and a memory sys-
tem on Bob’s side are commutative, the above rate can
be achieved without the use of a collective measurement.
That is, when Bob applies a specific measurement on each
joint system, the given achievable rate can be attained by
a combination of classical encoding and decoding opera-
tions by Alice and Bob. In addition, when group G is a
vector space over a finite field, such classical encoding and
decoding have calculation complexity O(n log n), where n
is the coding block length. Under this type of coding, we
derive formulae for secrecy and reliability dependently of
the block length n and the sacrificed rate. In this way, our
results are useful in practical cases.

Here, we emphasize that, while the preceding studies
[37,38],[39,Chapter 7] simply applied the wire-tap chan-
nel model to their problem setting, our protocol is not
a simple application of the wire-tap channel model. In
fact, when Eve receives the output of WE , Bob cannot
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receive the output of WB. That is, Bob can decode the
message only when Eve does not receive the output of
WE . Therefore, Bob needs to check whether Eve inter-
cepts the transmitted system. Indeed, such an additional
step is not needed if the channel is given as a broadcast
channel, as in the preceding studies [47–49]. To this end,
while the existing studies [8,35–38,40,41],[39, Chapter 7]
did not consider the error verification, we propose a pro-
tocol to combine the conventional wire-tap code and the
error verification.

In the next step, we apply our general results to the
case when the unitary operation is given as the Weyl-
Heisenberg representation and the preshared state is the
Bell diagonal state, which is almost the same as the setting
of quantum secure direct communication in Refs. [8,50].
Such a preshared state can be generated by distributing a
Bell state over a Pauli channel. Then, we numerically cal-
culate the asymptotic transmission rate. Also, to clarify the
finite-length effect, we make numerical plots for the sacri-
ficed rate, error correcting rate, and the transmission rate as
a function of the coding block length n when we fix other
parameters. Furthermore, in a realistic case, the preshared
entangled state is not necessarily known. To cover this
case, we propose another protocol to include the estima-
tion process. This protocol is designed so that it works well
even when the preshared entangled state is not necessarily
a Bell diagonal state.

Indeed, our setting covers various situations beyond
the above example. For example, our method can be
applied to the case in which Alice, Bob, and Eve share
correlated classical variables, as discussed in Refs. [51,
Section VI],[52,53]. More generally, it is possible to apply
it to the case in which Alice and Bob share correlated clas-
sical variables and Eve has a correlated quantum state [54].
Such a situation can be realized when Eve makes a col-
lective attack in QKD and Alice and Bob estimate Eve’s
attack operation perfectly. In addition, recent research
[7, Section IV] presented three other interesting quantum
examples for a pair comprising a group G and an entangled
state. Our method can be applied to the noisy situations
in these examples. These cases show the generality of our
problem setting.

The remaining part of this paper is organized as fol-
lows. Section II summarizes our results for a general
model of private dense coding with a preshared state.
Section III applies these general results to the case with
Weyl-Heisenberg representation. Section IV presents our
protocol for the unknown preshared state in the above set-
ting. Section V discusses the modular code for a quantum
wire-tap channel, and derives a finite-length evaluation
for information leakage for a quantum wire-tap chan-
nel. Section VI describes the error verification process.
Section VII gives a practical code construction with a vec-
tor space over a finite field. Section VIII discusses our
results. Appendix D proposes an estimation method for

a Bell diagonal state using one-way local operation and
classical communication (LOCC). This estimation method
works even for the general unknown state, though it is
designed for the Bell diagonal state.

II. PRIVATE DENSE CODING MODEL

A. General model description

Assume that Alice, Bob, and Eve share n copies of the
quantum state τABE on the system HA ⊗ HB ⊗ HE . We
consider a (projective) unitary group representation of a
finite group G on HA. That is, for g ∈ G, we have a unitary
operator Ug such that, for g, g′ ∈ G, there exists a complex
number c(g, g′) satisfying

UgUg′ = c(g, g′)Ugg′ . (1)

When c(g, g′) is 1, {Ug}g∈G is called a unitary group
representation. Otherwise, it is called a projective group
representation. We also consider a quantum channel from
Alice to Bob, which is a trace preserving completely pos-
itive (TP-CP) map �A : D(HA) → D(HB′), where D(H)
expresses the set of density operators on the system H.
Then, we impose the group covariance condition to chan-
nel �A as

�A(UgρU†
g) = Ug�A(ρ)Ug

†

for all g ∈ G and all ρ ∈ D(H). (2)

Initial state τABE , available operation set {Ug}, and
channel �A constitute a private dense coding setting
PDC(τABE , {Ug}g∈G,�A).

Our task is the secure transmission of message M ∈
M from Alice to Bob by using n copies of their shared
state under the following conditions. Alice is allowed to
freely communicate to Bob via a public channel. Alice
can apply a unitary Ug for g ∈ G on her local states and
sends it to Bob; after Bob receives the quantum systems
sent by Alice, he acknowledges the fact. This task has the
following criteria.

(C) Completeness.—The PDC protocol is εC complete
if the error verification aborts with probability no larger
than εC when the state is not intercepted and the channel
from Alice to Bob is exactly �A.

(S) Soundness.—This part is composed of two condi-
tions.

(S1) Secrecy.—The PDC protocol is εE secure if the
amount of the information leakage to Eve is upper bounded
by εE even in the worst case, i.e., when Eve intercepts the
whole transmitted quantum state via a noiseless channel.
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(a) (b) (c)

FIG. 1. An illustration of the basic setting of private dense coding with a general preshared state. (a) In the worst case, the encoded
state is intercepted by Eve. (b) Without interception by Eve, Bob receives Alice’s state through channel �A. (c) The case when there
exists a channel �B such that �A(τAB) = �B(τAB).

The information leakage is evaluated by

d(M , Ē)τMĒ,f
:= min

σĒ
‖τMĒ,f − PM ⊗ σĒ,f ‖1, (3)

where Ē expresses all the systems that Eve obtains dur-
ing the protocol, including the intercepted system A; τMĒ,f
expresses the final state of our protocol; and PM is the
uniform distribution for message M .

(S2) Reliability.—The PDC protocol is εB reliable if the
relation M = M̂ holds with significance level εB, where
M is Alice’s original message and M̂ expresses Bob’s
recovered message. The significance level is the proba-
bility of accepting the hypothesis to be shown, given that
the hypothesis is assumed to be incorrect. Now, Ab is the
event that Bob aborts the protocol, so that Abc is the event
that Bob does not abort the protocol. Hence, Pr[Abc |M =
m, M̂ = m̂] expresses the probability that Bob does not
abort the protocol when Alice’s original message and
Bob’s recovered message are m and m̂, respectively. Then,
the above condition is rewritten as supm �=m̂ Pr[Abc |M =
m, M̂ = m̂] ≤ εB.

For a given protocol Pn for private dense coding with n
copies of τ⊗n

ABE , its parameters εC, εE , and εB are denoted
by εC(Pn), εE(Pn), and εB(Pn), respectively. Also, the rate
of message log |M|/n is denoted by R(Pn). In this setting,
soundness is more important than completeness because
soundness shows the quality of our private communication
when it is successful. Hence, the parameter of complete-
ness εC is not required to be too small. For the parameter
of completeness εC, the value 1 − εC is called a power in
the context of statistical hypothesis testing. While there is
no definite value for the power, Cohen [55] suggested 0.8
as a conventional level, which corresponds to the choice
εC = 0.2. However, a larger power (i.e., smaller εC) can be
chosen in practice. The reason is the following. Consider
the case when Alice and Bob abort the protocol mistak-
enly while it runs without Eve’s interception. They can
run the same protocol again until it is successful. In con-
trast, the two parameters εE and εB of soundness need to be

very small rigorously. Hence, the two parameters εE and
εB are called security parameters because they express our
confidence level.

B. Protocol with a finite-length setting

In Sec. VII A we construct our PDC protocol by com-
bining the wire-tap code and error verification. Since the
cost of error verification is negligible, it is sufficient to
consider the cost for the wire-tap code. That is, we focus
on a CQ wire-tap channel model [26,27,42,43], where the
channel WB to Bob is the CQ channel g(∈ G) 	→ WB(g) :=
�A(UgτABU†

g) = Ug�A(τAB)Ug
†, and the channel WE to

Eve is the CQ channel g(∈ G) 	→ WE(g) := UgτAEU†
g .

For n copies of the state τABE , combining wire-tap codes
and error verification with the parameters R1, R2, and t, in
Sec. VII A we construct a PDC protocol Pn of private dense
coding such that R(Pn) = R1 − R2 − t/n and

εC(Pn) ≤ 4 min
0≤t≤1

2tn[R1−log dA+H↓
1−t(A|B|�A(τAB))], (4)

εE(Pn) ≤ min
0≤t≤1

2−2t/(1+t)2[tn/(1+t)][−R2+log dA−H̃↑
1+t(A|E|τAE)],

(5)

εB(Pn) ≤ 2−t, (6)

where dA is the dimension of HA. Here, R1 and R2 are
called the error correcting rate and the sacrificed rate
for secrecy, respectively, and t is called the sacrificed
length for reliability. In the above formulae, two types
of Rényi conditional entropies H↓

1−t(A|B|�A(τAB)) and
H̃↑

1+t(A|E|τAE) are used:

H↓
1+t(A|B|ρAB) := −D1+t(ρAB‖IA ⊗ ρB), (7)

H̃↑
1+t(A|B|ρAB) := − inf

σB∈D(HB)
D̃1+t(ρAB‖IA ⊗ σB). (8)

Here I is the identity operator and we put the measured
quantum state as the last entry of information quantities.
The Petz version [56] and the sandwiched version [57,58]
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of quantum relative entropy are defined as follows. For
t ∈ (−1, ∞),

D1+t(ρ‖σ) := 1
t

log Trρ1+tσ−t, (9)

D̃1+t(ρ‖σ) := 1
t

log Tr(ρ−t/2(1+t)σρ−t/2(1+t))1+t. (10)

The sandwiched form is always no larger than the Petz
form according to the Araki-Lieb-Thirring trace inequal-
ity [59]. In the t = 0 case, the above quantities are defined
by taking the limit t → 0, which is exactly D(ρ‖σ)
:= Trρ(log ρ− log σ). Hence, limt→0 H↓

1+t(A|B|ρAB) =
limt→0 H̃↑

1+t(A|B|ρAB)= H(A|B|ρ) := H(AB|ρ)− H(B|ρ),
where H(AB|ρ) = −TrρAB log ρAB and H(B|ρ) = −TrρB
log ρB.

In addition, as explained in Sec. V, when the following
conditions hold, it is possible to make a PDC protocol with
small calculation complexity.

(B1) The group G forms a vector space over a finite
field Fq.

(B2) The states {Ug�A(τAB)U
†
g}g∈G are commutative

with each other.

C. Asymptotic setting

In the asymptotic setting of the PDC model, we impose
the condition εC(Pn), εE(Pn), εB(Pn) → 0 as n → ∞ for
a sequence of PDC protocols {Pn} from a theoret-
ical viewpoint. Under the above condition, the rate
limn→∞ R(Pn) is called an achievable private rate for a
private dense coding setting PDC(τABE , {Ug}g∈G,�A). The
supremum of achievable private rates is called the pri-
vate capacity for PDC(τABE , {Ug}g∈G,�A), and is written
as C(τABE , {Ug}g∈G,�A). As stated as Lemma 4 below, the
capacity of the above wire-tap channel model (WE , WB)

equals the private capacity for PDC(τABE , {Ug}g∈G,�A).
However, the capacity of the wire-tap channel does not
have a known single-letterized expression while the clas-
sical setting has [45]. Hence, we consider an achievable
private rate R∗ by using Eqs. (4), (5), and (6). To this end,
we define the map G as G(ρ) := ∑

g∈G UgρU†
g/|G|.

Since limt→0 H↓
1−t(A|B|�A(τAB))− log dA equals

R1,∗ := H(�A ◦ G(τAB))− H(�A(τAB))

= H(G(�A(τAB)))− H(�A(τAB)), (11)

the parameter εC(Pn) goes to zero with R1 < R1,∗. Simi-
larly, since limt→0 H̃↑

1+t(A|E|τAE)− log dA equals

R2,∗ = H(G(τAE))− H(τAE), (12)

the parameter εE(Pn) goes to zero with R2 > R2,∗. When
t = √

n, εB(Pn) and t/n go to zero. Hence, the following is

an achievable private rate:

R∗ = H(G(�A(τAB)))− H(�A(τAB))− H(G(τAE))

+ H(τAE). (13)

In fact, the above achievable rate can be considered as
the difference between two mutual information terms.
When we denote the choice of an element g ∈ G by
the random variable X , Eqs. (11) and (12) become
R1,∗ = I(X ; BB′), R2,∗ = I(X ; AE) and the achievable pri-
vate rate of the above wire-tap channel model is given as
I(X ; BB′)− I(X ; AE) [26,27,42,43].

D. Asymptotic analysis with the noiseless channel

For further analysis, we assume that �A is the noiseless
channel and {Ug}g∈G is irreducible. Then the rates R∗, R1,∗,
and R2,∗ are simplified to

R1,∗ = log dA − H(A|B)τ , R2,∗ = log dA − H(A|E)τ ,
R∗ = H(A|E)τ − H(A|B)τ (14)

because H(G(τAB)) = H(IA/dA ⊗ τB) = log dA + H(τB),
H(G(τAE)) = H(IA/dA ⊗ τE) = log dA + H(τE), where
dA := dimHA. Here, H(A|E)τ expresses the conditional
entropy when the density matrix is τAE . When the total
state τABE is a pure state and �A is the noiseless chan-
nel, we have the relations H(τAE) = H(τB) and H(τAB) =
H(τE). Hence, the rate R∗ is simplified to

R∗ = 2(H(τA,E)− H(τE)) = 2H(A|E)τ = −2H(A|B)τ .
(15)

In fact, as shown in Appendix A, when �A is the noiseless
channel, τABE is a pure state, and τAB is maximally corre-
lated, i.e., there exist bases |vA

j 〉 and |vB
j 〉 on HA and HB

such that τAB = ∑
j ,j ′ aj ,j ′ |vA

j , vB
j 〉〈vA

j ′ , vB
j ′ |, then the above

CQ wire-tap channel WB, WE is degraded [42,60], i.e.,
there exists a TP-CP map � such that WE(g) = �(WB(g)).
In this case, as shown in Corollary 3 below, due to the
group symmetric condition, quantity (15) gives the pri-
vate capacity of our PDC model, i.e., the maximum secure
transmission rate.

Here, we should remark on the relation with the method
studied in the preceding research [61]. Devetak and Winter
[61] considered the secure key distillation from a preshared
state τABE with the same condition as in this subsection.
They showed that their one-way method achieves the key
generation rate H(A|E)τ . However, since our method is
allowed to use quantum communication from Alice to Bob,
it achieves twice their rate.

E. Reduction to the noiseless case

In the latter part of the above subsection, we assumed
that the channel �A is noiseless. When our model with
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noisy channel �A satisfies the following condition, its
analysis can be reduced to the case with the noiseless
channel.

(A1) There exists a TP-CP map �B on HB such that
�A(τAB) = �B(τAB).

Indeed, the reliability of PDC(τABE , {Ug},�A) is equiva-
lent to the reliability of PDC(�B(τABE), {Ug}, idA) because
the reduced state of�B(τABE) to HA ⊗ HB equals�A(τAB),
where idA is the identical channel. The secrecy is also
equivalent because the reduced state of τABE to HA ⊗ HE
equals the reduced state of �B(τABE) to HA ⊗ HE . There-
fore, the analysis with preshared state τABE and noisy
channel �A is reduced to the analysis with preshared state
�B(τABE) and the noiseless channel.

III. APPLICATION TO THE WEYL-HEISENBERG
REPRESENTATION

A. PDC model with Weyl-Heisenberg representation

In this section, we discuss the private dense coding with
preshared state with Weyl-Heisenberg representation. That
is, the dimension of space HA is a prime dA = p , the group
G is the Weyl-Heisenberg group F

2
p , and the group repre-

sentation is given as a set of implementable operations as
follows. In addition, the rate R∗ can be achieved by a proto-
col with small calculation complexity, as explained below.
The X and Z operators on the p-dimensional quantum
system are defined as

W(x, z) = XxZz,

X =
∑

j ∈Fp

|j + 1〉〈j |,

Z =
∑

j ∈Fp

ωj |j 〉〈j |,

with ω = ei2π/p . In this case, the private dense coding with
preshared state is the same as the protocol discussed in
Refs. [37,50].

As a typical noise model, we employ a generalized Pauli
channel acting on a d-dimensional quantum system defined
as

�[PXZ](ρ) =
∑

(x,z)∈F
2
p

PXZ(x, z)W(x, z)ρW(x, z)†. (16)

That is, we assume that the preshared state is generated
by transmission of a maximally entangled state |
〉 =
(1/

√
p)

∑
i |i〉A|i〉B from Bob to Alice via the channel

�[PXZ] acting on HA. In this case, the joint state τAB on
HA ⊗ HB is given as the generalized Bell diagonal state

ρ[PXZ] :=
∑

(x,z)∈F
2
p

PXZ(x, z)W(x, z)|
〉〈
|W(x, z)†. (17)

To guarantee the secrecy under the worst case, we assume
that Eve controls all the environment of channel �[PXZ].
Hence, the state on system HA ⊗ HB ⊗ HE is the pure
state τABE = |�〉〈�|, i.e., the purification of ρ[PXZ], which
is given as

|�〉ABE = 1√
d

∑

x,z

√
P(x, z)W(x, z)|
〉AB|x, z〉E . (18)

Also, channel �A from Alice to Bob is given as another
generalized Pauli channel �A[P̃XZ]. That is, we focus
on private dense coding PDC(|�〉, {W(x, z)},�[P̃XZ]A) as
depicted in Fig. 2, where (x, z) ∈ F

2
p by default. Since we

have

�[P̃X ,Z]A ◦�[PXZ]A(|
〉〈
|)
= �[P̃−X ,Z]B ◦�[PXZ]A(|
〉〈
|), (19)

we can alternatively apply the model PDC(ωABE , {W(x, z)},
idA), where ωABE := �[P̃−X ,Z]B(|�〉〈�|).

In the private dense coding model PDC(ωABE , {W(x, z)},
idA), it can be shown that the state received by Bob is
always Bell diagonal (see Appendix B), i.e., condition
(B2) holds. Therefore, Bob can extract information via the

(a) (b) (c)

FIG. 2. An illustration of the setting PDC(|�〉, {W(x, z)},�[P̃XZ]A). Here U is the unitary that reduces to the Pauli channel �[PXZ]
by tracing out system E. Entanglement distribution is done via the application of the unitary U to the maximally entangled state.
The output state of the above entanglement distribution is |�〉ABE . (a) In the worst case, Alice’s state is intercepted by Eve through a
noiseless channel. (b) Without interception by Eve, Bob receives Alice’s state through channel�[P̃X ,Z]. (c) The noiseless reduction of
the original setting.
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measurement �x,z = Proj(W(x, z)|
〉) without any state
demolition. Once this measurement is applied, the chan-
nel from Alice to Bob is given as a classical channel Wc,
which is given as Wc(x, z|x′, z′) := (P̃XZ ∗ PXZ)(x − x′, z −
z′), where the convolution P̃XZ ∗ PXZ is defined by

P̃XZ ∗ PXZ(x, z) :=
∑

x′z′
P̃XZ(x′, z′)PXZ(x − x′, z − z′).

(20)

That is, Bob can apply classical decoding to channel Wc

without any information loss.
Since group G forms a vector space over a finite field

Fp and the states received by Bob are commutative with
each other in the above way, conditions (B1) and (B2) are
satisfied so that the rate R∗ can be achieved by a protocol
with small calculation complexity. For this model, we have
the following lemma, whose proof is given in Appendix C.

Lemma 1. The key information quantities in the setting
PDC(ωABE , {W(x, z)}, idA) can be expressed as

H(A|B)ω = H(XZ|P̃XZ ∗ PXZ)− log dA, (21)

H(A|E)ω = log dA − H(XZ|PXZ), (22)

H̃↓
1−t(A|B)ω = H1−t(P̃XZ ∗ PXZ)− log dA, (23)

H̃↑
1+t(A|E)ω ≥ log dA − H1/(1+t)(PXZ), (24)

where H1+t(ρ) := −D1+t(ρ‖I).

By applying Eqs. (21) and (22) to Eqs. (11), (12),
and (13), the rates R∗, R1,∗, and R2,∗ are calculated as

R1,∗ = 2 log dA − H(P̃XZ ∗ PXZ), (25)

R2,∗ = H(PXZ), (26)

R∗ = 2 log dA − H(PXZ)− H(P̃XZ ∗ PXZ). (27)

B. Application of the PDC protocol

High-dimensional QSDC [50] is similar to our PDC
model. As its generalization, we propose the follow-
ing protocol based on our PDC model. The aim of the
following protocol is that Alice transmits her message
M ∈ M := F

n2
p to Bob using two quantum channels, i.e.,

�[PXZ] from Bob to Alice and �[P̃XZ] from Alice to Bob,
and a free public channel in both directions. In the follow-
ing scenario, Bob distributes quantum states via �[PXZ]
initially. Next, Alice sends back the received system to Bob
via �[P̃XZ] after her coding operation. While we assume
that there is no possibility that channel�[PXZ] from Bob to
Alice is changed or intercepted, Eve is assumed to receive
the environment of channel �[PXZ]. That is, by using a
unitary U from HB to HA ⊗ HE whose reduction to HA
is �[PXZ], the transmission process from Bob to Alice is

regarded as the application of the unitary U, and Eve has
the system HE of the output of the unitary U. In addition,
we consider that Eve intercepts the second quantum com-
munication from Alice to Bob in the worst case. Because
of the above assumption, completeness (C) and soundness
(S) can be applied to this problem setting in the same way
as the PDC model.

To state our protocol, we prepare a classical error cor-
recting code ϕ = (ϕe,ϕd) for n uses of the classical channel
Wc with decoding error probability ε(ϕ), where ϕe is a clas-
sical linear encoder that maps F

n1
p to a linear subspace L

of F
2n
p , and ϕd is a classical decoder that maps F

2n
p to F

n1
p .

Here, n1 is called the coding length of the code ϕ. Then,
we prepare the message set M := F

n2
p , the set for cov-

ering variable Y := F
n3
p , which will be used to cover the

message in error verification, the message set for wire-tap
code M′ := Y × M = F

n2+n3
q , and two sets of random

seeds S := F
n1−1
p , S ′ := F

n2+n3−1
p . We prepare two uni-

versal hash function (UHF) families fS : F
n1
p → M′ and

gS′ : M′ → Y , which are defined in Eqs. (64) and (65)
below, respectively. Then, combining the encoder of clas-
sical error correcting code ϕe and random seed S, we define
the function ψS in Eq. (66) below. Under the above prepa-
ration, we propose Protocol 1, which is also illustrated in
Fig. 3.

Protocol 1.
Entanglement distribution: Bob starts the protocol by

generating n entangled states |
〉 = (1/
√

d)
∑

j |j 〉B|j 〉A.
Then he sends system A of states to Alice and keeps system
B.

Encoding: When Alice intends to send message M ∈
M, Alice generates random variables S ∈ S , S′ ∈ S ′,
Y ∈ Y , and L2 ∈ F

n1−(n2+n3)
p independently according to

the uniform distribution. Alice chooses elements X n =
(X1X2, . . . , Xn) := ψS(Y, M , L2) ∈ F

2n
p . Alice applies the

private dense coding operation W(xi, zi) on the ith state
and sends her encoded system back to Bob.

Reception: Bob applies projective measurement � =
{�x,z} with �x,z = Proj(W(x, z)A|
〉) on the composite
system of the received states and the kept states to obtain
the classical string X̂ n = (X̂1X̂2, . . . , X̂n) with X̂i ∈ F

2
p ,

where the projection operator on state |ψ〉 is denoted by
Proj(|ψ〉). Specifically, if p = 2, the measurement becomes
the Bell state measurement. Finally, Bob acknowledges
this reception to Alice via the public channel.

Public communication from Alice to Bob: Alice sends
the variables S, S′, and C := gS′(M , Y) to Bob via the
public channel.

Decoding and verification: Bob performs classical
decoding to X̂ n, i.e., he obtains (M̂ , Ŷ) := fS(ϕd(X̂ n)).
If gS′(M̂ , Ŷ) = C, he accepts message M̂ . Otherwise, he
aborts the protocol.
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FIG. 3. An illustration of Protocol 1. Real lines express quantum information flow. Dotted lines express classical information flow.
Here |
〉 = (1/

√
d)

∑
i |i〉A′ |i〉B is the initial state generated by Bob and U is a unitary performed by Eve. In Alice’s encoding part, ψS

is the encoder acting on message M and random numbers Y, L2. The encoding operation on the ith state is W(xi, zi). In Bob’s decoding
part,�x,z is a generalized Bell state measurement and the classical decoder fS ◦ ϕd is a concatenation of the decoder of a classical error
correcting code and a universal hash function. In addition, they decide if the protocol aborts by comparing the results of the universal
hash function gS′ . Note that C and the random seeds S, S′ are transmitted via a public channel. The explicit definitions for ψS , gS′ , fS
are given in Sec. VII A.

Because of Eq. (69) below, we find that this protocol
has ε(ϕ) completeness. Using Eqs. (70) and (71) below
with Eq. (23), we find that this protocol has soundness
with parameters εE and εB when n1 − (n2 + n3) and n3 are
chosen to be m̂2(εE) and m̂3(εB) defined as

m̂2(εE) := 1
log p

min
0≤t≤1

H1/(1+t)(PXZ)− 1 + t
t

log εE − 2,

(28)

m̂3(εB) := − log εB

log p
. (29)

As explained in Proposition 1 below, there exists an error
correcting code ϕ with the average decoding error proba-
bility εC and coding length

m̂1(εC) = 1
log p

max
0≤t≤1

2 log dA − H1−t(PXZ ∗ PXZ)

+ 1
t
(log εC − 2). (30)

These relations show the existence of a protocol that is εC
complete, εE secure, and εB reliable. A simulation of the
rates R1 = m̂1(εC)/n, R2 = m̂2(εE)/n, R3 = m̂3(εB)/n, and
R = R1 − R2 − R3 in the qubit case is shown in Fig. 4. The
values defined in Eqs. (28) and (29) have a practical mean-
ing because εE-secure and εB-reliable conditions can be

satisfied with the numbers m̂2(εE) and m̂3(εB) and calcu-
lation complexity O(n log n), as explained in Sec. VII A.
However, Eq. (30) does not have such a practical mean-
ing for completeness because it assumes combination of
the random coding and maximum likelihood decoder. In
contrast, asymptotic rate (25) has a practical meaning
because there exist error correcting codes to achieve the
rate (25) with a small calculation complexity as explained
in Sec. VII while their finite-length analysis is not so
simple.

IV. APPLICATION TO AN UNKNOWN STATE
WITH WEYL-HEISENBERG REPRESENTATION

In the PDC model, we consider the case when the pre-
shared state τABE is unknown. This case corresponds to the
case when the channel from Bob to Alice is unknown in the
model stated in Sec. III B. In this case, Alice and Bob need
to estimate it before their secure communication. As a sim-
ple problem setting, we assume that Alice and Bob share
n′ copies of state τAB while they do not know the form of
τAB, which is called the independent and identical density
(i.i.d.) condition. In the worst case, Eve controls the whole
of the environment system of the state τ⊗n′

AB . To satisfy the
secrecy requirement, Alice and Bob need to identify the
form of τAB and assume the worst case.
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FIG. 4. An illustration of the error correcting rate R1, the sacrificed rate for secrecy R2, the sacrificed rate for error verification R3,
and the message rate R = R1 − R2 − R3 in asymptotic and finite block length settings. (a) Asymptotic rate in depolarizing channel
E(ρ) = (1 − p)ρ + pρmix. Note that R3 = 0 asymptotically and the message rate reaches zero when p ≈ 0.18. (b) Finite-length rate
in the depolarizing channel with depolarizing probability p = 0.05 with criteria εC ≤ 0.2, εB ≤ 10−9, εE ≤ 10−9. It is shown that the
rates almost achieve the asymptotic limit at block length 106.

Suppose that Alice and Bob use n′ − n copies for the
estimation of τAB. In this case, they estimate τAB by using
only two-way LOCC, which is often called local tomogra-
phy. However, the estimation of the unknown state without
any assumption requires many types of measurements. If
HA and HB have the same dimension and the unknown
state τAB is a Bell diagonal state ρ[PXZ], we can reduce the
number of measurements for the estimation as explained in
Appendix D.

When HB is of the same dimension as HA and τAB is a
general state, we can apply discrete twirling to state τAB:

T(τAB) := 1
d2

∑

x,z

(W(x, z)A ⊗ W(x, z)B)τAB(W(x, z)A

⊗ W(x, z)B)
†. (31)

Here W(x, z)B is the complex conjugate of W(x, z)B. It is
known that the above state is a Bell diagonal state [62,
Example 4.22],[63,64]. Hence, when Alice and Bob apply
the above discrete twirling and apply the estimation of a
Bell diagonal state, they can apply private dense coding
whose shared state is the estimated Bell diagonal state.
However, as shown in Appendix D, the twirled state T(τAB)

can be estimated by applying the estimation method given
in Appendix D to state τAB.

Therefore, combining the above method with Proto-
col 1, we propose Protocol 2, in which the encoding and
decoding processes contain the procedure for the discrete
twirling. In the following protocol, we assume that the
communication channel from Bob to Alice is given as the

n′ times use of the same channel from Bob to Alice while
the channel is not known.

Protocol 2.
Entanglement distribution: Bob starts the protocol by

generating n′ entangled states |
〉 = (1/
√

d)
∑

j |j 〉B|j 〉A′ .
Then he sends the A′ halves of the states to Alice and keeps
system HB. Then, they share state τ⊗n′

AB .
Estimation: Alice and Bob choose n′ − n samples, and

estimate the twirled state T(τAB) of the shared state τAB by
using the method explained in Appendix D. Based on the
estimation of τAB, they decide their error correcting code
ϕ and the integers n1, n2, n3.

Encoding: Alice generates a string X̄ n = (X̄1, X̄2, . . . ,
X̄n) with Xi = (xi, zi) ∈ F

2
d according to the uniform dis-

tribution. Alice encodes her message M into a string
X n = (X1X2, . . . , Xn) := ψS(Y, M , L2) with Xi ∈ F

2
p . For

every element (xi, zi) := X̄i + Xi, Alice applies operation
W(x̄i, z̄i)W(xi, zi) on the remaining ith state and sends her
encoded system back to Bob.

Pubic communication from Alice to Bob 1: Alice
sends the string X̄ n to Bob via the public channel.

Reception: Bob applies unitaries W(x̄1, z̄1) · · · W(x̄n, z̄n)

to H⊗n
B , where (x̄i, z̄i) := X̄i. Then, Bob applies projective

measurement � = {�x,z} on the composite system of the
received states and the kept states to obtain the classical
string X̂ n = (X̂1X̂2, . . . , X̂n).

Pubic communication from Alice to Bob 2: The same
procedure as the same step of Protocol 1.

Decoding and verification: Bob performs classical
decoding to X̂ n, i.e., he obtains (M̂ , Ŷ) := fS(ϕd(X̂ n)).
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If gS′(M̂ , Ŷ) = C, he accepts message M̂ . Otherwise, he
aborts the protocol.

Since the estimation method given in Appendix D works
well, due to the discussion in Sec. III B, this protocol
achieves the rate given in Eq. (27) with the limit n → ∞.
For further analysis on the above protocol, note the relation

W(x̂, ẑ)A ⊗ (W(x̄, z̄)B)
†|
〉〈
|W(x̂, ẑ)†A ⊗ W(x̄, z̄)B (32)

= W(x̂ + x̄, ẑ + z̄)A ⊗ IB|
〉〈
|W(x̂ + x̄, ẑ + z̄)†A ⊗ IB.
(33)

Operator (32) expresses a positive operator-valued mea-
surement (POVM) element of the unitary W(x̄i, z̄i) and
the measurement � as a whole performed in the recep-
tion step. The above relation shows that Bob can apply
the measurement with POVM elements given in line (33)
instead of line (32). That is, when the outcome of the
measurement corresponding to operator (33) is given by
(x, z) := (x̂ + x̄, ẑ + z̄), Bob’s outcome (x̂, ẑ) of the above
protocol is given as (x − x̄, z − z̄). Therefore, Protocol 2 is
converted to the following protocol.

Protocol 3.
Same steps as Protocol 2: They make the same entan-

glement distribution, estimation, and encoding steps as in
Protocol 2.

Reception: Bob applies projective measurement � =
{�x,z} on the composite system of the received states
and the kept states to obtain the classical string X n =
(X 1X 2, . . . , X n).

Pubic communication from Alice to Bob: Alice sends
the variables S, S′, C := gS′(M , Y), and X̄ n to Bob via the
public channel.

Decoding and verification: Bob performs classi-
cal decoding to X n − X̄ n, i.e., he obtains (M̂ , Ŷ) :=
fS(ϕd(X n − X̄ n)). If gS′(M̂ , Ŷ) = C, he accepts message
M̂ . Otherwise, he aborts the protocol.

V. MODULAR CODE FOR THE QUANTUM
WIRE-TAP CHANNEL

A. Formulation for the quantum wire-tap channel

This section proposes a modular coding scheme with
fixed error correcting code for quantum wire-tap chan-
nels and analyzes its performance in finite-length settings
because this code construction is used for our PDC pro-
tocol. In the wire-tap channel model, the legitimate user
Alice wants to send messages to another legitimate user
Bob through a channel reliably and secretly in the presence
of an eavesdropper Eve. The classical wire-tap channel has
been extensively investigated since the debut of Wyner’s
wire-tap channel model [44], which was subsequently gen-
eralized by Csiszár and Körner [45]. The quantum wire-tap

channel was also explored in both the asymptotic setting
[26,27] and finite setting [43]. It acts as an approach to
analyze the secrecy of QKD protocols [61] and QSDC
protocols [36,37].

Here we focus on the CQ wire-tap channel, which con-
sists of two CQ channels: WB : x(∈ X ) → WB(x) from
Alice to Bob and WE : x(∈ X ) → WE(x) from Alice to
Eve. Here, WB(x) and WE(x) are states on quantum sys-
tems KB and KE , respectively. Alice’s and Bob’s proce-
dures are called an encoder � and a decoder �, respec-
tively. When they use the above channel n times, an
encoder is a map � from a message set M to X n. A
decoder � is a POVM {�m}m∈M on K⊗n

B . A pair com-
prising an encoder � and a decoder � is called a code

. The decoding error probability is denoted by ε(WB|
).
The ratio log |M|/n is called the transmission rate and is
denoted by R(
n).

Here we measure the information leakage with a slightly
different quantity from Eq. (3),

d̄(M ; E)τME := ‖τME − PM ⊗ τE‖1, (34)

where τME is the joint state between Eve’s system E and
message M with uniform distribution. Note that mutual
information I(M ; E) as another frequently used criterion
can be upper bounded by the trace norm through Fannes’
inequality. When Alice’s encode is �, we denote the above
value by d̄(M ; E)[�].

A rate R is said to be achievable for the wire-tap chan-
nel (WB, WE) if there exists a sequence of codes 
n =
(�n,�n) such that, when the time channel use n goes
to infinity, the decoding error probability ε(WB|
n) and
information leakage d̄(M ; E)[�n] go to zero and the trans-
mission rate R(
n) goes to R. The secrecy capacity for the
wire-tap channel is defined as the supreme of all possible
achievable rates, which is calculated as [27]

C(WB, WE) = lim
n→∞

1
n

max
PTX n

[I(T; Bn)− I(T; En)] . (35)

As a corollary, the rate I(X ; B)− I(X ; E) is always
achievable.

To ensure that the transmitted message can be decoded
reliably, an error correcting code for channel WB is
needed. To keep the eavesdropper ignorant of the message,
some randomization should be performed on the message.
Hence, the modular coding scheme here is constructed as a
concatenation of an inverse UHF family and an ordinary
error correcting code. Such a structure has been intro-
duced in classical situations [65]. In contrast to random
coding [27,43] and ad hoc coding inspired by a specific
error correcting code [66–68], our scheme is more prac-
tical for implementation thanks to the modular structure.
Also, our secrecy bound is improved compared with that
of Ref. [43].
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We use the following notation for the next parts. If
a probability transition matrix � : V → X is applied to
a random variable V, we use the symbol � ◦ PV to
denote the probability distribution of the transition out-
put, and the symbol � × PV to denote the joint distribution
of both the input and the output. In other words, we
define � ◦ PV(x) := ∑

v PV(v)�(x|v) and � × PV(x, v) :=
PV(v)�(x|v). Similarly, for the quantum channel WE ,
we have the notation WE ◦ PX := ∑

x PX (x)WE(x) and
WE × PX := ∑

x PX (x) |x〉 〈⊗| WE(x). Also, we define the
CQ channel WE ◦ � as WE ◦ �(v) := ∑

x �(x|v)WE(x). In
addition, for any set X , we denote the uniform distribution
on the set X by PX .

B. Modular code construction

The modular code is constructed based on an existing
error correcting code. Before the construction, we intro-
duce a UHF family {fs}s∈S , where fS is a function from a
set L to another set M′ and S ∈ S is a variable to identify
the function and is subject to the uniform distribution PS
on S .

The function family {fS}S∈S is called a UHF family when
the following condition holds.

(C1) The relation

Pr[fS(l) = fS(l′)] ≤ 1
M′ (36)

holds for any l �= l′ ∈ L, where M′ := |M′|.

Specifically, we impose an additional balanced condi-
tion.

(C2) The relation

|{l ∈ L : fs(l) = m′}| = L2 := L1

M′ (37)

holds for any s ∈ S , m′ ∈ M′, where L1 := |L|.

Throughout this paper we always mean the balanced
version when we refer to the UHF family. The inverse of fs
generates a random map. That is, for a given m′ ∈ M′, we
define the distribution �[fs]m′ as the uniform distribution
on the set {l : fs(l) = m}.

Suppose that our existing error correcting code is given
as (L, {�l}l∈L), where L is a subset of channel input set
X and {�l}l∈L is a POVM for decoding L. We prepare
a UHF family {fs}s∈S from L to M′. Before communica-
tion, Alice randomly chooses S = s, which will be shared
via the public channel. When Alice intends to send mes-
sage m′ ∈ M′, she generates L subject to the distribution
�[fs]m′ . Therefore, when Alice intends to send m′ ∈ M′,
Bob receives the state WB ◦ �[fs]m′ .

The decoder at Bob’s side is a POVM �[fs] with
elements

�[fs]m =
∑

l:fs(l)=m

�l. (38)

Then the encoder and the decoder constitute the code

[fs] = (�[fs],�[fs]). The performance of a wire-tap code
consists of error probability and secrecy. When the mes-
sage M is subjected to a uniform distribution, we have the
average error probability

ε(WB|
[fs]) =
∑

m′∈M′

1
M′ Tr(1 −�[fs]m′)WB ◦ �[fs]m′ .

(39)

When we denote the decoding error probability of the code
ϕ by ε(WB|ϕ), we have

ε(WB|
[fs]) ≤ ε(WB|ϕ). (40)

For the information leakage, taking the average for S, we
have

d̄(M ′; ES)[�[fS]] := ‖τM ′ES − PM′ ⊗ τES‖1

= ES‖τM ′E|S − PM′ ⊗ τE|S‖1,

= ESd̄(M ′; E)[�[fS]], (41)

where τM ′ES = ∑
s PS(s) |s〉 〈⊗| WE ◦ �[fs] × PM′ and M ′

and S are subjected to independent and uniform distri-
bution. The quantity d̄(M ′; ES) is often useful for our
analysis.

C. Finite-length analysis for the general wire-tap
channel

For our finite-length analysis, we introduce Rényi
mutual information as

I↑
1+t(A; B|ρAB) := D1+t(ρAB‖ρA ⊗ ρB), (42)

Ĩ↑
1+t(A; B|ρAB) := D̃1+t(ρAB‖ρA ⊗ ρB). (43)

Another version of Rényi mutual information is given as

I↓
1+t(A; B|ρAB) := inf

σB∈D(HB)
D1+t(ρAB‖ρA ⊗ σB), (44)

Ĩ↓
1+t(A; B|ρAB) := inf

σB∈D(HB)
D̃1+t(ρAB‖ρA ⊗ σB). (45)

For the secrecy, we have the following theorem, whose
proof is given in Appendix E 1.

Theorem 1. Assume that WE is a CQ channel. For any
subset L ⊂ X , we choose a UHF family {fs}s∈S defined on
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L. Then, the wire-tap code 
[fs] with encoder �[fs] sat-
isfies the following relation for the average information
leakage:

d̄(M ; ES)[�[fS]]

≤ min
0≤t≤1

2(1−t)/(1+t)2[t/(1+t)](− log L2+Ĩ↓
1+t(X ;E|WE×PL)).

(46)

Since an error correcting code for a CQ channel can
always be transformed into a modular wire-tap code, we
have the following proposition on the error probability
according to the previous result [69].

Proposition 1. Assume that WB is a CQ channel. There
exists an error correcting code ϕ = (L, {�l}l∈L) such that

ε(WB|ϕ) ≤ 4 min
PX ,0≤t≤1

2t[log L1−I↑
1−t(X ;B|WB×PX )]. (47)

When we choose a UHF family {fs}s∈S defined on a
subset L chosen according to Proposition 1, combining
Eqs. (40) and (47) implies the inequality

ε(WB|
[fs]) ≤ 4 min
PX ,0≤t≤1

2t[log L1−I↑
1−t(X ;B|WB×PX )] (48)

for any s ∈ S .
Theorem 1 gives a single shot bound on information

leakage. However, the Rényi mutual information term in
Eq. (46) is inconvenient to evaluate because of the depen-
dence on the subset L. The following corollary shows an
evaluable bound independent of L in the n-fold channel
situation (see Appendix E 2 for the proof).

Corollary 1. When the CQ channels WE, WB take the
n-fold form Wn

E, Wn
B, there exists a wire-tap code 
[fs]

generated from ϕ = (L, {�l}l∈L) such that

ε(WB|
[fs]) ≤ 4 min
0≤t≤1

2t[log L1−n maxQX I↑
1−t(X ;B|WB×QX )].

(49)

Corollary 2. For any subset L ⊂ X n, we choose a UHF
family {fs}s∈S defined on L. Then, the wire-tap code 
[fs]
with encoder �[fs] satisfies the following relation for the
average information leakage:

d̄(M ′; ES)[�[fS]]

≤ min
0≤t≤1

2(1−t)/(1+t)

× 2[t/(1+t)](− log L2+n maxQX Ĩ↓
1+t(X ;E|WE×QX )). (50)

For any 0 < t < 1 and arbitrarily small δ, take log L1 =
n maxQX I↑

1−t(X ; B|WB × QX )− nδ, log L = maxQX Ĩ↓
1+t

(X ; E|WE × QX )+ nδ; then any coding rate below
maxQX I(X ; B|WE × QX )− maxQX I(X ; E|WE × QX ) is
achievable by taking t → 0.

D. Finite-length analysis for the symmetric wire-tap
channel

Next we discuss the symmetric channel case. A channel
W : X → D(H) is symmetric if the input set X is a group
and there exist a unitary projective representation {Ux}x∈X
and a state ρ0 ∈ D(H) such that W(x) = Uxρ0U†

x . When
WE is symmetric, the security evaluation in our criterion
automatically implies the semantic security [43, Lemma
7]. Although Lemma 7 of Ref. [43] showed the semantic
security by using the additive condition, i.e., the commuta-
tivity of X , this derivation uses only the above symmetric
condition and does not use the commutativity of X . In fact,
while we will discuss a wire-tap channel (WB, WE) for our
analysis on private dense coding, both channels WE and WB
satisfy the symmetric condition. In the following theorem,
whose proof is given in Appendix E 3, we simplify our
upper bounds for the error probability and secrecy in the
symmetric case.

Theorem 2. When WE is a symmetric CQ channel, the
upper bound in Eq. (50) is simplified to

d̄(M ′; ES)[�[fS]]

≤ min
0≤t≤1

2(1−t)/(1+t)2[t/(1+t)](− log L2+nĨ↓
1+t(X ;E|WE×PX )).

(51)

When WB is a symmetric CQ channel, the upper bound in
Eq. (49) is simplified to

ε(WB|
[fs]) ≤ 4 min
0≤t≤1

2t[log L1−nI↑
1−t(X ;B|WB×PX )]. (52)

Theorem 2 shows that the rate

R∗ = I(X ; B|WE × PX )− I(X ; E|WE × PX ) (53)

is achievable for our modular code in the symmetric
case, while this achievability is known in existing stud-
ies [26,27,43]. To see our advantage over existing studies,
we focus on the exponential decreasing rate of informa-
tion leakage for an encoder �[fS]. When the sacrificed rate
R2 = log L2/n is fixed, d̄(M ′; ES)[�[fS]] should decrease
exponentially as n → ∞. The exponential decreasing rate
(exponent) is defined by

ed(Rs|WE) := lim
n→∞ −1

n
log d̄(M ′; ES)[�[fS]]. (54)
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Then Eq. (51) yields

ed(R2|WE) ≥ max
0≤t≤1

t
1 + t

(R2 − Ĩ↓
1+t(X ; E|WE × PX )).

(55)

The above lower bound of the exponent is strictly larger
than the result

ed(R2|WE) ≥ max
0≤t≤1

t
2
(R2 − I↓

1+t(X ; E|WE × PX )) (56)

obtained in Ref. [43] using the random coding method.
Also, we have the following lemma, whose proof is

given in Appendix E 4.

Lemma 2. When the CQ wire-tap channel (WB, WE) is
degraded and both the WB, WE channels are symmetric, the
secrecy capacity is I(X ; B̂)− I(X ; Ê), where X expresses
the random variable that takes values in the finite group G
according to the uniform distribution on G.

VI. ERROR VERIFICATION

Now, we explain how the reliability can be realized
by error verification [34, Section VIII],[70]. Assume that
Alice sends the information (M , Y) ∈ M × Y via the wire-
tap code and Bob obtains (M̂ , Ŷ) ∈ M × Y . Here M and
Y are assumed to obey the uniform distribution on M and
Y independently. They intend to check whether M = M̂
holds without leaking the information for M . To this end,
Alice prepares a UHF family {gS′ } : M × Y → Y , where
S′ is the random seed, to decide the hash function. Here,
we additionally impose the following condition.

(C3) For any m ∈ M, c ∈ Y , and s′ ∈ S ′, there
uniquely exists y(m, s′, c) ∈ Y such that

c = gs′(m, y(m, s′, c)). (57)

Condition (C3) implies the balanced condition (C2).
Then, Alice sends the random seed S′ and C := gS′(M , Y)
to Bob via the public channel. When gS′(M̂ , Ŷ) = C, Bob
accepts his decoded message M̂ . Otherwise, he aborts the
protocol.

Denote the length of Y by t, i.e., t = log |Y |. In the
following, we show that the relation

sup
m �=m̂

Pr[Abc |m, m̂] ≤ 2−t (58)

holds when S′ is independent of M , Y, M̂ , Ŷ. To this end, it
is sufficient to show the relation

Pr[gS′(m, Y) = gS′(m̂, Ŷ)|M = m, M̂ = m̂] ≤ 2−t (59)

for any m �= m̂ ∈ M. The above relation follows from the
relation

Pr[gS′(m, y) = gS′(m̂, ŷ)] ≤ 2−t (60)

for any m �= m̂ ∈ M and y, ŷ ∈ Y . However, this rela-
tion follows from the definition of UHF. Hence, we obtain
Eq. (58), which is reliability (S2).

The following lemma shows that the publicly shared
variables for error verification give no information about
message M .

Lemma 3. Assume that M ′ = (M , Y) is subject to the uni-
form distribution and E′ is a quantum system correlated to
M ′. When S′ is an independent variable of other systems
M ′, E, and C = gS′(M , Y), we have

d(M ; E′S′C) ≤ d(M ′; E′). (61)

The proof of this lemma is given in Appendix F.

VII. DETAILED ANALYSIS FOR PRIVATE DENSE
CODING

In this section, we provide the concrete protocol con-
struction for the general private dense coding setting and
derive the nonasymptotic and asymptotic performance of
the protocol. Then we show that the code can be practically
implemented when certain conditions are satisfied.

A. Protocol construction

We propose our concrete protocol for private dense
coding PDC(τABE , {Ug}g∈G,�A) by combining a wire-tap
channel code and error verification. Assume that n copies
of ρABE are given among Alice, Bob, and Eve. Alice and
Bob prepare an error correcting code ϕ = (L, {�l}l∈L) for
n uses of CQ channel g(∈ G) 	→ �A(UgρABU†

g). For the
efficient construction of our protocol, we choose a prime
power q, which corresponds to the size of our finite field Fq
to be used. Then, we assume the condition for the code ϕ:

|L| = qn1 . (62)

If this condition does not hold, we decrease the number of
|L| to satisfy this condition. We choose a bijective map ϕe
from F

n1
q to L. We prepare the message set M := F

n2
q , the

set for covering variable Y := F
n3
q , and the message set for

wire-tap code M′ := Y × M = F
n2+n3
q .

For V ∈ F
d1+d2−1
q , we introduce the d1 × d2 Toeplitz

matrix Td1,d2(V), which is defined as

Td1,d2(V)i,j := Vi−j +d2 . (63)

We employ two UHF families fS : F
n1
q → M′ and gS′ :

M′ → Y , where S ∈ S := F
n1−1
q and S′ ∈ S ′ := F

n2+n3−1
q
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are uniform random variables. The UHF fS is defined as

fS(L) =
(

fS,1(L)
fS,2(L)

)

:= (I , Tn2+n3,n1−(n2+n3)(S))
(

L1
L2

)

,

(64)

where L = (L1, L2), L1 ∈ F
n2+n3
q , L2 ∈ F

n1−(n2+n3)
q , and

fS,1(L) ∈ Y , fS,2(L) ∈ M. Similarly, the UHF gS′ are
defined with S′ ∈ S ′ := F

n2+n3−1
q as

gS′(M , Y) := (I , Tn3,n2(S
′))

(
Y
M

)

. (65)

When Alice intends to send message M ∈ M, Alice
generates random variables S ∈ S , S′ ∈ S ′, Y ∈ Y , and
L2 ∈ F

n1−(n2+n3)
q independently according to the uniform

distribution. Alice applies the encoder ψS defined as
[52, Appendix A-B]

ψS(M , Y, L2) := ϕe

((
I −Tn2+n3,n1−(n2+n3)(S)
0 I

) (
M ′
L2

))

,

(66)

where M ′ = (M , Y)T. It is easy to verify that the encoder
ψs is an example of the encoder �[fs]m′ proposed in
Sec. V B. Then, based on an error correcting code ϕ for
the CQ channel, and integers n2, n3, prime power q, we
give our protocol P(ϕ, n2, n3, q) as follows.

Protocol 4.
Encoding: To begin with, there are n preshared states

τABE between Alice, Bob, and Eve. When Alice intends to
send message M ∈ M, Alice generates random variables
S ∈ S , S′ ∈ S ′, Y ∈ Y , and L2 ∈ F

n1−(n2+n3)
q independently

according to the uniform distribution. Alice chooses ele-
ments (g1g2, . . . , gn) := ψS(Y, M , L2). Alice applies the
private dense coding operation Ugi on the ith state and
sends her encoded system to Bob.

Decoding 1: Bob applies measurement � = {�l}l∈L on
the composite system (HA ⊗ HB)

⊗n and obtains L̂ ∈ L.
Bob acknowledges this decoding to Alice via the public
channel.

Pubic communication from Alice to Bob: Alice sends
the variables S, S′, and C := gS′(M , Y) to Bob via the
public channel.

Decoding 2 and verification: When gS′ ◦ fS ◦ ϕ−1
e (L̂) �=

C, Bob aborts the protocol. Otherwise, he recovers the
message as M̂ := fS,2 ◦ ϕ−1

e (L̂).

In the above protocol, the part except for the error cor-
recting code ϕ = (L, {�l}l∈L) has calculation complexity
O(n log n) due to the following reason. The Toeplitz matrix
can be constructed as part of a circulant matrix. For exam-
ple, Hayashi and Tsurumaru [71, Appendix C-B] provided

a method to obtain a circulant matrix. Hayashi and Tsu-
rumaru [71, Appendix C-A] also provided an algorithm
for the multiplication of a circulant matrix with calcula-
tion complexity O(n log n). Hence, if the error correcting
part can be efficiently implemented, this protocol can be
efficiently implemented.

Remark 1. In the above protocol, Alice needs to perform
the public communication to Bob after Bob receives the
quantum states. If Eve knows the variables S′ and C =
gS′(M , Y) before Bob receives the quantum states, Eve has
a possibility that she can send the quantum state ρ to Bob
such that Bob’s outcomes M̂ , Ŷ satisfy C = gS′(M̂ , Ŷ) and
M̂ = M . To avoid this risk, Alice needs to perform the
public communication to Bob in this order.

B. Performance of our PDC protocol

To apply the analysis of the wire-tap channel in the eval-
uation of our PDC protocol, we have the following lemma,
whose proof is given in Appendix G.

Lemma 4. Given a PDC model PDC(τABE , {Ug}g∈G,�A),
we consider the two channels WB(x) = Ux�A(τAB)U

†
x and

WE(x) = UxτAEU†
x . Then, the information quantities can

be expressed as

I↑
1−t(X ; BB′|WB × PX ) = log dA − H↓

1−t(A|B|�A(τAB)),
(67)

Ĩ↓
1+t(X ; AE|WE × PX ) = log dA − H̃↑

1+t(A|E|τAE). (68)

Using this lemma and Theorem 2, as performance evalu-
ation of our PDC protocol, we have the following theorem,
whose proof is given at the end of this subsection.

Theorem 3. Given integers n2, n3, a prime power q, and
an error correcting code ϕ = (L, {�l}l∈L) such that |L| =
qn1 , the protocol P(ϕ, n2, n3, q) satisfies the inequalities

εC(P(ϕ, n2, n3, q)) ≤ ε(ϕ), (69)

εE(P(ϕ, n2, n3, q))

≤ min
0≤t≤1

2−(1−t)/(1+t)

× 2[tn/(1+t)](−(n1−n2−n3)(log q)/n+log dA−H̃↑
1+t(A|E|τAE)),

(70)

εB(P(ϕ, n2, n3, q)) ≤ q−n3 , (71)

where ε(ϕ) is the decoding error probability of the error
correcting code ϕ.

For a more concrete bound on εC(P(ϕ, n2, n3, q)), we
apply Proposition 1 to the case with log L1 = n1 log q.
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When ϕ is an error correcting code given in Proposition 1,
we have

εC(P, n2, n3, q)

≤ 4 min
0≤t≤1

2tn[n1(log q)/n−log dA+H↓
1−t(A|B|�A(τAB))]. (72)

The right-hand side of Eq. (72) follows from the appli-
cation of Eq. (67) to the right-hand side of Eq. (47) in
Proposition 1. Hence, Eq. (69) implies Eq. (72).

Therefore, the key evaluations (4), (5), and (6) in
Sec. II A are obtained as follows. That is, Eqs. (72), (70),
and (71) imply Eqs. (4), (5), and (6), respectively. That
is, combining Theorem 3 and Proposition 1 guarantees the
existence of the PDC protocol stated in Sec. II A.

Proof of Theorem 3: When the error correcting code
recovers L correctly, the protocol does not abort. Hence,
combining Eq. (40) with the above fact, we obtain Eq. (69).
Relation (71) follows from Eq. (58).

The CQ channel g(∈ G) 	→ �A(UgρAEU†
g) is symmet-

ric; Theorem 2 guarantees that

d(M ′, EAS)

≤ d̄(M ′, EAS)

≤ min
0≤t≤1

2−2t/(1+t)

× 2[tn/(1+t)](−(n1−n2−n3)(log q)/n+log dA−H̃↑
1+t(A|E|τAE)).

(73)

To derive the right-hand side of Eq. (73), we used Eq. (68).
Applying Lemma 3 to the case with E′ = EA, we obtain
Eq. (70) from Eq. (73). Therefore, we obtain Theorem 3.

�

C. Capacity formulae

The private capacity characterizes the asymptotic per-
formance from a theoretical viewpoint. The following
theorem, whose proof is given in Appendix H, shows the
equivalence between private capacity of private dense cod-
ing and secrecy capacity of the corresponding wire-tap
channel.

Theorem 4. For the PDC model PDC(τABE , {Ug}g∈G,�A)

and corresponding wire-tap channels WB(x) = Ux�A(τAB)

U†
x and WE(x) = UxτAEU†

x , the private capacity of the PDC
model equals the secrecy capacity of (WB, WE), i.e.,

C(τABE , {Ug}g∈G,�A) = C(WB, WE). (74)

Then, we have the following corollary.

Corollary 3. When τABE is a pure state, and τAB is
maximally correlated, we have

C(τABE , {Ug}g∈G, idA)

= 2(H(τA,E)− H(τE)) = 2H(A|E)τ = −2H(A|B)τ ,
(75)

where idA is the noiseless channel on HA.

This corollary can be shown as follows. Appendix A
shows that the wire-tap channel (WB, WE) of the above
case is degraded. Because of Lemma 2 and the group
symmetric condition, the secrecy capacity of (WB, WE) is
given by the right-hand side of Eq. (75). Then, Theorem 4
guarantees Eq. (75).

D. Practical code construction with a vector space over
a finite field

Next, we show that the error correcting part ϕ can be
efficiently implemented, under conditions (B1) and (B2)
introduced in Sec. II. For convenience, the conditions are
restated below.

(B1) The group G forms a vector space X over a finite
field Fq.

(B2) The states {Ux�A(τAB)U
†
x}x∈X are commutative

with each other.

To discuss the calculation complexity for the error cor-
recting code, it is sufficient to consider the case when the
channel from Alice to Bob is �A, i.e., is not intercepted
by Eve. Because of (B2), we can choose a basis {|eω〉}ω∈�
on HB′ ⊗ HB that commonly diagonalizes Ux�A(τAB)U

†
x

for all x ∈ X . We denote the measurement correspond-
ing to this basis by {�ω}ω∈�, and define the distribution
P�(ω) := Tr�ω�A(τAB). We obtain the classical channel
Wc(ω|x) := Tr�ωUx�A(τAB)U

†
x . Without any information

loss, Bob’s decoding can be reduced to the application
of classical decoding for the classical channel Wc to the
outcomes via the measurement {�ω}ω∈�.

Since the density matrix Ux�A(τAB)U
†
x has the same

eigenvalue as �A(τAB), including the multiplicity, there
exists a permutation πx on � such that P�(πx(ω)) =
Tr�ωUx�A(τAB)U

†
x . Since πxπx′ = πx+x′ , the relation

Wc(ω|x) = P�(πx(ω)) implies that the channel Wc is a
symmetric channel.

In this symmetric setting, we can choose an error cor-
recting code as a linear subspace L ⊂ X n on Fq. Such
an error correcting code L can be constructed by using
LDPC codes [66] or polar codes [67]. It has been demon-
strated that polar codes can achieve channel capacity for
any discrete symmetric channels with a sufficiently small
decoding error probability εC such that the encoder φe
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and the decoder φd have calculation complexity O(n log n)
[72–75].

VIII. CONCLUSION AND DISCUSSION

We formulate the framework of private dense coding to
realize quantum secure direct communication. While this
method requires a preshared quantum state, it works even
when noise exists. This method guarantees secrecy against
the eavesdropper, Eve, even when Eve intercepts the quan-
tum system transmitted by Alice. To cover the finite-length
effect, we derive a formula for the amount of information
leakage dependently of the block length of our code and
the sacrificed rate. When the channel to Eve is symmetric,
this formula has better bound (Theorem 2) than an existing
bound [43, Eq. (78)].

In our method, Alice’s encoding operation is limited to
a unitary operation given as a projective unitary represen-
tation of a group G. Also, when a certain commutative
condition holds, we show that Bob’s decoding measure-
ment can be restricted to a special measurement over a
single joint system between Bob’s receiving system and
Bob’s local system. That is, Bob does not need to make
any measurement across multiple joint systems. Further-
more, when the group is a vector space over a finite
field, we propose a practical coding method, whose encod-
ing and decoding operations have calculation complexity
O(n log n), where n is the block length.

We apply our results to the case when Alice’s encoding
operation is limited to the Weyl-Heisenberg representa-
tion. Although this case is similar to the case studied in
preceding papers [50], we derive a security formula for
information leakage in the finite-length setting. In this set-
ting, to cover an unknown preshared state, we propose
another protocol that contains an estimation process of the
preshared state.

There are many protocols and experiments that fit into
our setting [8,50,76–79]. However, the rigorous perfor-
mance in a practical situation is unclear. Our results reduce
the gap between the theoretical performance and exper-
imental setting. For a realistic application, we need to
combine the error estimation and our evaluation for infor-
mation leakage (28). Such an evaluation is a future study.
This paper assumes that the preshared state satisfies the n-
fold i.i.d. condition. However, the realistic case does not
necessarily satisfy this condition. Removing this condition
is another future topic.

Unfortunately, in this study we have not analytically
derived the asymptotically tight transmission rate, which
is called the capacity. As stated in Corollary 3, our ana-
lytically obtained transmission rate is tight when τABE is
a pure state, and τAB is maximally correlated. This prob-
lem was inherited by the following property of the wire-tap
channel. When the wire-tap channel model is degraded,
maxPX I(X ; B)− I(X ; E) is the capacity, i.e., the optimal

transmission rate. Otherwise, this value is not the capacity
in general and the analytical derivation of the capacity is
an open problem. Hence, to resolve this problem, it is nec-
essary to derive the capacity for a wire-tap channel model
under the symmetric condition. This is another future prob-
lem. In addition, recently, the one-step QSDC protocol
was proposed [80,81]. Since this protocol has a form dif-
ferent from our private dense coding, we cannot directly
apply our result to this problem. Hence, the analysis on
this problem is another future study.
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APPENDIX A: MAXIMALLY CORRELATED
STATE

In this appendix, we show that the CQ wire-tap channel
WB, WE is degraded when�A is the noiseless channel, τABE
is a pure state, and τAB is maximally correlated.

We choose bases |vA
j 〉 and |vB

j 〉 on HA and HB such
that τAB = ∑

j ,j ′ aj ,j ′ |vA
j , vB

j 〉〈vA
j ′ , vB

j ′ |. We diagonalize τAB

as τAB = ∑
j sj |uj 〉〈uj | and |uj 〉 = ∑

j ′ bj ,j ′ |vA
j ′ , vB

j ′ 〉, where
(bj ,j ′) is a unitary matrix. Then, by choosing a basis
|vE

j 〉, the pure state τABE is written as
∑

j
√sj |uj 〉|vE

j 〉.
We choose tj ′ and normalized vectors (cj |j ′)j for j ′
as tj ′ := ∑

j sj |bj ,j ′ |2 and √sj bj ,j ′ = √
tj ′cj ′|j . We define

|uE
j ′ 〉 := ∑

j cj |j ′ |vE
j 〉. Hence, we have

∑
j
√sj |uj 〉|vE

j 〉 =
∑

j ,j ′
√sj bj ,j ′ |vA

j ′ , vB
j ′ 〉|vE

j 〉 = ∑
j ′

√
tj ′ |vA

j ′ , vB
j ′ 〉|uE

j ′ 〉, which
implies that

τAE =
∑

j ′
tj ′ |vA

j ′ , uE
j ′ 〉〈vA

j ′ , uE
j ′ |. (A1)

We define the TP-CP map � as

�(ρ) :=
∑

j ′
〈vB

j ′ |ρ|vB
j ′ 〉|uE

j ′ 〉〈uE
j ′ |. (A2)

Then, we have

�(τAB) =
∑

j ′
〈vB

j ′ |τAB|vB
j ′ 〉|uE

j ′ 〉〈uE
j ′ |

=
∑

j ′
tj ′ |vA

j ′ , uE
j ′ 〉〈vA

j ′ , uE
j ′ |

= τAE . (A3)

Since Ug acts only onHA, the CQ wire-tap channel WB, WE
is degraded.
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APPENDIX B: BOB RECEIVES THE BELL
DIAGONAL STATE

Here, we show that Bob’s received state is Bell diag-
onal in the setting PDC(|�〉, {W(x, z)},�[P̃XZ]A). When
Alice’s operation is W(x, z), Bob’s state on HB ⊗ HB′ is

�[P̃XZ]A(W(x, z)�[PXZ]A(|
〉〈
|)W(x, z)†)

= W(x, z)(�[P̃XZ]A ◦�[PXZ]A(|
〉〈
|))W(x, z)†

= W(x, z)�[P̃XZ ∗ PXZ]A(|
〉〈
|)W(x, z)†

= �[Fx,z[P̃XZ ∗ PXZ]]A(|
〉〈
|)
= ρ[Fx,z[P̃XZ ∗ PXZ]], (B1)

where the distributions P̃XZ ∗ PXZ and Fx,z[PXZ] on F
2
p are

defined as

P̃XZ ∗ PXZ(x, z) :=
∑

x′z′
P̃XZ(x′, z′)PXZ(x − x′, z − z′),

(B2)

Fx,z[PXZ](x′, z′) := PXZ(x′ − x, z′ − z), (B3)

and the density matrix ρ[PXZ] is defined as

ρ[PXZ] :=
∑

x,z

PXZ(x, z)W(x, z)|
〉〈
|W(x, z)†. (B4)

APPENDIX C: PROOF OF LEMMA 1

For the setting PDC(ωABE , {W(x, z)}, idA), recall that
ωABE = �[P̃−X ,Z]B(|�〉〈�|), where

|�〉ABE = 1√
d

∑

x,z

√
P(x, z)WA(x, z)|
〉AB|x, z〉E (C1)

is the purification of ρ[PXZ]. Then the reduced density
matrices are

ωAE =
∑

j

1
d

Proj
( ∑

x,z

√
P(x, z)W(x, z)|j 〉A|x, z〉E

)

,

ωE =
∑

x,z

PXZ(x, z)|x, z〉E〈x, z|,

ωAB = ρ[P̃XZ ∗ PXZ],

ωB = ρB,mix.

The quantities for the asymptotic rate are

H(A|E)ω = H(ωAE)− H(ωE)

= log dA − H(XZ|PXZ),

H(A|B)ω = H(ωAB)− H(ωB)

= H(XZ|P̃XZ ∗ PXZ)− log dA.

The quantities for finite analysis are

H̃↑
1+t(A|E)ω ≥ H̃↓

1+t(A|E)ω
= −D̃1+t(ωAE‖ωE)

= −1
t

log Tr
(
ω

−t/2(1+t)
E ωAEω

−t/2(1+t)
E

)1+t

= −1
t

log
1
ds

A

(∑

x,z

PXZ(x, z)1/(1+t)
)1+t

= log dA − H↓
1/(1+t)(PXZ),

H↓
1−t(A|B)ω = −D1−t(ωAB‖ωB)

= 1
t

log Trρ[P̃XZ ∗ PXZ]1−tρs
B,mix

= − log dA + H↓
1−t(P̃XZ ∗ PXZ).

APPENDIX D: ESTIMATION OF THE BELL
DIAGONAL STATE

1. Case with the Bell diagonal state

We consider state estimation on the composite system
HA ⊗ HB by using local measurements when the unknown
state is given as a Bell diagonal state ρ[PXZ], which is
defined in Eq. (17). Here, we consider only the case when
d is a prime p and the arithmetics is performed in Fp in the
following part. First, we prepare the relation

W(x, z)W(x′, z′) = ωx′z−xz′
W(x′, z′)W(x, z). (D1)

For k, l, we measure the marginal distribution PlX −kZ
as follows. We say that the following measurement is
M (lX − kZ). Alice measures W(k, l) = XkZl and obtains
the outcome ωY. Bob measures (XkZl)T = ZlX−k and
obtains the outcome ωȲ. We denote the eigenvector of
XkZl with eigenvalue ωj on system HA by |j 〉XkZl,A. We
define |j 〉ZlX−k ,B in the same way. We have

|
〉 =
p−1∑

j =0

1√
d
|j 〉XkZl,A|j 〉ZlX−k ,B, (D2)

and Eq. (D1) implies that

W(k, l)W(x, z)|j 〉XkZl,A = ωxl−zkW(x, z)W(l, k)|j 〉XkZl,A

= ωxl−zk+j W(x, z)|j 〉XkZl,A. (D3)

That is, W(x, z)|j 〉XkZl,A is a constant times of |xl − zk +
j 〉XkZl,A. Hence, when we measure operator XkZl for state
W(x, z)|
〉, the outcome ωY−Ȳ is ωxl−zk.

We consider that state ρ[PXZ] is generated by applying
operator W(x, z) to state |
〉 with probability PX ,Z(x, z).
When W(x, z) is applied, the outcome ωY−Ȳ is ωxl−zk.
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That is, Y − Ȳ obeys the distribution PlX −kZ . We define
E[ωlX −kZ] := ∑p−1

s=0 ω
sPlX −kZ(s). We define the equivalent

relation (x, z) ∼ (x′, z′) in F
2
p as (x, z) = (ax′, az′) with

an element a ∈ Fp . Since PlX −kZ(as) = Pa(lX −kZ)(s) and
(F2

p \ {0})/ ∼= {[(1, 0)], [(1, 1)], . . . , [(1, p − 1)], [(0, 1)]},
we can calculate E[ωlX −kZ] only by measuring PX , PX +Z ,
. . . , PX +(p−1)Z , and PZ , which requires p + 1 types of
measurements.

Lemma 5. We have the relation

PX ,Z(l, j ) = 1
d2

∑

b,z

ω−jl+bl−jzE[ω(b−j )X +zZ]. (D4)

For z �= 0, E[ω(b−j )X +zZ] can be calculated from the
distribution P(b−j )X /z+Z , and E[ω(b−j )X ] can be calculated
from the distribution PX . Hence, from p + 1 distributions
PX , PX +Z , . . . , PX +(p−1)Z , and PZ , we derive the distribu-
tion PX ,Z .

Proof of Lemma 5: To show Lemma 5, we consider the
linear space V of complex functions on F

2
p and its dual

space V∗. We define e(x,z) ∈ V∗ as e(x,z)(f ) := f (x, z) ∈ C

for f ∈ V . Then, we define the following function F from
V∗ to p × p complex matrices:

F [e(x,z)] := (|x〉X X〈x|)(|z〉Z Z〈z|). (D5)

We extend E[ωkX +lZ] as an element of V∗ as

E[ωkX +lZ](f ) :=
∑

(x,z)

ωkx+lzf (x, z). (D6)

Hence, it is sufficient to show that F is invertible and that
the following relation holds:

(|l〉X X〈l|)(|j 〉Z Z〈j |) = 1
p2

∑

b,z

ω−jl+bl−jzF [E[ω(b−j )X +zZ]].

(D7)

We have

F [E[ωlX −kZ]] =
d−1∑

j =0

∑

(x,z):lx−kz=j

ωj (|x〉X X〈x|)(|z〉Z Z〈z|)

=
∑

x,z

ωlx−kz(|x〉X X〈x|)(|z〉Z Z〈z|)

=
( ∑

x

ωlx|x〉X X〈x|
)( ∑

s

ω−kz|z〉Z Z〈z|
)

= XlZ−k. (D8)

Since the set {XlZ−k}(l,k) spans the set d × d matrices, the
map F is invertible. In fact, we have

(|l〉X X〈l|)(|j 〉Z Z〈j |)

= ω−jl

√
d

|l〉X Z〈j |

= ω−jl

√
p

p−1∑

b=0

ωbl

√
p

|b〉Z Z〈j |

= ω−jl

p

p−1∑

b=0

ωbl 1
p

p−1∑

z=0

ω−jzXb−j Zz

= 1
p2

∑

b,z

ω−jl+bl−jzF [E[ω(b−j )X +zZ]], (D9)

which implies Eq. (D7). �

2. Case with the general state

Even when ρAB is not a generalized Bell diagonal state,
the resultant state T(τAB) of discrete twirling (31) is a
generalized Bell diagonal state.

When the state is given as the twirled state T(τAB) and
the measurement M (lX − kZ) is applied, the probability
with outcome y is

p−1∑

j =0
XkZl,A〈j + y| Z−lXk ,B〈j | 1

d2

×
( ∑

x,z

(W(x, z)A ⊗ W(x, z)TB)τAB(W(x, z)A

⊗ W(x, z)TB)
†
)

|j + y〉XkZl,A|j 〉Z−lXk ,B

=
p−1∑

j =0

1
d2

∑

x,z
XkZl,A〈−xl + zk + j + y| Z−lXk ,B

〈−xl + zk + j |τAB| − xl + zk + j + y〉XkZl,A|
− xl + zk + j 〉Z−lXk ,B

=
p−1∑

j =0
XkZl,A〈j + y| Z−lXk ,B〈j |τAB|j + y〉XkZl,A|j 〉Z−lXk ,B.

That is, the distribution of the outcome with input state (31)
is the same as the distribution of the outcome with input
state τAB. Hence, when input state (31) is given as ρ[PXZ],
the distribution PlX −kZ can be estimated by applying the
measurement M (lX − kZ) to state τAB.

Note that the twirling operation needs public commu-
nication about the choice (x, z). If they apply the twirling
operation, Eve can perfectly recover the environment of
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the twirled state T(τAB). Therefore, we can analyze the
twirled state T(τAB) for secrecy without applying it. To
conclude, we show that we do not need to apply the
twirling operation.

APPENDIX E: SEC. V PROOFS

This appendix gives the Sec. V proofs.

1. Proof of Theorem 1

For a CQ state ρL,E = ∑
l∈L |l〉〈l| ⊗ Xl and a func-

tion f : L → M′, we define the CQ state f (ρL,E) :=∑
l∈L |f (l)〉〈f (l)| ⊗ Xl. Recall the expression of d̄(M ′; ES)

in Eq. (34), where

τM ′E|S=s =
∑

m′

1
M′ |m′〉〈m′| ⊗

∑

l∈f −1
s (m′)

1
L2

WE(l)

= fs(WE × PL),

τE|S=s = TrM ′τM ′E|S=s = WE ◦ PL.

Then, we introduce the privacy amplification lemma [82].

Lemma 6. Let τLE ∈ D(HL ⊗ HE) be classical on L and
{fS} : L → M′ be a UHF family. Then

ES‖fS(τLE)− PM′ ⊗ τE‖1

≤ 2(1−t)/(1+t)2[t/(1+t)](log |M′|−H̃↑
1+t(L|E)τ ). (E1)

Equation (46) follows immediately upon using the
above lemma:

d(M ′; ES) = ES‖idE ⊗ fS(WE × PL)− PM′ ⊗ WE ◦ PL‖1

≤ 2(1−t)/(1+t)2[t/(1+t)](log M′−supσE H̃↑
1+t(L|E|WE×PL))

= 2(1−t)/(1+t)2[t/(1+t)](− log b+Ĩ↓
1+t(L;E|WE×PL)).

(E2)

2. Proofs of Corollaries 1 and 2

The following lemma will be useful in the proofs.

Lemma 7. For the n-fold channel Wn
B, the following

inequalities hold for t > −1 and t > −1/2, respectively:

max
QX n

I↓
1+t(X

n; Bn|Wn
B × QX n) = n max

QX
I↓
1+t(X ; E|WB × QX ),

(E3)

max
QX n

Ĩ↓
1+t(X

n; Bn|Wn
B × QX n) = n max

QX
Ĩ↓
1+t(X ; B|WB × QX ).

(E4)

Proof of Lemma 7: Equation (E3) for the Petz version
was shown in Ref. [83], so we focus on Eq. (E4). Before

continuing with the proof of Lemma 7, we state the
following proposition. �

Proposition 2 (Proposition 4.2 of Ref. [84]). For t ≥
−1/2, we have

sup
QX

Ĩ↓
1+t(X ; E|W × QX ) = inf

σ
sup
x∈X

D̃1+t(W(x)‖σ). (E5)

Then, we define the quasi-entropy for convenience,

�1+t(ρ‖σ) := Tr(ρ−t/2(1+t)σ . (E6)

For t > −1/2 and any probability distribution on X n, we
have

Ĩ↓
1+t(X

n; En|W⊗n × QX n)

= inf
ω∈D(H⊗n

E )

1
t

log
∑

xn∈X n

QX n(xn)�1+t(W⊗n(xn)‖ω)

(E7)

≤ inf
σ∈D(HE)

1
t

log
∑

xn∈X n

QX n(xn)�1+t(W⊗n(xn)‖σ⊗n)

= inf
σ∈D(HE)

1
t

log
∑

xn∈X n

QX n(xn)

n∏

i=1

�1+t(W(xi)‖σ)

(E8)

≤ inf
σ∈D(HE)

sup
x∈X

1
t

log[�1+t(W(x)‖σ)]n

= inf
σ∈D(HE)

sup
x∈X

nD̃1+t(W(xi)‖σ) (E9)

= n sup
QX

Ĩ↓
1+t(X ; E|W × QX ), (E10)

where lines (E7) and (E9) follow from the definitions, line
(E8) follows from the multiplicativity of �1+t, and line
(E10) follows from Proposition 2.

By using Lemma 7, we have

max
QX n

I1−t(X n; Bn|Wn
B × QX n) ≥ max

QX n
I↓
1−t(X

n; Bn|Wn
B × QX n)

(E11)

= n max
QX

I↓
1−t(X ; B|WB × QX ),

(E12)

where line (E11) follows by definition. Equation (49) is
obtained by substituting the above inequality into Eq. (48).
Hence, we obtain Corollary 1.
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Combining Eqs. (7) and (E4), we obtain the bound

Ĩ↓
1+t(X ; E|WE × PL) ≤ n max

QX
Ĩ↓
1+t(X ; E|WE × QX ),

(E13)

where PL is a distribution on X n such that, for xn ∈
L, PL(xn) = 1/|L|. Substituting Eq. (E13) into Eq. (46)
yields Eq. (50). Hence, we obtain Corollary 2.

3. Proof of Theorem 2

For a given distribution QX on X , we have

2tĨ↓
1+t(X ;E|WE×QX ) = inf

σ∈D(HE)

∑

x∈X
QX (x)�1+t(WE(x)‖σ).

(E14)

Given two distributions QX and Q̄X and 0 < λ < 1, we
have

2tĨ↓
1+t(X ;E|WE×(λQX +(1−λ)Q̄X )

= min
σ∈D(HE)

( ∑

x∈X
(λQX (x) (E15)

+ (1 − λ)Q̄X (x))�1+t(WE(x)‖σ)
)

≥ λ min
σ∈D(HE)

( ∑

x∈X
QX (x)�1+t(WE(x)‖σ)

)

+ (1 − λ) min
σ∈D(HE)

( ∑

x∈X
Q̄X (x)�1+t(WE(x)‖σ)

)

= λ2tĨ↓
1+t(X ;E|WE×QX )+ (1 − λ)2tĨ↓

1+t(X ;E|WE×Q̄X ),
(E16)

which implies that the map QX 	→ 2tĨ↓
1+t(X ;E|WE×QX ) is

concave.
Given an element x0 ∈ X = G, we define the distri-

bution QX ,x0 and the CQ channels WE,x0 and Ux0(WE)

as QX ,x0(x) := QX (x0x), WE,x0(x) := WE,x(x0x), Ux0 ◦
WE)(x) := Ux0WE(x)U

†
x0 , respectively. Then, we have

Ĩ↓
1+t(X ; E|WE × QX ) = Ĩ↓

1+t(X ; E|WE,x0 × QX ,x0)

= Ĩ↓
1+t(X ; E|Ux0 ◦ WE × QX ,x0)

= Ĩ↓
1+t(X ; E|WE × QX ,x0), (E17)

where the second equality follows from the unitary invari-
ance of quasientropy and the last inequality follows from
the symmetric condition WE(x) = Uxρ0U†

x . Because of

Eqs. (E16) and (E15), the uniform distribution PX on X
satisfies

2tĨ↓
1+t(X ;E|WE×QX ) = 1

|X |
∑

x0∈X
2tĨ↓

1+t(X ;E|WE×QX ,x0 )

≤ 2tĨ↓
1+t(X ;E|WE×PX ). (E18)

Thus, we have

max
PX

Ĩ↓
1+t(X ; E|WE × PX ) = Ĩ↓

1+t(X ; E|WE × PX ). (E19)

Combining Eqs. (46) and (E18) implies Eq. (51).

4. Proof of Lemma 2

It is known that the capacity of the degraded wire-
tap channel is supQX

I(X ; B̂)QX − I(X ; Ê)QX [42],[60, Eq.
(9.75)]. Also, in this case, For x0 ∈ X , we define the dis-
tribution QX ,x0 as QX ,x0(x) := QX (x0x). Because of the
symmetric condition, we find that

I(X ; B̂)QX − I(X ; Ê)QX = I(X ; B̂)QX ,x0
− I(X ; Ê)QX ,x0

.
(E20)

Since
∑

x0∈X QX ,x0/|X | = PX and the map QX 	→
I(X ; B̂)QX − I(X ; Ê)QX is known to be concave for
degraded channels [60, Eq. (9.76)], we have

I(X ; B̂)PX − I(X ; Ê)PX

≥
∑

x0∈X

1
|X | (I(X ; B̂)QX ,x0

− I(X ; Ê)QX ,x0
)

= I(X ; B̂)QX − I(X ; Ê)QX .

Hence, supQX
I(X ; B̂)QX − I(X ; Ê)QX = I(X ; B̂)PX −

I(X ; Ê)PX . This completes the proof of Lemma 2.

APPENDIX F: PROOF OF LEMMA 3

Recall the definition of C,

c = gs′(m, y) = y + T(s′)m. (F1)

For fixed s′, m, the map between y and c is bijective, so
we have the function y = y(m, s′, c). Then, we evaluate
d(M ; E′S′C) as
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d(M ; EAS′C) = min
σEAS′C

‖τMEAS′C − PM ⊗ σEAS′C‖1

≤ min
{σEA,Y=y,M=m}m,y

∥
∥
∥
∥

∑

s′,m,y

PM(m)PS′(s′)PY(y)|m〉〈m| ⊗ τEA,Y=y,M=m ⊗ |s′〉〈s′| ⊗ |gs′(m, y)〉〈gs′(m, y)|

−
( ∑

m

PM(m)|m〉〈m|
)

⊗
( ∑

s′,m,y

PM(m)PS′(s′)PY(y)σEA,Y=y,M=m ⊗ |s′〉〈s′| ⊗ |gs′(m, y)〉〈gs′(m, y)|
)∥

∥
∥
∥

1

= min
{σEA,Y=y,M=m}m,y

∥
∥
∥
∥

∑

s′,m,c

PM(m)PS′(s′)PY(c)|m〉〈m| ⊗ τEA,Y=y(m,s′,c),M=m ⊗ |s′〉〈s′| ⊗ |c〉〈c| −
( ∑

m

PM(m)|m〉〈m|
)

⊗
( ∑

s′,m,c

PM(m)PS′(s′)PY(c)σEA,Y=y(m,s′,c),M=m ⊗ |s′〉〈s′| ⊗ |c〉〈c|
)∥

∥
∥
∥

1

= min
{σEA,Y=y,M=m}m,y

∑

s′,c
PS′(s′)PY(c)

∥
∥
∥
∥

∑

m

PM(m)|m〉〈m| ⊗ τEA,Y=y(m,s′,c),M=m −
( ∑

m

PM(m)|m〉〈m|
)

⊗
( ∑

m

PM(m)σEA,Y=y(m,s′,c),M=m

)∥
∥
∥
∥

1

= min
{σEA,Y=y,M=m}m,y

∑

s′,y
PS′(s′)PY(y)

∥
∥
∥
∥

∑

m

PM(m)|m〉〈m| ⊗ τEA,Y=y,M=m −
( ∑

m

PM(m)|m〉〈m|
)

⊗
( ∑

m

PM(m)σEA,Y=y,M=m

)∥
∥
∥
∥

1

= min
{σEA,Y=y,M=m}m,y

∑

s′
PS′(s′)

∥
∥
∥
∥

∑

m,y

PY(y)PM(m)|m, y〉〈m, y| ⊗ τEA,Y=y,M=m −
∑

y

PY(y)
( ∑

m

PM(m)|m, y〉〈m, y|
)

⊗
( ∑

m

PM(m)σEA,Y=y,M=m

)∥
∥
∥
∥

1

≤ min
{σEA,M=m}m

∑

s′
PS′(s′)

∥
∥
∥
∥

∑

m,y

PY(y)PM(m)|m, y〉〈m, y| ⊗ τEA,Y=y,M=m −
∑

y

PY(y)
( ∑

m

PM(m)|m, y〉〈m, y|
)

⊗
( ∑

m

PM(m)σEA,M=m

)∥
∥
∥
∥

1

= min
{σEA,M=m}m

∑

s′
PS′(s′)

∥
∥
∥
∥

∑

m,y

PY(y)PM(m)|m, y〉〈m, y| ⊗ τEA,Y=y,M=m −
(∑

m,y

PM(m)PY(y)|m, y〉〈m, y|
)

⊗
( ∑

m

PM(m)σEA,M=m

)∥
∥
∥
∥

1

= min
σEA

∑

s′
PS′(s′)

∥
∥
∥
∥

∑

m,y

PY(y)PM(m)|m, y〉〈m, y| ⊗ τEA,Y=y,M=m −
( ∑

m,y

PM(m)PY(y)|m, y〉〈m, y|
)

⊗ σEA

∥
∥
∥
∥

1

= d(M ′; EA).

Then, we obtain Eq. (61).
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APPENDIX G: PROOF OF LEMMA 4

Define

ωXAE = WE × PX =
∑

x∈X

1
|X | |x〉〈x| ⊗ UxτAEU†

x . (G1)

By definition,

Ĩ↓
1+t(X ; AE|ωXAE) = min

σAE

1
t

log�1+t(ωXAE‖ωX ⊗ σAE).

(G2)

Note that ωXAE is invariant under group operation {Ux}x∈X
and quasientropy�1+t(·‖·) [see Eq. (E6) for a definition] is
invariant under the unitary operation. Thus, the minimizer
σAE is also invariant under group operation {Ux}x∈X , which
means that it takes the form σAE = IA/dA. Then we have

Ĩ↓
1+t(X ; AE|ωXAE)

= min
σE

1
t

log�1+t

(

ωXAE‖ωX ⊗ IA

dA
⊗ σE

)

= min
σE

1
t

log
ds

A

|X |
∑

x

�1+t(UxτAEU†
x‖σE)

= log dA − H̃↑
1+t(A|E|τAE). (G3)

APPENDIX H: PROOF OF THEOREM 4

Recall that an achievable rate for the wire-tap channel
requires that ε(WB) = Pr[M �= M̂ ] and d̄(M ; E) go to zero
asymptotically. An achievable rate for the PDC protocol
requires that εC, εE and εB go to zero asymptotically. We
prove Theorem 4 by showing the conversion between these
conditions.

Protocol 4 gives a conversion from a specific wire-tap
code to a PDC protocol. However, this type of conversion
can be made for any wire-tap code. Since the consumed
length for covering variable Y is negligible in comparison
with n, we have the “≤” relation in Eq. (74).

Conversely, the asymptotic setting of the PDC model
requires the following. Alice transmits her message with
asymptotically zero error under n times use of the channel
WB. Also, when Eve receives her information via n times
use of the channel WE , Eve obtains no information about
Alice’s message.

Now, we consider a PDC protocol Pn that is εC com-
plete, εE secure, and εB reliable with a message M ∈ M
and a random variable S ∈ S to be sent via the public
channel. We have a conditional distribution PGn|M ,S such
that Alice chooses an element (g1, . . . , gn) ∈ Gn subject to
PGn|M ,S and applies Ug1 ⊗ · · · ⊗ Ugn dependently of S and
M . Also, we denote the decoder �S dependently of S.

In the following, we consider the case when the chan-
nel from Alice to Bob is �⊗n

A . We denote the recovered

message by Bob by M̂ . Then, we have

Pr[M �= M̂ ] = Pr[M �= M̂ , Abc] + Pr[M �= M̂ , Ab]

≤ Pr[Abc |M �= M̂ ] + Pr[Ab]

≤ εB + εC, (H1)

Also, there exists a distribution QS of S such that

‖PS,M − PM × QS‖1 ≤ εE , (H2)

which implies that

‖PS − QS‖1 ≤ εE . (H3)

Thus, we have

‖PS,M − PM × PS‖1 ≤ 2εE . (H4)

Hence, we have

∑

s∈S
PS(s)(P(M �= M̂ |S = s)+ ‖PM |S=s − PM‖1)

≤ 2εE + εB + εC. (H5)

When S = s and the distribution PM |S=s is replaced by
PM , we denote the decoding error probability by Pr[M �=
M̂ |S = s][PM ]. Then, we have

Pr[M �= M̂ |S = s][PM ]

≤ Pr[M �= M̂ |S = s][PM |S=s] + ‖PM |S=s − PM‖1

= Pr[M �= M̂ |S = s] + ‖PM |S=s − PM‖1. (H6)

That is, we have

∑

s∈S
PS(s)Pr[M �= M̂ |S = s][PM ] ≤ 2εE + εB + εC.

(H7)

In the following, we consider the case when Eve intercepts
the transmitted state. There exists a state σSE such that

‖ρMSE − PM ⊗ σSE‖ ≤ εE . (H8)

For the same reason as used above in Eq. (H4), we have
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‖ρMSE − PM ⊗ ρSE‖ ≤ 2εE . (H9)

We define the joint state ρ̄MSE as

ρ̄MSE :=
∑

s∈S,m∈M
PM (m)PS(s)|m, s〉〈m, s| ⊗ ρE|M=m,S=s.

(H10)

Then, we have

‖ρ̄MSE − PM ⊗ ρSE‖1

≤ ‖ρ̄MSE − ρMSE‖1 + ‖ρMSE − PM ⊗ ρSE‖1

≤ ‖PS,M − PM × PS‖1 + ‖ρMSE − PM ⊗ ρSE‖1

≤ 4εE . (H11)

That is,

∑

s∈S
PS(s)‖ρ̄ME|S=s − PM ⊗ ρE|S=s‖1 ≤ 4εE . (H12)

Because of Eqs. (H7) and (H12) and the Markov inequal-
ity, there exists s0 ∈ S such that

P(M �= M̂ |S = s0)[PM ] ≤ 3(2εE + εB + εC), (H13)

‖ρ̄ME|S=s0 − PM ⊗ ρE|S=s0‖1 ≤ 12εE . (H14)

Similarly as above for Eq. (H4), we have

‖ρ̄ME|S=s0 − PM ⊗ ρ̄E|S=s0‖1 ≤ 24εE . (H15)

Now, as our wire-tap encoder, we choose PGn|M=m,S=s0 for
each message m ∈ M. We choose �s0 as our wire-tap
decoder. The decoding error probability of this wire-tap
code is evaluated by Eq. (H13), and the information leak-
age of this wire-tap code is evaluated by Eq. (H15). Hence,
we have the “≥” relation in Eq. (74).
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