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Field-of-view and resolution trade-offs in x-ray micro-computed-tomography (micro-CT) imaging limit
the characterization, analysis, and model development of multiscale porous systems. To this end, we
develop an applied methodology utilizing deep learning to enhance low-resolution (LR) images over large
sample sizes and create multiscale models capable of accurately simulating experimental fluid dynamics
from the pore (microns) to continuum (centimeters) scale. We develop a three-dimensional (3D) enhanced
deep-superresolution (EDSR) convolutional neural network to create superresolution (SR) images from
LR images, which alleviates common micro-CT hardware and/or reconstruction defects in high-resolution
(HR) images. When paired with pore-network simulations and parallel computation, we can create large
3D continuum-scale models with spatially varying flow and material properties. We quantitatively vali-
date the workflow at various scales using direct HR and SR image similarity, pore-scale material and/or
flow simulations, and continuum-scale multiphase-flow experiments (drainage-immiscible flow pressures
and 3D fluid-volume fractions). The SR images and models are comparable to the HR ground truth and
generally accurate to within experimental uncertainty at the continuum scale across a range of flow rates.
They are found to be significantly more accurate than their LR counterparts, especially in cases where
a wide distribution of pore sizes are encountered. The applied methodology opens up the possibility to
image, model, and analyze truly multiscale heterogeneous systems that are otherwise intractable.
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I. INTRODUCTION

Multiphase porous materials are ubiquitous in engi-
neered and natural systems, e.g., in electrochemical appli-
cations such as fuel cells or batteries [1], in organic matter
such as blood vessels [2], and in geological media such
as sandstone or carbonate rocks [3]. In these systems, het-
erogeneities in the porous structure often exist at multiple
scales, which can range from micrometers to kilometers in
the case of the geological subsurface [4]. The smaller-scale
heterogeneities can often have larger-scale macroscopic
impacts [5] and understanding the interaction between
multiscale heterogeneities is key to predicting large-scale
phenomena [6]. However, methodologies to characterize
and model multiscale heterogeneous systems in a tractable
way are lacking. From a materials-science point of view,
multiscale heterogeneities are increasingly being used to
optimize function, in bio(inspired) materials, structural
materials, and heterogeneous catalysts [7]. Therefore, an
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applied approach to model flow in multiscale heteroge-
neous systems is needed for advancements in the material
sciences and geology-based disciplines.

With the advent of x-ray micro-computed-tomography
(micro-CT), the microstructure of porous systems can
be imaged and visualized, allowing phase segmentation
and direct characterization. Typically, porous samples of
O(cm3) can be imaged at a resolution of several microme-
ters, creating images of size 10003–30003 voxels [8]. Fol-
lowing image segmentation, models at the pore scale of the
image can be built to directly predict, e.g., fluid flow [9],
electrical resistivity [10], and reactive transport [11]. The
segmented images can also be used directly for materials
characterization and to detect material defects [7]. The res-
olution of the image is intricately tied to the accuracy, both
in a numerical-model sense and in the ability to resolve key
small-scale features [12]. The field of view (FOV) of the
image controls the ability of the model to capture larger-
scale features and therefore its ability to predict realistic
engineering relevant properties at scales of interest, e.g.,
effective permeability [13]. However, there are inherent
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FOV and resolution trade-offs in traditional absorption-
based x-ray micro-CT imaging—typically, a resolution 3
orders of magnitude below the FOV is possible [14]. With
ever-increasing hardware specifications, these trade-offs
are continually reducing but there are technological limits
to what is achievable, especially when considering several-
orders-of-magnitude separation in scale (which is common
in geological media). Alternative approaches are there-
fore needed to fully understand, characterize, and model
multiscale porous system.

Alternative approaches generally either try to cre-
ate breakthrough hardware implementations or develop
software- and/or modeling-based improvements. Recently,
advances have been made in combining x-ray and neu-
tron dark-field imaging using grating interferometry to
allow subresolution-feature-size quantification [15]. On
the software and modeling side, a common approach is
to implement some sort of homogenization [16]. In this
approach, the physics of small-scale phenomena are cap-
tured in an upscaled continuum manifestation through
the form of an averaging law. The small-scale physics
is effectively captured in the coarser large-scale model,
allowing the prediction of macroscopic features [6]. In
the digital-rock-physics space, researchers have recently
utilized homogenization approaches to incorporate sub-
resolution microporosity into multiscale models, allow-
ing effective characterization of transport properties over
macroscopic scales, while including subresolution impacts
[17,18]. Statistics-based models have also shown promise,
whereby lower-resolution images use well-resolved statis-
tics linked to high-resolution (HR) features to model
large-scale systems accurately [19].

While these approaches offer improvements over the
aforementioned direct methods and increase the size (and
effective resolution) of systems that can be analyzed,
step-change advances are potentially possibly through the
application of deep learning (DL) supported by advances
in graphics-processing-unit (GPU) hardware and network
architectures [8]. Since deep-learning development has
been rooted in computer vision and photographic image
processing, many approaches are readily suited to offer
improvements for x-ray micro-CT imaging and modeling
[8]. In the computer-vision community, superresolution
(SR) is the classical ill-posed problem aiming to recon-
struct HR images from low-resolution (LR) images, essen-
tially trying to directly enhance image resolution beyond
hardware limits. With this, coarse images taken across
large FOVs could be enhanced artificially to the level
required to perform accurate modeling, thus circumvent-
ing traditional trade-offs in analyzing multiscale porous
systems.

Conventional SR methods include projection onto con-
vex sets (POCS) [20,21], Bayesian analysis [22,23], and
example-based [24,25] and sparse representation [26,27].
However, these conventional SR methods have drawbacks

that limit their practical use; for instance, example-based
approaches need to learn from large dictionary pairs at the
expense of excessive computational times [28] and POCS-
based approaches usually cause underconstrained solutions
[29]. With the rapid development in the field of GPUs,
deep-learning algorithms have since achieved state-of-the-
art performance on SR reconstruction problems. DL-based
SR methods aim to learn the hierarchical representation of
data by an end-to-end mapping between LR and HR data.
Instead of learning the dictionary mapping as per tradi-
tional SR approaches [28,30], DL-based SR methods learn
the information via multiple neural-network layers implic-
itly [31]. Once trained, the DL networks can be used on
unseen data to create SR images readily from LR images,
creating large multiscale data sets for analysis. Dong et al.
[31] have proposed a superresolution convolutional neu-
ral network (SRCNN) based on patch-based data and have
achieved superior performance compared to traditional SR
methods. Since then, many deep-neural-network architec-
tures have been developed for the SR problem [32–37].
Approaches using paired (i.e., registered) training data
generally achieve the most accurate results. However, as
paired data are not always available, unpaired DL models
have also been developed based on generative adversarial
networks (GANs) [38,39], which have also shown accurate
results.

There are recent examples of DL-based SR models
applied to x-ray micro-CT data for digital rock analysis.
Typically, pixel-wise metrics, such as the peak signal-
to-noise ratio (PSNR) and the structural-similarity-index
measure (SSIM), have been the primary means of monitor-
ing model performance and assessing similarity between
SR and HR images [40–42]. These works have mainly
focused on the SR-reconstructed image quality itself.
Unpaired GAN approaches to improve micro-CT image
resolution have been developed in Refs. [43,44], the results
being validated using petrophysical-property predictions,
such as permeability and porosity, as well as geometri-
cal metrics, such as the Euler characteristic. All of these
approaches (apart from Ref. [44]) have used LR images
created from downsampled HR images, not through direct
optical manipulation with the micro-CT hardware. The true
level of noise transferral across scales is difficult to assess
directly when using images generated from one another,
even if noise is added. Although Ref. [44] has used opti-
cally generated HR data for training, their GAN approach
has been validated on unpaired data. A SR method using
paired LR and HR data obtained using hardware-based
optical magnification has been demonstrated in Ref. [45].
The authors also compared against artificially downsam-
pled LR data across a number of petrophysical and geomet-
ric measures, demonstrating the ability of deep-learning
methods to produce physically realistic SR images.

Three critical components lacking from these previ-
ous studies are: the development and testing of the
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deep-learning network on imperfect HR data (e.g., with
detector and/or reconstruction artifacts); direct experimen-
tal validation of the SR image properties (i.e., not just
numerical-simulation verifications); and the application of
the approach to a truly multiscale system, involving hetero-
geneity and testing data different than the original training
data. In this work, we tackle these components directly,
using data from high-quality multiphase-flow experiments
performed on multiple samples, imaged at varying resolu-
tion with some image defects presents. The experimental
data set is from Ref. [6] and utilizes two distinct Ben-
theimer sandstone cores of diameter 1.25 cm and length
6–7 cm, with varying centimeter-scale layered hetero-
geneities. It consists of 6-μm-resolution images of the
whole cores in dry, brine-saturated, and partially satu-
rated states during steady-state decane-brine fractional-
flow experiments with continuous pressure measurements.
We enhance the data set by performing additional x-ray
imaging of the cores in their dry state at varying resolution
using optical magnification, creating paired data in four
subvolumes at 2-, 6-, and 18-μm resolution.

The data are used to develop and train a 3D enhanced
deep-superresolution (EDSR) convolutional neural net-
work, based on the original two-dimensional (2D) imple-
mentation in Ref. [35]. Distinct from previous work, we
use a single subvolume to train the network but test the
network on unseen data from other subvolumes in dif-
ferent samples, with regions of varying microstructure.
The unseen data are from a similar rock type (sandstone)
as the training set but have distinct microstructure and
flow properties. We validate the SR results using con-
ventional image metrics and pore-network model (PNM)
flow simulations, comparing to the paired ground-truth
HR data. We do this across multiple image-processing
realizations, giving an unbiased comparison between the
results [46,47]. We then apply the trained EDSR network
to generate whole-core images of the full samples, allow-
ing us to analyze key multiscale features that impact the
large-scale flow. We perform the EDSR SR generation in
parallel, on approximately 1000 distinct volumes of size
10003 voxels for each core, creating whole-core images
of total size approximately 6000 × 6000 × 32000 voxels,
significantly larger than direct imaging would permit. The
HR subvolume images (10003 voxels) are used with the
PNM to generate spatially varying petrophysical proper-
ties across the samples. We utilize the network-modeling
approach to alleviate the direct-modeling computational
costs, which would be infeasible for approximately 1000
distinct volumes of size 10003 voxels, even on supercom-
puting clusters. The petrophysical properties are combined
to create 3D continuum models, which we use to simulate
the experiments directly. We can then compare measured
pressures and 3D saturations at varying scales directly
to the experiments, thus providing a true validation of
the multiscale performance of the deep-learning method.

The modeling approach is predictive, in the sense that
continuum properties are directly generated from pore-
scale models, meaning that the approach is calibration
free and deterministic, leaving significantly less ambiguity
compared to other approaches.

The main contribution of this work is the develop-
ment of a fully tractable and predictive methodology
to model multiphase flow in heterogeneous porous sys-
tems by coupling deep learning, pore-network modeling,
and micro-CT imaging. The advancements from previous
works are threefold; (1) we develop an improved deep-
learning method for superresolving 3D LR data, which
is applicable to micro-CT images with common hardware
and/or reconstruction defects; (2) we develop an integrated
workflow from image acquisition to modeling that allows
accurate multiscale analysis of heterogeneous systems that
are otherwise intractable; and (3) we verify and validate the
approach with numerical and experimental data, in sam-
ples of different heterogeneous structure across a range of
test conditions. Overall, the presented methodology could
be applied to any type of natural or engineered porous sys-
tem with multiscale heterogeneity where the optimization
of flow and transport is of upmost importance.

The paper is organized as follows:

(1) We first present the workflow methodology, includ-
ing image processing, deep-learning, pore-network model-
ing, and continuum modeling.

(2) We then present results comparing various metrics
of the generated SR images to the ground-truth HR images.

(3) We finish by using the trained EDSR network to
generate SR images of the whole-rock samples, which in
turn are used to generate continuum models. Continuum-
model simulations are then compared to experimental
results across multiple flow regimes.

II. METHODOLOGY

A. Overview

The combined multiscale characterization and mod-
eling workflow is summarized in Fig. 1. It comprises
image acquisition and training and testing of the deep-
learning algorithm, followed by application and creation of
a 3D continuum model, concluding with continuum-scale
multiphase-flow simulations and comparison to experi-
ments.

We demonstrate the methodology on two distinct Ben-
theimer rock cores—referred to throughout as cores 1 and
2—which have previously undergone extensive experi-
mental and modeling work in Refs. [6,48]. The cores have
diameter 12.35 mm, lengths 73.2 mm and 64.7 mm, core-
averaged porosities of 0.203 and 0.223, and permeabilities
of 1.636 D ± 0.025 D and 0.681 D ± 0.006 D for cores 1
and 2, respectively. Core 2 has a clear low-permeability
lamination occurring at approximately two thirds of the
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FIG. 1. A summary of the multiscale characterization and modeling workflow, flowing from left to right. First, the EDSR network
is trained and tested on paired LR and HR data to produce SR data that emulate the HR data. Second, the trained EDSR is applied
to the whole-core LR data to generate a whole-core SR image. A pore-network model (PNM) is then used to generate 3D continuum
properties at representative-elementary-volume (REV) scale from the postprocessed image. Finally, the 3D digital model is validated
through continuum modeling (CM) of the multiphase-flow experiments. Note that here we show the workflow using core 1. For core
2, we do not perform any extra training—we use the same trained EDSR model and apply this straight to the unseen LR data.

total core length, whereas core 1 has a general fining of
grains toward the outlet of the core, creating a reduction in
porosity [6].

The experimental data set from Ref. [6] consists of
6-μm resolution images of the whole cores in dry, brine-
saturated, and partially saturated states during steady-state
decane-brine fractional-flow experiments for both drainage
and imbibition coinjections. Here, we focus solely on the
drainage cycle of the experiments; multiscale modeling of
the imbibition evolution and trapping is the focus of ongo-
ing work. We compare to the more complete experiments
2 and 3 in Ref. [6], which were performed on cores 1 and
2, respectively. The experiments were performed at 1.5-
MPa pore pressure, at a temperature of 30 ◦C. Brine and
decane (oil) were coinjected at a fixed total flow rate of
0.1 ml min−1. The fractional flow of decane was varied in
the drainage cycle with the values fo = 0, 0.05, and 1 for
core 1 (“exp 2”) and fo = 0, 0.05, 0.5, and 1 for core 2
(“exp 3”). Each fractional flow was run until steady state
was achieved in the pressure and saturation profiles, gen-
erally taking over 1 day. At each steady state, whole-core
images were taken. Saturations were reconstructed from
millimeter to centimeter scale and core average relative

permeabilities were calculated from measured pressure
drops across the sample. We use these measures in the final
continuum-scale modeling and validation.

We perform extra imaging of the cores to create paired
LR and HR data in order to train and test the deep-learning
algorithm. We image two subvolumes for each core, at
locations one third and two thirds of the way along the
core length, at resolutions of 2 μm and 6 μm. The same
Zeiss Versa 510 x-ray micro-CT scanner and protocol is
used as in Ref. [6]—we use a flat-panel detector for the
6 μm image and a 4× optical-microscope objective for
the 2-μm image. Precise energies, projections, and binning
information can be found in the Supporting Information of
Ref. [6].

B. Image processing

The acquired LR and HR tomographic images are first
reconstructed using Zeiss reconstruction software, correct-
ing for beam-hardening artifacts and center shift of the
sample. The corresponding 2-μm and 6-μm images are
then registered using normalized mutual information and
cropped to remove edge artifacts. The final image sizes are
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2253 and 6753 voxels for the 6-μm- and 2-μm-resolution
scans, respectively. The images are then normalized to
have consistent grayscale values [6]:

CTnew = S(CTold + O), (1)

where the scaling factor S and the offset O are given by

S = CTref2 − CTref1

CTpk2 − CTpk1
, O = CTref1

S
− CTpk1. (2)

Here, CTref1 and CTref2 are the reference values for the pore
and grain space (chosen as 2000 and 10 000, respectively)
and CTpk1 and CTpk2 are the measured peak values for the
minimum and maximum grayscale phases present in the
image. CTpk1 and CTpk2 are found from the grayscale his-
togram using a MATLAB in-house peak detection algorithm.
We then convert the images from 16 bits to 8 bits:

CT8bit = CT16bit − CTmin

CTmax − CTmin
, (3)

where CT16bit is the input voxel value and CTmin and CTmax
are the related extremes determined from the grayscale his-
tograms, here taken as 0 and 2 × 104, respectively. At the
end of this processing, we have two subvolumes of normal-
ized registered LR and HR data for cores 1 and 2, giving

four subvolumes in total at two resolutions. We note that
we also obtain very-low-resolution (VLR) data at 18 μm
for the subvolumes, using the same workflow. These data
are not used here, since the whole-core images are at 6 μm,
but they are included in the data share (see the end of the
main text) for further work.

C. Deep learning

To train the deep-learning algorithm, we only use
the paired data from core 1 subvolume 1, leaving the
other three subvolumes for validation. Image patches are
extracted from the LR and HR data with size 303 and
903 voxels, respectively, through an overlapping moving
window (15- and 45-voxel overlap for each patch, respec-
tively). This creates 8000 patches, from which we use 6400
patches for training and 1600 patches for validation in a
80:20 Pareto split. Figure 2(b) shows a 2D slice of a typical
training image patch at low and high resolution. The patch
size is chosen to cover the largest typical pores present in
the Bentheimer samples of O(100 μm).

We employ a 3D EDSR model as our deep-learning
algorithm, shown in Fig. 2(a). The EDSR encompasses a
sequence of convolutional layers, residual blocks [49], and
an upsampling module. Along with skip connections in the
residual blocks, the EDSR can alleviate gradient vanishing

(a)

(b) (c)

L
1 

lo
ss

FIG. 2. The deep-learning workflow and testing and training. (a) The EDSR network architecture. (b) Example testing images: the
LR image is at 6-μm resolution and the HR image is at 2-μm resolution. (c) The L1 loss function for the EDSR network training and
testing over 50 epochs.
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or exploding problems. We use a modified version of the
original 2D EDSR structure from Ref. [35]. Instead of
using the pixel-shuffle upsampling methods proposed in
Ref. [34], we utilize trilinear upsampling in our 3D imple-
mentation. In addition, we also reduce the numbers of
residual blocks and filters (12 residual blocks and 24 fil-
ters in each convolutional layer) appropriately to improve
the computational efficiency and in an effort to reduce the
overfitting of artifacts that is apparent in the HR micro-
CT image, specifically ring and beam-hardening artifacts.
These are discussed in more detail in Sec. III A.

We utilize the Adam optimization algorithm for training
[50], with a batch size of 32 and total epochs of 50, chosen
through user experience in the training process. The learn-
ing rate is initially set to 1 × 10−5 and decreased tenfold
every ten epochs to consolidate the training process. The
L1 loss metric is utilized to train and monitor the EDSR
network:

L1,loss =
n∑

i=1

∣∣CTi,HR − CTi,SR
∣∣ , (4)

where CTi,HR and CTi,SR are the pixel grayscale CT val-
ues for the HR and the generated SR images, respectively.
The training and testing L1,loss is shown in Fig. 2(c), high-
lighting convergence to a low loss (3 times reduction from
the initial) after approximately ten epochs. The training is
implemented in PYTORCH using a NVIDIA GeForce RTX
2080Ti.

Once trained, the EDSR network can be utilized to gen-
erate SR images with a 3 times increase in resolution
from any input LR images (for other integer factors, e.g.,
2 times and 4 times, a new network has to be trained
on corresponding data). We utilize the EDSR to gener-
ate corresponding SR images for the unseen LR images
from core 1 subvolume 2 and for core 2 subvolumes 1
and 2. With corresponding HR data, these images can be
directly evaluated to assess the efficacy of the EDSR net-
work in producing an SR image that emulates the HR
image. As a further comparison, we also generate a HR
image using a simple 3D cubic interpolation of the LR
image to the required 3 times resolution, with the result
labeled “cubic.” This allows comparison with common
polynomial-interpolation methods that can be employed
to increase the resolution of an image without using any
prior knowledge of the image or trained weights. This also
acts as example of what a simple resolution enhancement
can achieve when performing network extractions and flow
simulations, which are often mesh dependent.

To quantitatively compare the paired LR, cubic, SR, and
HR images across the samples, we use a mix of image anal-
ysis and flow simulations performed with pore-network
modeling. To this end, the images must be segmented into
binary pore and grain phases, so that pore networks can be
extracted.

Due to the differing noise levels in the images, it is
useful to filter the images to a common level, such that sub-
sequent segmentations are comparable. It is well known
that filtering and segmentation operations in image pro-
cessing can be highly user specific and biased [46] if
objective measures of the output are not used. We perform
the filtering operation objectively using the SSIM [51].
Since the SR image generated from the EDSR network is
essentially filtered in the ResBlocks (see Fig. 5 below), we
filter the LR, cubic, and HR images to a similar level, using
the SR image as a reference. To compare and optimize the
resultant output to have similar filtering levels, we use the
SSIM between the images and the SR image, given by

SSIM(x, y) =
(
2μxμy + C1

) (
2σxy + C2

)
(
μ2

x + μ2
y + C1

) (
σ 2

x + σ 2
y + C2

) , (5)

where μx, μy , σx, σy , and σxy are the mean, standard devia-
tion, and covariance between images x and y. C1 and C2 are
regularization constraints for regions with a mean or stan-
dard deviation close to zero: for the images shown here,
they are given by (0.01d)2 and (0.03d)2, where d is equal
to the dynamic range of 255. To filter the LR, cubic, and
HR images, we use a nonlocal means filter with varying
filter strength [52]. The search-window and comparison-
window sizes are set to maximize the SSIM with 11 and
5 voxels, respectively, and increased 3 times for the HR
images.

In Fig. 3(a), we compare the SSIM for the cubic and
HR images to the SR image for varying filter strengths,
across all four subvolumes. We cannot directly compare
the LR image due to the image-size mismatch with the
SR image. Nonetheless, we see that the HR image shows
a greater similarity with the SR image across all filter
strengths than the corresponding cubic image. In the figure,
we show the optimum filter strength for both cases, which
is chosen to maximize the SSIM across all subvolumes. We
use these filtering parameters for all images in subsequent
processing.

Previous studies comparing image-enhancement meth-
ods have typically used a single user-defined segmentation
threshold, based, for example, on the “optimal balance
between over- and underestimating connectivity” [45].
This makes objective comparison between outputs diffi-
cult. Here, we use a range of threshold values, in the
spirit of Refs. [47,48,53], and compare the results quan-
titatively across the range, to indicate the sensitivity and
absolute variations. We use a simple threshold segmen-
tation method, with the base-threshold level chosen as
the minimum between the pore and grain peaks in the
grayscale histograms [see Fig. 3(b) [48] ]. This minimum
(value 117) is selected as the average minimum for the LR
and HR training images and is close to the minima for all
images [SR also; see Fig. 3(b)]. We segment the pore space
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(a)

(b)

FIG. 3. The image-processing steps to allow quantitative seg-
mentation and flow comparisons. (a) The structural-similarity-
index measure (SSIM) of the filtered cubic and HR images
compared to the SR image. The various symbols refer to the
subvolumes: triangles, core 1 subvolume 1; diamonds, core 1
subvolume 2; squares, core 2 subvolume 1; circles, core 2 sub-
volume 2. The optimum filter strength is shown as the solid black
lines for the cubic and HR images (the dashed lines highlight the
maxima). (b) Histograms of grayscale values for the filtered core
1 subvolume 1 image, showing the base segmentation threshold
(minima between grains and pore = 117 grayscale value) and
overlapping distributions of the normalized images.

based on this threshold and vary it from −15% to +15% in
5% increments, creating a total of seven segmentations for
each subvolume.

D. Pore-network modeling

The segmented LR, cubic, HR, and SR images are used
in a pore-network modeling workflow to predict key petro-
physical parameters. Pore networks are extracted from the
binary images using the conventional network-extraction
tool from PNEXTRACT [54], an updated version of which
has been presented earlier in Ref. [55]. A distance map
of each voxel to its nearest solid voxel is used to con-
struct a medial surface of the pore space with a maximal

sphere hierarchy; each sphere has a radius equal to the dis-
tance map. An iterative scheme then removes overlapping
nested maximal spheres along the medial surface. This
results in a set of voxels on the medial surface that have a
maximal sphere and connectivity with neighboring points,
representing the pore-space morphology. A watershed seg-
mentation of the distance map is then used to assign each
voxel (and neighbors) on the medial surface to a unique
pore body, with the joining faces between bodies defining
the connecting throats.

The resulting pore network is used in flow simulations
using the PNFLOW package from Ref. [56], an updated
version of the original algorithm from Ref. [57]. The con-
ventional network extraction and flow simulation has been
validated in previous works [48,53], as well as the more
complex generalized network-modeling approach [58].
For the flow modeling here, pore throats are assigned a
shape factor based on the underlying pore-space geometry:

G = R2

4A
, (6)

where R is the inscribed radius of the maximal sphere
and A is the cross-section area of the throat [53]. The
pore bodies use a shape-factor average from the connected
throats, weighted by the connected cross-section area of
the throats. Based on G, the network elements have trian-
gular, square, or circular cross sections, depending on the
following criteria [54,56,57]:

0 ≤ G ≤
√

3
36

, triangular, (7)
√

3
36

< G ≤ 0.07, square, (8)

0.07 <G, circular. (9)

Quasistatic capillary-dominated drainage flow is simulated
in the network elements using fluid-interface force bal-
ances with the Mayer-Stowe-Princen method [59]. All
throats at the network inlet are assumed to be filled with
nonwetting phase. In each displacement step, a wetting
and nonwetting phase pressure are prescribed to give a
defined capillary pressure, Pc = Pnw − Pw. The throats and
pores are then drained in order of increasing capillary entry
pressure controlled by the network-element shapes and
contact angles. In the strongly water systems considered
here, we assume a contact angle of 45◦ to be comparable to
mercury-intrusion experiments and drainage-flow exper-
iments [6]. Arc menisci can form due to small wetting
layers in the polygonal elements, which require complex
entry-pressure calculations, given in Refs. [57,59]. Once
all available and accessible elements are filled, the network
saturation can be found based on the invaded-network
volume, giving a macroscopic Pc(Sw). Incrementing the
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nonwetting phase pressure in steps until the irreducible
saturation simulates a full drainage cycle.

At each equilibrium stage, connected-pathway single or
multiphase transport can be simulated through the net-
work. Both hydraulic (absolute and relative permeability)
and electrical (resistivity, formation factor) properties are
calculated. Conservation of flux (electrical or mass) Q is
imposed at each pore body p through adjoining throats t:

∑

t∈p

Qα
t = 0, (10)

where α is the fluid phase. The local flux between adjoin-
ing pores i and j is given by

Qα
ij = gα

ij

Lij

(
�α

i − �α
j

)
, (11)

where gα
ij is the conductance for phase α between pores

of center separation L and � is the potential. Equa-
tions (10) and (11) can represent both fluid or electrical
flow, by changing the potential and phases accordingly.
The conductance is the harmonic mean of the two pore-
body conductances and the connecting throat element. The
hydraulic conductance for a single element is calculated
analytically using Poiseuille’s law for single-phase flow,
based on the element geometry [57]. For multiphase flow,
corner and layer flows can occur—here, we use empirical
conductances based on the flow geometry, validated with
laminar Stokes flow simulations [57]. For electrical con-
ductivity, we only consider the water-phase conductivity
at fully saturated conditions. The electrical conductance
for an element is given by the bulk water conductance
multiplied by the element cross-section area.

A linear set of equations for pore-body potentials can be
created from Eqs. (10) and (11), with appropriate potential
boundary conditions at the inlet and outlet faces [constant
potential difference of 1 Pa (pressure) or 1 V (electri-
cal)] and zero-flux boundaries on the other faces. The
system can be formed for single-phase flow, multiphase
connected-pathway flow, and electrical flow. Solving this
system, the inlet and outlet fluxes can be reconstructed by
summing across the appropriate elements. With this, the
absolute permeability, relative permeability, and formation
factors can be calculated:

K = μwQSWL
A (�inlet − �outlet)

, (12)

kr,α = Qα

QSW
, (13)

F = Qe
SWL

σwA
(
�e

inlet − �e
outlet

) , (14)

where μw is the water viscosity, QSW is the fully saturated
water flux, Qα is the phase fluid flux at intermediate satu-
ration, Qe

SW is the electrical flux in the water-saturated sys-
tem, �inlet − �outlet is the pressure drop across the system,
�e

inlet − �e
outlet is the electrical-potential drop across the

system, and σw is the bulk-water electrical conductivity.
We use bulk-fluid properties equivalent to those in the

brine-decane flow experiments described previously. The
fluid viscosities are 7.83 × 10−4 Pa s [60] and 8.03 ×
10−4 Pa s [61], and the densities are 1023.2 kg m−3 [62]
and 723.8 kg m−3 [61], for the brine and decane, respec-
tively. We use an equilibrium contact angle of 45◦ and an
interfacial tension of 51 mN/m. We use a residual satura-
tion of brine, interpreted from the experiments as Swirr =
0.08, and an electrical resistivity of brine as 1.2�m.

The petrophysical properties calculated using the pore-
network model are used for verification of the deep-
learning image enhancement. The results are compared
across the different segmentations for each LR, cubic,
HR, and SR subvolume, allowing for direct quantitative
verification.

E. Continuum modeling

Following verification of the deep-learning enhance-
ment (e.g., training, testing, and PNM verification), we
further validate the approach by performing continuum-
scale simulations of the aforementioned experiments. To
do so, we construct digital models of the whole-rock cores,
populated with petrophysical properties that vary spatially
at the representative elementary-volume scale.

The LR whole-core images of cores 1 and 2 are first
subdivided into representative elementary volumes. The
sizes of these volumes have been extensively researched
in Ref. [6], generally showing that cubic side lengths of
> 1.5 mm are required to reach representative volumes,
where parameter fluctuations drop to with 5% of the large-
scale variance. We choose the same LR-subvolume size
as per Refs. [6,48]—316 × 316 × 300 and 316 × 316 ×
318 voxels for cores 1 and 2, respectively, ensuring >

1.5 mm in side length. Following this, the EDSR network
detailed previously is used to enhance the LR-subvolume
images, increasing the resolution by a factor of 3. This cre-
ates SR subvolumes of size 948 × 948 × 900 and 948 ×
948 × 954 voxels at 2-μm resolution, for cores 1 and 2,
respectively.

The LR and SR representations of the whole-core
images are next filtered and segmented, in a similar vein
to the imaging processing (see Sec. II B). The filtering
protocol is identical but we segment based on calibration
with an externally measured total porosity, derived through
medical x-ray CT imaging. The threshold value from
the LR and SR images is chosen so that the segmented
porosity matches that of the medical-CT-derived value,
shown in Fig. 4. The high-threshold (HT) value shows
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(a)

(b)

[6]
[6]

FIG. 4. Porosity profiles for (a) core 1 and (b) core 2 for the LR
and SR images at two different segmentation thresholds—high-
threshold (HT) and low-threshold (LT)—chosen to match the
medical-CT-derived total porosity and the macroporosity from
earlier analyses [6], respectively. The plot legend is shown at the
bottom. The specific LT and HT threshold segmentation values
are as follows: core 1 LR, 117/122; core 1 SR, 104/117; core 2
LR, 118/123; core 2 SR, 104/119.

the corresponding match for the LR and SR images to the
medical-CT value, along with a previous “total-porosity”
segmentation from Ref. [6]. The slice average porosi-
ties from all four images match well. Small discrepancies
between the micro-CT segmented images are due to fea-
ture representation and the segmentation choice in Ref. [6],
which uses a watershed segmentation.

As there is likely oversegmented pore space in each
image (due to the resolution limit and the matching of

a “total porosity” measured from medical-CT imagery),
we perform a further segmentation at a lower threshold
(LT). This threshold is chosen to approximate the macro-
porosity in the core from Ref. [6]. This lower threshold
removes intermediate gray regions from the pore space,
e.g., clay regions or partial-volume effects at pore-grain
boundaries. It can give a more representative pore space for
low-capillary-number flow simulations, since the nonwet-
ting fluid does not drain clay-bound microporous regions.
The LT segmentations shown in Fig. 4 match the results
from Ref. [6] well and give an estimate of the macrop-
orosity of each system. In each case, the clay content in
the core is approximately 0.02–0.03 in porosity, in line
with physical measures of Bentheimer sandstone [63]. The
absolute segmentation threshold values are slightly differ-
ent for the LR and the SR images due to different feature
representation and filtering in each image. Although the
filtering is optimized to give the highest SSIM, the noise
distribution is inherently different between the different
images.

The LT- and HT-segmented subvolumes for the LR and
SR whole-core images are then passed to the pore-network
modeling workflow as detailed in the previous section.
Petrophysical properties are predicted for each subvol-
ume—namely, porosity, permeability, relative permeabil-
ity, and capillary pressure—using the same fluid properties
as before. This is performed in a highly distributed man-
ner, making use of parallel computing architecture—each
subvolume is distinct and can run independently.

With the known image and subvolume geometry, we
create a 3D model of each core with the subvolume petro-
physical properties defined uniquely for each cell in the
model. The model forms the base to conduct continuum-
scale multiphase simulations using the approach developed
by the authors and previously presented in Refs. [6,48,
64,65]. We note that each 3D cell (of cubic side length
approximately 1.5 mm) in the model has unique distinct
petrophysical properties deterministically predicted from
the underlying image pore network; there is no calibration
or “history matching” performed.

With the 3D model defined, we numerically solve
conservation of mass and momentum (the two-phase
Darcy’s law) using the fully implicit isothermal immiscible
multiphase-porous-media flow simulator CMG IMEXTM.
Constant fluid properties and temperatures are used
throughout the simulations. We use boundary conditions
equivalent to those in the experiment—zero flux normal to
the outer diameter of the core, a constant-volume flux at
the inlet face, and a constant pressure at the outlet face.
We vary the inlet flux to match the experimental fractional
flows and run the simulations for the same time periods
until steady state is achieved. We can then compare the
resulting saturations in each cell to those in the experiment
on a 1:1 basis, as well as core-averaged pressure drops in
the form of absolute and relative permeability.
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III. RESULTS

Here, we present results from the multiscale charac-
terization and modeling workflow. We first evaluate the
performance of the deep-learning algorithm in generating
realistic SR images from LR images, using direct image
comparisons and pore-network modeling. We follow this
verification exercise with validation using whole-core con-
tinuum simulations to compare directly to experiments
across a variety of conditions.

A. Pore-scale results

We first discuss the pore-scale efficacy of the workflow.
The first slice of the LR, cubic, HR, and SR images for core
1 subvolume 2 and core 2 subvolume 2 are shown in Fig. 5.
Only core 1 subvolume 1 is used in the training and test-
ing of the deep-learning algorithm; the images in Fig. 5 are
therefore completely unseen. Further image comparisons
are shown in Figs. S1–S3 in the Supplemental Material
[66]. We show the raw images as well as filtered images,
which highlight the high filtering similarity that is achieved
between the SR and HR images [e.g., Eq. (5)]. In Fig. 5,
we see that the SR image, generated through the EDSR
network, is able to reproduce many of the sharp angu-
lar features apparent in the HR image, highlighted by the
blue-circle regions. The LR and cubic images have much
smoother feature representations, especially after filtering
to the same level as the SR image. Upon segmentation,
features are generally more rounded; the sharp grain-pore
contacts typical of the Bentheimer sandstone are somewhat
lost.

As well as sharper grain-pore contact features, high-
frequency features are also significantly better represented
in the SR image. Small pores and connecting throats are
more resolved; this is apparent even when comparing to the
cubic image (at 2-μm resolution), which is not able to cap-
ture the same detail. The EDSR learns a deeper mapping
from the LR to HR image than a polynomial interpolation,
using higher-level information such as the image gradi-
ent, which improves small-feature representation. This is
particularly important for the overall connectivity in the
domain and the subsequent pore-network extraction. Small
disconnected regions [such as that shown in Fig. 5(a), blue
circle] could be wrongly attributed to a different pore and
may not be connected to the main flow path, leading to
inaccuracies in flow simulation. In general, the SR image
appears more connected than the LR or cubic images, in
line with the HR image.

We see that the contrast between features is also higher
in the SR image compared to the LR and cubic images.
This is visible in the blue circle in Fig. 5(b), whereby intra-
granular porosity is more clearly visible and is retained
upon segmentation in both the HR and SR images. Further
analysis of the core 2 subvolume results in Fig. 5(b) (and in
the Supplemental Material [66]) reveals the ability of the

EDSR to learn specific mineralogy aspects of the images.
Core 2 features bright patches of highly attenuating iron-
oxide deposits in the form of hematite (approximately 9
times more attenuating than quartz [67]). These also appear
in the visible spectrum as a distinct red color. These iron-
oxide deposits typically form around fault planes from
iron-rich groundwater flow and can form between quartz
grains [68]. The SR image is able to reproduce these bright
patches, even though they are barely visible in the rela-
tively dark LR image (see Fig. 5(b), red circles). These
patches can reduce the overall porosity and/or permeabil-
ity of the sample when in between grains and are key in the
heterogeneity characterization—see the simulation results
for further explanation.

The EDSR network is optimized for the micro-CT data
here by reducing the number of residual blocks and filters
in each layer; an optimum is manually found that pro-
duces low L1 loss while not overfitting the data. Overfitting
is clearly visible in early attempts when specific beam-
hardening and ring artifacts are learnt from the HR image.
These are common x-ray micro-CT imaging artifacts, due
to the nonlinear attenuation of the core-holder or rock and
through dead pixels, respectively. The ring artifacts are vis-
ible in some HR images here [see the central-region crop
in Figs. S1(c), (g), (k), and (o) in the Supplemental Mate-
rial [66]] but have not been learnt by the EDSR. This is a
key attribute of the EDSR implementation and it allows our
SR images to represent the true features of the HR images
while removing common, and often unavoidable, imaging
artifacts.

A further feature that the EDSR network learns is the
grain-edge artifacts apparent in the HR image. These
bright regions are due to small-angle x-ray refraction
(often interpreted as “phase-contrast” artifacts) and they
occur increasingly at high resolution and high energy with
sharply contrasting features [69]. They are not necessarily
a negative effect in dry images, since they increase contrast
for segmentation; however, they can be negative if mul-
tiple (fluid) phases are present in the sample, especially
if phase-contact geometry is required. These features are
not learnt through overfitting, since they are ubiquitous in
the HR image here; they could be removed somewhat with
phase-contrast-removal techniques.

It is worth noting that in Fig. 5 we only show one seg-
mentation result, at the base-threshold value (grain-pore
minimum value 117), to give a representative view of the
pore space. Although other threshold values, which are not
necessarily equal to each other, may result in closer visual
matches between comparison images, the base thresh-
old shown highlights the general trends between the LR,
HR, and SR images. To more quantitatively compare the
images, we now discuss the results from the pore-network
extractions and flow simulations.

Figure 6 shows petrophysical-property predictions from
the pore-network-model extractions and flow simulations
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(a)

(b)

FIG. 5. Comparisons of the LR, cubic, HR, and SR images. The region shown is a 600 × 600 μm 2D crop from the first slice,
centered on pixel 175/225. (a) Core 1 subvolume 2. (b) Core 2 subvolume 2. In each subfigure, the top row are raw normalized images,
the middle row are filtered images, and the bottom row are the segmented images using the base-threshold-of-117 grayscale value.
The columns from left to right are LR, cubic, HR, and SR images, respectively. The blue circles highlight areas of interest, showing
differences between the images. The red circles show potential hematite mineral inclusions in core 2, which are also visible in many
other regions (for further images, see the Supplemental Material [66]).
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comparing the LR, cubic, and SR results to the HR result.
In each case, seven segmentation results are shown, with
the middle symbol representing the base case in each case.
As the segmentation threshold is increased, the grain space
is eroded and the porosity and/or permeability is increased.
In general, it is clearly visible that the SR results closely
match the HR results across all segmentation thresholds,
closely following the unity line. This is not true for the
LR and cubic results, which generally match the HR result

at only one segmentation threshold, which is not equal to
that of the HR image. The crossover point for the LR and
cubic results with the unit line changes for each petrophys-
ical property; therefore, it is not clear which segmentation
threshold for the LR images is optimal compared to the
HR image. This highlights the potential pitfalls with choos-
ing a segmentation for a lower-resolution image based on
a single criterion [46], which does not necessarily hold
for other petrophysical predictions. The SR image, on the

(a) (b)

(c) (d)

,

Core 1 Subvolume 1—LR Core 1 Subvolume 1—Cubic
Core 1 Subvolume 2—LR
Core 2 Subvolume 1—LR
Core 2 Subvolume 2—LR

Core 1 Subvolume 2—Cubic
Core 2 Subvolume 1—Cubic
Core 2 Subvolume 2—Cubic

Core 1 Subvolume 2—SR
Core 2 Subvolume 1—SR
Core 2 Subvolume 2—SR
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L
R

, 
C

ub
ic

, 
an

d 
SR

L
R

, 
C

ub
ic

, 
an

d 
SR

,

FIG. 6. Pore-network model simulations for the LR, cubic, HR, and SR images for all subvolumes. (a) Permeability. (b) Porosity. (c)
Coordination number. (d) Formation factor. The dashed black 1:1 line shows the perfect correspondence of the LR, cubic, and SR data
with the HR data. The legend is shown at the bottom; the symbol colors differentiate LR, cubic, and SR data, while the symbol types
differentiate cores and subvolumes. Multiple points with the same color and symbol are different segmentation realizations (seven in
total).
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other hand, displays behavior consistent with that of the
HR image across the range of segmentations. This means
that given an external measurement to calibrate against,
the chosen segmentation threshold should lead to consis-
tent petrophysical-property predictions, in line with the HR
image. Furthermore, the variance of the SR petrophysical
properties with segmentation choice is less than the LR
data, indicating that it is less sensitive to the segmentation
choice itself.

Out of the four subvolumes shown in Fig. 6, core 2
subvolume 2 has the least consistent SR result compared
to the HR image. This is likely due to the quantitative
difference in the pore structure between that subvolume
and the EDSR training subvolume (core 1 subvolume 1).
The subvolume-2 location has high levels of the bright
hematite mineral and a tight grain structure, with a per-
meability around one order of magnitude less than core 1
subvolume 1. However, the petrophysical predictions are
still acceptable and generally within ± 5-10% of the HR-
image results. In this work, we consciously choose to train
the EDSR network on only one subvolume in one core,
to highlight the small training data set that is required.
The training size is chosen based on a typical representa-
tive elementary volume (REV) of Bentheimer and chosen
randomly from the data sets. If the training batch was
extended to include multiple regions, then conformance
could likely be achieved over data with more variance. As
in all deep-learning methodologies, the performance of the
network is strongly tied to the quality and/or quantity of
the training data set and its representativeness of the test
data [8].

Multiphase-flow predictions from the pore-network
models are shown in Fig. 7 for core 2 subvolume 1 (other
subvolume results are shown in Figs. S4–S6 in the Supple-
mental Material [66]). The HR and SR results both show
less variation across the different segmentation thresholds
than the LR and cubic results and closely match each other
generally. In particular, the capillary pressure predictions
for the SR and HR images closely match the externally
derived mercury-intrusion capillary pressure (MICP) data,
when scaled to the correct interfacial tension (IFT) fluid
pair [70]. Higher capillary pressures at Sw < 0.2 are better
represented in the SR and HR images, due to the resolu-
tion of small pores and throats in the system. In the LR and
cubic networks, these small pores are poorly resolved and
hence the maximum capillary pressure that can be simu-
lated is limited. We also see that the gradient of capillary
pressure (|dPc/dSw|) in the low-capillary pressure region
(0.2 < Sw < 0.8) is smaller for the LR and cubic networks
compared to the SR and HR networks and MICP data. A
low |dPc/dSw| across a range of Pc values is indicative
of a narrow pore-size distribution, where many pores are
filled for small changes in Pc. The LR and cubic networks
have a narrower range of pore sizes compared to the HR
and SR data, as well as the real rock, misrepresenting the

(a)

(b)

(c)

Experimental

Experimental

FIG. 7. Pore-network model simulation results for the LR,
cubic, HR, and SR image networks of core 2 subvolume 1.
Each line represent a flow simulation on one of seven differ-
ent segmentation thresholds from −15% to +15% around the
base-threshold-of-117 grayscale value. (a) The nonwetting rel-
ative permeability. (b) The wetting relative permeability. (c) The
capillary pressure. The MICP data are from a sister core. The
“Experimental Kr” data are from the core-averaged multiphase-
flow experiments. Also shown is a Brooks-Corey (BC) function
fit to the experimental relative permeability data, from Ref. [6].

filling process and capillary pressure in the system. Fur-
ther, we see that the SR and HR networks have a better
representation of the threshold capillary pressure at the
first inflection point of dPc/dSw, where percolation across
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the system starts. The more connected domains generally
in these systems allow better representation of the initial
filling stages.

The SR and HR relative permeability predictions in
Figs. 7(a) and 7(b) also show less variance compared to the
LR and cubic predictions. The wetting relative permeabil-
ity is generally well predicted by all networks, with little
variation across the segmentations. Since the wetting phase
is connected across the domain for all saturations, the
relative permeability is quite insensitive to pore-structure
variations created by the different network morphologies.
However the wider more connected pore-size distribution
of the SR and HR networks does result in smoother transi-
tions between filling states, with less discrete “jumps” than
in the LR and cubic network. The nonwetting permeability
shows larger variations across the networks, especially for
the LR and cubic images at the percolation threshold. Vari-
ations in the network morphology have stronger impacts
on the nonwetting percolation, especially given the pore-
space heterogeneity. We note that all networks overpredict
the experimental core-averaged values here. This is largely
due to finite-size impacts, as the smaller-subvolume net-
works are more readily percolated than the whole-core
system. The REV size used in this work is the same as
in Ref. [6] and is chosen based on porosity and capillary
pressure. It is possible that relative permeability REVs are
larger. Further from this, capillary-end effects are present
in the whole core (and not in the PNM), which generally
reduce relative permeabilities and are present in the effec-
tive experimental Kr values; this is discussed in more detail
in Sec. III B on continuum modeling. These results further
highlight potential user bias when evaluating results com-
pared to a single criterion; care must be taken to consider
scale and representativeness.

Results from the other subvolumes in the Supplemental
Material [66] highlight the pore-scale heterogeneity across
the rock samples and the general ability of the SR networks
to capture this in line with the HR networks. The vary-
ing capillary pressure compared to the base MICP data is
a direct consequence of the changing pore-structure and
therefore capillary pressure heterogeneity.

In this section, we rigorously validate the ability of
the EDSR network to produce physically realistic SR
images of the pore space from LR images. We compare
common image-similarity metrics (SSIMs), visual texture,
and flow simulations to the corresponding LR and HR
images. Distinct from previous works [40,41,43–45,71],
we develop the EDSR network in 3D and demonstrate the
pore-scale validation across multiple segmentation real-
izations from multiple subvolumes in different samples,
gaining a thorough understanding of the uncertainty. We
also perform multiphase-flow validations, which are cru-
cial for subsurface applications but are often lacking in
previous, less-application-driven, studies. Further from
previous work, we also validate the results with true LR

and HR images obtained from optical magnification of the
samples, rather than artificial up- and/or downscaling of a
single image with numerical procedures. This is common
in earlier verifications of the approaches but does not pro-
vide a true representation of noise transfer with scale in
realistic applications [41].

B. Continuum-scale results

The verification in the previous section is performed pri-
marily with numerical simulation; we now provide direct
experimental validation of the EDSR-generated images
and modeling approach. As described in Sec. II E, we
use the trained EDSR network to generate HR subvol-
umes across the full-core samples from the LR images.
These subvolumes are segmented and fed into the PNM
to generate petrophysical properties and ultimately a 3D
full-core-continuum model. These models permit contin-
uum flow to be simulated by solving conversation of mass
and momentum, which we compare to the experimental
results from Ref. [6]. We note that the experimental results
are from exactly the same rock samples and hence can be
compared to the model results here in a 1:1 approach.

First, we compare core average absolute permeabilities.
These are calculated in the experiments and simulation
using the average pressure drop across the samples in
an analogous manner to Eq. (13). Tabulated results are
shown in Table I for all model realizations, with 3D per-
meability maps for the LR and SR LT models displayed
in Figs. 8(a)–8(d) (further images are shown in Fig. S7 in
the Supplemental Material [66]). We also show direct 1:1
comparisons of the voxel-permeability predictions for the
LR and SR LT images in Figs. 8(e) and 8(f). For each core,
we see that the SR model provides a more accurate predic-
tion of the absolute permeability for both the LT and HT
realizations when compared to the experimental average
values.

We show the Dykstra-Parson coefficient, Vk, which is
the ratio of standard deviation in absolute permeability

TABLE I. Single-phase flow-simulation results compared to
experiments. LT and HT refer to low-threshold and high-
threshold generated models, respectively.

Property Core 1 Core 2

LR SR LR SR

Kabs experiment (D) 1.636 0.681
Kabs LT (D) 2.494 1.503 2.350 1.260
Kabs LT error (%) 52.5 −8.1 245.1 85.0
LT Dykstra-Parson

coefficient, Vk

0.174 0.280 0.213 0.285

Kabs HT (D) 3.477 2.413 3.327 2.201
Kabs HT error (%) 112.6 47.5 388.5 223.2
HT Dykstra-Parson

coefficient, Vk

0.152 0.202 0.202 0.221
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(a) (b)

(c) (d)

(e) (f)

L = 6.48 cm

L = 6.48 cm

L = 5.72 cm

L = 5.72 cm

FIG. 8. Continuum-scale permeability results from the PNM using the LR LT and SR LT images. (a),(c) Voxelized permeability
for the core-1 LR and SR models, respectively. (b, d) Voxelized permeability for the core-2 LR and SR models, respectively. The
permeability scale bar is shown underneath. The HT images are found in Fig. S7 in the Supplemental Material [66]. (e),(f) SR versus
LR voxel permeabilities for cores 1 and 2, respectively.

to the mean, in Table I. We see that the SR results gen-
erally have higher Vk, indicating that they have captured
more of the heterogeneity of the core. The HT segmen-
tations generally result in lower Vk, as the pore space
has been more strongly eroded, with higher connectiv-
ity, resulting in less permeability variation across the
REVs.

In Table I, we see that the HT realizations generally
overestimate the permeability for both the LR and SR
cases, since the pore space has been eroded and enlarged.
This increases local conductivity between pores and the
overall core-averaged conductivity and/or permeability. At
the lower threshold, the SR-based model has an accurate
prediction of the permeability for core 1 (8.1% error); this
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threshold is chosen to approximate the macroscopic poros-
ity in the sample that contributes to flow. When combined
with the more accurate SR pore-space representation, this
threshold gives a good estimate of the connected flow
path and hence the permeability. However, for core 2,
the SR LT model overpredicts the permeability (85.0%
error), although it is more accurate than the other mod-
els. For core 2, the 3D permeability map in Fig. 8(d)
shows a very-low-permeability band cutting oblique to the
flow direction, with permeability O(100) mD. This band
is the primary control on the core average permeability
(through the harmonic mean), with the rest of the core oth-
erwise quite similar to the more homogeneous core 1 (i.e.,
approximately 1.5 D). Simulations show that reducing the
permeability of cells within the band to 10% of their orig-
inal values (now ranging from 10 to 50 mD) reduces the
average permeability to 793.2 mD, in line with the exper-
imental value (16.5% error). These low values are likely
linked to the hematite inclusions in the band, which reduce
intergranular porosity and permeability. It is likely that
even the HR image of this region (the core 2 subvolume
2 data), at 2-μm resolution, is still not able to fully resolve
some small throats that are controlling the resistance to
flow. With this, the SR image is also not able to capture
the same features and may need a higher-resolution train-
ing data set for capturing the very low permeability here.
In previous works, models of resolution 2–5 μm have been
used to accurately capture permeabilities of > 100 mD
[13,19]. However, for smaller permeabilities of O(10)mD,
[72] have used resolutions < 1 μm, which may be required
for the heterogeneous regions here. This highlights the care
that must be taken when using real heterogeneous media
that could have regions of very reduced permeability in a
system of overall quite high average permeability.

When comparing the LR and SR results directly in
Figs. 8(e) and 8(f), we see that the LR results are highly
correlated with the SR results at high permeability but
offset by a constant (approximately +700 mD for core 1,
approximately +1000 mD for core 2). At permeabilities
< 1 Darcy, the results are less correlated; this suggests
that the connectivity in the microstructure is fundamen-
tally different in the segmentations of the tight regions and
not as accurately captured by the LR image. At higher
permeability, the constant offset suggests that although
porosity between the models is very well matched, the
LR model is consistently not resolving some small fea-
tures below a threshold. To achieve the same porosity,
some of the larger regions are essentially eroded, result-
ing in larger conductivities. The permeability difference
between LR and SR is near constant, since these features
are consistently missing in each LR image that represents
a REV for permeability.

We note that further reductions to the segmentation
threshold value do not significantly lower the permeability
predictions, which can actually inflect and start to increase

the permeability past a given low threshold [45]. This is
because lowering the threshold contracts the pores and
throats, eventually entirely removing some small throats
(which were greatly increasing resistance to flow). This
results in flow through larger throats with increased per-
meability. This also helps to explain why the SR models
generally have lower permeability predictions than the
LR, since smaller throats are actually resolved and can
contribute to flow resistance in the network.

Further from the single-phase predictions, we present
multiphase-flow predictions in the form of relative per-
meability and saturation in Fig. 9 for the SR LT model,
and tabulated results for the LR and SR LT models in
Table II (further results are in the Supplemental Mate-
rial [66]: Table S1 shows LR and SR HT results and
Figs. S10–S12 show the LR LT, LR HT and SR HT
model results, respectively). We see that core average rel-
ative permeabilities are generally well predicted by the SR
LT model along with 3D voxel and slice average satu-
rations along the profile of the core. Overall, the SR LT
model represents the most accurate model when consid-
ering both saturation and pressure predictions. The core
average saturations are predicted to within the experimen-
tal repeatability (±10%), apart from fo = 1 in core 1. This
is highlighted in Figs. 9(a) and 9(c), whereby the satura-
tions are correlated but raised relative to the experimental
results. There are strong capillary-end effects in the model,
which are not as prominent in the experiment. The higher-
threshold models in Figs. S10–S12 in the Supplemental
Material [66] show fewer end effects, due to a lower Pc
transition at the outlet and may be more representative
of the true experiment. In the models, we use a constant
core average capillary pressure at the outlet (Pc = Pe =
3.7 kPa) and note that the model is slightly shorter than
the full core due to imaging artifacts. The images are miss-
ing approximately 5 mm from each end, equivalent to 2.5
grid blocks (the missing regions are visible in the lack of
data at x/L < 0.07, x/L > 0.93). Without calibration of the
outlet Pc [6] or artificial extensions to the model geometry
[48], we generally overpredict end effects at high fo. We
choose to have a calibration-free model here, which pro-
vides robust results for cases with small end effects (fo < 1)
and allows bias-free modeling of the process.

In general, we see that the saturation predictions of
the LR and SR models are similar; however, the SR
model gives a marginally better representation of satura-
tion heterogeneity in the core, likely due to a slightly more
accurate capillary pressure near the percolation threshold.
The relatively good performance of both models sug-
gests that saturation heterogeneity is not strongly linked
to the functional representation of capillary pressure here
but, instead, related to the relative variation in capillary
pressure through the core, as shown in Ref. [48]. Even
though the LR capillary pressures do not capture the over-
all shape from 0.2 < Sw < 0.8 as well as the SR model [see
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(a) (b)

(c) (d)

(e) (f)

FIG. 9. Whole-core saturations and relative permeabilities for the experiments and simulations. Simulations are shown for the model
derived from SR LT images: further realizations can be found in the Supplemental Material [66]. (a),(b) Voxelized saturations for cores
1 and 2, respectively. (c),(d) Slice average saturations for cores 1 and 2, respectively. (e),(f) Linear and logarithmic relative permeability
results, respectively. The relative permeability legend is shown underneath the plots: the open symbols are the simulations and the
closed symbols are the experiment. Note that here we simulate “exp 2” and “exp 3” from Ref. [6].
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TABLE II. Multiphase-flow-simulation results compared to experiments. Results are shown for models derived from the low-
threshold (LT) images. Lines showing simulation error (%) are in bold. The high-threshold (HT) results are shown in the Supplemental
Material [66].

Core 1 Core 2

LR SR LR SR

Fractional flow of oil, f o 0.05 1 0.05 1 0.05 0.5 1 0.05 0.5 1
Sw average experiment 0.672 0.339 0.672 0.339 0.667 0.548 0.296 0.667 0.548 0.296
Sw average simulation 0.726 0.256 0.725 0.212 0.730 0.589 0.299 0.737 0.591 0.296
Sw average error (%) 8.1 −24.6 8.0 −37.5 9.4 7.4 1.1 10.4 7.8 0.1
kro experiment 0.005 84 0.123 0.005 84 0.123 0.007 48 0.0362 0.202 0.007 48 0.0362 0.202
kro simulation 0.007 84 0.238 0.007 04 0.182 0.007 83 0.0629 0.230 0.007 89 0.0627 0.195
kro error (%) 34.2 94.4 20.6 48.2 4.6 73.6 13.8 5.4 73.0 −3.7
krw experiment 0.108 0 0.108 0 0.139 0.0353 0 0.139 0.0353 0
krw simulation 0.162 0 0.138 0 0.160 0.0664 0 0.154 0.0637 0
krw error (%) 49.3 0 27.6 0 15.7 87.9 0 11.2 80.3 0

Figs. S8(c) and (f) and S9(c) and (f) in the Supplemen-
tal Material [66] ], they still capture the relative variation
between regions and hence the saturation heterogeneity in
the model. We see that relative permeability heterogene-
ity [see Figs. S8(a), (b), (d), and (e) and S9(a), (b), (d),
and (e) in the Supplemental Material [66] ] does not con-
tribute strongly to saturation heterogeneity, as also shown
in Ref. [48].

The relative permeability predictions from the SR LT
model are more accurate than those of the LR LT model
and the other HT models. We are able to capture the
relative permeability to within the same order of magni-
tude (often < 20% error) across 3 orders of magnitude
in range. The nonwetting core average relative permeabil-
ity [Figs. 9(e) and 9(f)] in each case is equivalent to the
average of the individual subvolume relative permeabili-
ties (Figs. S8 and S9 in the Supplemental Material [66])
with some degree of end effect, depending on the frac-
tional flow, with larger impacts at higher fo. The type of
average is likely harmonic, or similar, given the lower
bounding of the subvolume relative permeabilities by the
core-average results. For the wetting relative permeability,
the core average looks to be a simple arithmetic average
of the subvolume individual values [see Figs. S8(b) and
(e) and S9(b) and (e) in the Supplemental Material [66] ].
This is physically intuitive, since the wetting fluid remains
connected at all modeled saturations.

Similar to the saturation prediction, the LR-model pre-
diction of relative permeability is worse than that of the
SR, but not significantly (see Table II). However, we
note that the pressure predictions are significantly worse
in the LR model during both single and multiphase flow
compared to the SR model. The less accurate pressure
prediction does not necessarily translate directly to rel-
ative permeability, since relative permeability essentially
acts as a ratio between the core-averaged single-phase
and multiphase permeability at a given saturation. In the
low-capillary-number high-Sw flow regime here, flow is

controlled strongly by the largest percolating pathway
through the core. The flow is well modeled through this
pathway, even at low resolution, with the other regions
behaving as single-phase flow conduits. These single-
phase flow regions have the same inaccurate pressure con-
tribution as per the absolute permeability calculation and
therefore essentially cancel out when considering the rel-
ative permeability. For more uniform displacement fronts,
at higher capillary number or at lower Sw, it is likely that
the SR model will behave significantly better than the LR
model, as more of the pore space is utilized and the reso-
lution of smaller throats will become more important. This
will also be true in systems with more heterogeneous flow
paths and larger ratios between pore body to throat sizes
(e.g., carbonate systems).

We see that the relative permeability at fo = 0.5 in
the core-2 experiment is not well captured by any model
and suggests an epistemic uncertainty. In the models, we
only simulate the drainage process but during the fo = 0.5
coinjection, it is likely that both drainage and imbibition
displacement mechanisms are occurring. If local trapping
is also occurring, this could explain the lower experimental
kr due to an increased resistance to flow. It is also possible
that flow intermittency [73] is occurring at this fractional
flow due to the increased multiphase competition, which
is not represented in the model. Intermittency generally
results in more energy dissipation, meaning that relative
permeabilities will be lower than in the connected-pathway
case.

Overall, we see that the SR models are able to accurately
reproduce the experimental behavior of the continuum-
scale system and are generally more accurate than the basic
LR-derived models. We can capture the key saturation
and pressure behavior over a range of conditions during
drainage. For the experimental conditions simulated in this
paper, the largest improvements compared to the SR model
are seen in pressure and absolute-permeability predictions,
which have contributions from a wide range of pore body
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and throat sizes. We also see improvements in capturing
saturation heterogeneity (see the voxel saturation plots)
and relative permeability in the SR model but the ben-
efits are not as strong when flow is controlled by large
connected pore bodies and throats, which are already well
resolved in the LR model. This is a consequence of the res-
olution chosen and the available experimental data, which
constrain the “low-resolution” data. Based on this, further
exploration of lower-resolution systems is warranted, per-
haps moving between 20-μm and (1–2)-μm resolutions
(in multiple steps to aid information transferal) where the
underlying full-core images are themselves not able to
accurately capture the main percolating pathways.

IV. CONCLUSIONS

In this work, we develop an EDSR neural network to
overcome traditional field-of-view and resolution trade-
offs in x-ray micro-CT imaging of multiscale porous
media. We develop the deep-learning architecture in 3D
using paired LR and HR data from optically magnified x-
ray CT images across multiple subvolumes. We test the
network on unseen LR and HR data from the relatively
homogeneous Bentheimer used for training, as well as a
more heterogeneous Bentheimer sample with a distinct
microstructure; low-permeability bands with significant
hematite mineral inclusions. The proposed network archi-
tecture works well at alleviating common imaging defects
(ring and beam-hardening artifacts) that are common in
HR micro-CT images. The 3D EDSR network is able to
produce physically realistic SR images from the input LR
images, which emulate the true HR images across a vari-
ety of image measures (SSIMs and textural analysis) as
well as in multiphase-flow simulations using pore-network
modeling. We provide a robust validation of the SR pore-
scale behavior using images from several segmentation
realizations, removing image-processing bias.

We use the trained EDSR network to validate the
approach against experimental data from Ref. [6]. We
generate approximately 1000 HR REV-scale subvolumes
for each whole core from the LR data. With this, we
populate a continuum model, at centimeter scale, with
petrophysical properties generated from the subvolume
pore-network models. The continuum model is used to
simulate drainage-immiscible multiphase flow at low cap-
illary number across a range of fractional flows, com-
paring directly to experiments. We find that the EDSR-
generated model is more accurate than the base LR model
at predicting experimental behavior in the presence of
heterogeneities, especially in flow regimes where a wide
distribution of pore sizes are encountered. The models
are generally accurate at predicting saturations to within
the experimental repeatability and relative permeability
across 3 orders of magnitude. We find less improvement
in the EDSR model when the main flow paths are already

captured by the LR images, with the saturation heterogene-
ity and the (low-capillary-number) relative permeability
largely controlled by the largest pores in the domain.

The demonstrated methodology is fully deterministic
and opens up the possibility to image, simulate, and ana-
lyze flow in truly multiscale heterogeneous systems that
are otherwise intractable. Further from the digital-rock-
physics applications in this work, the methodology can be
useful generally in materials-science research with multi-
scale porous systems. In particular, the design and opti-
mization of heterogeneous lithium-ion batteries could be
improved with accurate multiscale characterization [74]
and for hierarchical phase change systems with nano- and
macroporous components [75].

As well as the multiscale aspects considered in this
work, the methodology also has the potential to improve
time-resolved x-ray CT imaging, by permitting coarser
and therefore faster imaging of large systems. When com-
bined with recent deep-learning noise-removal techniques
[71], this could significantly speed up acquisition times and
allow the imaging of pore-scale dynamic processes over
continuum scales in the laboratory.

Further work considering greater differences in resolu-
tion between LR and HR data is being considered using a
multiscale deep-superresolution network as per Ref. [35].
Here, training data are required at multiple resolutions,
with information linked across scales. This could represent
a viable tool for increasing scalability further. Alongside
this, approaches that do not require paired input data, e.g.,
those based on GANs [44,76], could be utilized. Initial
results from GANs trained on unpaired data suggests that
they can achieve similar performance to a CNN trained
on paired data [76]. This could open up the possibility
of training with decoupled images from data-storage plat-
forms to exploit the wide range of available data already
present in the literature. With this, unpaired data at dif-
ferent resolutions with a multiscale network could also be
exploited.

The data and codes used in this work, which provide
a robust data set to test different deep-learning mod-
els, are open access. The original data set from Ref. [6]
is hosted on the BGS National Geoscience Data Cen-
tre [77] (there is also a subvolume image data set, for
easier download, available on the Digital Rocks Portal
[78]). The new LR (6-μm resolution), HR (2-μm reso-
lution), and additional VLR (18-μm resolution) subvol-
ume images are hosted on Zenodo [79]. We host the
deep-learning code, as well as MATLAB files for pro-
cessing the images, and generating input files for the
PNM and continuum modeling, on Github [80]. Users
can download the PNEXTRACT and PNFLOW software
from Refs. [81,82]. IMEX is available at cost from the
Computer Modelling Group (CMG); however, equivalent
results have been obtained for the continuum-modeling
approach using the open-source MOOSE package [83],
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running the FINCH application [84]. Examples are provided
therein for running core-flood simulations and the CMG
input files can be readily converted to the MOOSE syntax.
We welcome all future developments on this topic.
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