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All physical systems employed for quantum information tasks must act as unbiased carriers of encoded
quantum states. Ensuring such indistinguishability of information carriers is a major challenge in many
quantum information applications, including advanced quantum communication protocols. For photons,
the workhorses of quantum communication networks, it is difficult to obtain and maintain their indis-
tinguishability because of environment-induced transformations and loss imparted by communication
channels, especially in noisy scenarios. Conventional strategies to mitigate these transformations often
require hardware or software overhead that is restrictive (e.g., adding noise), infeasible (e.g., on a satel-
lite), or time-consuming for deployed networks. Here we propose and develop resource-efficient Bayesian
optimization techniques to rapidly and adaptively calibrate the indistinguishability of individual photons
for quantum networks using only information derived from their measurement. To experimentally validate
our approach, we demonstrate the optimization of Hong-Ou-Mandel interference between two photons–a
central task in quantum networking– finding rapid, efficient, and reliable convergence towards maximal
photon indistinguishability in the presence of high loss and shot noise. We expect our resource-optimized
and experimentally friendly methodology will allow fast and reliable calibration of indistinguishable
quanta, a necessary task in distributed quantum computing, communications, and sensing, as well as for
fundamental investigations.
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I. INTRODUCTION

Algorithmic optimization of quantum systems plays a
key role in quantum computing, simulation, and sensing
(see, e.g., Refs. [1–10]), as well as for quantum sys-
tem characterization [11–15]. Yet, there has been little
effort on algorithmic optimization of quantum communi-
cations and networks [16–19]. In particular, to use such
methods to overcome unavoidable channel-induced varia-
tions of properties (degrees of freedom) of photons, along
with the well-known impacts of loss and noise, which
restrict demonstrations of advanced, multiqubit, quantum
networks, especially those which crucially rely on inter-
ference [20–34]. These variations, which originate from
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changes in the environment, render photons distinguish-
able, thereby restricting their ability to interfere [35].
This precludes crucial tasks in a multinode quantum net-
work [20], like that schematized in Fig. 1, including
two-photon Bell-state measurements [36] that underpin
measurement-device-independent quantum key distribu-
tion (MDI QKD) [37] or quantum repeaters [38], for
example. The required indistinguishability for deployed
networks is obtained by calibrating all degrees of freedom
of a photon, i.e., its polarization, temporal, spectral, and
spatial modes. This is a process that requires additional
hardware and software, and relies on (often “brute-force”)
methods that either restrict the communication rate, add
noise, do not scale to multiphoton or node networks, or
are physically or financially infeasible for remote network
nodes [28–34].

Here we employ a Gaussian process (GP) Bayesian
optimization algorithm [39] to rapidly calibrate the
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FIG. 1. High-level overview of quantum network calibration using Bayesian optimization. Quantum network nodes emit single or
entangled photons into fibers and two-photon Bell-state measurements, whose fidelities are determined by Hong-Ou-Mandel inter-
ference, are performed to facilitate quantum network protocols. Within the two-photon measurement node, a feedback loop between
the two-photon measurement apparatus and a Bayesian optimizer is used to automate the calibration of photon indistinguishability
using the objective function f (x(i)) that we introduce in the main text, and is plotted in the diagrammatic computer screen. The value
x(i) denotes the variable experimental degrees of freedom determined by the experimental apparatus during the ith iteration of the
algorithm, with two variables of x defining the axes of the plot on the screen.

degrees of freedom of photons for quantum net-
works. (See Appendix A for an outline of Bayesian
optimization and Appendix B for details of the GP
algorithm.) Our method operates with minimal resources:
it requires only direct measurements of the low-rate
streams of photons, which are inherent to quantum com-
munications, with threshold detectors to overcome the
impact of sampling noise and network channel-induced
photon variations. While Gaussian process modeling
has been successfully used in many physical appli-
cations, for example to describe the optical response
of plasmonic systems [40,41], its use in the quantum
networking context, here for calibration, is an excit-
ing direction. Specifically, we present and experimentally
demonstrate an adaptive calibration algorithm that maxi-
mizes two-photon Hong-Ou-Mandel (HOM) [42] interfer-
ence to efficiently render photons indistinguishable despite
their low probability of detection (see Fig. 1, right).
Hong-Ou-Mandel interference occurs implicitly within a
Bell-state measurement. For instance, in the case of time-
bin encoding, measuring both photons in early or late
modes will allow the observation of bunching, the signa-
ture of Hong-Ou-Mandel interference. Thus, our approach
is readily extendable to qubit-encoded networks.

Our proposed methodology for low-cost autonomous
calibration leverages advantages of the Bayesian opti-
mization framework in that it is model agnostic, sample
efficient, i.e., demonstrates convergence with minimal
samples, and is robust to shot noise and, accord-
ingly, is well suited for the conditions of quantum
communications. We also test the Bayesian optimization

algorithm with respect to the kernel, initial sampling strat-
egy, and acquisition function to improve its robustness,
and show that it provides the best performance compared
to other approaches. We expect that our experimentally
friendly method will accelerate the development of high-
fidelity quantum networks and reduce the complexity of
implementing workable quantum technology.

II. RESULTS

A. Bayesian optimization

We envision using a GP Bayesian optimization
algorithm [39] to maximize the indistinguishability of pho-
tons generated at a quantum node and, after traveling
through a deployed fiber optics cable, arriving at a two-
photon measurement station, as sketched on the right-hand
side of Fig. 1. In addition to being a powerful optimiza-
tion framework, the final GP surrogate model allows for a
deep analysis of a high-dimensional parameter space that,
as described below, corresponds to degrees of freedom of
the photons in this work. The calibration problem con-
sists of optimizing an expensive objective function, f (x),
corresponding to a measure of the change in coincidence
detections due to two-photon interference, as described in
the next section. GP Bayesian optimization is based on
the assumption that the likelihood and prior distributions
correspond to multivariate Gaussian distributions, where
the objective function is assumed to be a random variable
sampled from a Gaussian process,

f (x) ∼ GP[μ(x), K(x, x′)], (1)
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which is defined by the mean function, μ(x) = E[f (x)],
and covariance (or kernel) function, K(x, x′) = E{[ f (x) −
μ(x)][ f (x′) − μ(x′)]}, respectively. The Bayesian opti-
mization algorithm proceeds by feeding the optimizer, a
single function call that is equivalent to a single measure-
ment result, f (x(i)), during the ith iteration of the algorithm.
The variable x(i) = (x(i)

1 , x(i)
2 , . . . , x(i)

D ) is a D-dimensional
vector corresponding to D experimental parameters. For
two-photon interference, these parameters control the pho-
tonic degrees of freedom that are adjusted to compensate
for channel transformations. For our proof-of-principle
laboratory demonstration described in the next section,
these correspond to a time delay controlling the mutual
arrival time of the photons, half-waveplate angle control-
ling the polarization of the photons, and spectral filter
pass-band determining the frequency detuning (offset) of
the photons. Once the ith measurement result has been
fed into the Bayesian optimizer, it builds a Gaussian pro-
cess surrogate model by performing an optimization with
respect to kernel hyperparameters. An acquisition func-
tion, such as the lower confidence bound, which we found
worked best in this work, is then used to suggest the next
measurement, x(i+1). Various initial sampling strategies,
kernel functions, and hyper-parameter optimization strate-
gies are also tested with details of the algorithmic fine
tuning provided in Appendix B.

B. Experimental setup

To test the algorithm, we performed a HOM interference
measurement of two photons. When two indistinguish-
able independent photons are sent to different input ports
of a beam splitter, they will bunch at one of the output
ports [42]. This results in a minimum (zero without imper-
fections) of the zero-delay-time normalized second-order
correlation function [43]

g(2)(0) = C12T
S1S2�τ

, (2)

where S1 and S2 (C12) denote the total numbers of pho-
tons detected at each (in coincidence at both) of the out-
puts of the beam splitter within time interval �τ over
a total amount of time T. This quantity is related to the
commonly used HOM interference visibility V = (Cmax

12 −
Cmin

12 )/Cmax
12 , where Cmax

12 (Cmin
12 ) denotes the maximum

(minimum) number of photons detected in coincidence
as a degree of freedom of a photon is varied (e.g., its
time of arrival) [42,44]. Either V or g(2)(0) are used to
quantify the impact of imperfections in HOM interference,
which ultimately impacts Bell-state measurement fideli-
ties, and hence the fidelity of qubit distribution in quantum
networks [44–46].

In our experiment, which is depicted in Fig. 2, a
continuous-wave laser emits near-visible-wavelength light
that pumps a periodically poled lithium niobate crystal

waveguide to create a photon pair at telecommunica-
tion wavelength through spontaneous parametric down-
conversion (SPDC) [47]. The leftover pump light is
removed with a 50 GHz bandpass filter, and the photon
pair is sent to an initial beam splitter to probabilistically
separate the photons. Here we employ photons originat-
ing from the same source to demonstrate our principle
even though photons would originate from independent
sources in a quantum network. To avoid first-order interfer-
ence between correlated photons generated by the SPDC
process, one of them passes through a fiber-based phase
modulator used to randomize the phase difference between
the photon pair [48]. The second photon goes through a
free-space optics setup in which a set of half and quarter
waveplates adjust the photon polarization while mirrors on
a translation stage vary the path-length difference (corre-
sponding to a mutual time delay) between each of the pho-
tons. Each photon then passes an optional, independent,
and tunable 12-GHz-bandwidth bandpass filter. The wave-
plates, translation stage, and tunable filters, surrounded
by a dashed outline in Fig. 2, are adjusted according to
the algorithm. Next, each photon passes through fiber-
based polarizing beam splitters (PBSs), which ensure that
the polarizations of both photons are identical and that any
polarization rotations are converted into intensity varia-
tions. Then, each photon is directed into a different input
port of a second fiber-based beam splitter at which two-
photon interference occurs. Finally, the output photons
are guided to two cryogenically cooled superconducting
nanowire threshold single-photon detectors. A time-to-
digital converter records the time of arrival of the photons
at the detectors.

C. Optimization using two degrees of freedom

In our first measurement, we remove the tunable band-
pass filters such that the path-length difference and the half-
waveplate angle correspond to the experimental parame-
ters x that are fed into the Bayesian optimization algorithm.
It is important to point out that there are several choices
for possible objective functions f (x) one may use for the
optimization algorithm. Perhaps unsurprisingly, we find
that

f (x) ≡ g(2)(0)[x] (3)

provides the best performance when compared to others
and is what we employ for our scheme. For example,
C12 can vary for experimental settings that do not yield
quantum interference, or V that requires adjustment of
experimental parameters to assess both Cmin

12 and Cmax
12 .

Note here that the zero in g(2)(0) indicates that we always
measure about the same relative time of arrival of the
photons (about �τ = 2 ns) when we vary the degrees of
freedom, specifically a time that corresponds to a minimum
g(2)(0) when photons are rendered indistinguishable.
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FIG. 2. Experimental setup used for HOM interference. A
diode laser generates 766.35 nm wavelength light that goes
through a polarization controller (PC) before going through
a periodically poled lithium niobate crystal to generate a
1532.7 nm wavelength photon pair by type-0 spontaneous para-
metric down-conversion (SPDC). A 50-GHz-bandwidth band-
pass filter (BPF) selects the degenerate photon pairs around
1532.7 nm wavelength and a beam splitter (BS) probabilistically
separates each photon, directing them to different output paths.
The top path, in free space, directs the photon through a half
waveplate (HWP) and quarter waveplate (QWP) for control of
the polarization, with the path length (i.e., time delay) controlled
by a translation stage (TS), before the photon passes through
a fiber-based polarizing beam splitter (PBS). The bottom path,
entirely in fiber, has a phase modulator (PM) plus a PC to maxi-
mize transmission through the PBS. The two paths meet back at a
fiber-based BS that performs HOM interference, and the photons
are detected by superconducting nanowire single photon detec-
tors (SNSPDs; identified as D1 and D2). Both paths also contain
an optional 12-GHz-bandwidth tunable bandpass filter (TBPF).
The components within the dashed line are those adjusted by the
Bayesian optimizer.

Before discussing the results of our optimization, note
that we develop a theoretical model for g(2)(0) to validate
our experimental measurements and the predictions of the
Bayesian optimization algorithm. The degenerate output of
our type-0 SPDC crystal is described by a squeezed vac-
uum state, which is a Gaussian state, i.e., it is completely
characterized by a displacement vector and a covariance
matrix. Since all optical operations in the experiment,
including the photon detection, can be described as Gaus-
sian operations, that is, they map Gaussian states to other
Gaussian states, we can apply a characteristic function for-
malism [49,50] to determine the final displacement vector
and the final covariance matrix, which allow us to predict
S1, S2, and C12. In this model, the experimental degrees of
freedom are modeled as virtual beam splitters with vari-
able transmittances ηu, ηd, and ζ , where ηu/d corresponds
to overall photon coupling efficiency in the upper or lower
path (see Fig. 2) and ζ = exp(−x2) corresponds to the
mode overlap parameterization between the two photons.
Details of the model are provided in Appendix C along
with the theoretical plot of g(2)(0).

Our optimization using two degrees of freedom is
depicted in Fig. 3(a), presenting a two-dimensional map
of the measured g(2)(0)[x] as a function of the full range
of settings x of the translation stage and half-waveplate
angle—using 60 s for changing the parameter settings and
T = 60 s of data collection per setting. Our result shows
good agreement with that predicted by the theoretical
model as plotted in Appendix C. In particular, g(2)(0)[x]
displays V ≤ 0.5, as expected for a squeezed vacuum input
state as the input to the initial beam splitter, which splits
the pair probabilistically. Unlike the g(2)(0)[x] predicted
by the theoretical model, the experimental data exhibit
random variations due to sampling noise.

To benchmark the Bayesian optimization algorithm, we
used the baseline data in Fig. 3(a) as the source of val-
ues for our objective function g(2)(0)[x] that are fed to
the algorithm. Starting with a set of twelve measurement
settings [x(1), x(2), . . . , x(12)] selected based on Latin hyper-
cube sampling (see Appendix B for details), the algorithm
proceeds to select the next setting x(13), and then the next
and so on, for a total number of measurements, n, that it
deems optimal for establishing the minimum of g(2)(0)[x].
As shown in Fig. 3(b), we find that the Bayesian opti-
mization algorithm reliably converges to the minimum
g(2)[x] = 20.2 in less than n = 30 measurements, on aver-
age (dark blue line). The light blue lines correspond to
single instances of the Bayesian optimization algorithm,
which converge more slowly or more quickly depend-
ing on the random instance of initially sampled points.
By benchmarking the algorithm with over one hundred
independent trials, we are able to remove the effect of ran-
domness, resulting in the average (expected) convergence
shown by the dark blue line.

While this benchmark confirms the validity of the
approach, it is important to test the efficacy of our
algorithm in a live setting where every measurement is
performed in real time, as opposed to using the tabulated
baseline data from Fig. 3(a). The results for four different
real-time trials are shown in Fig. 3(c). The plots for tri-
als 1–3, for which data were acquired for T = 60 s (same
as for the baseline data), show that the minimum value
of g(2)(0)[x] is found within n = 15 in all three cases.
The maps on the right of Fig. 3(c) show the final Gaus-
sian process surrogate model prediction made after n = 30
measurements. It is worth noting that the surrogate models
do not, and indeed are not intended to, accurately repro-
duce g(2)(0)[x] over the entire parameter range of the input
variables. The surrogate models need only accurately pre-
dict the location of the minimum of g(2)(0)[x]. In fact,
this pursuit of incomplete but sufficient information is the
underlying reason why GP Bayesian optimization is more
efficient than brute-force mapping of g(2)(0)[x]. In the
fourth trial we reduce T to just 1 s, which significantly
increases the level of shot noise. Yet, the GP optimiza-
tion still finds the minimum value after just n = 23, albeit
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(a)

(b)

(c)

FIG. 3. Real-time Bayesian optimization results by calibrating the photons using two degrees of freedom. (a) Normalized coinci-
dence detections as a function of relative half-waveplate angle measured in degrees and relative translation stage position measured in
millimeters (acquired over 13 h). This experimental data set is considered as the baseline function for all benchmark results. The results
are symmetric about zero for negative relative polarization angles. (b) Full benchmark results using the baseline data set in (a) as a
black-box function for the Bayesian optimizer. The dark blue line is the average benchmark result with respect to one hundred simu-
lated trials. The true minimum corresponds to the minimum value from the baseline data in (a). (c) Live demonstration results using the
Bayesian optimizer in four different trials with detector integration time in parentheses. Left: convergence plot. Right: final surrogate
model prediction. The black dots represent the sampled parameter settings and the red star shows the optimal settings predicted by the
GP algorithm.

the polarization setting is slightly off the optimum value.
As the PBS transmission follows a cosine of the half-
waveplate angle, g(2)(0)[x] becomes less sensitive to small
variations and, thus, renders the optimization more diffi-
cult. However, the consequence of a slight offset of the
polarization angle is also less significant due to the cosine
dependence of the loss. On the other hand, without the PBS
the distinguishability would be directly proportional to the
offset of the half-waveplate angle.

Our results using two degrees of freedom validate the
effectiveness of the algorithm for a realistic signal that is
subject to various sources of noise, including shot noise,
while demonstrating fast convergence. In comparison, the
full experimental map [shown in Fig. 3(a)] consists of
350 data points acquired over 13 h.

D. Optimization using three degrees of freedom

Our next measurements test the Bayesian optimization
algorithm in a higher-dimensional setting. Specifically,

we add the 12-GHz-bandwidth tunable filters to the
experimental setup so as to include the frequency offset
(between 0 and 6 GHz) of the photons as a third degree
of freedom. At 0 GHz offset, both filters are resonant with
the degenerate spectral mode of the photon pair, while at
the maximum detuning of 6 GHz between the two pho-
tons, the spectral filters transmit correlated but partially
nondegenerate photons. Compared to the previous setup,
a broader region of interference with respect to the varied
path-length difference is expected due to the spectral filter-
ing. Since the parameter space of settings in three degrees
of freedom is too large to acquire a baseline data set as
that in Fig. 3(a), we proceed directly to a live demonstra-
tion, with results shown in Fig. 4(a). We find excellent
convergence towards the minimum value within n = 25
measurements. Two-dimensional partial-dependence plots
of the thirty-point surrogate model are shown in Fig. 4(b).
The partial dependence plots illustrate the surrogate model
prediction with respect to two degrees of freedom, with
the remaining degree of freedom averaged out. We note
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(a) (b)
(c)

FIG. 4. Real-time Bayesian optimization results using three degrees of freedom. (a) Convergence plot of the minimum g(2)(0)[x]
as a function of the total number of measurements, n. (b) Partial dependence plots for each degree freedom (see the main
text for a description). (c) Benchmarking the optimization using a simulated objective function derived from the theoretical
model. Note that the theoretical model is based on the same experimental parameters as those shown in Fig. 3(a); however, the
additional spectral filtering for the three-dimensional optimization lowers the mean-photon number and thus tends to increase
g(2)(0)[x].

that the first two degrees of freedom, corresponding to the
half-waveplate angle and path-length difference, display a
near minimum at around 85◦ and 7.5 mm, respectively,
as expected. The final degree of freedom, corresponding
to the frequency offset, displays a near-constant depen-
dence with a small slope predicting a minimum at X2 = 0
(zero-frequency offset).

Using our theoretical model, we generate a map of the
predicted g(2)(0) for all possible parameter settings. Note
that our model captures the spectral offset of the two pho-
tons as a transition between degenerate squeezed vacuum
to nondegenerate two-mode squeezed vacuum states as
inputs to the final beam splitter, as shown in Appendix C.
Thus, our theoretical model, instead of an experimen-
tally acquired baseline map, is used as the source of the
g(2)(0)[x] values employed for systematically benchmark-
ing the Bayesian optimization algorithm for the three-
dimensional parameter set. In Fig. 4(c) we plot the value of
the predicted g(2)(0)[x] as a function of the total number
of measurements n averaged over a hundred trials. A set
of fifteen measurement settings based on Latin hypercube
sampling are used as the initial sampling points. The results
show excellent convergence towards the predicted mini-
mum within n = 40 measurement calls, showing the effi-
cacy of the result in the higher-dimensional setting while
also demonstrating the utility of the theoretical model.

E. Optimization for simulated thermal input states

For deployed quantum networks, where photon sources
are separated, one will not interfere correlated photons
as in our demonstration. Instead, two-photon measure-
ments are typically performed on two uncorrelated coher-
ent photons, as in the case of MDI QKD [37], or two

photons, each entangled with another photon not par-
taking in the measurement, as in the case of quantum
repeaters [38]. For the latter case, photons from sepa-
rate SPDC sources will be independently calibrated in
order to maximize the degree of photon indistinguishabil-
ity. When one photon from a SPDC source is observed
without its correlated partner, it will follow a thermal
photon-number distribution [47]. Hence, we provide addi-
tional benchmarks with thermal states at the input of the
beam splitter—corresponding to two independent mem-
bers of separate photon pairs—using our theoretical model
for the predicted g(2)(0); see Appendix C. We simulate the
effect of finite sampling by performing Poisson sampling
of the theoretical model, which we define as the baseline
data. The independent degrees of freedom correspond to
ζ = exp(−x2) (due to the path-length difference) and ηu
(loss due to polarization misalignment), which in an exper-
imental setting would be proportional to the cosine of the
polarization; see Appendix C for more details. The result is
shown in Fig. 5(a). The effect of finite sampling is evident
by the random noise, which reflects what a real acquired
signal would look like, e.g., as in Fig. 3(a). The baseline
objective function is thus used to test the Bayesian opti-
mizer under experimental conditions for which the photon
detection rate can be very limited. The results shown in
Fig. 5 provide the final benchmark results for Bayesian
optimization using thermal input states, averaged with 150
different instances. As before, a set of twelve measurement
settings based on Latin hypercube sampling are used as
the initial sampling points. The results shown in Fig. 5(c)
show that the Bayesian optimizer finds the expected
minimum within n = 30 measurements (located near ηu =
0.2 and x = 0). These results are promising for in situ
quantum network calibration.

034067-6



SAMPLE-EFFICIENT ADAPTIVE CALIBRATION. . . PHYS. REV. APPLIED 17, 034067 (2022)

(a) (b) (c)

FIG. 5. Simulation results for Bayesian optimization using thermal input states. (a) Simulated baseline data using Poisson sampling.
(b) Final surrogate model prediction after 40 measurement calls. (c) Convergence plot averaged over 150 instances (dark blue).

III. DISCUSSION

It is worth discussing how another widespread opti-
mization approach, gradient-based optimization methods,
would operate and compare to the Bayesian optimiza-
tion framework presented in the manuscript. First-order
gradient-descent-based methods, such as conjugate gradi-
ent descent, find the local or global minimum by using
the update rule, x(i+1) = x(i) − γ∇f (x(i)), where γ is the
step size value and ∇f (x(i)) corresponds to the gradient
of the objective function. While gradient descent scales
well to high dimensions, it becomes very time-consuming
for expensive functions where gradient information is not
available. In principle, it is possible to obtain gradient
information for the current setup, but it would require
an additional measurement at each point in order to use
the finite-difference formula, (∂f /∂θ)|a = limδθ→0[f (a +
δθ) − f (a)]/δθ , resulting in a doubling of the total num-
ber of measurements. In addition, vanilla gradient-descent
methods typically converge with hundreds of function
calls at a minimum; therefore, they would be much more
time-consuming than the Bayesian optimization presented
here. Similar reasoning applies to second-order methods
that require second-order derivatives to construct the Hes-
sian. While second-order methods converge much faster
than first-order methods, they come at the expense of
additional function calls to construct the Hessian at each
optimization step.

The computational bottleneck of Bayesian optimization
is also an important consideration for high-dimensional
problems. The computational cost of the inference step
in Bayesian optimization involves solving the linear sys-
tem of equations, (K + σ 2I)−1y, which scales as O(n3)

with O(n2) storage, where n is equal to the total num-
ber of sampling points. The predictive mean and vari-
ance prediction scale as O(n) and O(n2), respectively,
per test point. This implies that, for a large number of
iterations, the computational cost can become prohibitive.
To reduce computational complexity, many approximation
schemes have been proposed [51]. For example, it may be

possible to use the KISS-GP approach of Wilson and
Nickisch [51] that reduces the inference complexity to
O(n) and the test point prediction complexity to O(1).
This approach decomposes covariance matrices in terms
of Kronecker products of Toeplitz matrices, which nat-
urally occur in one-dimensional regularly spaced grids,
which are then approximated by circulant matrices. By
performing local kernel interpolation, it then becomes
possible to speed up Bayesian optimization, resulting in
the much improved computational cost mentioned above.
Other methods such as covariance matrix decomposition,
likelihood approximations, penalized likelihood, low-rank
approximations, and graphical representation may also be
used for scalability and will be explored in future work
[52–57].

Our method readily extends to real-world quantum net-
works, for instance, using fiber-optic links over several
kilometer distances. The challenges posed for optimiza-
tion in deployed networks are the additional loss and noise
and dynamical fluctuations of long fibers, which cause
variations of polarization and time of arrival of photons.
These are exactly the types of obstacles that we show our
algorithm is able to overcome efficiently.

The advantage we have demonstrated in using Bayesian
optimization for two-photon interference-based commu-
nications is for the case where the parameters that we
adjust are mutually independent. However, our demonstra-
tion could be extended to more complex scenarios, such
as linear quantum repeaters based on two-photon interfer-
ence and entanglement swapping, which may not allow
for mutually independent adjustment, depending on the
approach. For instance, the emission wavelength of light
from a laser may drift, and will need to be adjusted. Thus,
if photon pairs are created using SPDC, such adjustment
will vary the wavelengths of both photons (or reduce the
distribution rate, depending on the filters used). More cru-
cially, the use of entangled states fundamentally links the
properties of two photons together by way of the relative
phase of the qubit bases [58], a property that is not consid-
ered in our demonstration, and one that is also relevant for
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single-photon-based repeaters [59] or twin-field QKD [28].
For instance, the wavelength and phase of photons in
an entangled pair are coupled, and thus an optimization
algorithm will need to account for the increased complex-
ity when more links are employed to reach greater dis-
tances, as well as for calibration of the measurement bases
at the end of the communication channel (e.g., the relative
phase of an interferometer when using time-bin encoding).
Investigation of our optimization method, as well as oth-
ers, including its scaling advantage with communication
distance, and how it applies to other network protocols,
topologies, or encodings (e.g., all-photonic repeaters [60],
larger Hilbert spaces [61], or continuous-variables [21]),
or other quantum tasks [45] will be considered in future
work.

IV. CONCLUSION

We have presented and demonstrated a GP Bayesian
optimization framework for both accelerating and automat-
ing the calibration of photonic degrees of freedom in
order to maximize photon indistinguishability, which is an
inescapable task in future quantum networks. The method-
ology is sample efficient, easy to use, and has small com-
putational overhead for a small number of optimization
dimensions (ranging from two to ten). It is also robust
to noise and experimental imperfections, making it suit-
able as a plug-and-play approach for calibrating quantum
network experiments from scratch. We have also imple-
mented a theoretical model based on Gaussian operations
to validate our optimization and generate baseline data. We
envision that our optimization approach should be appli-
cable to a wide variety of quantum optics experiments
outside of the quantum network experimental focus for
the current manuscript. For example, this approach could
be useful for calibrating quantum optical computational
devices [46,62–64], in particular in distributed computing
architectures, as well as quantum imaging and spectro-
scopic methods [65,66], especially in prototype systems
where loss and noise play a large role. In particular, as
quantum networks become more complex and with greater
demands on performance, efficient and practical optimiza-
tion methods must be considered to overcome the deleteri-
ous impact of the environment on qubit transmission rates
and fidelities.

By construction, quantum measurement schemes can
incorporate quantum constraints and therefore the quantum
measurement results could be used to filter the “allowable”
quantum states. There might be other ways of incorpo-
rating quantum constraints, but we leave such studies for
future work.
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APPENDIX A: BAYESIAN OPTIMIZATION
OVERVIEW

Bayesian optimization is a sample-efficient technique
that performs sequential optimization of time-consuming
black-box functions. There are two main steps to any
Bayesian optimization algorithm: (1) the construction of a
conditional probabilistic model for the objective function
based on a set of observations, and (2) the construction
of an acquisition function that uses this model to predict
future observations that optimize the objective function
of interest. The first step requires an understanding of
Bayesian inference, which quantifies how we can update
our belief of a particular hypothesis of the objective func-
tion based on the current set of observations. The second
step requires defining an effective criterion that may be
used to predict new observation points that will (most
likely) be close to the optimum. In the following section,
we introduce basic concepts related to Bayesian inference.
The second section will define GPs that are often used as
computationally tractable surrogate models for Bayesian
optimization. The third section will present various ker-
nel functions relevant to Bayesian optimization. The fourth
section will define and discuss various acquisition func-
tions that are often used in practice. The fifth section will
define the quantum network black-box objective used for
this study.
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1. Bayesian inference

Bayesian inference aims to construct a conditional prob-
ability distribution p(H|D) for a hypothesis H based on
observed data D. For our purposes, the hypothesis rep-
resents the real values of an objective function f (x),
where x is a set of experimental knobs or parameters
within the quantum optical experiment. In the context
of quantum networks, we are interested in maximizing
photon indistinguishability in order to maximize the per-
formance of a wide variety quantum network operations
and protocols. A single-measurement objective function
that is able to quantify the degree of photon indistinguisha-
bility is the normalized second-order photon correlation
function, f (x) ≡ g(2)(0)[x], measured with the Hong-Ou-
Mandel experimental setup shown in the main text. Here,
the goal is to minimize the second-order correlation func-
tion in order to maximize indistinguishability. For general
Bayesian optimization, the experimental knobs can be cat-
egorical, integer, or real-valued quantities, but for our
purposes, we only consider real-valued quantities such as
the polarization rotation angle, position delay stage, and
frequency filter bandwidth. In the following, we define the
basic concepts of Bayesian inference without reference to
the photon correlation function; however, we later refine
the likelihood functions and kernel functions for the Gaus-
sian process in order to refine the Bayesian optimization
algorithm to the quantum network problem.

a. Bayes’ theorem

Let X = [x(1), . . . , x(n)] represent the matrix of observed
input vectors x(i) = (x(i)

1 , x(i)
2 , . . . , x(i)

D ) defined in a D-
dimensional space, and let y = [y(1), . . . , y(n)]T represent
the vector of observed outputs y(i). The posterior distribu-
tion p(H|D) conditioned on the observed data D = {X , y}
is computed using Bayes’ theorem,

p(H|D) = p(D|H)p(H)

p(D)
, (A1)

where p(D|H) is the likelihood function and p(H) is
the prior probability distribution for the hypothesis H.
Bayesian inference uses Bayes’ theorem (A1) to update
the probability of our hypothesis H as more information
becomes available. The Bayesian approach provides sev-
eral advantages, including the following: (i) it provides
a full probabilistic description of our hypothesis (such as
parameter estimates) rather than point estimates; (ii) it is
generally more robust to noise and outliers; (iii) it allows
for inclusion of prior knowledge, and (iv) it is straight-
forward to use in the small sample size limit. For a given
posterior distribution, the posterior predictive distribution
for a new data point D∗ = {x∗, y∗} is defined as

p(D∗|D) =
∫

p(D∗|H)p(H|D)dH. (A2)

This quantity predicts the distribution of new, unobserved
data. Our hypothesis and prior knowledge will control the
convergence of the Bayesian optimization algorithm. We
discuss the Gaussian process priors below. See Ref. [39]
for a more detailed discussion of Bayesian optimization
and Gaussian processes.

APPENDIX B: GAUSSIAN PROCESSES

For arbitrary likelihood and prior distributions, the exact
calculation of the posterior distribution is not tractable. In
particular, the denominator, which acts as a normalization
constant for the posterior to remain a valid probability dis-
tribution, requires the calculation of a high-dimensional
integral that is generally intractable. It is possible to use
Monte-Carlo-based methods; however, these approaches
are generally computationally expensive and ultimately
become intractable for high dimensions. By assuming that
the likelihood and prior correspond to multivariate Gaus-
sian distribution functions, it is possible to calculate the
posterior and predictive posterior exactly. In the Gaussian
process framework, we assume that the training and test
data have Gaussian noise and may be written in the form

y(i) = f (x(i)) + ε(i), (B1)

where εi corresponds to Gaussian-distributed noise with
zero mean, p(ε) = N (0, σ 2). The likelihood of the
observed data D is then given by

p(y|X , f) = N (f, σ 2I). (B2)

The “noiseless” signal f = [f (x(1), f (x(2)), . . . , f (x(n))]T

plays the role of the hypothesis H that corresponds to the
parameters we wish to estimate. In this regard, the Gaus-
sian process approach is model agnostic, which may be
advantageous in scenarios where parametric models are
not available, or perhaps undesirable to avoid the introduc-
tion of model bias. Since the noiseless vector f plays the
role of the effective parameters, we require defining a prior
distribution on these parameters. The Gaussian process
framework assumes that the prior distribution is a Gaussian
process written as f (x) ∼ GP[μ(x), k(x, x′)], where the
symbol “∼” is read as “is sampled from” or “is distributed
as.” This implies that we treat the measured outputs fi
as random variables that are sampled from the Gaussian
process distribution function. Note that a Gaussian pro-
cess is a distribution over functions completely defined by
the mean function μ(x) = E[f (x)] and covariance func-
tion k(x, x′) = E{[f (x) − μ(x)][f (x′) − μ(x′)]}. In prac-
tice, μ(x) and σ act as constant hyperparameters that are
optimized during the hyperparameter optimization pro-
cess discussed, which we discuss more thoroughly in the
upcoming subsections. The prior distribution for f can
therefore be written as a multivariate Gaussian
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p(f) = N [μ(x), K], (B3)

where K is the kernel covariance matrix,

K ≡ K(X , X ) =

⎡
⎢⎢⎣

k(x(1), x(1)) k(x(1), x(2)) · · · k(x(1), x(n))

k(x(2), x(1)) k(x(2), x(2)) · · · k(x(2), x(n))

· · · · · · · · · · · ·
k(x(n), x(1)) k(x(n), x(2)) · · · k(x(n), x(n))

⎤
⎥⎥⎦ , (B4)

and must be a positive semidefinite matrix. Given the like-
lihood (B2) and prior distribution (B3), it is possible to
calculate the posterior as

p(f|X , y) = p(y|X , f)p(f)
p(y|X )

= N [K(K + σ 2I)−1y, σ 2(K + σ 2I)−1K],
(B5)

where, as an aside, it is worth noting that σ 2(K +
σ 2I)−1K = K − K(K + σ 2I)−1K , and the latter quantity
is often found in textbooks. Let us now calculate the pre-
dictive distribution for unobserved data, D∗ = {X ∗, y∗}.
The joint Gaussian process prior for the observed and
unobserved data is written as

p
(

f
f∗

)
= N

[(
μ(x)

μ(x∗)

)
,
(

Kx,x + σ 2I Kx,x∗
Kx∗,x Kx∗,x∗

)]
. (B6)

The predictive distribution, p(f∗|D) = ∫
p(f∗|f)p(f|D)df,

is then found to be

p(f∗|D) = N [f∗|μp(x∗), �p(x∗)] (B7)

with μp(x∗) and �p(x∗) corresponding to the predicted
mean and variance of the model at point x∗,

μp(x∗) = μ(x∗) + kT
∗ (K + σ 2I)−1[f − μ(x)], (B8)

�p(x∗) = k(x∗, x∗) − kT
∗ (K + σ 2I)−1k∗, (B9)

where k∗ = k(x, x∗) is an n × m matrix corresponding
to the n training points x and m test points x∗. Equa-
tions (B8) and (B9) are the key equations that describe
Gaussian-process-based Bayesian inference.

1. Kernel functions

The covariance function encodes information about the
shape and structure the objective function. The kernel
ultimately affects the convergence rate of the Bayesian
optimization algorithm. Below, we write several well-
known kernel functions from the literature. For example,

the squared exponential kernel is written as

k(x, x′) = exp
(

− ‖x − x′‖2

22

)
, (B10)

which ensures that nearby points have similar function val-
ues within the length scale given by . The periodic kernel
is given by

k(x, x′) = exp
(

− 2 sin2(π‖x − x′‖/p)

2

)
, (B11)

where  is a length scale parameter and p is the periodicity
of the kernel. Finally, we also consider the Matern kernel,

k(x, x′) = 1
�(ν)2ν−1

(√
2ν

l
‖x − x′‖2

)ν

Kν

×
(√

2ν

l
‖x − x′‖2

)
, (B12)

where Kν is a modified Bessel function and � is the gamma
function. The parameter ν controls the smoothness of the
function. The smaller ν, the less smooth the function will
be. A comparison of various kernels is given in Fig. 6,
demonstrating that the Matern kernel provides the best
performance compared to all other kernels.

a. Learning the hyperparameters of the kernel

Given data set D, the kernel hyperparameters such
as  and p (here, we denote them as θ ) will strongly
affect the final GP surrogate model predictions. How do
we choose the correct hyperparameter values that should
be used for the posterior p(f|D)? The idea here is to
calculate the probability of observing the given data
under our prior, p(y|X , θ) = ∫

p(y|f)p(f|X , θ)df, which is
referred to as the marginal likelihood. The hyperparame-
ters θ can be determined by performing maximum like-
lihood estimation of the marginal likelihood p(y|x, θ) =
N [μ(x), kθ (x, x′) + σ 2I ]. Taking the logarithm of this
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FIG. 6. Convergence plots for different kernels, including the
radial basis function (RBF) kernel (also known as the squared
exponential kernel), the periodic kernel, and the Matern kernel
(ν = 5/2) using the three-dimensional baseline model for testing
purposes.

function, we obtain

ln p(y|x, θ) = −1
2

ln det[kθ (x, x′) + σ 2I ]

− 1
2
(y − μ)T[kθ (x, x′) + σ 2I ]−1(y − μ)

− N ln 2π

2
, (B13)

where the first term corresponds to the volume of the
prior and becomes large when the volume of the prior
is small (i.e., when the model is simple), while the sec-
ond term becomes large when the data fit the model very
well. Assuming that the posterior distribution over hyper-
parameters θ is well concentrated, we can approximate the
predictive posterior as

p(f∗|D) ≈ p(f∗|D, θMLE), (B14)

where θMLE corresponds to the hyperparameters that max-
imize the log-likelihood (B13),

θMLE = argmaxθ p(y|x, θ). (B15)

2. Acquisition functions

An acquisition function a(x) aims to evaluate the
expected loss associated with evaluating f (x) at point x,
and selects the point with the lowest expected loss. In the
following, we compare three different acquisition functions
that are often used in the literature.

a. Probability of improvement

Let f ′ denote the minimum value of the objective func-
tion that has been observed so far. The probability of

improvement aims to evaluate f at the location most likely
to improve upon this value. Here, we define the utility
function

u(x) =
{

0, f (x) > f ′,
1, f (x) ≤ f ′.

(B16)

This utility function implies that a unit reward is given
if f (x) is less than f ′, and provides no reward otherwise.
The probability of improvement is the expected utility as a
function of x:

aPI(x∗) = E[u(x∗)|x∗,D]

=
∫ f ′

−∞
N [μ(x∗), K(x∗, x∗)]df

= �[μ(x∗), K(x∗, x∗)]. (B17)

The point with the highest probability of improvement
is selected. Note that this acquisition function provides a
reward regardless of the size of improvement.

b. Expected improvement

The expected improvement improves on the previous
result by defining a reward that is dependent of the size
of the improvement by defining the utility function

u(x) = max[0, f ′ − f (x)]. (B18)

The acquisition function for the expected improvement is
then written as

aEI(x∗) = E[u(x∗)|x∗,D]

=
∫ f ′

−∞
(f ′ − f )N [μ(x∗), K(x∗, x∗)]df

= [f ′ − μ(x∗)]�[μ(x∗), K(x∗, x∗)]

+ K(x∗, x∗)N [μ(x∗), K(x∗, x∗)]. (B19)

The first term is contingent on the size of the improvement,
meaning that it will tend to be large for points that are
closer to the minimum relative to f ′. The second term is
dependent on the variance of the point x∗. Points with large
variance will have a large degree of uncertainty; therefore,
it makes sense that those points should be explored in order
to reduce our uncertainty of the surrogate model. Because
of these two terms, this acquisition function encodes a
trade-off between exploitation due to the first term and
exploration due to the second term.
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FIG. 7. Convergence plots for different acquisition functions
where LCB refers to the lower confidence bound, PI refers to the
probability of improvement, and EI corresponds to the expected
improvement.

c. Lower confidence bound

Here, the lower confidence bound is written as

aLCB(x∗) = μ(x∗) − βσ(x∗), (B20)

where β > 0 is a trade-off parameter and σ(x∗) =√
K(x∗, x∗) is the standard deviation of point x∗. Unlike

the previous two acquisition functions, this quantity can-
not be interpreted in terms of computing the expectation
of a utility function; nevertheless, there are strong theo-
retical results that imply that this acquisition function will
converge to the true global minimum of f under certain
conditions. A benchmark comparison of different acqui-
sition functions is shown in Fig. 7, demonstrating that
the lower confidence bound acquisition function outper-
forms the other two, where we used β = 2, as the trade-off
parameter value.

3. Initial sampling scheme comparison

While Bayesian optimization can start with zero knowl-
edge of the objective function (i.e., the size of training
data is null), it is possible to accelerate the convergence
of the Bayesian optimization algorithm by using a set of
judiciously chosen initial sampling points. Conventionally,
there are many techniques available for sampling, such as
uniform or random sampling, Sobol sampling, Halton sam-
pling, and Latin hypercube sampling. By using the skopt
initial sampling package, we performed additional bench-
marks with respect to the number of initial sampling points
as well as the type of sampling used. In Fig. 8, we provide a
comparison between Sobol, Halton, random, conventional
Latin hypercube, and maximin Latin hypercube sampling,
showing that the maximin and conventional Lain hyper-
cube sampling provided the best performance. For live

FIG. 8. Convergence plots with different initial sampling
schemes, including Sobol, Halton, random, maximin Latin
hypercube, and conventional Latin hypercube sampling using the
three-dimensional baseline model for testing purposes.

testing purposes, we opted to use the conventional Latin
hypercube sampling scheme; however, further work will
be required to determine optimal initial sampling meth-
ods for other response functions of interest for quantum
network calibration experiments.

4. Summary of the Bayesian optimization algorithm

The proposed Bayesian optimization algorithm can be
summarized in the following steps.

1. Perform n initial measurements y = (y1, . . . , yn)

with respect to the experimental degrees of freedom, X =
[x1, . . . , xn], using maximin Latin hypercube sampling.

2. Build a Gaussian process surrogate model based on
existing measurements.

3. Suggest a new measurement location xi+1 based on
the acquisition function prediction.

4. Repeat steps 2–3 until a stopping criterion is met.

The Gaussian process model built in step 2 of the Bayesian
optimization algorithm above can be further decomposed
into the following steps.

1. Build the covariance matrix, Eq. (B4), for the
Matern kernel (ν = 5/2) based on Eq. (B12).

2. Optimize the kernel hyperparameters based on the
marginal likelihood, Eq. (B15)

3. Provide predictive mean and variances based on
Eqs. (B8) and (B9).

5. Numerical implementation

The numerical implementation and benchmarking of the
Bayesian optimization algorithm is done with in-house
code written in PYTHON with standard numpy and scipy
linear algebra and optimization packages. However, there
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(a) (b) (c)

FIG. 9. AdaGrad convergence plots. See the text for additional details.

are a wide variety of excellent open-source software imple-
mentations that are available through github. We recom-
mend skopt (Bayesian optimization) and GPytorch
(Gaussian process regression) [67] that provide an excel-
lent starting point for initial testing. It is worth noting
that we found the customization of the open-source soft-
ware difficult (for example, adding custom acquisition
functions, kernel functions, as well as other functionali-
ties), which is why we opted to perform the benchmarking
(shown in this appendix) with our in-house code. The live
testing is performed with a modified version of the skopt
Bayesian optimization algorithm.

6. Comparison to adaptive gradient descent

Numerical experiments demonstrating the performance
of the adaptive gradient-descent algorithm (AdaGrad) [68,
69] are shown in Fig. 9. AdaGrad is an extension of the
vanilla gradient-descent algorithm that allows for the step
size of each parameter to be adapted at each iteration based
on gradient information. The results are shown for a sim-
ulated two-dimensional HOM dip optimization problem
with thermal input states, similar to what we discussed for
Fig. 5 in the main text. The details of the thermal input
state model can be found in the section below. In Fig. 9,
each of the three columns represents the effect of shot noise
corresponding to different detector integration times. The
low-photon count regime is highlighted in the rightmost
column. The convergence plots in the bottom row show
the results of one hundred trials, each with different ini-
tial starting points. While some instances converge quickly

(within 20 to 30 measurement calls), other instances con-
verge to local minima with flat regions and therefore do
not find the true global minimum. The dark blue line
corresponds to the average convergence of the AdaGrad
algorithm that is shown to be over 3 times slower com-
pared to the proposed Bayesian optimization algorithm
(i.e., compared to the convergence plots shown in Fig. 5
of the main text).

APPENDIX C: HONG-OU-MANDEL
INTERFERENCE MODEL

To model the experiment, we use methods of phase
space quantum optics, in particular the characteristic func-
tion formalism [49,50]. This method allows us to describe
many experimental imperfections, such as coupling losses,
nonperfect detector efficiencies, high photon-number con-
tributions, photon-number statistics, etc., and is best suited
to deal with the Gaussian quantum optical states. Gaus-
sian states are the states whose characteristic function, or
in fact any other phase space representation, is given by a
multidimensional Gaussian function

χ(ξ) = exp
( − 1

4ξTγ ξ − idTξ
)
, (C1)

where d and γ are the displacement vector and covari-
ance matrix of the system, respectively, and ξ ∈ R

2n with
n being the number of independent bosonic modes of the
system. The examples of the Gaussian states include the
vacuum state, coherent states, as well as squeezed vac-
uum and two-mode squeezed vacuum states. The latter two
are directly relevant to our experimental studies since they
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describe the output states of the degenerate and nondegen-
erate spontaneous parametric down-conversion processes,
respectively. It is known that linear optic operations, such
as beam splitters, phase shifters etc., preserve Gaussian
states [70,71], i.e., they map Gaussian states onto Gaus-
sian states. For the characteristic function, it means that,
for any linear optic operation, there exists a symplectic
matrix S that transforms the initial displacement vector and
the covariance matrix to the output form, γ ′ = STγ S and
d′ = Sd.

The model representation of the experimental setup is
given in Fig. 10. The output of the SPDC crystal is mixed
with a vacuum input on the first beam splitter. The overall
coupling efficiencies in the upper and lower arms can be
modeled by the virtue of virtual beam splitters with trans-
mittances ηu and ηd, respectively. The polarization degree
of freedom can be modeled by a variable transmittance,
e.g., ηu, that can take values from zero, corresponding to
crossed polarizations, to some finite value η

f
u , correspond-

ing to parallel polarizations. Another virtual beam splitter
with a transmittance ζ is used to model the path length or
the time-of-arrival degree of freedom. Here ζ corresponds
to the mode overlap of the arriving photons and can take
values from 0, corresponding to the case of completely dis-
tinguishable photon wave packets with zero overlap, to 1,
corresponding to the case of completely indistinguishable
photons. To resemble the experimental data more closely,
we parameterize the ζ parameter as a Gaussian function
ζ = exp(−x2), reflecting the fact that the overlap of two
Gaussian pulses is again a Gaussian function. As we can
see from the figure, only transmitted parts interfere at the
following beam splitter, whereas reflected parts do not
interfere but are mixed with a vacuum input instead. To
model the phase averaging, we introduce a phase shifter
in the lower arm that shifts the relative phase between the
two arms by an amount φ. To obtain the experimental val-
ues of the (phase-dependent) quantities, we average over
φ from 0 to 2π . In the experimental setup this averag-
ing is achieved by the phase modulator in one of the arms
continuously sweeping over a 2π phase shift.

After determining individual symplectic transforma-
tions and combining them together we obtain the covari-
ance matrix that completely describes the final state. Using
the characteristic function description, we can now cal-
culate the probabilities for single and coincidence photon
detection as

PD1/D2 = Tr{ρ̂(1 − |0〉〈0|1/2)} = 1 − Tr{ρ̂(|0〉〈0|)1/2},
(C2)

PD1D2 = Tr{ρ̂(1 − |0〉〈0|1)(1 − |0〉〈0|2)}
= 1 − Tr{ρ̂(|0〉〈0|)1} − Tr{ρ̂(|0〉〈0|)2}

+ Tr{ρ̂(|0〉〈0|)1(|0〉〈0|)2}, (C3)

FIG. 10. Representation of the model. The output of the type-0
SPDC crystal, which is described by a squeezed vacuum state, is
mixed in with vacuum at a beam splitter. The coupling efficien-
cies of the two arms are modeled by virtual beam splitters with
transmittances ηu and ηd for the upper and lower arms, respec-
tively. Assuming equal coupling efficiencies we can simulate the
polarization match by varying ηu from 0 to ηd, corresponding to
crossed and aligned polarizations, respectively. Another virtual
beam splitter with a transmittance ζ models the mode overlap of
the two modes. Only the transmitted parts corresponding to the
indistinguishable proportion of the two photons interfere with
each other on the following beam splitter, while the reflected
parts are mixed with vacuum. A controllable phase shift φ is also
present in the bottom arm.

where |0〉1/2 corresponds to a vacuum state of all modes
impinging on the detector D1 or D2. From these we can
now easily determine the normalized g(2)(0) correlation
function as

g(2)(0) = PD1D2

PD1PD2
. (C4)

We studied the g(2)(0) correlation function for different
input states corresponding to different physical situations.
If the underlying nonlinear process is a degenerate down-
conversion, i.e., two identical photons are created, the
input state is described by a squeezed vacuum state with
the corresponding covariance matrix

γSV =
(

e−2r 0
0 e2r

)
, (C5)

where r is the squeezing parameter. This is a good approx-
imation if the broadband output of the SPDC crystal is
filtered using narrow-band filters. More generally, one has
to perform a Schmidt mode decomposition of the source’s
joint spectral amplitude to determine the number of rel-
evant modes. Considering only one mode corresponds to
neglecting all but the main Schmidt mode, but since the
Schmidt modes are independent and all behave in the
same way, it still captures the qualitative behavior of the
experimental system. We use this input for all the exper-
imental two-dimensional parameter space scans, i.e., the
data in Fig. 3. In Fig. 11(a), g(2) is plotted as a function of
ζ = exp(−x2) (path-length difference) and ηu (loss due to
polarization misalignment of the upper arm).

If the down-conversion process is nondegenerate, i.e.,
two different photons are created for example at differ-
ent frequencies, the input state can be approximated as a
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(a) (b) (c)

FIG. 11. Normalized g(2)(0) correlation function for (a) the degenerate single-mode squeezed vacuum input state, (b) the
nondegenerate two-mode squeezed vacuum input state, and (c) two thermal input states.

γTMSV =

⎛
⎜⎜⎝

cosh2(r) + sinh2(r) 0 2 cosh(r) sinh(r) 0
0 cosh2(r) + sinh2(r) 0 −2 cosh(r) sinh(r)

2 cosh(r) sinh(r) 0 cosh2(r) + sinh2(r) 0
0 −2 cosh(r) sinh(r) 0 cosh2(r) + sinh2(r)

⎞
⎟⎟⎠. (C6)

This input corresponds to the case in three-dimensional
parameter space for which the spectral filters in the two
arms have been shifted with respect to each other by
an amount much greater than the bandwidth of the fil-
ters. However, in this case the photons in each arm are
clearly distinguishable, so the final HOM interference will
always be between distinguishable modes. We can tweak
the model to accommodate this feature by introducing
another virtual beam splitter with reflectivity ζ ′. Essen-
tially, the same result can be achieved by fixing ζ = 0. The
predicted g(2)(0) is plotted as a function of ζ = exp(−x2)

(path-length difference) and ηu (loss due to polarization
misalignment of the upper arm) in Fig. 11(b). The cross-
correlation function does not depend on ζ , but only on
ηu, since the latter induces actual loss in the PBS, i.e.,
changes the number of photons reaching the detector. In
reality we do not fully achieve the scenario in which the
filters are detuned by more than the bandwidth as the fil-
ters are maximally shifted by 6 GHz with respect to each
other while their bandwidth is about 12 GHz. Hence, the
actual expected g(2) will be a combination of the squeezed
vacuum input case [Fig. 11(a)] and the nondegenerate
two-mode squeezed state [Fig. 11(b)]. The relative weight
of the two contributions can be found by calculating the
spectral overlap of the photons after the filter, which, for
Gaussian filter pass-bands, will again yield a Gaussian-
shaped weight parameter as a function of the spectral
separation of the two filters.

Finally, in a real-world implementation of a quantum
network the Bell-state measurements will occur between
two different entangled photon sources. This means that the

two partaking photons will originate from different SPDC
sources and, thus, not be correlated. The input state in
this case will correspond to two thermal states with the
corresponding covariance matrix

γTMSV =

⎛
⎜⎝

1 + 2μ 0 0 0
0 1 + 2μ 0 0
0 0 1 + 2μ′ 0
0 0 0 1 + 2μ′

⎞
⎟⎠ ,

(C7)

where μ and μ′ are the mean photon numbers at the two
inputs. Figure 11(c) shows the g(2)(0) function for the
thermal input state scenario.
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