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With continuing improvements on the quality of fabricated quantum devices, it becomes increasingly
crucial to analyze noisy quantum process in greater details such as characterizing the non-Markovianity
in a quantitative manner. In this work, we propose an experimental protocol, termed spectral transfer
tensor maps (STTMs), to accurately predict the Rivas-Huelga-Plenio non-Markovian measure of any Pauli
channels without state preparation and measurement errors. In fact, for Pauli channels, STTM even allows
the reconstruction of a highly precise noise power spectrum for qubits. At last, we also discuss how STTM
can be useful to approximately characterize non-Markovianity of non-Pauli channels via Pauli twirling in

an optimal basis.
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L. INTRODUCTION

The past decade has witnessed a rapid development of
quantum technologies, especially with the advent of the
noisy intermediate-scale quantum (NISQ) era [1]. These
achievements are firmly built upon our continually improv-
ing capability to fabricate, control, and benchmark quan-
tum devices with unprecedented precision. Characteriza-
tion protocols like quantum state and process tomography
[2—6], randomized benchmarking (RB) [7—10], Hamilto-
nian learning [11-14], and quantum noise spectroscopy
[15—18] have all proven to be instrumental in the diag-
nosis of faulty quantum devices and, eventually, help us
build higher-quality devices. Recently, increasing attention
has been turned toward more precise noise characteriza-
tions and control, such as detecting and suppressing non-
Markovian noises, which bears implications to other char-
acterization protocols such as RB that assumes Markovian
noises. Despite these recent efforts, there is still no state
preparation and measurement (SPAM) error-free method
to efficiently quantify strength of non-Markovian noises in
a quantum device. In this work, we propose such a method
by combining a recently proposed transfer tensor method
[19,20] and the spectral quantum process tomography [21].

Quantum devices are often operated in a noisy envi-
ronment. If the noise is Markovian, it is straightforward
to predict the adverse effects and manipulate quantum
states as desired. When non-Markovian memory plays a
critical role, the associated quantum dynamics becomes
significantly harder to analyze and control as the dynam-
ical evolution is intimately affected by the past trajectory.
This challenge could even create nontrivial roadblocks for
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building a fault-tolerant quantum computer. Hence, as we
attempt to increase the scale of a quantum device, such as
the circuit depth and qubit counts of a quantum circuit, it is
desirable to quantify and suppress non-Markovian noises.

Currently, there are many competing proposals for non-
Markovianity measures due to different perspectives and
motivations. This is an active research area, and no unani-
mous consensus on the most useful measure (for develop-
ing quantum technology) has been reached. Among them,
the Rivas-Huelga-Plenio (RHP) measure is inspired by
the violation of completely positive (CP) divisibility for
non-Markovian dynamical maps. While RHP is a math-
ematically rigorous approach, it is not straightforward to
deduce in experiments. The challenge is further aggravated
by the need to remove SPAM errors in order to achieve
high-precision measurements for a quantum hardware. As
elucidated later, we propose a SPAM error-free experimen-
tal method and rigorously deduce RHP measure from a set
of spectral quantum process tomographies (SQPTs) [21]
for any Pauli channels and a bounded approximate on the
RHP measure for other non-Pauli channels.

Quantum process tomography (QPT) [4—6] is among the
most widely used tool for experimentally characterizing
quantum dynamics and has been used in the context of
quantum technology, such as determining quantum gate
fidelities [22—24] and investigating environment-induced
errors [25,26]. However, earlier theoretical and experi-
mental efforts [26,27] were largely confined to device
characterization without taking non-Markovianity of noise
into account. A newly proposed method, transfer tensor
map (TTM) [19,28], offers a way to bridge experimentally
deduced QPT data with the theory of time-nonlocal quan-
tum master equation (TNQME) [29], which is valid for
general open quantum dynamics including non-Markovian
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ones. Built upon the theory-experiment connection under
the TTM framework, Ref. [20] further proposes a suite
of experimental protocols to more easily (1) witness the
non-Markovianity of a quantum process, (2) reconstruct
the noise power spectrum, and (3) estimate spatial and
temporal correlations of nonlocal noise in a quantum
device.

In this work, we replace the standard QPT experi-
ments considered in Ref. [20] with the newly proposed
SQPT [21], which gives SPAM error-free estimates of
eigenvalues of quantum channels. The original SQPT is
most appropriate for characterizing Markovian quantum
channels. In the original proposal [21], non-Markovian
noises can only be detected but not quantified. Combin-
ing SQPT with TTM, we derive a spectral form of TTM,
dubbed STTM, that allows us to quantify degrees of non-
Markovianity for any Pauli channels. With limited efforts,
one can further extract the noise power spectrum for these
channels. For more general quantum processes beyond
Pauli channels, we apply Pauli twirling in an optimal basis
(as defined in a later section) to estimate the degree of non-
Markovianity. Without loss of generality, we describe the
proposed STTM in the context of characterizing qubits in
a circuit model. We note that the effort to simultaneously
reduce the experimental costs of quantum process tomog-
raphy and make it compatible with SPAM error free is a
highly nontrivial challenge. The present method (building
upon SQPT) is only valid for a high-quality quantum hard-
ware satisfying certain conditions detailed in Appendix B.
In short, it works best if the environment can be modeled
as a source of classical noise or the environment has a
fast reorganization and only weakly coupled to the system.
To extend the present method to work with more general
environments, we may further incorporate the theoretical
framework of Ref. [30]

The remainder of this work is organized as follows.
Section II summarizes the derivation of spectral transfer
tensor maps. Section III discusses the proposed STTM
noise spectroscopy. Section IV discusses an extension of
STTM to non-Pauli channel. Section V describes the usage
of STTM noise spectroscopy with examples based on
theoretical models. Section VI concludes.

II. SPECTRAL TRANSFER TENSOR METHOD
FOR PAULI CHANNELS

The STTM is an elegant combination of TTM and SQPT
for characterizing Pauli channels. We first recap these
two methods before we present our contribution, STTM,
which draws inspirations from both methods to efficiently
investigate non-Markovian dynamics without influences
of SPAM errors. This high-precision analysis should pro-
vide essential information to further improve the quality of
existing quantum devices.

A. Transfer tensor maps

We first review the theory of TTM as originally formu-
lated in Ref. [19]. The most general dynamical evolution
of an open quantum system is given by

t t
o = <eprr <—i/ dsH(s)) £00B EXP_ <z/ dsH(s))>
0 0

= Atp(); (1)

where pp is the initial state of the environment, H () is
the total Hamiltonian of a time-dependent system compris-
ing a system and its environment. The + subscript denotes
the (anti)chronological time ordering of the time-evolution
operator. The bracket (---) denotes an average over the
environmental degrees of freedom. A, is the dynamical
map relating the initial density matrix to the time-evolved
reduced density matrix. The dynamical maps A for a d-
level quantum system are derived from an ensemble of
QPTs obtained under ¢? different initial conditions. In
an experiment, the QPTs are supposedly performed at
equidistant time intervals, i.e., fy = kd¢, thus Ay = A,,.

If we assume a separable system-bath initial condition
and a time-independent Hamiltonian then an open system’s
dynamics can be succinctly cast in the form,

Ioln = Z Tmlotn_m’ (2)
m=1

where the system’s state at time 7, is determined by the
history of its past evolution extending all the way back to
to. In Eq. (2), TTMs T,, are introduced to correlate two
density matrices p;, and p;,_,. More specifically, TTMs
are defined via

n—1

T, =A,— Z Tomm, 3)

m=1

with 77 = A;. Time translational invariance of the dynam-
ical process is implicitly assumed, as these maps are related
by the time difference méz.

For most practical cases, one can approximate exact
quantum dynamics by truncating the TTM series to a finite
number of terms, i.e., {71, ..., Ty} in Eq. (2). This obser-
vation is the key that the TTM formalism could be useful
in an actual experiment, as one only needs to perform
M QPTs to deduce the dynamical maps {Aj,..., Ay}
and associated TTMs. Beyond #,, all quantum dynamical
information can be recursively predicted with the help of
TTMs via Egs. (2)3).
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B. Spectral quantum process tomography

SQPT [21] is another developed tomographic technique
that provides only partial information (eigenvalues of a
quantum channel) on the dynamical processes under inves-
tigation. SPAM-resistant protocols must make a certain
trade-off between characterization details and efficiency.
For instance, a scalable method like RB may only out-
put a scalar number to benchmark the gate quality. On the
other hand, methods like robust tomography and gate-set
tomography characterize all aspects of a quantum gate at
the expense of scalability. Aforementioned examples are
extreme cases, and SQPT situates in the middle of the
spectrum. It gives SPAM error-free estimates on the spec-
tral properties of a quantum gate without consuming as
much resources as the standard QPTs, which are SPAM
error prone. Furthermore, it does not require complex
experimental protocols for implementations. We briefly
summarize the idea of SQPT below.

Any completely positive and trace-preserving (CPTP)
map A acting on density operators in a d-dimensional
Hilbert space for an n-qubit system can be represented with
a corresponding Pauli transfer matrix,

Su =Tr[PuA(P)], w,v=0,...,N, 4)
where Py =1%", P, =1®"1@X,P,=I*""1Q7,...,
Py = Z®" are Pauli matrices with N =d*> — 1 and d =
2", If we are restricted to dealing with unital channels,
i.e., A(l) =1, then the Pauli transfer matrix assumes a
block-diagonal form,

1 0
S=<O R). 5)

The SQPT protocol relies on an observation that
eigenvalues of R matrix in Eq. (5) may be deduced
from a set of experimentally generated signal functions
{g(1),g(2),...,g(K)}, where K > 2N —2 in order to
determine the eigenvalues accurately. These signal func-
tions are defined as

1 N
gk) = > Tr[PuNy o AFo N, (Py)].
n=1

1
= 2—nTI' [Rmeas RkRprep ] >

1 1 &
= 2—nTr [ASPAMDk] = 2_"]2_1:14])\'& (6)

where \V,,, A, and N,, are quantum channels correspond-
ing to the state-preparation error, k-fold applications of a
unitary operation, which is generalized to a CPTP map
when accounting for noise decoherence, and measurement

errors, respectively. The first line of Eq. (6) gives a clear
experimental procedure to construct the signal functions:
preparing an eigenstate of P,, operator, apply a target uni-
tary k times, and perform projective measurement in the
P, -diagonal basis. Finally, this procedure is repeated for
different eigenstate of P, and for different u index as indi-
cated in the summation appearing on the right-hand side of
the first line of Eq. (6).

As we focus on unital channels, the second line of
Eq. (6) immediately follows. Rmeas and Ryep are the R
submatrix of Pauli transfer matrix for V,, and \V,,, respec-
tively. The R submatrix of a target unitary R = VDV~! can
be diagonalized. Under the trace operation, we may shuffle
V and V! to obtain Agpay = V’lRmeasRprep V, which cap-
tures all SPAM errors, in the third line. As D is a diagonal
matrix with entries Ajlf we end up with a simple interpreta-
tion of g(k), i.e., it is proportional to Z]N:l A; kj’?. By using
the matrix-pencil method to postprocess the time series of
{g(1),...,g(K)}, one may reliably extract A;.

C. Pauli channels

The family of Pauli channels represents a wide class of
noise processes including several prominent decoherence
models for quantum computations, such as the depolariz-
ing, dephasing, bitflip, and amplitude damping channels.
A Pauli channel can be described by a Pauli map [31,32].
For one-qubit cases, a general Pauli channel assumes the
following form:

Alpl= > faPupPa, 7

a={0,x,y,z}

where Py = I; and {P,|a = x,y, z} are the Pauli operators.
The coefficients f, collectively satisfy a simple relation
Z(x:{O vyzJo = 1. These maps have eigenvalues A, as
defined by

A[Py] = APy, (3

with Ly = 1. There is a simple relation between f, and A,
namely,

b= Y (DEPDL g =xyz ()

B={0.x.,7}

where s([Pg, Py]) = 0if [Pg, Py] = 0 and s([Pg, Py]) = 1
otherwise. A Pauli map is completely positive if and only if
its eigenvalues satisfy the Fujiwara-Algoet conditions [33]

EHEN VeI (10)

064007-3



YU-QIN CHEN, YI-CONG ZHENG, ZHANG, and CHANG-YU HSIEH

PHYS. REV. APPLIED 17, 064007 (2022)

D. Spectral quantum process tomography for
non-Markovian dynamics

The original SQPT reviewed above works naturally for
a Markovian channel, but not directly applicable to non-
Markovian ones. This is because a non-Markovian channel
violates divisibility,

Am+n 7é AmAna (11)

where A,, = A,,. Recall that, under the standard SQPT
framework, g(k) signals are treated as a time series
{to,t1,...,t,...} spaced with a uniform interval §¢. If
the quantum channel under interrogation is a Markovian
process, then A, = A’g,, which is implicitly assumed in
Eq. (6). Non-Markovian channels no longer fit into the
original framework that extracts spectral properties of a
dynamical process from the signal function g(k) by using
the matrix pencil method. In this subsection, we pro-
pose a method to generalize the original framework for
non-Markovian Pauli channels.

To address this deficiency, we redefine the signal func-
tions. As the quantum channel is not divisible, we simply
take every A, as an independent channel and introduce a
subscript ¢, to the signal function, i.e.,

ZTr

The modified signal function carries two “time” labels:
operational time duration ¢#, to denote the quantum chan-
nel A, under investigation, and logical time duration &
to imply the artificially constructed dynamical processes
A’;, which are required for the matrix-pencil method to
extract the spectrum of A, via K time points of the signals
{g, (D), ...,g, K}

If one is interested in characterizing a non-Markovian
process up to time #,, = M §t, then one needs to construct
M independent sets of signal functions {g,, (1), ... g, (K) |
n=1,...,M}. For each set of signal functions, one
applies the standard STTM to deduce the time-evolved
spectrum of A, from K logical time points,

8, (k) = Nuo AP oN, (P)].  (12)

2 2
TSRS N PRI S IR NN R LD S LS T

(13)

where A" denotes the mth eigenvalues for A,. A num-
ber of useful properties can be inferred from these spectra,
such as the degrees of non-Markovianity and noise power
spectrum as elucidated later in the text. See Fig. 1 for a
brief summary.

While it is obvious that g, (k) in Eq. (12) is a generaliza-
tion of Eq. (6) for non-Markovian processes, it is not easy
to experimentally construct g;, (k). Next, we propose an
experimental protocol to extract spectra of non-Markovian

(a) 9(1) =g (1)

9(@2) = g1
9@3) = gi:(D)

9(K) = gk (1)

A= Ay dy .}

(b)
9e1(1) 9e2(1) gen (1)
901(2) 9:2(2) gen (2)
91 (3) 9:2(3) 9en(3)
91 (K) 9e2(K) en (K)
R I ho— G0 A0

FIG. 1. (a) A sequence of signal functions to extract dynam-
ical spectral for Markovian noise. (b) Group of the sequence
of signal functions needed to extract dynamical spectral for
non-Markovian noise.

A, spanning a duration 7 = ndt. The proposed protocols
requires us to perform two sets of experiments, delineated
in Figs. 2(a) and (b), respectively. In this figure, symbol
A, denotes the targeted quantum channel, P denotes the
state-preparation circuit to create an eigenstate of an n-
qubit Pauli matrix P,, and M corresponds to a projective
measurement in the eigenbasis of P,,.

Figure 2(a) implies a set of simple circuits in which
A, and M are interleaved for k = 1,2, 3, ... times. If one
repeats the experiments in (a) to cover all possible ini-
tial state preparations and measurements in the Pauli basis,

C))

S

" EEE
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CEEEEEEE
CEEEE .
" EEEEERE
o PEEEE

FIG. 2. Protocol to capture signal functions for non-
Markovian noise. A, is the concerned quantum channel
corresponding to dynamical map of various evolution time
t,. “M” is the projection measurement in the same direc-
tion of initial Pauli matrix. (a) Alternately apply concerned
quantum channel and projection measurement. (b) Alternately
apply concerned quantum channel and double projection
measurements.

>
S

S
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then one may construct a signal function,

N
g (k) = ZinZTr [PM./\/‘m oA,o (MM o N, o A,,)ki1

n=1

ON;?(PM)]

1 N
= 5 D Tr [P Wi A o N ()]

n=1

=Tr [(Rmeas Rdyn)kRPrep ]

APDk ZA (mj A(ﬂ))k

(14)

where Rieqs, Rayn, and Rprp are the submatrix R of the
Pauli transfer matrix for Myeas, Ay, and J\/prep, respectively.
RineasRayn = VDV~! can be diagonalized with eigenval-
ues ):}") = my ))L](-") , where m, and )»J(-") are eigenvalues of
Rmeas and Rgyn, respectively. This special relation (spectra
of a matrix product is derived from multiplications of the
spectrum of two matrices) holds for Pauli channels. 4p =
V*IRprepV encapsulates all the state-preparation errors. As
every application of dynamical map A, is followed with
a projective measurement, the fundamental components
that scale with & are actually (ms(j)A;") )¥. Hence, apply-
ing the matrix-pencil method to the time series constituted
by K signal functions, g; (k), would give us an estimate

of ms(,»))»;”) instead. To isolate k("), we need additional
equations. Hence, we propose to perform a second set
of experiments delineated in Fig. 2(b). In this case, the
experiment protocol is almost identical to the previous
experiment except that every application of a dynami-
cal map A, is followed by two consecutive projective
measurements. Now, one may construct a set of signal
functions,

N

1 B

e =3, Y T [PMNmoM,;oA,,o (M, oM 0 A,)"
pu=1

o N; (Py) ]

1 N
= 5 2 Tr[Pu Wi o Ny o A o N, (Pu)]

n=1

=Tr [(RmeasRmeastyn)kRprep]

ZA ( 2)\‘(”))/(

Tr[4pD'] = (15)

where M/, = M, o Ny. RieasRmeasR = VDV™!
nal, Ap = V"RprepV captures preparation error. It is clear

is diago-

that the matrix-pencil method may give us an estimate of
(m X(")), which are eigenvalues of Rmeastyn' Now, by
combmmg the experimental results of these two sets of
experiments, we can easily obtain

(m')\(")>2
=37

e (16)
J 24 (1)
miA;

If we perform these two sets of experiments, Figs. 2(a)
and (b), to deduce the time-evolved spectra, AJ(-") for n =
1,...,M without SPAM errors. We note that for the read-

out errors of moderate strength, eigenvalues for g’ and g”
will maintain the same order and make Eq. (16) feasible.

E. Spectral transfer tensor method

We now introduce STTM for Pauli channels. We discuss
how the method can be useful for more general dynamical
processes in Sec. [V B.

Since Pauli channels necessarily have a diagonal Pauli
transfer matrix in a fixed basis for all time, it can be proved
inductively that 7, derived from Eq. (3) must be diagonal
in the same basis. The non-Markovian SQPT described in
the previous subsection can be invoked to give diagonal
elements for A,,. Via Eq. (2), one may recursively derive
the following relations:

n—1

A=Y 1o a9 (17a)
m=0

T = Zrn AL (17b)

where 77 denotes an eigenvalue of T,. In this work, we
refer to the set {7, |« € {x,y,z} andn =1,...,M} as the
STTM. As discussed before, it is often appropriate to
assume the memory kernel of a non-Markovian process
has finite width and truncate the summation in Eq. (17a)
by keeping the first M terms and discarding the rest.

F. Resource consumption

Finally, we analyze the efforts required to implement
STTM based on the protocols introduced in Fig. 2. Accord-
ing to Egs. (14)H15), each of these two modified signal
functions requires the same amount of experimental efforts
as the original SQPT. Since STTM requires a characteriza-
tion of M dynamical maps to cover the memory kernel,
there is a total of d x (d> — 1) x (K 4+ 1) x M distinct
experiments (i.e., quantum circuits). Each distinct exper-
imental setup should be further repeated Ngampies times in
order to reach an acceptable variance o< O(1/Ngampies) for
the measurement statistics. While the present approach
is not scalable, it is still a more economical approach
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(when d > K) to obtain the SPAM-free estimate of a
memory kernel for a non-Markovian Pauli channel. If we
compare STTM to a more direct application of SPAM-
free process tomographic technique, such as the gate-set
tomography, to derive TTM for the same quantum system.
Gate-set tomography would require d? x (d> — 1) x M
distinct experiments.

I11. NOISE SPECTROSCOPY BASED ON STTM

In this section we further discuss how STTM can be
used to (1) quantify non-Markovianity and (2) reconstruct
power spectrum for Pauli channels. Before delving into
these tasks, we first relate the spectral properties of a
Pauli channel to the corresponding time-local and nonlocal
master equations.

A. Master equations for Pauli channels

Dynamics for every open quantum system can be
described by the Nakajima-Zwanzig equation,

t
0= —iLsp(f) +/ Ki—vprdt, (18)
0

where L is the Liouvillian of the system alone, /C, is the
non-Markovian memory kernel that relates a system’s past
dynamical history to its present evolution under the influ-
ence of an external environment such as noise. In addition
to Eq. (18), the dynamical evolution can be alternatively
represented in a time-local form as follows:

Pr = </ ,Ct—t)At’Atldt/> o) = Lip(®). (19)
0

For Pauli channels A,, that is diagonal in the Pauli basis,
one immediately infers that both £, and K, are also diag-
onal in the Pauli basis for all time ¢. In fact, one can
explicitly show that

Ki= ) k(O[U,—1T],

a=x,yz

1
Li=5 ), v®Uy—1],

a=x.yz

(20)

where U,[p] = P, ,OPI( and [[p] = p. Hence, the dynam-
ical evolution of a Pauli channel is also fully encapsu-
lated in the parameters &, (#) and y,(f). To quantify non-
Markovianity and reconstruct the noise power spectrum of
a non-Markovian dynamics, it is beneficial to have k,(¢)
and y, (¢) readily extracted from experiments.

Casting the Nakajima-Zwanzig equation p (¢,) = an_zlo
Kmp (tn) 8t in a discretized form, one may relate the

memory kernel to the TTMs in Eq. (2) if these maps are
sampled at sufficiently small time step ¢,

T, = K8 + 8,1 (21)

Noting the TTM and the memory kernel in Eq. (21)
should assume a diagonal form for Pauli channels, we
immediately obtain

K8 = 1% —§,. (22)

This relation above indicates that one may readily recon-
struct the memory kernel from STTM with minimal efforts.
Next, the generator for a Pauli channel must satisfy

Et [Pot] = /’Lot(t)Pou (23)

with () = y, (1) — Zﬂ:{x%z} yp(?). From Eq. (19), we
may deduce

At [Pa] = ﬁtAt [Pa] > (24)

and draw the conclusion that A, (f) = Exp [ fot o (‘L’)d‘[].

Thus, we acquire a relationship between y,(f) and A, as
follows:

rtzfo ya(@dr = 220y Lg o (25)

2 A (D

With help of STTM via Eq. (17a), we may estimate I"; for
all time ¢.

B. RHP measure for Non-Markovianity

A mathematically rigorous measure for non-
Markovianity of a dynamical process was proposed by
Rivas, Huelga, and Plenio [34]. This measure is moti-
vated by the fact that a local Markovian dynamics always
leads to a monotonic decrease of the entanglement between
a system and an ancilla of the same dimension while
non-Markovianity (violate the CP divisibility) induces a
temporary reversal of this diminishing trend. Hence, the
rate of change of the bipartite entanglement gives a con-
crete way to quantify non-Markovianity. More precisely,
the RHP measure proposes that one should follow the rate
of entanglement change for a bipartite system initialized
in a maximally entangled state p = |®)(®| and evolves
under the quantum channel A; ® I[p],

I:/ g(vdt, (26)
0
with
Vi LRI D) (D[]} — 1
o  tim L HE@DAR @ =1
e—0t €
where || - ||; denotes the trace norm, L, is the genera-

tor of A; as defined in Eq. (19). For Pauli channels, a

064007-6



SPECTRAL-TRANSFER-TENSOR METHOD. ..

PHYS. REV. APPLIED 17, 064007 (2022)

straightforward calculation leads to

_l o for n®=0
B() = {—Va(t) for  y,(t) <0 (28)
and finally
I= ) L= / —Ya (t)dt. (29)
a={x,pz} a={xy,z) Y Ve(0=<0

Thus, an accumulation of negative decoherence rates
Yo (f) over the duration ¢ € [0,00] accounts for non-
Markovianity. According to Eq. (25), decoherence rates
are related to the spectra of dynamical maps that can be
deduced from STTM for an arbitrary long time.

C. Noise power spectrum

Next we describe how the STTM allows one to recon-
struct the noise power spectrum for an open quantum
system. Let us consider a set of qubits governed by the
following Hamiltonian:

H(t) = Hs + Hqp (1)

=H,+ Y _giB! (Do}, (30)

where H, is a time-independent system Hamiltonian for the
qubits, and Hy, denotes the system-noise interaction. o;* is
a Pauli operator with the index 7 labeling the qubits and the
index o one of the {x,y,z} Cartesian components. BY (f) =
e~ ' B(0)e! is a bath operator in the interaction pic-
ture with respect to Hp, the environment Hamiltonian. If
assuming Gaussian noises, then the environment-induced
perturbations can be fully captured in the first two statis-
tical moments (B¢ (f)) and (BY (t)Bf (?)) with (-) implying
an average with pp, such as the thermal state for the bath.

For a piece of high-quality quantum hardware, it is
often sufficient to consider the weak-coupling regime for
system-noise coupling. The exact memory kernel [29] for
an arbitrary quantum bath can be written as follows:

Kt 1) = PL@ exp, [ / dsgcm] QLWYP, (1)
t

where projection operators P and Q = 1 — P are defined
by PQ(¢) = Trp[2(1)] ® pp, i.e., P projects a system-bath
entangled quantum state €2(#) to a factorized form consist-
ing of a system part p(f) = Tr,Q2(¢), and a bath part p,,
which is a stationary state with respect to the bath Hamil-
tonian Hj,. We note that the kernel is a stationary process
K(t,¢) = K(t — ¢') when the noise satisfies the stationary
Gaussian conditions.

The memory kernel for a Gaussian noise can be
expressed as K(1) =Y 02, Ky, (1), where K,,(f) corre-
sponds to the order 2n expansion of the Hamiltonian with

respect to Hy. Keeping only the leading (i.e., second-
order) term gives

K@0)() ~ Ka(0)
=Y [0, Caur ()" ()(-) = Cly (D()0™ (D],

ad’

(32)

where o*(t) = exp(—iHf)o® exp(iH,t) and the bath cor-
relation functions are given by

Coue(0) = & (B" (5 (0). (33)

We suppress the index i on Pauli matrices and noise opera-
tors B (f) in Egs. (32)+33), as we should illustrate the idea
with a one-qubit case from here onward.

For the Pauli channel defined in Eq. (7), the weak-
coupling (second-order approximated) memory kernel
reads

K@p®) = [Caal®) + Cop(0)] (0up()ou — p(0)) .

a=x,y.x

(34

On the other hand, the memory kernel of a Pauli channel is
known to possess a simple expression,

1
Ki= ) k() [Us — 1. (35)

a=x.p,z

Relating Eqs. (34) and (35), we identify a way to recon-
struct Cyq (f) from STTM data [via first calculating k, (¢)
as discussed in a previous section],

ko (tn) = 2 [Caw () + Chy (1)]
> 2[Cpp(t) + Chp )] (36)

B=xyx

Once the noise correlation function is determined, the cor-
responding spectral density can be determined by invoking
the fluctuation-dissipation theorem [35], which gives

Jua (@) = % f " dre [Caa() = Coa®].  (37)

o0

IV. BEYOND PAULI CHANNEL

In the previous sections, we introduce STTM for non-
Markovian Pauli channels. For more general dynamical
processes, we suggest to apply the Pauli twirling approxi-
mation (PTA) in order to extract useful information. This
is a much more challenging task. While one may derive a
rigorous witness of non-Markovianity under the PTA, it is
more realistic to obtain an estimated quantification of the
degree of non-Markovianity for non-Pauli channels.
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A. Pauli twirling approximation

According to Ref. [36], a quantum channel A can be
approximated by a Pauli channel A through PTA,

K-1

- 1
Alp) = & UX_;PUA [P,pP,] P,

= D JuwPupPu. (38)

PyePy

We apply PTA to the spectral quantum process tomogra-
phy elaborated in Sec. IID to extract SPAM free spectral
of dynamical map for twirled Pauli channel. Under the
PTA, the generalized signal functions for non-Markovian
processes, defined in Egs. (14) and (15), should read

N
1 i
g, =3, S Tr [PMN,,, oA,
u=1

(39
~ \ k-1
o (MuoNyohs) 0N, (Pu)]
and
1w _
g =5, Y Tr [Pl o M 0 &,
n=l . (40)

o (M;; oMl; o [\,,)lc_l O./\/;, (PM)]

where A, is the twirled Pauli channel for A,. As proved
in Appendix A, the projective measurement-based spectral
tomographic technique introduced in Sec. II D is compat-
ible with PTA. Hence, from gt’n (k) and g/ (k), one obtains

the spectrum for the twirled Pauli channel A,,.

Now, we clarify a few technical subtleties. First, we
do not explicitly account for any gate errors incurred
during the twirling approximations. As indicated in
Egs. (39)40), the construction of kth signals requires the
Pauli twirling approximation & times. From Eq. (38), it is
clear that every twirling operation involves tensor prod-
ucts of Pauli operations on each qubit, and these Pauli
operations can be implemented very efficiently (i.e., over
a much shorter period than the duration for each identity
gate we investigate for noise characterization). For many
high-quality quantum hardwares, the environment-induced
decoherence should be just weak perturbation, and the
quantum dynamics should be mainly driven by the strong
pulse during the execution of the single-qubit operations.
Hence, the coherent errors should dominate for these sim-
ple gates. Under the PTA, these coherent errors are turned
into additional incoherent errors and are typically taken to
be Markovian. For simplicity, we ignore these additional
errors in the subsequent discussions of non-Markovianity.

A major focus of this work is to propose a SPAM error-
free approach to quantify the degree of non-Markovianity
for the noises surrounding a quantum device composed
of qubits. Obviously, analysis on the PTA channel A,
only yields a skewed spectral information of the original
quantum process A,, and poses challenges for an accu-
rate non-Markovian quantification. We should address this
problem in two steps. First, we stress that the RHP measure
based on A, is still a faithful witness of non-Markovianity
for A,. Note, if the original quantum process is CP divisi-
ble for all time ¢ then its PTA must obey the CP divisibility
too. Hence, a nonzero RHP measure for A, clearly signals
a violation of CP divisibility of A, for some #,. The second
step is to recover as accurate a quantification as possible.
Details are deferred to the following subsection.

B. Optimal twirling basis for non-Markovian
quantification

We now discuss the idea of an optimal basis for get-
ting a more accurate non-Markovian quantification (based
on the RHP measure). For simplicity, we illustrate the
idea of PTA in an optimal basis with a single qubit. First,
we introduce a new basis P, by applying some unitary
transformation to the standard Pauli basis,

P, e {1, UuP.U', UP,U", UP.U'}, (41)

where U = U (61, 60,,63) = Rz (61) Ry (62) R: (63). APTA
channel in the new basis reads

Ay = ) fuP,pP,. (42)

PyePy

We propose to identify an optimal Pauli basis, induced
by U (61,6,,03), such that the corresponding PTA chan-
nel A gives a maximized RHP measure. The rationale for
this maximization is now elucidated. A non-CPTP map
A(t+€,0) =~ I + L(f)e at time ¢ may give a nonphysical
density matrix (i.e., nonpositive semidefinite) when it is
applied to ®)(®|, a maximally entangled bipartite system.
The operator L(¢) is the generator for A(¢ + €, 7). We now
draw attention to a mathematical fact

Ydil <) o, (43)
J J

where |d;| and o; are the jth absolute eigenvalue and
singular value for the density matrix p, respectively, and
are sorted in a nonincreasing order. An immediate conse-
quence of this inequality is that g(¢), the RHP measure for
At +€,0), is always upper bounded by g(#), the RHP mea-
sure for A (¢ + €, ). With any given Pauli basis, an estimate
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on the accumulated errors is

I+ (L @D e][PNPII -1

= I
g) = lim p
W4 (L, +8L,Q1)el||D) (@] — 1
_ M (Grseei)e]
e—0t €
<8 + 1| BL, RI) |D) (D], (44)

where 8L, = £, — L,. From the penultimate line to the last
line in Eq. (44), we use the triangular inequality. Clearly,
an optimal basis that trying to saturate the upper bound in
Eq. (43) would also largely minimize the errors present in
Eq. (44).

V. RESULTS

We illustrate how to use STTM to quantify non-
Markovianity and noise power spectrum for Pauli and
non-Pauli channels through numerical experiments.

A. STTM spectroscopy of Pauli channel

We first consider a one-qubit pure phasing model,
which is a Pauli channel. The Hamiltonian reads H; =
wso” and Hy, = B*(f)o*. The noise B*(f), a Gaussian
process, possesses the statistical moments: (B*(¢)) =0
and C.(t—1) = (BFO)B(¢)) = re 1| cos[w.(t — )].
For these cosine functions modulated by an exponentially
decaying envelope, the corresponding power spectrum
assumes a Lorentzian profile.

The pure-dephasing dynamical maps are given by

0 e ) +idest 0 0
A, = 0 0 e~ Tt—i2ost | > (45)
0 0 0 1
with

() = i /oo da)S(—C;))[l — cos(w?)]. (46)
T Jo w

Note that these dynamical maps satisfy p(z,) = A,p0(0)
as required. It is straightforward to verify that these maps
are not divisible, i.e. Ay, # AyA,, and the dynamics
is clearly non-Markovian. The spectrum of the dynam-
ical map may be read off the diagonal in Eq. (45) as
{e—T(rn)+i2wst’ e—T(tn)—[wat, 1}

We complicate the simulation of this one-qubit pure-
dephasing model by adding random noises during the
state preparations and measurements. We then extract
the SPAM error-free eigenvalues of the dynamical maps
with the SQPT and construct the STTM according to
Eq. (17a). In Fig. 3(a) we plot |t;| at different times.

Since, for the pure-dephasing model, |t!| = [t7], |t}]| = 1,
and |t}| =0 for n > 1, we present only the result for
|z!|. As illustrated in Fig. 3(a), more than one TTM have
non-negligible norm. This observation confirms that the
non-Markovianity of a dynamical process is directly corre-
lated with |7%| distribution. Furthermore, it is clear that the
higher order || are increasingly suppressed. This trend
justifies an earlier claim that we should be able to trun-
cate Eq. (17b) to only the first few STTMs with nontrivial
norms for dynamical predictions based on Eq. (17a). In
Fig. 3(b), we plot the spectrum of the dynamical map as
a function of time. Since |k,11| = |Aﬁ| and |Az| =1, we only
present the result for |A!|. The curve with black squares
is the exact result e~ T, which requires explicitly eval-
uating the integral in Eq. (46) at every time point. The
other curves are results obtained by using different num-
bers of STTMs in the way prescribed by Eq. (17a) to
predict quantum dynamical evolution. In this case, we
consider using the first n = 1,4,8 STTMs, respectively.
Accurate results are obtained for the entire simulation
duration when a sufficient number (n = 8) of STTMs are
taken into account.

(a)
0.8
0.6+
Fo.4
0.2
0.0 —— ———t—
5 10 15
n=t/6t
(b)
0.8 —— 1
4
0.6 1 —_— 8
' —=— Exact
—c
~04
0.2
5 10 15 20
n=t/ét
FIG. 3. STTM for a single-qubit pure-dephasing model.

(a) Absolute value distribution of the STTM, t7 over time.
(b) Dynamical map spectral predictions by STTM. The model
parameters are Hy, = B*(f)o*, C..(0) = A = 4, and §t = 0.2.
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~ 1.54
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=
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— 01.0-
—

Il
£ 0.51
—

5 10 15 20
t/6t

FIG. 4. Non-Markovianity of single-qubit pure-dephasing
model. The model parameters are Hy = 0.10,, Hy = B*(f)o?,
C..(0) =12 =4,and 8t =0.2.

Next we analyze the non-Markovianity of the dynam-
ical process by plotting I'y,(?), the integral of decoher-
ence rate at different times [as defined in Eq. (25)] in
Fig. 4. As discussed in the previous section, the RHP
measure for non-Markovianity implies that the nonmono-
tonic trending behavior of ', (¢) is an absolute signature of
non-Markovian dynamics. This nonmonotonicity is indeed
manifested around 7, in Fig. 4. We show only I'3(¢),
since ['; (f) = I',(#) = 0. This is an encouraging indication
that STTM may facilitate the implementation of the RHP
measure in an experiment.

A critical role of a quantum noise spectroscopy is to
determine the noise power spectrum. Since a spectrum is
essentially the Fourier transform of the corresponding cor-
relation function, we are content if we may easily obtain
noise correlation functions in experiments. We consider
the case of weakly coupled noise where the approxima-
tion K(f) ~ K,(¢) is valid. We use Eq. (36) to infer the
targeted correlation function. In Fig. 5, we plot the numer-
ically recovered correlation function based on the TTM
data, and it agrees well with the theoretical correlation
function that the random noise B*(f) must satisfy in our
numerical experiment.

Besides the pure-dephasing channel, other well-known
noisy dynamics such as depolarization channel and ampli-
tude damping channel in a quantum circuit can all be
rigorously analyzed with the STTM (which fully charac-
terizes non-Markovian dynamics of any Pauli channels).
In Appendix C, we present another simulation experiment,
considering the depolarization channel. While the depolar-
ization process is clearly a Pauli channel, the single-qubit
amplitude damping channel deserves some clarifications.
We note the amplitude damping channel can be described
by the Kraus matrix,

a=() 4l )0 F). @

1.0 —— theoretical
—e— numerical
o
= 0.51
)
S~
=
< 0.0
@)
—0.51
0 10 20 30 40 50
t/ot
FIG. 5. TTM noise spectroscopy of pure-dephasing model.

The numerically extracted correlation function (from the mem-
ory kernel) matches well with the theoretical result C..(¢) =
(B*(1)B7(0)). Model parameters are H; = 0.020,, C\,(0) = 0.04,
and df = 0.1.

It can be expressed by Pauli matrices

Ap) = Y fouPupPy

PyePy

(48)

with foo = (1 +VT=p/2% i =fo=p/4fs=(1 -
VI=p/2%fos =fio =p/4 o1 = ~fia = —p/4i. It is
clear that Eq. (48) is not a Pauli channel. However, accord-
ing to Eq. (4), the resulting Pauli transfer matrix is diagonal
with R11 = Q/l —p,R22 = Qll —p,R33 =1 - D, which is
the same as the results after a PTA. This is why STTM can
accurately characterize non-Markovianity of an amplitude
damping channel.

B. STTM spectroscopy beyond Pauli channel

We next illustrate how well STTM may characterize a
non-Pauli channel. For simplicity, let us consider a general
Hamiltonian for an idling qubit in a quantum circuit,

Hy, = B (H)o™ + B’ (Ho”, (49)
where B* (), B” (t) are assumed to be correlated Gaussian
noises, and satisfy the statistical moments: (B*(f)) = 0,
(B'()) =0 with Cu(t—1) = (B*(OB*(¢)) = rje |7l
cos[wc(t — )], Cpy(t — 1) = (B (B (1)) = hae™ 1| cos
[wc(t—1)], and  Cy(t— )= (B* (OB (£)) = rse™ I
cos[w.(t —1)].

Firstly, we apply the PTA in the computational basis
to effectively enforce a Pauli channel and conduct exper-
iments to acquire STTM. In Fig. 6(a), we compare I,
estimated under different means, for this one-qubit system.
The red squares present that the rigorous I', that could be
numerically determined without resorting to PTA for this
simple model. The blue lines give I'; after PTA in the com-
putational basis. In this case, we reconstruct I'; (blue line)
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from STTM dataset via Egs. (17b) and (25). Clearly, the
approximated result (blue lines) deviates significantly from
the exact one (red squares).

Next, we consider the method discussed in Sec. IVB
to search for an optimal twirling basis in order to bet-
ter represent the correct dynamics with a Pauli channel.
In Fig. 6(b), we present I'; (green lines) deduced from
STTM based on this optimal basis. As clearly shown, the
approximated results under optimal basis agree well with
the original one. In other words, the non-Markovianity
of a non-Pauli channel can be maximally recovered with
an optimal basis. Note that we purposely choose a rather
challenging scenario (in Fig. 6) to illustrate the effective-
ness of doing Pauli twirling in an optimal basis to gauge
the non-Markovianity of a noisy quantum process. In
Appendix D, we further discuss realistic scenarios in which
the Pauli twirling conducted under the original computa-
tional basis can still provide meaningful characterization
of the non-Markovianity.

@ 5.

= Original
Twirled Pauli channel

2-0' = o=

1.5
=10
0.5
0.0-

(b) 2.5 = Original
Twirled Pauli channel in optimal basis

2.0' ]

1.51

—_

4

1.0

0.5

0.0

0 5 10
t/6t

FIG. 6. Non-Markovianity of non-Pauli channel. (a) The non-
Markovanity of original non-Pauli channel (red squares) and
non-Markovanity of Pauli channel by PTA in standard basis
(blue lines). (b) The non-Markovanity of original non-Pauli
channel (red squares) and non-Markovanity of Pauli channel
by PTA in optimal basis (green lines). The model parameters
are Hy, = B*(H)o" + B ()o”, Cr(0) = A =5, ny(o) =l =
5,Cy(0) = A3 =3,and 61 =0.2.

VI. CONCLUSION

In this work, we propose STTM for characterizing the
SPAM error-free spectrum of non-Markovian Pauli chan-
nels. Our proposed protocol relies on SQPT to extract
spectral information of a dynamical map, then the standard
TTM relations can be alternatively cast into spectral ver-
sions for Pauli channels. As illustrated in this work, the
STTM approach can accurately capture every aspect of a
non-Markovian Pauli channel. With access to the STTM
data, it is possible to (1) assess the non-Markovianity,
and (2) reconstruct the noise power spectrum. As argued
earlier, Pauli channels (and generalized cases including
amplitude damping channels with a diagonal R submatrix
inside the Pauli transfer matrix) represent most popular
noise and error models for quantum circuits due to vari-
ous physical motivations. Beyond Pauli channels, we also
propose to identify an optimal basis to apply Pauli twirling
approximation and collect the STTM data in order to better
characterize the dynamical process of interests.

While SQPT under PTA captures only partial infor-
mation of a general quantum channel, the reconstructed
STTM still encodes useful information, such as giving an
estimate on the degrees of non-Markovianity of a noisy
process. As we continuously improve the quality of quan-
tum devices, it becomes more crucial to have a simple
approach to quantify non-Markovianity in a high-precision
manner, for instance, complete removal of SPAM errors.
Probing this subtle aspect of a noisy process will certainly
help to design better quantum hardwares.

We acknowledge that STTM is not as scalable a pro-
tocol as the randomized benchmarking. However, it does
not imply STTM is not useful for noise characterization of
large-scale quantum devices. We can adopt a divide-and-
conquer approach to divide a large device into small parts
and analyze the local noises in a much more economical
fashion, see, for example, Ref. [37]. Particularly, we note
that STTM is not necessarily consuming more resources
(to conduct the data-acquisition experiments) than stan-
dard QPT. Yet, one gets SPAM error-free estimates on the
spectrum of dynamical processes, which usually requires
a SPAM-resistant tomographic technique that consumes
even way more resources. Hence, we argue that STTM is
currently the method of choice that balances the trade-off
between resource consumption and level of characteriza-
tion if one desires to probe non-Markovianity of a noisy
process in a quantum circuit.

Finally, STTM could be further optimized by adopt-
ing more sophisticated methods to reduce the experimental
costs of performing QPTs such as the compressed sensing
and other approaches. Being able to conduct careful anal-
ysis on clusters of a small number of neighboring qubits
in a connectivity-limited hardware architecture is among
the most promising applications of STTM in the NISQ
era.
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APPENDIX A: SIGNAL FUNCTIONS FOR
NON-MARKOVIAN CHANNEL

We propose a protocol to construct a dynamical map
(A,)F, which is the k-times composition of a non-
Markovian Pauli channel A, at time ¢t =t¢,. The corre-
sponding signal function at time #, reads

N
, 1 k=1
2,0 == YT [PMNm o Ayo (M, 0 Ny o A,)
n=1
o N; (Pu) ] (A1)
where
My[p] = PypPy + P_pP_. (A2)

A Pauli matrix can be decomposed as follows: P, =}
) (sl = 2l ) u-l =X, P+ —>._P_, where
) denote eigenvectors with a positive eigenvalue,
and |u_) denote eigenvectors with a negative eigen-
value. Because Tr[P,A,(}_ P+ Tr[P,A,(D _P-)]
= 0, we deduce that Tr[P, A, (P,)] =
Thus, SQPT can be attained by preparing d/2 initial states
for each P,,.

, 1< k-1
g0 = 30 ZlTr [Pl o Awo (M, 0 N0 A,)
n=
o /V;) (P4)]

N
= Ruu(k).
n=1

(A3)

For Pauli channel, the R matrix is clearly diagonal. The
construction of k-times composition of a dynamical map is
simply related to construction of kth power of the diago-
nal matrix R,,,, (1). For simplicity, we outline the proof for
the single-qubit case without considering SPAM errors. In
particular, it is to verify the following relation for g;, (1):

Ruu(l) = Tr[PuAn(P+)]

= (W — W), (A4)

where (14 [A, (Py)l py) = Wy and (u_ |A, (P)| p_) =
W,. To facilitate the following discussion, we also intro-
duce (4 |Ay (P)|py) = W5 and (u— |A, (P-)|pn-) =
W,. Recall the definition of M, in Eq. (A2), then it is
also straightforward to establish the following relations for

2TH[P, An(Y, P1)].

g1, (2):

Ry (2) = Tr[PyAy oM, o Ay(Py)]
:WlXW|+W3XW2—W2XW1—W4XW2.

(A5)

Again, since Tr[P,A,(P4)]+ Tr[P A, (P-)] =0, we

have Wy — W, = W4, — W5 and

RMM(2)=W1XW1+W2XW2—W2XW1—W1XW2
= Ry (1)% (A6)

If we repeat the analysis for the elements of g; (k) for k =
1,2,...,K, then we should attain

R (k) = Ry (D", (A7)
So far, we discuss how the construction of & multiplica-
tive of a dynamical map can be realized by projective
measurements. However, as this protocol relies on mak-
ing k measurements, the results are also affected by the

accompanied measurement errors,

1 N
5 T [P N0 ) 0 N (P)]

g, (k) =
n=l1
=Tr [(RmeasR)kRPrep]
APDk ZA (m;3)" (A%)

In order to remove these measurement errors, we pro-
pose a supplementary protocol in which the original single
projective measurement is replaced by double measure-
ments. Going through the same analysis laid out for
the single-measurement protocol described above, the
double-measurement protocol leads to the following signal
function:

1 N
ACEET D Tr [Py (N o Ny o Ap) o N, (Py)]
n=1
=Tr [(RmeasRmeasR)kRprep]

ZA (mx)".

Tr[4pD] = (A9)

As shown in Eq. (16) of the main text, one can easily
recover SPAM-error-free eigenvalues of the Pauli chan-
nel by extracting the spectral information from g; (k) and
g (k).
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APPENDIX B: VALIDITY REGIME OF STTM

To quantify the non-Markovianity of a noisy process,
the STTM method proposes to insert projective measure-
ments between k sequences of n time-step free evolution
of a quantum system in the presence of the noise to effec-
tively realize a series of Markovian process AX using the
technique of the spectral quantum spectrum tomography,
see Egs. (14)H15). However, the projective measurement
may yield correlations a system-dependent environmental
state [30], which compromises the goal of constructing an
effective Markovian channel. As a result, STTM (as given)
holds in the following regimes.

(1) The environment can be modeled as a classical
noise source. Hence, the projective measurement will not
yield any system-environment correlation. According to
previous studies, the decoherence of many quantum sys-
tems (for making qubits) may be explained with semi-
classical models in which the environmental influence is
driven by fluctuating classical noises [38—44]. For exam-
ples, in superconducting qubit systems, fluctuating electric
charges and spin centers produce classical noise [38,39];
the inhomogeneous broadening of the ground state by the
trap magnetic field is identified as the principal mechanism
for decoherence [41,42].

(2) Non-Markovian channel with weak system-
environment coupling strength and short correlation times
for the environmental degrees of freedom according to a
recent study [30]. For the case beyond this regime, we can
refer to research [30] to conduct more accurate analysis
by introducing an additional correction term in the transfer
tensor map.

In the main text, we discuss all the theorems that implic-
itly satisfying the conditions outlined above. Particularly,
the simulation experiments are all conducted with classical
noise models.

APPENDIX C: NON-MARKOVIAN
DEPOLARIZATION CHANNEL

We illustrate the ability of STTM to characterize a
non-Markovian depolarization channel, which is another
common decoherence model for qubits [45,46]. For sim-
plicity, let us consider a general Hamiltonian for an idling
qubit in a quantum circuit,

Hy, = B*(t)o* + B’ (Ho” + B*(H)o?, (C1)
where B*(f), B’ (f),B*(t) are assumed to be correlated
Gaussian noises, and satisfy the statistical moments:
(B*(0) = 0,(B" () =0,(B°(1)) =0. Cu(t—1)=0C,
(t—1) = Cou(t — 1) = re ="l cos[w.(t — £)]. All cross
correlations, such as Cy, etc., vanish. Hence, these noises

(a)
0.6
o= 0.4
0.2
0.0 . —r b
5 10 15
n=t/6t

5 10 15
n=t/6t

FIG. 7. STTM for a single-qubit depolarization model.
(a) Absolute value distribution of the STTM, t over time.
(b) Dynamical map spectral predictions by STTM. The model
parameters are A = 4, §t = 0.2.

effectively provide a non-Markovian depolarization chan-
nel for the qubit.

In Fig. 7(a) we plot |t| at different times. Since, for the
depolarization model, |‘L’nl| = |r,12| = |rn3|, we present only
the result for |7,'|. As illustrated in Fig. 7(a), more than one
TTMs have non-negligible norm. This observation con-
firms that the non-Markovianity of a dynamical process
is directly correlated with the |r;| distribution. Further-
more, it is clear that the higher order |7‘| are increasingly
suppressed. This trend justifies an earlier claim that we
should be able to truncate Eq. (17b) to only the first few
STTMs with nontrivial norms for the dynamical predic-
tions based on Eq. (17a). In Fig. 7(b), we plot the spectrum
of the dynamical map as a function of time. Since |A}| =
|A2| = |A3|, we present only the result for [A}|. The curve
with black squares is the exact result e~ ¥, which entails
an explicit evaluation of the integral in Eq. (46) at every
time point. The other curves are results obtained by using
different numbers of STTMs in the way prescribed by
Eq. (17a) to predict the quantum dynamical evolution. In
this case, we use the first n = 1,4, 8 STTMs, respectively,
to produce the corresponding results in the figure. Accu-
rate results are obtained for the entire simulation duration
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when a sufficient number (n = 8) of STTMs are taken into
account.

APPENDIX D: PAULI TWIRLING
APPROXIMATION

Even without the basis optimization, which means con-
ducting Pauli twirling in original computational basis,
we can still capture the trend of non-Markovianity of
noisy quantum processes. We further illustrate this point
with a detailed example. In this section, we investigate
the noise channel Hy, = B*(f)o* + B (t)o” + B*(f)o?,
where (B,(f)B.(f)) o« y, denoting the Pauli component
of noise channel, (B,()B,(f))  yy, (By()B, (1)) X ¥y,
(Bx(t)By('))  yy, denoting the non-Pauli components of
noise channel.

As shown in Fig. 8, the non-Markovianity for the
twirled Pauli channel (blue square) perfectly agrees with
the original channel (red dot) for the Pauli channel when
¥xy = 0. With the increase of y,,, the non-Pauli chan-
nel components become more relevant to affecting the
qubits. As a result, the non-Markovianity for the twirled
Pauli channel (blue squares) deviates from that of the
original channel (red dots). However, the twirled Pauli
channel in an optimized basis can satisfactorily recover the
non-Markovianity (green triangles). Furthermore, as mani-
fested in Fig. 8, the Pauli twirling approximation maintains
the right order of non-Markovianity across the entire range
of possible ratios of y,,/y.. In short, simple Pauli twirled
results can still be used to infer which noise setting is more
non-Markovian when dealing with a family of highly sim-
ilar noisy environments. For instance, this could be the
scenario when we characterize multiple qubits in a single
chip or ion trap etc.

—e— Original channel
—=& - Twirled Pauli channel i/
3] — - Twirled Pauli channel in optimal basis

FIG. 8. Non-Markovanity of non-Pauli channel with the grow-
ing up of non-Pauli components. The non-Markovanity of origi-
nal non-Pauli channel (red dots) and non-Markovanity of Pauli
channel by PTA in standard basis (blue squares). The non-
Markovanity of Pauli channel by PTA in optimal basis (green
triangles).

APPENDIX E: ANALYSIS ON THE TIME
DISCRETIZATION

The STTM method proposed in the main text is per-
formed in discretized form at equidistant time intervals,
i.e. tp = k8t. The time step size &t decides the degree
of deviation of time discretization from the theoretically
considered infinitesimal time step.

We numerically study the convergence of non-
Markovianity dictated by the time discretization for the
pure-dephasing model. In Fig. 9(a) we show I'3(¢) of
different time-step size changing from &= 0.025 to
8t = 0.8 with total time length 7= 4. In Fig. 9(b) we
directly present the non-Markovianity calculated by / =
P fyu (<0 —Ya(D)dt of different time-step size changing
from ¢ = 0.025 to 8¢ = 0.8. We can see that the precision
of the non-Markovianity characterization is acceptable for
a wide region of time-step size 6¢/T € (0,0.1). When con-
ducting an experiment on quantum device, the time-step
size often constrained by the hardware design. In other
words, the minimum time-step size is roughly equal to the
time required to conduct a single quantum gate. Accord-
ing to the recent researches of non-Markovian noise on
the IBM quantum devices [20,47], the time length of
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FIG. 9. Non-Markovianity of different time-step size. (a) I'3(¢)
of different time-step size changing from 6¢ = 0.025 to 6t = 0.8
with total time length 7'= 4. (b) Non-Markovianity calculated
byl=>", fya([)<0 —y, (H)dt of different time-step size changing
from 8¢ = 0.025 to 6t = 0.8.
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non-Markovian memory kernel involves 300—800 numbers
of pulse [§¢/T € (0.001,0.003)], which satisfies the pre-
cision requirement of time-step size of non-Markovianity
characterization.
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