
PHYSICAL REVIEW APPLIED 17, 054018 (2022)

Predicting Non-Markovian Superconducting-Qubit Dynamics from
Tomographic Reconstruction

Haimeng Zhang ,1,2,* Bibek Pokharel ,2,3 E.M. Levenson-Falk ,2,3 and Daniel Lidar 1,2,3,4

1
Department of Electrical & Computer Engineering, University of Southern California, Los Angeles,

California 90089, USA
2
Center for Quantum Information Science & Technology, University of Southern California, Los Angeles,

California 90089, USA
3
Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, USA

4
Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA

 (Received 29 November 2021; revised 27 January 2022; accepted 21 March 2022; published 11 May 2022)

Non-Markovian noise presents a particularly relevant challenge in understanding and combating deco-
herence in quantum computers, yet is challenging to capture in terms of simple models. Here we show
that a simple phenomenological dynamical model known as the post-Markovian master equation (PMME)
accurately captures and predicts non-Markovian noise in a superconducting qubit system. The PMME is
constructed using experimentally measured state dynamics of an IBM Quantum Experience cloud-based
quantum processor, and the model thus constructed successfully predicts the non-Markovian dynamics
observed in later experiments. The model also allows the extraction of information about crosstalk and
measures of non-Markovianity. We demonstrate definitively that the PMME model predicts subsequent
dynamics of the processor better than the standard Markovian master equation.
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I. INTRODUCTION

A central challenge in controlling and programming
quantum processors is to overcome noise. Open quan-
tum system dynamics are often modeled using the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master
equation [1,2], also commonly known as the Lindblad
master equation (LME). The LME is completely posi-
tive and is formally easily solvable. However, the LME
is derived under the assumption of Markovianity. Loosely,
this assumption amounts to an environment that is “mem-
oryless” and is only valid when the system is weakly
coupled to a bath whose characteristic timescale is much
shorter than that of the system dynamics [3,4]. Although
the Markovian assumption allows for significant simpli-
fications, it is only an approximation and in reality it
is often desirable to account for non-Markovian effects
[5]. This is true in particular in the case of the dynam-
ics of superconducting qubit systems [6,7]. For example,
it has been observed on the IBM Quantum Experience
(IBMQE) processors [8] that the fidelity of a gate opera-
tion is conditional on the gate operation that preceded it in
a gate sequence [9]. This is an example of non-Markovian
noise, which introduces temporally correlated errors. Non-
Markovian effects may arise from, for example, spatially
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correlated noise that arises from nonlocal external pulse
controls, coherent errors caused by residual Hamiltonian
terms, or stochastic errors due to slow environmental fluc-
tuations. Such correlations, as well as correlated errors on
multiple qubits, have been shown to be a leading source
of failure in achieving quantum error correction [10–12],
and also in other near-term quantum applications [13]. In
other words, dealing with non-Markovianity will be vital
to achieving fault-tolerant quantum computation [14–17].

Unfortunately, most device characterization and valida-
tion methods do not fully capture non-Markovian effects,
as these methods either implicitly or explicitly make the
Markovian approximation. For instance, the standard T1
and T2 measurements that quantify qubit lifetime assume
exponential decay of the excited-state population or the
qubit coherence. Similarly, randomized benchmarking and
gate-set tomography [18] consider circuits of varying
length and assume that the fidelity of corresponding oper-
ations decay as circuits become longer. However, on real
quantum processors, recent studies [19–21] have observed
deviations of the qubit dynamics from the prediction of a
purely Markovian treatment.

In this work we focus on noise processes that gov-
ern the free (undriven) evolution of a superconducting
quantum system. Here, the non-Markovian effects can be
both coherent, e.g., due to unintentional crosstalk with
neighboring qubits, or incoherent, e.g., due to coupling
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to magnetic impurities [22]. However, a complete first-
principles model for the system-bath interaction [for exam-
ple, the formally exact Nakajima-Zwanzig (NZ) master
equation [23] ] may be infeasible to construct or too hard
to solve numerically [3]. There has been extensive work on
developing a set of master equations that are both easily
solvable and account for non-Markovian effects, e.g., the
Gaussian collapse model [24], quantum collisional mod-
els [25], and the time-convolutionless master equations
[3]. Here, we choose to focus on the post-Markovian mas-
ter equation (PMME) [26], which includes bath memory
effects via a phenomenological memory kernel k(t) (see
also Ref. [27] for an updated derivation). We choose the
PMME for its conceptual and computational simplicity and
because it has a closed form analytical solution in terms
of a Laplace transform. It naturally interpolates between
the exact dynamics (a completely positive map [28]) and
the Markovian Lindblad equation, and at the same time,
retains complete positivity with an appropriate choice of
the form and parameters for k(t) [26,29,30], and remains
analytically solvable.

The PMME we consider takes the following form:

d
dt
ρ(t) = L0ρ(t)

+ L1

∫ t

0
dt′k

(
t′
)

exp
[
(L0 + L1) t′

]
ρ
(
t − t′

)
.

(1)

Here ρ(t) is the reduced system state and L0 and L1
are Markovian (super)generators in Lindblad form that
describe the dissipative dynamics, where L0 can have
additional Hermitian (i.e., unitary evolution generating)
components. Non-Markovian effects in the evolution under
the Lindblad superoperator L1 are introduced via a phe-
nomenological memory kernel k(t) to assign weights to the
previous “history” of the system state. We note that Eq. (1)
differs from the original PMME [26], in that the latter did
not contain L0 inside the integral. The reason behind this
choice will become apparent below; in essence, it allows
us more flexibility in partitioning the various terms in the
Lindbladian.

In our protocol, the PMME model is constructed by fit-
ting to an ensemble of time-domain tomography measure-
ments. Hence, we call our protocol PMME tomography.
We demonstrate PMME tomography on an IBMQE device
and then use the PMME model thus constructed to quantify
the degree of non-Markovianity. Our procedure predicts
the non-Markovian effects we observe in future measure-
ments and can model the information backflow from the
environment to the system on the device we test. Our pro-
tocol provides a robust estimation method for a continuous
dynamical model beyond the commonly assumed Marko-
vian approximation, paving the way to more accurate

modeling of noisy intermediate-scale quantum (NISQ)
devices.

The structure of this paper is as follows. In Sec. II,
we start by constructing the closed system model for the
qubit evolution, introduce the non-Markovian open system
model by proposing a Lindbladian and different memory
kernel terms for Eq. (1), describe the data-collection pro-
cedure of the state-tomography experiments, and finally
use the estimated qubit states sampled during the evo-
lution to find the best-fit PMME model parameters. In
Sec. III we apply the PMME model construction protocol
to an IBMQE processor, discuss the descriptive power of
the PMME models on the fitting dataset, and discuss the
models’ predictive power by using them to predict qubit
dynamics in a previously unseen testing dataset. We also
quantify the degree of non-Markovianity based on the con-
structed PMME model. In Sec. IV we contrast our method
with previous work, and provide a discussion of the results
and conclusions. The Appendix contains various additional
technical details.

II. METHODS

A. Closed system model

We consider a single qubit described by the effective
Hamiltonian

H = −1
2
ωzσz, (2)

which is written in the rotating frame of the qubit drive,
where ωz accounts for the detuning between the qubit
frequency and the drive frequency. In practice, the drive
frequency is typically set to be the qubit frequency. The
latter is determined via a calibration procedure, typically
carried out on a single qubit with the rest of the neighbor-
ing “spectator” qubits all in their ground states. A shift in
qubit frequency can lead to a nonzero detuning between
the qubit frequency and the drive, thus a nonzero ωz in
the effective Hamiltonian. In addition, the sign and the
magnitude of ωz can change depending on the initial state
of the spectator qubits due to the presence of an always-
on ZZ interaction, which arises from unintended coupling
between the qubit and its neighbors [21]. For these reasons,
we include a Hamiltonian term in our model.

B. Open system models and their physical motivation

Our task is to find a model that best describes a time
series of state-tomography observations and find the best-
fit parameters of that model. In this case the model itself is
represented by the functional form of the memory kernel
k(t), while the model parameters are the parameters of the
kernel function. We consider a sequence of models in order
of increasing model complexity: the Lindblad model M0
and the PMME models M1 and M2. In general, we denote
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the models by Mi(θ) where θ is a list of pi free model
parameters, with p increasing monotonically with i.

We take as our simplest model (M0) the Lindblad
master equation

dρ
dt

= L(ρ) = L0(ρ)+ L1(ρ) (3a)

= −i[H , ρ] +
∑

k

γk

(
VkρV†

k − 1
2

{
V†

kVk, ρ
})

.

(3b)

As is clear from Eq. (1), this is equivalent to a PMME with
a δ-function kernel, k0(t) = δ(t). In the notation of Eq. (1),
we choose the first generator as

L0 = H + LGAD, (4)

which has a Hermitian component H(ρ) = −i [H , ρ] and
a generalized amplitude-damping Lindbladian LGAD with
the Lindblad operators Vk ∈ {σ+, σ−}. We choose the sec-
ond generator as a pure dephasing Lindbladian:

L1(ρ) = γz (σzρσz − ρ) . (5)

With this choice, which is motivated by our experiments
with the IBMQE devices, the population decay (T1) is
essentially Markovian, as it is dominated by the L0ρ(t)
term outside the integral in Eq. (1).

The parameters of interest to us are the following: ωz,
the amplitude of the static z field due to the always-on
ZZ coupling with the neighboring qubit(s); γz, the pure
dephasing rate; �s = γ+ + γ− and �r = γ+/γ−, respec-
tively, the sum and ratio of the excitation rate and the
relaxation rate. The Kubo-Martin-Schwinger (KMS) con-
dition [3], which states that the rate of excitation in a
system is exponentially suppressed relative to the rate of
relaxation at the same frequency [γ (−ω) = e−βωγ (ω),
where β is the inverse temperature and ω > 0], implies
that �r < 1. This Lindblad model has a total of p0 = 4
parameters.

To go beyond the Lindblad model M0, we consider two
PMME models M1 and M2 with extra parameters for the
memory kernel. We consider a family of kernels whose
Laplace transform can be written as rational functions, i.e.,

k̃1(s) = Lap[k(t)] = P(s)/Q(s), (6)

with polynomials P(s) = amsm + · · · + a1s + a0 and
Q(s) = bnsn + · · · + b1s + b0 of degree m and n, respec-
tively. This include a large class of kernels, which can
be expressed as linear combinations of functions of the
form tdect for complex c and integer d. For the PMME
model M1 we choose the simplest kernel in this family:

an exponentially decaying kernel

k1(t) = a0 exp(−b0t) ⇐⇒ k̃1(s) = a0/(s + b0), (7)

where henceforth we impose the constraint k(0) = 1 (since
the normalization can always be absorbed into L1), which
leads to a0 = 1. This model thus has a total of p1 = 5 free
parameters: the Lindblad model parameters and b0.

The more complex PMME model M2 has two addi-
tional free parameters a0 and b1:

k2(t) =
⎧⎨
⎩

e(−b1/2)t
[

2a0−b1
μ

sinh(μ2 t)+ cosh(μ2 t)
]

if B ≥ 0

e− b1
2 t
[

2a0−b1
μ

sin(μ2 t)+ cos(μ2 t)
]

if B < 0

⇐⇒ k̃2(s) = (s + a0)/(s2 + b1s + b0), (8)

where B = b2
1 − 4b0 and μ = √|B|. This model has a total

of p2 = 7 free parameters (the Lindblad parameters and a0,
b0, and b1). The sign of B specifies whether the kernel is
overdamped or underdamped.

As illustrated in Fig. 1, the models M0, M1, and M2
are a sequence of nested models of increasing complexity;
for example, M2 reduces to M1 with the identifications
a0 = 0, b0 = 0, and with a renaming of the parameter
b1 → b0 [since now the kernel function k̃(s) has a lower
degree].

The models {Mi} predict a functional form of the
dynamics depending on the model variables θ , so the
predicted evolution of a state can be written as

ρprd(t) = f (t|θ), (9)

FIG. 1. The nested candidate models we use to describe the
qubit free evolution: the Lindblad model M0, parameterized by
a Hamiltonian term and the Lindbladian, and the PMME models
M1,M2 with their additional kernel parameters.
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where θ = {ωz, γz, γ−, γ+, 	a, 	b} is the list of model param-
eters. The kernel parameters are 	a = {a0, . . . , am−1}, and
	b = {b0, . . . , bn−1}, some of which may be constrained, in
addition to the positivity constraint {γz, γ−, γ+} > 0 and
the KMS constraint γ+/γ− < 1.

The goal of this procedure is to specify the master
equation that governs the dynamics of the system. We
formulate this in terms of the inverse problem: given a
discrete time series of measurement records of the state,
we seek the dynamical model Mi(θ) that most closely
matches the observations.

C. Quantum state tomography

To get complete qubit-state information, we perform
state tomography on a single qubit of the ibmq_athens pro-
cessor (see Appendix A). The data is collected with the
main qubit state ρS initialized in one of the five states in the
preparation set P = {|ψi(0)〉}i=4

i=0; and the rest of the proces-
sor’s spectator qubits initialized in the ground state |0〉. The
states in P are illustrated in Fig. 2 and specified in Table I.
After the qubit initialization, the main qubit undergoes free
evolution for a variable time tj , and then state tomography
is performed to construct the density matrix, augmented by
measurement error mitigation (see Appendix B). Specif-
ically, the circuits of the tomography experiment contain
the following steps:

1. State preparation: the qubit is initialized in the
ground state, and a state-preparation gate is applied to
initialize the qubit in one of the five fiducial states |ψi(0)〉.

FIG. 2. The initial states used for the fitting dataset (yellow)
and the testing dataset (blue). The initial states are chosen such
that the states |ψi(0)〉, i = 0, 1, 2, 3 form a tetrahedron on the
Bloch sphere, where |ψ1(0)〉 = |1〉 is the excited state. The state
|ψ4(0)〉 is a fixed, randomly chosen state on the Bloch sphere.
The same set of five states are used in all our experiments.

TABLE I. The set of initial states P used in our experiments,
corresponding to the states shown in Fig. 2.

|ψ0(0)〉
(√

8/9, 0, −1/3
)

|ψ1(0)〉 (0, 0, −1)
|ψ2(0)〉

(−√
2/9,

√
2/3, −1/3

)
|ψ3(0)〉

(−√
2/9, −√

2/3, −1/3
)

|ψ4(0)〉 (0.50, −0.75, −0.41)

2. Evolution: the qubit undergoes free evolution, with
a variable evolution time. This corresponds to applying a
sequence of identity gates I and sweeping the number of
gates.

3. Measurement: one of the three single-qubit gates
(I, MX, or MY) is applied before the measurement, corre-
sponding to measurement in the Pauli z, x, and y bases,
respectively. Here MX = H is a Hadamard gate and MY =
HS† where S is a phase gate. We record the measurement
outcomes 0 or 1.

The steps above are repeated for all combinations of ini-
tial states, free evolution duration, and measurement basis,
and each combination is repeated for Ns = 8192 shots. Let-
ting Njk denote the number of times out of Ns shots that
outcome 1 occurred at time tj in measurement basis k,
the state-tomography raw data are the recorded outcome
counts,

{Njk|j = 1, . . . , nt, k ∈ {x, y, z}}, (10)

where nt is the total number of time points. We per-
form Bayesian measurement error mitigation on the raw
data (see the Appendix for details) and the measurement
mitigated data is then fed into a maximum-likelihood esti-
mation (MLE) routine. This routine determines the qubit
state ρ̂(tj ) at time tj , represented by the experimentally
measured Bloch vector 	vexp(tj ) as ρ̂(tj ) = 1

2 [I + 	vexp(tj ) ·
	σ ]. The uncertainties associated with the tomographically
constructed states, i.e., the standard deviations of the cor-
responding Bloch vector components, denoted as σjk, k ∈
{x, y, z}, are estimated by Bayesian bootstrapping. The col-
lected datasets are divided into the model fitting set {ρ̂}fit
and the model testing set {ρ̂}test. The former contains a time
series of qubit dynamics with a single initial state |ψ0(0)〉,
the latter contains the other four time series with four
different initial states {|ψi(0)〉}i=4

i=1. Finally, we use the con-
structed qubit states {ρ̂(tj )}j =nt−1

j =0 from the fitting dataset
to construct the PMME description of the free-evolution
channel.

D. Model fitting

Given the observations from the state-tomography
experiment, our task is to find the best-fit model parame-
ters θ , as parametrized in Sec. II B, of the dynamical model
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Mi(θ). To tackle the problem, we perform a maximum-
likelihood estimation, a well-studied method of determin-
ing unknown parameters of a model from a set of data.
The input data of this MLE procedure is a time series of
the qubit evolution {tj , ρ̂exp(tj )}j =Nt−1

j =0 , initialized in one
of the states in the set P. The qubit state ρ̂exp at time tj
is constructed from tomography experiment outcomes via
a Qiskit state-tomography MLE routine [31]. In the fit-
ting procedure, we seek to minimize the distance between
the observed state ρ̂exp(tj ) and the model predicted state
ρprd(tj ) for all the sampled time instances tj . We define the
following standard objective function in the least-squares
form [32]:

χ2(θ) =
Nt−1∑
j =0

∑
k=x,y,z

[v̂exp
jk (tj )− v

prd
jk (tj ; θ)]2

σ 2
jk

, (11)

where 	vexp
jk and 	vprd

jk denote the kth Bloch vector component
of the qubit state at time tj constructed from the experimen-
tal observations and predicted by the model, respectively.
The latter is obtained by solving the model Mi(θ) for
ρprd(t). Since the PMME admits a closed-form analytical
solution, the evaluation of the objective function Eq. (11)
is efficient to compute under the assumption that the noise
associated with each data point follows a normal distribu-
tion. Minimizing the least-squares function χ2(θ) for the
model parameters θ is equivalent to maximizing the like-
lihood of observing the dataset given that the underlying
model is true.

We would like the dynamical model to gener-
ate a completely positive and trace-preserving (CPTP)
map (though this is not strictly necessary, as non-
CP maps are also valid physical models; see, e.g.,
Ref. [33]). For this reason, we restrict the Lind-
blad rates {γz, γ+, γ−} to be positive. For the PMME
models with different choices of kernel functions, we
derive the condition that guarantees CPTP dynamics in
Appendix E. We find that the conditions |ξ4| < 1 and
|ξ2| = |ξ3| <

√
(�r + ξ4)(1 + �rξ4)/1 + �r < 1 are nec-

essary and sufficient for complete positivity, where ξi(t) =
Lap−1 [1/s − λ0

i − λ1
i k(s − λi)

]
(the inverse Laplace trans-

form), and λ0
i , λ1

i , and λi are the eigenvalues of the matrix
representation of L0, L1, and L, respectively, in the Pauli
basis (see Appendix C).

The best-fit PMME parameters are found by solving the
following minimization problem:

minimize χ2
(
ωz, γz, γ+, γ−, 	a, 	b

)

subject to γz, γ+, γ− > 0, �r = γ+/γ− < 1, k(0) = 1.
(12)

After we fit the models by solving Eq. (12), we compute
the trace-norm distance

D(tj ) = 1
2
‖ρ̂exp(tj )− ρprd(tj )‖1, (13)

where ‖A‖1 = Tr[
√

A†A] is the trace norm. D(tj ) quan-
tifies the probability with which one can optimally dis-
criminate the experimentally observed ρ̂(tj ) from the pre-
dicted state ρ(tj ) [34], and thus a small D(tj ) indicates an
accurate prediction.

III. RESULTS

We test our approach for tomographic PMME construc-
tion in three increasingly challenging settings, summarized
in Fig. 3. We start with time-series state-tomography data
for a single initial state on a transmon qubit [the fitting
dataset on |ψ0(0)〉] and show that we can construct a
sequence of nested PMME models to represent this evolu-
tion. We then compare the PMME models with the Marko-
vian Lindblad counterpart and show that the PMME mod-
els provide a measurably better fit. Secondly, we test the
PMME’s predicted evolution for quantum states that are
not used to construct the PMME model. Again, we show
that the PMME model faithfully predicts the evolution
even for these new states without requiring full process
tomography, while the Lindblad model does not. Lastly,
we compute the degree of non-Markovianity in the evolu-
tion using the tomographically constructed PMME model
and show that it correctly approximates the observed non-
Markovianity in the qubit free-evolution dynamics, which
the Lindblad model fails to do.

A. Fitting set

First, we construct the dynamical models M0, M1, and
M2 using the time-series tomography data of a single ini-
tial state. Our results are displayed in the first column of
Fig. 4, which shows the observed evolution 	vexp (gray cir-
cles with error bars) and the predicted evolution 	vprd (solid

Fitting set

Testing set

Lindblad model  

Evaluate non-Markovianity

Model validation

PMME models  

PMME models  

FIG. 3. Analysis protocol for PMME tomography. The tomog-
raphy datasets for qubit free evolution with different initial states
are divided into a fitting set [in our case with a single initial
state |ψ0(0)〉] and a testing set [in our case with initial states
|ψ1,2,3,4(0)〉]. The fitting set is used to fit the dynamical models
{Mi} using a classical optimizer based on the MLE method.
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(e0) (e1) (e2) (e3) (e4)

FIG. 4. PMME tomography protocol applied to single-qubit free evolution, with the spectator qubits all in their ground state.
(a0)–(c0) The free-evolution tomography data v̂exp(t) of the fitting dataset with the qubit initialized in |ψ0(0)〉 and the best-fit models
for the Lindbladian model M0 (orange lines), the PMME model with kernel type 1, M1 (blue lines), and the PMME model with kernel
type 2, M2 (red lines). The shaded regions denote the 95% confidence region of the model predictions. (a1)–(c4) The free-evolution
tomography data in the testing dataset with the qubit initialized in {|ψi(0)〉}4

i=1, and the prediction from the best-fit models from the
fitting dataset in (a0)–(c0). (d0)–(d4) The empirical purity Tr[ρ2] of the qubit and that predicted by the best-fit models. (e0)–(e4) The
distance between the tomographically constructed state and the state predicted by the best-fit models. All models perform equally well
at predicting the dynamics of the excited state |ψ1〉 = |1〉 (M0 is obscured by M1 and M2), while the PMME models M1 and M2
predict the dynamics of {|ψi(0)〉}4

i=2 better than the Lindbladian model.

lines) from the constructed dynamical models. The best-fit
parameters of the constructed models Mi are reported
in Table V in the Appendix. We plot the Bloch vector
components in rows a, b, and c, the state purity Tr[ρ2]

in row d, and the trace-norm distance between the mea-
sured and the predicted state D(tj ) [Eq. (13)] in row e.
The PMME models M1 and M2 both faithfully capture
the evolution of the system. To compare our models, we
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FIG. 5. The predictive ability of different models for the fit-
ting dataset (left) and the testing dataset (right) for ibmq_athens
data. For both datasets, we show the trace-norm distance between
the tomographically constructed state {ρ̂exp} and the model pre-
dicted state {ρprd}. The box plot shows the 5th, 50th (median),
and 95th percentiles for this distance over tj and respective ini-
tial states. The open circles denote extremal outliers. The PMME
models M1 and M2 describe both the fitting dataset and the
testing dataset better than the Lindblad model M0 (see Table II).
We also report the AIC of the models on the fitting data (pur-
ple squares, right axis), again with better performance by the
non-Markovian models; note that all AIC values are negative.

use the Akaike information criterion (AIC) [35], which is
a model selection metric (see Appendix F for more details).
AIC accounts for the goodness of fit of a model and penal-
izes models with more parameters. As shown by the purple
squares in Fig. 5, M1 and M2 have much lower AIC than
M0 and going from M1 to M2 decreases the AIC slightly.
Overall, M1 and M2 are better models even after being
penalized for utilizing more parameters.

Both the Lindblad model M0 and the PMME models
can account for a spurious longitudinal field component
in the qubit Hamiltonian due to the always-on ZZ interac-
tion between neighboring qubits [36]. This spurious field
effectively shifts the qubit frequency [Eq. (2)] and mani-
fests as the oscillations in the off-diagonal elements vx(t)
and vy(t) of the density matrices of the qubit state (the
first and second rows of Fig. 4). However, a Hamilto-
nian term does not modify the purity p = Tr[ρ2] since
ṗ = −iTr[ρ[H , ρ]] = 0, so purity oscillations must have
a different origin. The fact that M0 is unable to capture
the purity oscillations seen in the fourth row of Fig. 4,
while in contrast both M1 and M2 do display purity oscil-
lations, is evidence of non-Markovianity, as we explore
below in greater depth. The nonmonotonic envelope of
the purity oscillations is consistent with the nonunitality of
the Lindbladian model [37]. Overall, in comparison to the
Lindbladian model M0, the PMME-predicted evolution is
significantly closer to the empirical data, as quantified by
D(ρ̂exp, ρprd) (last row of Fig. 4).

B. Testing set

Next, we test how well the fitted models predict the
evolution of states that are not used to fit these models.

The last four columns of Fig. 4 represent four time series
of quantum-state evolutions in the testing dataset with each
of the different initial states {|ψ1(0)〉}4

i=1. The goal of this
“testing set” is to validate whether the dynamical model is
capable of describing the evolution for an arbitrary single-
qubit state. Rather than doing this by selecting random
states, we choose a set of four states that is maximally
separated on the Bloch sphere, i.e., four pure states on the
vertices of a tetrahedron (see Fig. 2). We emphasize that
no fitting is done on this testing data; instead, we use the
fits from the fitting dataset to predict the state evolution in
the testing dataset.

Once again, we find that the Lindbladian model’s pre-
diction provides a crude approximation to the evolution. In
particular, for |ψ1(t)〉, where the initial qubit state is the
excited state, the amplitude damping process dominates,
and the Markovian Lindblad model is sufficient to describe
the dynamics. However, |ψ1(t)〉 is an exception. For all
other states, the PMME models are far more accurate, as
is clear from Fig. 4(a2)–(d4). This suggests that the non-
Markovian effects mainly manifest in the evolution of the
qubit phase coherence but not in the state populations, so
the need for the more complex PMME models arises when
dealing with states with coherence in the computational
basis (this pointer basis—the ground and excited states—is
einselected [38] due to thermal relaxation). Another obser-
vation visible from Fig. 4 (row d) is that the Markovian
model’s predictions become more accurate at relatively
long evolution times, i.e., Markovian effects become more
dominant on a timescale of approximately 100 μs.

Overall, as shown in Fig. 5 and Table II, the median and
worst-case prediction distances of the PMME models M1
and M2 are very close, and substantially better than those
of the Lindbladian model M0. In particular, consider the
box plot in Fig. 5 reporting the statistics for the trace-norm
distance across all sampling points tj and initial states of
the fitting and testing datasets, respectively. For the testing
data, while the Lindblad model M0 has a median trace-
norm distance of 0.12 and worst-case fidelity of 0.18, both
the PMME models M1 and M2 have a median distance
of 0.06 and the worst-case fidelity of 0.08.

Notably, the distance does increase slightly when going
from the fitting data to the testing data, which can be
attributed to the qubit’s environment changing during the

TABLE II. Trace-norm distances corresponding to the results
shown in Fig. 5.

Fitting data Testing data

Median 95th percentile Median 95th percentile

M0 0.14 0.24 0.12 0.19
M1 0.01 0.03 0.06 0.08
M2 0.01 0.03 0.06 0.08
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time between measurements; for example, the qubit relax-
ation time T1 fluctuates [39]. Still, the PMME models
provide a significantly closer correspondence to the fit-
ting dataset and more accurate predictions of the testing
datasets than the Lindblad model does in both the average
and worst cases. In this case the best-fit model for M2 is
approximately equal to M1 (see Appendix F), indicating
that the simpler model is sufficient to capture the behavior
of the fitting dataset. However, this does not hold true for
all data, as shown in Appendix F.

Figure 4 clearly shows that these differences in distance
between M0 and M1,2 come from M0’s inability to cap-
ture oscillations about a nonzero mean in the Bloch vector
components vx(t) and vy(t), which M1 and M2 do cap-
ture. Our results validate that while M0 is a good first
Markovian approximation, the PMME models account for
non-Markovian nuances.

C. Quantifying non-Markovianity

Lastly, we test whether the PMME model can cap-
ture non-Markovianity during the qubit free evolution. To
quantify this, we adopt the measure in Ref. [40], which
uses the rate of change of the trace-norm distance between
two quantum states under some noise channel �t:

σ (t, ρ1, ρ2) ≡ d
dt
D {�t [ρ1(0)] ,�t [ρ2(0)]} . (14)

Under Markovian dynamics [Eq. (3a)], the trace-norm
distance between two quantum states is monotonically
decreasing as a function of time, whereas non-Markovian
dynamics violates this contractive property, i.e., there can
be an increase in the trace-norm distance. In other words,
non-Markovianity leads to revival of distinguishability
between two states at some point during the evolution, and
a process is non-Markovian if there exists any pair of initial
states ρ1(0), ρ2(0) and a time t for which σ (t, ρ1, ρ2) > 0
[40].

The measure for the degree of non-Markovianity of a
quantum process is thus defined as:

N (�) ≡ max
ρ1,2∈S(H)

∫
σ>0

dt σ (t, ρ1, ρ2) . (15)

Here, the time-integration is over time intervals where σ
is positive, and the maximum is over all pairs of initial
states. Thus, this quantity measures the total increase of
distinguishability over the whole evolution time. We note
that it is not normalized, and hence its actual numerical
values are difficult to interpret. Its main significance is in
the the fact that a non-zero non-Markovian measure means
non-Markovian dynamics, and, as shown in Table III, the
experimentally obtained values are in fair agreement with
the values predicted by our model. The non-Markovianity
of the PMME is discussed in [30] using this measure.

TABLE III. Degree of non-Markovianity for three different ini-
tial states of the spectator qubits (column 1) as computed from
the experimental data (column 2) and the two non-Markovian
models (columns 3 and 4).

Spectator qubit
initial state N exp N prd

M1
N prd

M2

|0〉⊗4 1.06 ± 0.02 1.11 ± 0.02 1.10 ± 0.02
|1〉⊗4 0.18 ± 0.03 0.28 ± 0.02 0.25 ± 0.01
|+〉⊗4 0.13 ± 0.02 0.49 ± 0.03 0.47 ± 0.03

We performed state tomography on free evolution
with the qubit initialized in the following two pairs
of states: {ρ1(0) = |+〉〈+|, ρ2(0) = |−〉〈−|}, and {ρ1(0) =
|+i〉〈+i|, ρ2(0) = |−i〉〈−i|}. From the time-series state
tomography data, we see how the trace-norm distance
D{�t[ρ1(0)],�t[ρ2(0)]}, starting from D = 1 (maximally
distinguishable), evolves as a function of time, as plotted in
the top row of Fig. 6. Using forward differences to approxi-
mate the time derivative of our experimental data, we then
approximate the quantity in Eq. (14), plotted in the bot-
tom row of Fig. 6. By performing a linear interpolation
on the discrete samples shown there, we further estimate
the observed degree of non-Markovianity as defined in
Eq. (15) (but excluding the maximization it requires).
The results we find for the degree of non-Markovianity are
summarized in Table III.

Of course, N prd
M0

≡ 0 for the Markovian Lindblad
model. The experimental measure is estimated from the
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0 30 60 90
Time ( s)

–0.10

0.00

 = 1.06±0.02
 = 1.11±0.02

 = 1.10±0.02

0 30 60 90
Time ( s)

 = 0.18±0.03
 = 0.28±0.02

 = 0.25±0.01

0 30 60 90
Time ( s)

 = 0.13±0.02
±

 = 0.49±0.03

 = 0.47±0.03

Tomography data

(a) (c) (e)

(d) (e)(b)

FIG. 6. Non-Markovianity of qubit free-evolution dynamics
for spectator qubits in the ground state (a),(b), the excited
state (c),(d) and the |+〉 state (e),(f). (a),(c),(e) The trace-norm
distance D[ρ1(t), ρ2(t)] predicted by the best-fit models (solid
lines) and experimentally measured by performing free-evolution
tomography with a pair of initial states ρ1(0) = |+〉〈+| and
ρ2(0) = |−〉〈−| (gray circles). (b),(d),(f) The derivative σ(t),
defined in Eq. (14), predicted by the best-fit models (solid lines),
and approximated experimentally using forward differencing
based on the tomography data in (a),(c),(e) (gray circles).
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state-tomography data, while the predicted non-Markovian
measure is calculated exactly from our dynamical mod-
els, since they provide a continuous description of the
qubit-state evolution. We train these models on a new fit-
ting dataset with the same initial state |ψ0(0)〉 as the prior
fitting data (Fig. 2); the new fitting data is taken in the
same batch of jobs as the trace-norm distance data in order
to minimize the time delay between them, thus reducing
the effect of systematic errors due to differences between
batches. As seen in Table III, the two PMME models con-
verge to almost the same quantity in their predictions,
despite the different forms of their kernels. The tomogra-
phy experiments confirm that there is indeed an increase
of distinguishability between quantum states during evo-
lution. The predictions of the PMME models adequately
match the observed quantity σ(tj ), with some deviations,
which are due to numerical errors arising from using the
finite difference formula to approximate Eq. (14), and
due to the run-to-run system fluctuations of the quantum
processor [41].

IV. DISCUSSION

We develop and implement a procedure to fit a family
of phenomenological quantum master equations to time-
series state-tomography data. We demonstrate this method
by characterizing the free evolution of a single qubit on an
IBMQE processor. From the constructed models, we con-
clude that the qubit Hamiltonian accounts for a residual
longitudinal field due to the crosstalk with the neighbor-
ing qubits, and find the Lindblad rates that correspond to
dephasing, spontaneous emission, and thermal excitation.
However, a purely Markovian model provides a relatively
poor fit to the data. We thus construct post-Markovian mas-
ter equation models that contain a phenomenological bath
memory kernel, which account for the non-Markovianity
of the dynamics—something a Markovian Lindblad model
cannot do. These PMME models provide a closer fit to the
tomography data, and also much more accurately predict
the future dynamics for new initial states that the models
are not already fitted to.

Our PMME construction procedure is an alternative to
other methods characterizing qubit noise processes such
as process tomography [42–46], machine learning (ML)
[47–51], and shadow tomography [52–54]. Compared to
the first of these methods, our approach is less demand-
ing in terms of both data collection and analysis, since
it relies on state tomography, which generally (but not
always [45]) requires a number of measurements, which is
quadratically smaller in the Hilbert-space dimension [55].
The ML methods usually require a large training dataset
for the solution to converge since the ML model is usually
overparametrized. In contrast, at least in the single-qubit
setting, we demonstrate that our method requires doing
state tomography with only one initial state at multiple

time points. Another advantage of our method is that the
evaluation of the cost function in our problem is straight-
forward because the PMME is analytically solvable (see
Appendix D). In contrast, the noise models that have
been considered in ML so far are numerically challenging
because they involve solving the Nakajima-Zwanzig mas-
ter equation, whose complexity is proportional to the ker-
nel’s length [48], or solving a stochastic master equation
[49]. In regards to shadow tomography methods, the com-
parison is less direct since the goal of these methods is not
to reconstruct the dynamics at every time point, but rather
to use a small set of measurements to predict a much larger
set of specific observables.

A similar approach to ours for constructing a dynamical
model of the noise channel using the Markovian Lindblad
master equation was considered in Ref. [56]. Here, in order
to go beyond the Markovian approximation, a model based
on a class of time-convolution-less master equations is
considered, and a damping-rate function describes the non-
Markovian dynamics of the system at the sampling time
point [57]. This method provides a discrete description of
the noise dynamics but does not directly provide physical
insight into quantifying the timescale of the memory effect.
Likewise, a more sophisticated and systematic approach,
the process-tensor (PT) framework has been proposed [58]
and experimentally demonstrated [59,60] to characterize
non-Markovian dynamics on actual quantum processors.
The PT model, once fully characterized, can be used to
interpolate the dynamics between discrete times due to the
containment property of the PT map. However, its con-
struction and the interpretation of the memory effect are
fairly involved.

Our method provides a continuous dynamical descrip-
tion of the channel beyond the Markov approximation, and
does not require full process tomography to construct the
PMME model. However, a disadvantage of our method is
that it requires one to construct a parametric model; thus,
it does not account for the most general noise process.
Moreover, because of the specific parametrization that the
PMME demands, the resulting optimization problem is
no longer convex, i.e., a unique global minimum of the
optimization problem is not guaranteed. Additionally, our
method requires the consideration of a hierarchy of ker-
nels to find a model that is complex enough to describe
the data accurately. But since the PMME is straightfor-
ward to solve, model estimation under different kernels is
straightforward so long as there is a model selection met-
ric under which the best model among those candidates
can be selected. A promising future approach for retaining
the physical interpretability and analytical solvability that
come with using the PMME is the use of machine learning,
especially in light of the recent development of neural
ordinary differential equation solvers [61], in order to
avoid overfitting and structural errors of the PMME
model.
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Our work is a proof-of-principle demonstration of the
PMME tomography protocol on a fixed-frequency qubit.
For future work, we are interested in applying our protocol
to characterize the dynamics of a frequency-tunable qubit
where dephasing noise is more pronounced, and the qubit’s
sensitivity to dephasing noise can be varied as a func-
tion of the qubit frequency. An extension to the multiqubit
case is also a natural next step. This will require a con-
vergence analysis to decide how the fitting dataset scales
as the number of qubits increases. In this work, we focus
on the free-evolution channel of a single IBMQE qubit,
which we show to be highly susceptible to non-Markovian
noise. It would be interesting to extend the protocol to
characterize non-Markovian effects during computation,
in order to understand whether such effects are signif-
icant beyond qubit idle times. By explicitly including
non-Markovianity in the dynamical characterization and
modeling, we expect that it will become possible to use
these realistic noise models to improve and tailor error sup-
pression and correction techniques, and ultimately realize
high-fidelity quantum control and computation.
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APPENDIX A: SYSTEM INFORMATION

The IBMQE device used in this work is Athens, which
is a five-qubit processor consisting of superconducting
transmon qubits. The main qubit we perform PMME
tomography on is qubit 0 (Q0). The relevant device cali-
bration details on the date of data collection are provided
in Table IV.

TABLE IV. Qubit calibration information of the ibmq_athens
processor on the date of data collection.

Dataset Fig. 4 Fig. 7, Fig. 8 Fig. 9

Date collected 6/25/2021 6/30/2021 7/1/2021
T1 (μs) 72.6 70.8 75.2
T2 (μs) 93.4 82.6 62.9
Readout error [10−2] 1.9 0.99 1.00

APPENDIX B: MEASUREMENT ERROR
MITIGATION

Measurement error mitigation is performed by using
information from calibration experiments to remove
any systematic bias in the measurement results [62].
The calibration experiments involve preparing of com-
putational basis states |j 〉, which are then used to
learn the response matrix M . The entries mkj =
probability(prepare |j 〉|measure bitstring k) represent con-
ditional probabilities. Any subsequent experiment gives
us the measured probability vector 	p(E), which is used
to infer the true probability of vector 	t(E) = f [	p(E), M ].
The most commonly used MEM method—called response
matrix-inversion method—defines 	t = M−1	p . Crucially,
M−1 is not stochastic, so 	t(E) can have negative entries.
Recently, a Bayesian solution to the nonstochasticity prob-
lem was proposed [63]. In this method, inspired from
similar unfolding methods in high-energy physics, we start
with a prior truth spectrum 	t0 and update it using Bayes’
rule to get

tn+1
i =

∑
j

Mjitni∑
k Mjktnk

× pj .

The prior tni is updated using the response matrix M and
gives the posterior tn+1

i , and the process proceeds for 100
iterations (in practice this was found to always be sufficient
for convergence). After each tomography experiment, the
probabilities of each measurement outcome are updated
using measurement error mitigation.

APPENDIX C: DAMPING-BASIS CONSTRUCTION

We present a systematic construction of the damping
basis, sketched originally in Ref. [64]. For our purposes,
the damping basis is simply the basis of left and right
eigenoperators (or eigenmatrices) {Li} and {Ri}, respec-
tively, of the superoperator (e.g., Lindbladian) L.

Let H denote a d-dimensional Hilbert space, B(H)
the space of linear operators acting on H, and consider
a superoperator L : B(H) �→ B(H). We are interested in
particular in superoperators in Lindblad form, i.e., Eq. (3a):

L(A) = −i[H , A] +
∑

k

γk

(
VkAV†

k − 1
2

{
V†

kVk, A
})

,

(C1)

where A, Vk ∈ B(H), H = H †, and γk > 0 ∀k.
Let {Fi}d2−1

i=0 denote an orthonormal, Hermitian operator
basis for B(H):

Tr(FiFj ) = δij , Fi = F†
i , F0 = I/

√
d. (C2)

For example, when H = C
2 (a qubit), we can choose the

normalized Pauli matrices as the operator basis, i.e., {Fi} =
{I , σ x, σ y , σ z}/√2.
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For any A ∈ B(H) we can then expand A = ∑
i aiFi,

and in particular L(Fi) = ∑
j �jiFj (note the transposed

index order), where � is the matrix representation of L
in the given basis, with the matrix elements given by
�ij = Tr[FiL(Fj )]. The basis {Fi} “coordinatizes” both L
and the operators in B(H).

Assume that the superoperator L satisfies the
Hermiticity-preservation condition

[L (A)]† = L (A†) . (C3)

This is true, in particular, for the Lindbladian (C1), as
is easily checked. Let us show that then the matrix �

representing L in the chosen basis is real:

�∗
ij = Tr

(
[L (Fi)]† F†

j

)
= Tr

[L (Fi)Fj
] = �ij . (C4)

Thus, after coordinatization the superoperator L can be
seen as a d2 × d2-dimensional matrix � ∈ R

d4
.

Now assume that A is a right eigenoperator of L with
eigenvalue λ, i.e., L(A) = λA. Then,

L(A) =
∑

ij

ai�jiFj = λA = λ
∑

i

aiFi. (C5)

Taking the trace of both sides after multiplying from the
right by Fk yields

∑
i ai�ki = λak, i.e.,

�	a = λ	a, (C6)

where 	a = (a0, . . . , ad2−1)
t is a column vector (the super-

script t denotes the transpose). Thus, if Ri is a right
eigenoperator of L then its coordinates-vector 	ri in the
expansion

Ri =
∑

j

(	ri)j Fj . (C7)

is a right eigenvector of �. Conversely, by solving the linear
algebra problem of finding the set of right eigenvectors {	ri}
of �, we can construct the right eigenoperators of L using
Eq. (C7).

Now consider the set of left eigenvectors 	lit of �: 	lit� =
λi	lit. These are also the right eigenvectors of �t: �t	li = λi	li.
Note that the left and right eigenvalues of � are identical
since the determinant of a matrix equals the determinant of
its transpose.

We define L† as usual via the inner product relation

〈L†(A), B〉 = 〈A,L(B)〉, (C8)

where we use the Hilbert-Schmidt inner product

〈A, B〉 ≡ Tr(A†B). (C9)

Specifically, for the Lindbladian in Eq. (C1), this implies
that

L†(A) = i[H , A] +
∑

k

γk

(
V†

kAVk − 1
2

{
V†

kVk, A
})

,

(C10)

as can easily be verified by direct substitution of this form
of L†(A) into Eq. (C8).

Let us show that �t is the matrix representation of L†. To
do so, consider the expansion L†(Fi) = ∑

j �̃jiFj ; we show
that in fact �̃ = �t. Indeed, on the one hand we have from
Eq. (C1):

(�t)ji = �ij = Tr[FiL(Fj )] = −iTr(Fi[H , Fj ])

+
∑

k

γk

(
Tr[FiVkFj V†

k] − 1
2

Tr[Fi{V†
kVk, Fj }]

)
,

(C11)

and on the other hand we have from Eq. (C10):

�̃ji = Tr[FjL†(Fi)] = iTr(Fj [H , Fi])

+
∑

k

γk

(
Tr[Fj V†

kFiVk] − 1
2

Tr[Fj {V†
kVk, Fi}]

)
,

(C12)

which is easily checked to be equal to the expression for
(�t)ji in Eq. (C11) by cycling operators under the trace.
Thus,

L†(Fi) =
∑

j

�ij Fj , (C13)

and the same reasoning that we used above for the right
eigenvectors and eigenoperators now leads to the conclu-
sion that if Li is a right eigenoperator of L†, i.e., a left
eigenoperator of L, then its coordinates-vector 	li in the
expansion

Li =
∑

j

(	li)j Fj . (C14)

is a right eigenvector of �. Conversely, by solving the linear
algebra problem of finding the set of right eigenvectors {	li}
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of �, we can construct the right eigenoperators of L using
Eq. (C14).

Finally, it is well known that each left eigenvector is
orthogonal to all right eigenvectors except its correspond-
ing one (the one it shares an eigenvalue with), and vice
versa [65]. By choice of normalization, the inner products
of corresponding left and right eigenvectors can always be
made unity for any matrix with nondegenerate eigenval-
ues. Assume nondegeneracy and that we have normalized
�’s inner products of corresponding left and right eigen-
vectors, i.e., 	li · 	rj = δij . Let us show in which sense this
property is inherited by the left and right eigenoperators
of L:

Tr(LiRj ) =
∑

kl

(	li)k( 	rj )lTr(FkFl) =
∑

k

(	li)k( 	rj )k

= 	li · 	rj = δij . (C15)

Note that Tr(LiRj ) �= 〈Li, Rj 〉 since we do not take the Her-
mitian conjugate of Li under the trace [this only becomes
possible if � is symmetric, since we would need its eigen-
values to be real in order for Tr(LiRj ) = Tr(L†

i Rj ) to
hold].

APPENDIX D: ANALYTICAL SOLUTION OF THE
PMME

Here we present the analytical solution of the PMME,
Eq. (1), for our model. We take the Laplace transform, and
the PMME becomes

sρ̃(s)− ρ(0) = L0ρ̃(s)

+ L1Lap [k(t)exp (L0 + L1) t] ρ̃(s).
(D1)

To deal with eLt := e(L0+L1)t, it is convenient to work in
the damping basis of L, as defined in Appendix C. Recall
that the sets of right and left eigenoperators of L, {Ri} and
{Li}, are complete and mutually orthonormal in the sense
of Eq. (C15). We therefore expand ρ in the basis of right
eigenoperators of L:

ρ(t) =
∑

i

μi(t)Ri, (D2)

where the expansion coefficients are

μj (t) =
∑

i

μi(t)Tr
(
Lj Ri

) = Tr
[
Lj ρ(t)

]
. (D3)

Substituting Eq. (D2) into the PMME Eq. (1), we obtain

∑
i

∂μi(t)
∂t

Ri =
∑

i

μi(t)L0Ri

+
∑

i

∫ t

0
dt′k(t′)exp (λit) μi(t − t′)L1Ri. (D4)

Notice that if we assume that [L0,L1] = 0 (as is the case
for us), then L0 and L1 both commute with L = L0 + L1
and hence share the same set of left and right eigenopera-
tors with it, i.e., L0(Ri) = λ0

i Ri, L†
0(Li) = λ0

i Li, L1(Ri) =
λ1

i Ri, L†
1(Li) = λ1

i Li. Multiplying both sides of Eq. (D4)
by Lj from left and taking the trace, we obtain, under this
assumption:

∂μi(t)
∂t

= λ0
iμi(t)+ λ1

i

∫ t

0
dt′k(t′)exp

[
λit′

]
μi(t − t′).

(D5)

Take the Laplace transform of both sides and use the
shifting property of the Laplace transform, we have

sμ̃(s)− μi(0) = λ0
i μ̃i(s)+ λ1

i Lap
[
k(t)eλit

]
μ̃i(s) (D6a)

= λ0
i μ̃i(s)+ λ1

i k̃(s − λi)μ̃i(s). (D6b)

Therefore,

μ̃i(s) = 1
s − λ0

i − λ1
i k(s − λi)

. (D7)

Taking the inverse Laplace transform:

μi(t) = ξi(t)μi(0), (D8)

where

ξi(t) = Lap−1
[

1
s − λ0

i − λ1
i k(s − λi)

]
, (D9a)

μi(0) = Tr [Liρ(0)] . (D9b)

1. Solution with the specific Lindbladian and kernels

Choosing the operator basis as {Fi} = {I , σ x, σ y , σ z}/√
2, we follow the methodology of Appendix C and find

the matrix representation of L = L0 + L1 of the specific
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PMME model we seek to construct in Sec. II B to be

� =

⎛
⎜⎜⎝

0 0 0 0
0 −�s

2 − 2γz −ωz 0
0 ωz −�s

2 − 2γz 0
γ−−γ+ 0 0 −�s

⎞
⎟⎟⎠ .

(D10)

The eigenvalues of � are

{λi} =
{

0, −1
2
�s − 2γz + iωz, −1

2
�s − 2γz − iωz, −�s

}
.

(D11)

It is straightforward to compute and normalize the cor-
responding right and left eigenvectors {	ri, 	li}4

i=1 such that
they are mutually orthonormal, i.e., 	li · 	rj = δij . This
allows us to find the right and left eigenoperators of L
using Eqs. (C7) and (C14), which yields

R1 =
(

1
�r+1 0

0 �r
�r+1

)
, R2 =

(
0 1
0 0

)
, R3 =

(
0 0
1 0

)
,

(D12a)

R4 =
(

− 1
�r+1 0
0 1

�r+1

)
(D12b)

L1 =
(

1 0
0 1

)
, L2 =

(
0 0
1 0

)
, L3 =

(
0 1
0 0

)
, (D12c)

L4 =
(−�r 0

0 1

)
. (D12d)

It is simple to verify that this set satisfies Eq. (C15) as
required.

Applying L0 and L1 to {Ri}, we find the corresponding
sets of eigenvalues:

{λ0
i } =

{
0, −�s

2
+ iωz, −�s

2
− iωz, −�s

}
, (D13a)

{λ1
i } = {0, −2γz, −2γz, 0}. (D13b)

Next, we need to evaluate Eq. (D9a) with the specific
forms of the kernels we have chosen. Regardless of the
kernel,

ξ̃1(s) = 1
s

⇐⇒ ξ1(t) = 1, (D14a)

ξ̃4(s) = 1
s + �s

⇐⇒ ξ4(t) = e−�st, (D14b)

while for i = 2, 3:

f (t) ≡ ξ2(t) = ξ ∗
3 (t), (D15a)

= Lap−1

[
1

s − λ0
2 − λ1

2k̃(s − λ2)

]
. (D15b)

For the exponentially decaying kernel in Eq. (7), we
make the parameter substitution x ≡ 2 + b0/γz and y ≡
γs/2γz − iωz/γz and transform the variables in the Laplace
transform correspondingly as s = γzz and τ = γzt, to get

f (τ ) = Lap−1
[
f̃ (z)

]
, (D16a)

f̃ (z) = z + x + y
(z + y)2 + x(z + y)+ 2

. (D16b)

The analytical solution can be found by using the residue
theorem [66]:

f (τ ) = sum of residues of eztf̃ (z) at poles of f̃ (z). (D17)

The rational function f̃ (z) has two poles z1 and z2

z1,2 = 1
2

(
−x − 2y ±

√
D
)

, D ≡ x2 − 8, (D18)

and using Eq. (D17):

f (τ ) = ez1τ
z1 + y + x

z1 − z2
+ ez2τ

z2 + y + x
z2 − z1

. (D19)

For the other kernel in Eq. (8), we make the parameter
substitution a0 ≡ γ 2

z x, y ≡ γs/2γz − i(ωz/γz)+ 2, a1 ≡=
γzw,b0 ≡ γ 2

z u, b1 ≡ γzv, and transform the variables in the
Laplace transform correspondingly as s = γzz and τ = γzt,
to get

f (τ ) = Lap−1
[
f̃ (z)

]
, (D20a)

f̃ (z) = p1(z)
(z + y − 2) p1(z)+ 2w (z + y)+ 2x

, (D20b)

where p1(z) = (z + y)2 + v(z + y)+ u. The analytical
solution can therefore be found in terms of the roots of the
cubic polynomial

(z + y − 2) p1(z)+ 2w (z + y)+ 2x (D21a)

= z3 + c2z2 + c1z + c0 = 0, (D21b)

where the coefficients are

c2 = 3y + v − 2, (D22a)

c1 = 3y2 + 2vy − 4y + 3w − 2v, (D22b)

c0 = y3 + vy2 − 2y2 + 2wy − 2vy + 2x − 2w. (D22c)

The corresponding depressed cubic is found by the substi-
tution z = z′ − c2/3,

r
(
z′) = z′3 + pz′ − q = 0, (D23)
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where the coefficients are

p = 3c1 − c2
2

3
, (D24)

q = 9c1c2 − 27c0 − 2c3
2

27
, (D25)

which yields the cubic discriminant

D =
(p

3

)3
+
(q

2

)2
. (D26)

Further denote

S = 3

√
q
2

+
√

D, T = 3

√
q
2

−
√

D. (D27)
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FIG. 7. The tomography dataset and the corresponding model predictions used to calculate the degree of non-Markovianity in
Fig. 6(a),(b) when the spectator qubits are initialized in the ground state. (a0)–(c0) The fitting dataset with the qubit initialized in
|ψ0(0)〉 that is used to find the best-fit Lindblad model M0 (orange lines), the PMME model with the type 1 kernel M1, and the
PMME model with the type 2 kernel M2. (a1)–(c2) The tomography dataset with qubit initialized in |ψ+x〉, |ψ−x〉 and the prediction
from the best-fit models from the fitting dataset in (a0)–(c0). The datasets are used to evaluate the degree of non-Markovianity in
Fig. 6 (a),(b). (a3)–(c4) The tomography dataset with the qubit initialized in |ψ+y〉, |ψ−y〉, and the prediction from the best-fit models
from the fitting dataset in (a0)–(c0). The datasets are used to evaluate the degree of non-Markovianity in Fig. 10 (a),(b). (d0)–(d4) The
distance between the tomographically constructed state and the state predicted by the best-fit models.
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FIG. 8. The tomography dataset and the corresponding model predictions used to calculate the degree of non-Markovianity in
Fig. 6(c),(d) when the spectator qubits are initialized in the excited state. (a0)–(c0) The fitting dataset with the qubit initialized in
|ψ0(0)〉 that is used to find the best-fit Lindblad model M0 (orange lines), the PMME model with the type 1 kernel M1, and the
PMME model with the type 2 kernel M2. (a1)–(c2) The tomography dataset with qubit initialized in |ψ+x〉, |ψ−x〉 and the prediction
from the best-fit models from the fitting dataset in (a0)–(c0). The datasets are used to evaluate the degree of non-Markovianity in
Fig. 6(c),(d). (a3)–(c4) The tomography dataset with the qubit initialized in |ψ+y〉, |ψ−y〉, and the prediction from the best-fit models
from the fitting dataset in (a0)–(c0). The datasets are used to evaluate the degree of non-Markovianity in Fig. 10(c),(d). (d0)–(d4) The
distance between the tomographically constructed state and the state predicted by the best-fit models.

The zeros of the cubic are

z1 = −2x
3

+ (S + T), (D28)

z2 = −2x
3

− 1
2
(S + T)+ i

2

√
3(S − T), (D29)

z3 = −2x
3

− 1
2
(S + T)− i

2

√
3(S − T). (D30)

This completes the exact solution of the PMME.

APPENDIX E: COMPLETE POSITIVITY OF THE
PMME

The complete positivity of the PMME is not
guaranteed because of the freedom in choosing the kernel
k(t). A complete positivity test for the PMME was pro-
vided in Ref. [26]. Below we apply this test to the kernels
specified in the model Mi.

The solution of the PMME can be viewed as a
map � acting on the operators represented by d × d
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FIG. 9. The tomography dataset and the corresponding model predictions used to calculate the degree of non-Markovianity in
Fig. 6(e),(f) when the spectator qubits are initialized in the |+〉 state. (a0)–(c0) The fitting dataset with the qubit initialized in |ψ0(0)〉
that is used to find the best-fit Lindblad model M0 (orange lines), the PMME model with the type 1 kernel M1, and the PMME model
with the type 2 kernel M2. (a1)–(c2) The tomography dataset with qubit initialized in |ψ+x〉, |ψ−x〉 and the prediction from the best-fit
models from the fitting dataset in (a0)–(c0). The datasets are used to evaluate the degree of non-Markovianity in Fig. 6(e),(f). (a3)–(c4)
The tomography dataset with the qubit initialized in |ψ+y〉, |ψ−y〉, and the prediction from the best-fit models from the fitting dataset
in (a0)–(c0). The datasets are used to evaluate the degree of non-Markovianity in Fig. 10(e),(f). (d0)–(d4) The distance between the
tomographically constructed state and the state predicted by the best-fit models.

matrices, where d is the dimension of the Hilbert space
H = span{|i〉}d

i=1. Using Eq. (D2),

ρ(t) =
∑

i

μi(t)Ri =
∑

i

ξi(t)μi(0)Ri (E1a)

=
∑

i

ξi(t)Tr [Liρ(0)] Ri = �[ρ(0)], (E1b)

where

�[X ] ≡
∑

i

ξi(t)Tr [LiX ] Ri. (E2)

Let |φ〉 = ∑
i |i〉 ⊗ |i〉 be a maximally entangled state in

H ⊗ H. According to Choi’s theorem [67], � is CP if and
only if the Choi matrix C ≥ 0, where

C = (I ⊗�)|φ〉〈φ| =
∑

ij

|i〉〈 j | ⊗�[|i〉〈 j |]. (E3)
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We construct the Choi matrix for the PMME. Let us pick
the basis state |i〉 to be a column vector of zeros, except for
a 1 in position i; we have,

C =
∑

ij

|i〉〈 j | ⊗
∑

k

ξk(t)Tr [Lk|i〉〈 j |] Rk, (E4a)

=
∑

k

ξk(t)
∑

ij

|i〉〈 j | ⊗ 〈j |Lk| i〉 Rk, (E4b)

=
∑

k

ξk(t)
∑

ij

|i〉〈 j | (LT
k

)
ij ⊗ Rk. (E4c)

Hence,

C =
∑

k

ξk(t)LT
k ⊗ Rk > 0 (E5)

is the complete positivity condition for the kernel, under
a given Lindbladian L and its set of left and right
eigenvectors.

For the Lindbladian L in Eq. (3a) and its set of left and
right eigenvectors in Eq. (D12), the Choi matrix is

C =

⎛
⎜⎜⎜⎝

1+�rξ4
1+�r

0 0 ξ2

0 �r(1−ξ4)
1+�r

0 0
0 0 1−ξ4

1+�r
0

ξ3 0 0 �r+ξ4
1+�r

⎞
⎟⎟⎟⎠ . (E6)

Its eigenvalues are found to be

λc
1 = 1 − ξ4

1 + �r
, (E7a)

λc
2 = �r(1 − ξ4)

1 + �r
, (E7b)

λc
3,4 = 1 + ξ4

2
(E7c)

±
√(

ξ4 + 1
2

)2

− �r + ξ4 + �2
r ξ4 + �rξ

2
4 − |ξ2|2

(�r + 1)2
.

(E7d)

Therefore, the PMME in this case corresponds to a CP map
if and only if

|ξ4| < 1, (E8a)

|ξ2| = |ξ3| <
√
(�r + ξ4)(1 + �rξ4)

1 + �r
< 1, (E8b)

which is a condition on the problem parameters γz, γ+, γ−
and the kernel parameters 	a and 	b.

APPENDIX F: PMME MODEL CONSTRUCTION
RESULT FOR DIFFERENT SPECTATOR QUBIT

STATES

In this section we present data supplementing the results
of the PMME model construction reported in Fig. 4, for the
following three initial states of the spectator qubits: ground
state |0〉, the excited state |1〉, and the |+〉 state. This data
is also used to calculate the degree of non-Markovianity
reported in Fig. 6, which uses different initial states of
the main qubit. Figures 7, 8, and 9 show the fitting data
used to construct the model and the testing data to vali-
date it. The initial states in the testing datasets are {|ψ+x〉 =
|+〉, |ψ−x〉 = |−〉, |ψ+y〉 = | + i〉, |ψ−y〉 = | − i〉} and they
are used to evaluate the degree of non-Markovianity as in
Eq. (14), plotted in Figs. 6 and 10. The initial state pairs
ρ1(0) = |+〉〈+| and ρ2(0) = |−〉〈−| (or ρ1(0) = |+i〉〈+i|
and ρ2(0) = |−i〉〈−i|) are optimal pairs such that they fea-
ture a maximal flow of information from the environment
back to the system [68].

The yellow, blue, and red solid lines in Figs. 7, 8,
and 9 represent the constructed models M0, M1, and M2,
respectively, with their best-fit model parameters summa-
rized in Table V. On the fitting dataset, we find that the
Lindblad model M0 does not adequately describe the data,
while the PMME models M1 and M2 describe the data
accurately. The kernels of the constructed PMME models
are plotted in Fig. 11. Although M2 has a more elaborate
kernel with more free parameters, it does not blue neces-
sarily provide a better fit to the data; M1 and M2 result in
similar fits, which suggests that we do not need a very com-
plicated kernel to significantly improve upon the standard
Lindblad model. On the testing dataset, the constructed
models provide a qualitatively adequate prediction for dif-
ferent initial states, but deviations do arise relative to the
experimentally constructed states (see Figs. 7–9 columns
1, 2, and 4). Due to system fluctuations, which the PMME
models cannot capture, the model constructed from the
fitting dataset may lose some of its predictive power
for the testing dataset. Examples of such system fluctua-
tions include fluctuations of qubit T1 relaxation time and
1/f noise in the qubit frequency. As further evidence
of such fluctuations, the data shown in Fig. 4(a0)–(d0)
and Fig. 7(a0)–(d0) are taken under nominally identical
conditions but nonetheless show different behavior. These
data are taken days apart, during which time the system
parameters drifted.

Nonetheless, compared with the Lindblad model, the
PMME models provide higher levels of agreement for the
fitting datasets and a more accurate prediction for the test-
ing datasets in all spectator qubit configurations. This can
be seen in the bottom row of Figs. 7–9, and is summarized
in Fig. 12, which compares the models using the Akaike
information criterion (AIC) and the trace-distance metric
discussed below.
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FIG. 10. Non-Markovianity of qubit free-evolution dynam-
ics for spectator qubits in the ground state (a),(b), the excited
state (c),(d), and the |+〉 state (e),(f). (a),(c),(e) The trace-norm
distance D[ρ1(t), ρ2(t)] predicted by the best-fit models (solid
lines) and experimentally measured by performing free-evolution
tomography with a pair of initial states ρ1(0) = |+i〉〈+i| and
ρ2(0) = |−i〉〈−i| (gray circles). (b),(d),(f) The derivative σ(t),
defined in Eq. (14), predicted by the best-fit models (solid lines),
and approximated experimentally using forward differencing
based on the tomography data in (a),(c),(d) (gray circles).

To compare the goodness of the fit of the models and
the simplest model that best describes the fitting dataset,
we use the AIC [35], which is defined as

A = −2ln
(

L̂(θ̂ |D)
)

+ 2p , (F1)

where L̂ denotes the likelihood function and p is the num-
ber of free model parameters. The second term in the AIC
(2p) is called the bias term and it penalizes the models
with higher complexity. The AIC can be interpreted as
the “information loss” (in the Kullback-Leibler divergence
sense) of using some candidate model to approximate the
“true” model. Akaike showed that the maximized log-
likelihood in the first term of Eq. (F1) is a biased estimator,
and that under certain assumptions, the bias correction
approximately equals p . The calculation of the first term
in AIC depends strongly on the sample size used, and the
bias-correction term becomes exact when the sample size
diverges. For these reasons, the numerical value of AIC
has no intrinsic significance as such. With these caveats
in mind, we can use the AIC metric to find a model that
accurately describes the data and at the same time avoids
overfitting, as lower (more negative) values indicate a
better model.

The likelihood function L̂ is defined over the observed
dataset, and quantifies the likelihood of observing the
dataset as a function of the model parameters 	θ . It mea-
sures how well the data supports that particular choice of TA
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FIG. 11. The kernels in the constructed models M1 and M2
using the fitting datasets in Fig. 4(a), Fig. 7(b), Fig. 8(c), and
Fig. 9(d). The shaded regions denote the 95% confidence region
of the kernel function due to the uncertainty in the best-fit kernel
parameters in Table V.

parameters. Since each tomography sample ρ̂ is indepen-
dently drawn, the likelihood L̂ is a product of conditional
probabilities:

L̂(	θ |D) =
∏

i

∏
k

pk(ti; 	θ), (F2)

where pk is the probability of observing the data point in
measurement basis k at time ti.

We report the AIC values computed in this manner for
the fitting data using the three models in Fig. 12 (pur-
ple squares), for three different initial states of the ancilla
qubits. However, as mentioned above, the numerical value
of the AIC is not intrinsically meaningful. In practice, it
is convenient to scale AICs with respect to the minimum
AIC value among all models:

�i = Ai − min
i

Ai, (F3)

where mini Ai is the AIC value of the best model in the
set. As seen in Fig. 12, we find that the minimum is
achieved for the M2 model. The AIC difference �i esti-
mates the information loss when using model i rather than
the estimated best model. Hence, the larger �i, the less
plausible is model i. Some guidelines for the interpreta-
tion of AIC difference in the case of nested models are
given in Ref. [69], as summarized in Table VI. Given the
much larger �0 = A0 − A1 value, we find that the data in
Fig. 4 is considerably less in favor of the Lindblad model
M0, despite the fact that it has the smallest number of free
parameters.

Another metric we use here for comparison is the trace-
norm distance between the experimentally constructed
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FIG. 12. Summary of the results of running the PMME tomog-
raphy protocol on the IBMQE processor ibmq_athens, showing
how well the model candidates describe the fitting dataset and
the testing dataset in Fig. 7 for the spectator qubits in the ground
state (a), for those in Fig. 8 for the spectator qubits in the excited
state (b) and for those in Fig. 9 for the spectator qubits in the
|+〉 state (c). The box plots show the trace-norm distance (see
text) and the median is reported as the middle value of {Dj }. The
lower line of the box corresponds to the lower quartile of the
data (25th percentile, Q1), and the upper line of the box corre-
sponds to the upper quartile of the data (75th percentile, Q3). Let
IQR denote the interquartile range: IQR = Q3–Q1. The outliers,
plotted in circles, are the data outside the range (Q1–1.5 × IQR,
Q3 + 1.5 × IQR).

state and the model predicted state during its evolution.
Let Dk

j denote the distance between the experimentally
constructed state ρ̂exp

k at time tj with initial state ρk(0) =
|ψk(0)〉〈ψk(0)| and that predicted by the model ρprd

k (tj ),
i.e., Dj

k = D[ρ̂exp
k , ρprd

k (tj )], the values reported in the box
plot in Fig. 12 are averaged over the test dataset with dif-
ferent initial states: Dj = 1/4

∑
k∈{1,2,3,4} Dk

j . After doing
this averaging, we arrive at an array {Dj }j =24

j =1 , correspond-
ing to the trace distance, again, averaged over four different
initial states in the testing dataset, between the experimen-
tally constructed states and the model’s predicted states at
24 sampled time points during the evolution.
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TABLE VI. A heuristic interpretation of AIC differences �i
reported in Fig. 5. The larger �i is, the less plausible it is that
the model Mi is the best model.

�i Level of empirical support Models �i
for model i = Ai − A2

0–2 Substantial M1 0
4–7 Considerably less M2 0.20
>10 Essentially none M0 9.11

Finally, using the tomography data with the qubit ini-
tialized in ρ0(0) = |+i〉〈+i| and ρ2(0) = |−i〉〈−i|, we re-
evaluate the degree of non-Markovianity for different
spectator qubit states in Fig. 10 according to Eqs. (14)
and (15). The nonmonotonic decay in the trace distance
D and the estimated non-Markovian measure N in Fig. 10
agrees well with those in Fig. 6, serves as a supplemen-
tary quantitative demonstration of non-Markovian effects
present in the device. The degree of non-Markovianity
N prd

M1
and N prd

M2
calculated from the constructed PMME

models agrees well with that from the experimental data
N exp, showing that the PMME models have the abil-
ity to quantitatively describe and predict the degree of
non-Markovianity of the dynamics during the qubit free
evolution.
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