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Degenerate parametric amplifiers (DPAs) exhibit the unique property of phase-sensitive gain and can
be used to noiselessly amplify small signals or squeeze field fluctuations beneath the vacuum level. In
the microwave domain, these amplifiers have been utilized to measure qubits in elementary quantum pro-
cessors, search for dark matter, facilitate high-sensitivity spin resonance spectroscopy and have even been
proposed as the building blocks for a measurement-based quantum computer. Until now, microwave DPAs
have almost exclusively been made from nonlinear Josephson junctions, which exhibit high-order nonlin-
earities that limit their dynamic range and squeezing potential. In this work we investigate a microwave
DPA that exploits a nonlinearity engineered from kinetic inductance. The device has a simple design and
displays a dynamic range that is four orders of magnitude greater than state-of-the-art Josephson DPAs. We
measure phase-sensitive gains up to 50 dB and determine that the device likely operates near the quantum
noise limit. Additionally, we show that the higher-order nonlinearities that limit other microwave DPAs
are almost nonexistent for this amplifier, which allows us to demonstrate its potential to perform squeezing
by measuring the deamplification of coherent states by as much as 26 dB.
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I. INTRODUCTION

High-performance cryogenic microwave amplifiers
have become crucial components for an increasing number
of contemporary experiments in condensed matter physics
and quantum engineering. Microwave amplifiers that are
based on parametric photon conversion are particularly
promising since they can operate at the quantum noise
limit, where only the minimal amount of noise required
by quantum mechanics is added to the amplified signal.
These amplifiers have facilitated the high-fidelity readout
of quantum bits in elementary quantum processors [1],
enabled spin resonance spectroscopy of femtoliter-volume
samples [2] and are even aiding the search for axions [3,4].

Parametric amplifiers can be operated in one of two
modes: phase insensitive or phase sensitive. In quantum
mechanics, an electromagnetic field can be described by
dimensionless quadrature field operators I = (a† + a)/2
and Q = i(a† − a)/2, where a and a† are the boson annihi-
lation and creation operators. In phase-insensitive ampli-
fication, gain G is applied equally to both quadratures,
〈A〉 = G〈I〉 and 〈B〉 = G〈Q〉 (where A and B represent the
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field at the output of the amplifier), unavoidably adding
at least a quarter photon of noise to each quadrature in the
process. Conversely, for phase-sensitive amplification, one
field quadrature is amplified 〈A〉 = G〈I〉, while the other
is deamplified, 〈B〉 = 〈Q〉/G. This allows for amplifica-
tion of a single quadrature without any added noise [5].
The noiseless nature of a phase-sensitive amplifier makes
it distinctly useful for detecting small microwave signals,
particularly those at the single-photon level [6].

In addition to its exceptional noise performance, a
phase-sensitive amplifier can be used to reduce the fluc-
tuations of an electromagnetic field. A mode of electro-
magnetic radiation cooled to its ground state will exhibit
a quantum mechanical noise referred to as “vacuum fluc-
tuations.” These fluctuations obey the uncertainty relation
δI 2δQ2 ≥ 1/16, where δI 2 and δQ2 represent the vari-
ances of the field quadratures (in dimensionless units of
photons), and establish the ultimate limit to noise for mea-
surements of an electromagnetic field. When a field in
its quantum ground state enters a phase-sensitive ampli-
fier, the vacuum fluctuations are deamplified or “squeezed”
along one quadrature at the expense of increasing them
along the other. Squeezed noise can be used to enhance
the signal-to-noise ratio (SNR) in measurements and has
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been successfully deployed, for example, in gravitational
wave detection [7].

In the microwave domain, the Josephson parametric
amplifier (JPA) represents the state of the art in phase-
sensitive amplification technology. A JPA consists of one
or more Josephson junctions, typically in the form of a
superconducting quantum interference device (SQUID),
embedded in a low-quality-factor superconducting res-
onator [8,9]. Vacuum squeezing has been directly mea-
sured with JPAs employing single- cavity modes [so-called
degenerate parametric amplifiers (DPAs)] at the level of
4.7 dB [3]. Higher levels of squeezing have been inferred
(i.e., by removing the effects of loss and noise introduced
by components after the JPA) both with single-cavity-
mode JPAs (10 dB) [10] and devices that exploit entangle-
ment of two distinct cavity modes (12 dB) [11]. However,
recent experimental [12,13] and theoretical [14] investi-
gations of JPAs have uncovered differences between the
JPA and an ideal degenerate parametric amplifier, which
become significant in the high gain limit (above 10 dB)
and constrain the dynamic range and amount of inferred
squeezing. Higher-order nonlinearities originating from
the physics of Josephson junctions limit the useful linear
regime of operation, with typical 1-dB compression points
measuring less than −90 dBm at the amplifier output [15–
17]. Attention has recently been focused on engineering
JPAs with Hamiltonians that more closely resemble that of
an ideal DPA, such as those employing junctions arranged
in a superconducting nonlinear asymmetric inductive ele-
ment (SNAIL) configuration [18–21], which has been suc-
cessful in pushing 1- db-compression-point output powers
to as high as −73 dBm.

In this work we present a phase-sensitive microwave
parametric amplifier that behaves as a near-ideal DPA. The
device contains no Josephson junctions (making it robust
to electrostatic discharge) and is produced with a single-
step lithography process on a thin film of niobium titanium
nitride (NbxTi1−xN). The nonlinearity responsible for para-
metric amplification in this device originates from a kinetic
inductance intrinsic to the NbxTi1−xN film [22–27]. We
observe up to 50 dB of phase-sensitive gain with a gain-
bandwidth product of 53(7) MHz. An exceptionally large
1-dB-compression-point output power of −49.5(8) dBm
is measured and represents an improvement of three to five
order of magnitude over comparable JPAs.

We demonstrate that the weak nonlinearity of our ampli-
fier also allows high levels of deamplification. This is
achieved through mapping the phasor transformation of
our DPA using coherent tones, where we observe deam-
plification levels approaching 30 dB without the dis-
tortions commonly observed in JPAs [12–14]. Although
noise squeezing is not studied in this work, the deam-
plification levels reported represent an upper bound to
the amount of vacuum squeezing that might be expected.
Finally, we explore the noise properties of our amplifier

and find that it likely operates close to the quantum noise
limit.

II. THE KINETIC INDUCTANCE AMPLIFIER

Kinetic inductance is associated with the energy stored
in the motion of charge-carrying particles. For supercon-
ducting films, Ginzburg-Landau theory predicts a current
dependence of the kinetic inductance described by [28,29]

Lk(I) ≈ L0

[
1 +

(
I
I∗

)2]
, (1)

where L0 is the per-unit-length kinetic inductance of the
material without a current, and I∗ determines the strength
of the current dependence and is proportional to the critical
current Ic of the film. This form of nonlinear inductance
is analogous to an optical Kerr medium. When a cur-
rent passing through the film consists of two different
microwave tones [i.e., a signal tone (at a frequency ωs)
and a much stronger “pump” tone (at ωp)], the nonlinear-
ity gives rise to four-wave mixing (4WM), where energy
transfer from the pump to the signal can produce para-
metric amplification [23,25]. In this process, two pump
photons are converted to a signal photon and a photon at
an additional tone called the “idler” (with frequency ωi),
where energy conservation requires 2ωp = ωs + ωi. Intro-
ducing a dc current bias on top of the microwave tones,
I = Idc + Iμw, lowers the order of the nonlinearity:

Lk(I) ≈ L0

[
1 +

(
Idc

I∗

)2

+ 2
IdcIμw

I 2∗
+

(
Iμw

I∗

)2]
. (2)

In addition to the Kerr component (which is proportional to
I 2
μw), a new term linear in Iμw appears which can facilitate

a three-wave mixing (3WM) process. Here a single pump
photon produces a signal photon and an idler photon, such
that ωp = ωs + ωi. Three-wave mixing is advantageous in
the context of parametric amplification since there can be
a large spectral separation between the pump and the sig-
nal. This means that the strong pump tone can be readily
removed through filtering, preventing the saturation of any
following amplifiers in the detection chain. Three-wave-
mixing-type parametric amplifiers using kinetic inductance
have been demonstrated recently in traveling-wave geome-
tries [24,27]. However, at high pump powers a competition
between 4WM and 3WM processes is known to degrade
the parametric gain in devices and limit their performance
[30]. In addition, there has been limited experimental
work on phase-sensitive amplification in quantum-limited
microwave traveling- wave devices.

Here we implement a resonant 3WM-type DPA that uti-
lizes kinetic inductance and exhibits phase-sensitive gain.
Critically, the resonant nature of our kinetic inductance
parametric amplifier (KIPA) strongly suppresses 4WM and
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other higher-order processes, permitting extremely high
levels of pure 3WM gain. The device [see Fig. 1(a)]
is fabricated in a 9.5-nm-thick film of niobium titanium
nitride on silicon, benefiting from the high magnetic field
resilience (up to B⊥ ≈ 350 mT) and high critical temper-
ature (Tc ≈ 10.5 K) that are characteristic of this super-
conductor [31,32]. Niobium titanium nitride on silicon can
exhibit extremely low losses with internal quality factors
Qi greater than 106 [33], which is advantageous for the
generation of highly squeezed states and for performing
amplification at the quantum noise limit. The amplifier
is measured at a temperature of 20 mK in a dilution
refrigerator (see Appendix B for experimental details).

The KIPA is defined geometrically by a coplanar
waveguide (CPW) quarter-wavelength resonator (with res-
onant frequency ω0) coupled to a single port via a
microwave Bragg mirror [34,35], which can equivalently
be viewed as a stepped-impedance band-stop filter [see
Fig. 1(a)]. The filter is comprised of alternating sections of
high-impedance (ZH = 126 �) and low-impedance (ZL =
50 �) CPW transmission line, each acting as a quarter-
wavelength impedance transformer near the frequency
ω0. Their combined effect is to produce a large effective
impedance Reff = (ZH/ZL)

2N Re (where Re = 50 � is the
external impedance and N is the number of ZH and ZL
repetitions) as seen by the quarter-wavelength resonator.
The large Reff creates a strong reflection and serves as the
mirror for the single-port resonator. Importantly, the fil-
ter does not break the inner track of the CPW, allowing
a dc current to pass through the device. At the pump fre-
quency ωp ≈ 2ω0, the stepped-impedance filter sections
are half wavelength transmission lines, presenting the res-
onator with an impedance Reff = Re. The full frequency
dependence of Reff is depicted in Fig. 1(b) (see Appendix
A 3 for further discussion).

The resonator is realized using a segment of CPW fea-
turing an interdigitated capacitor (IDC) [see Fig. 1(a)] ter-
minated in a short circuit, and is designed to produce a res-
onance at the center of the band-stop (i.e., high-impedance)
region ω0/2π ≈ 7.2 GHz. The small CPW track width in
the resonator (w = 2 μm) reduces I∗ and provides a siz-
able total kinetic inductance of LT = 3.84 nH. The IDC
adds additional capacitance to the resonator to decrease its
characteristic impedance (Z0 ≈ 118 �) and subsequently
enhance the pump current for a given pump power, which
helps to minimize device heating. Furthermore, the IDC
introduces dispersion to the resonator [27], detuning the
higher-order modes away from harmonics of the funda-
mental (i.e., 3ω0), preventing intermode coupling induced
by the strong parametric pump [36]. The KIPA functions
in the highly overcoupled regime, where the coupling rate
to the port κ far exceeds the internal rate of loss γ .

To operate the KIPA, we feed the combined bias cur-
rent Idc, signal, and pump into its port, as illustrated in
Fig. 1(a). The tones mix inside the resonator and the

resulting amplified and reflected signal is routed to a high-
electron-mobility transistor (HEMT) amplifier at 4 K. This
is followed by a third low-noise amplification stage at
room temperature before being measured with a vector net-
work analyzer (VNA) or undergoing homodyne detection
(see Appendix B for details).

III. THE KIPA HAMILTONIAN

We have derived the Hamiltonian for the KIPA in
the presence of the bias current Idc and a pump tone
Ip cos(ωp t + ϕp), expressed in a reference frame rotating
at ωp/2:

HKIPA/� = 	a†a + ξ

2
a†2 + ξ ∗

2
a2

︸ ︷︷ ︸
HDPA/�

+ K
2

a†2
a2

︸ ︷︷ ︸
HKerr/�

, (3)

where 	 accounts for a frequency detuning of the KIPA
from half the pump frequency ωp/2. HDPA is the Hamil-
tonian for an ideal DPA [14]; it is quadratic in the field
operators and is characterized by the 3WM strength ξ .
HKerr represents the next higher-order term, which here
is a self-Kerr interaction with strength K . See Appendix
C for a detailed derivation of the Hamiltonian. Equation
(3) is also the same approximate Hamiltonian found for
3WM-type JPAs, such as those that employ flux-pumped
SQUIDs [15,17,37] or SNAILs [18–20]. An important
quantity that largely determines the dynamic range and
squeezing potential in these DPAs is the ratio κ/|K |, which
quantifies the relative strength of HKerr to HDPA [14,16,38]
(since |ξ | → κ/2 at large gain).

To quantify the Kerr interaction |K | ∝ ω0(�ω0)/(I 2
∗ LT)

for the KIPA (refer to Appendix C), we measure I∗. The dc
bias current is swept in the absence of a pump tone, result-
ing in a shift of the device’s resonance frequency [detected
via its phase response; see Fig. 1(c)] that is related to
the change in kinetic inductance described by Eq. (1).
We observe a resonance frequency shift of approximately
100 MHz for a 0.9 mA bias, and extract I∗ = 5.10(9) mA
from a fit of the current dependence. We estimate the
Kerr constant for this device to be |K |/2π ≈ 0.13 Hz, a
completely negligible quantity relative to all other system
parameters. We note that I∗ is about three orders of mag-
nitude greater than the critical current of a typical JPA,
indicating a much weaker form of nonlinearity. This pro-
vides a ratio κ/|K | > 108 for the KIPA that is several
orders of magnitude greater than that of a JPA [15–17].

We expect the 3WM strength in the KIPA, |ξ | ∝
ω0(IdcIp/I 2

∗ ) (see Appendix C), to be linear in the applied
dc current. For the remainder of this paper, a bias cur-
rent of Idc = 0.834 mA is used, close to the critical current
of the film but leaving a sufficient margin for additional
microwave currents to be applied through the pump and
signal. The 3WM strength is somewhat independent of I∗,
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FIG. 1. Experimental setup and device geometry. (a) Experimental setup, showing the device pattern (bottom) and closeup optical
microscope image of the interdigitated capacitor (IDC). The signal tone and bias current are combined at 20 mK using a bias tee. A
diplexer mixes the pump and signal tones immediately before the sample. A circulator splits the forward microwave path from the
reflected output of the device, which is measured at room temperature using homodyne detection (depicted) or with a vector network
analyzer. (b) The effective impedance Reff seen by the IDC resonator looking towards the port through the stepped-impedance filter.
This impedance is high (approximately 12.8 k�) at the signal frequency (ω0) and low (50 �) at the pump frequency (ωp = 2ω0). The
filter passes dc and ωp , and causes a strong reflection at ω0. The dashed line indicates a 50-� impedance. (c) The phase response of the
device versus bias current. The bias current shifts the resonant frequency over more than 100 MHz. Measured resonant frequencies at
each current are presented (white diamonds), alongside a fit to the inset equation (solid white line).

since Idc and Ip can always be raised to a sizable fraction of
I∗, with the proviso that they are kept sufficiently small so
that heating of the refrigerator and device does not occur.

Finally, it is important to mention that a large I∗ alone is
insufficient to explain why the KIPA is able to operate with
such weak higher-order nonlinearities. For example, in a
SQUID-based JPA it is known that increasing the critical
current Ic of the SQUID loop similarly reduces |K |. How-
ever, it is also the case that increasing Ic simultaneously
lowers the Josephson inductance LJ ∝ 1/Ic. This presents
challenges in practice, since LJ is quickly overwhelmed
by the geometric inductance of the JPA. One can circum-
vent the issue by using arrays of SQUIDs [15]; however,
this can be difficult to implement due to fabrication imper-
fections and challenges in achieving homogeneous flux
control of a large SQUID array [16,38]. On the other hand,
for a superconducting wire exhibiting kinetic inductance,
one can control the scale of the current nonlinearity (I∗)
independently of its inductance (LT), by adjusting its

geometric parameters (see the detailed discussion in
Appendix C 4). Nonlinear currents I∗ of the order of hun-
dreds of microamperes to milliamperes can readily be
attained while still maintaining practical kinetic induc-
tances at the level of nanohenries.

IV. AMPLIFIER CHARACTERISTICS

Applying a pump tone at the frequency ωp/2π =
14.381 GHz and bias current Idc = 0.834 mA pro-
duces an amplification feature centered around ω0/2π ≈
7.1905 GHz [see Fig. 2(a)]. The KIPA generates an ampli-
fied signal tone ωs at its output, along with an idler at
ωi such that energy is conserved in the 3WM process,
ωp = ωs + ωi. The phase-insensitive gain, which occurs
when the signal is not centered with respect to half of the
pump frequency, that is, for ωs = ωp/2 + 	ω (with |	ω|
exceeding the resolution bandwidth of the measurement),
increases with the pump power and is found to be in excess
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of 40 dB before the KIPA crosses the threshold where
spontaneous parametric oscillations occur (see Appendix
E 3). To characterize the line-shape of the amplification
feature, we assume that the KIPA operates as an ideal DPA
(i.e., we assume K = 0) and derive the reflection parameter
� using input-output theory [14]:

�(ω) = κ(κ + γ )/2 + iκ(	 + ω − ωp/2)

	2 + [
(κ + γ )/2 + i(ω − ωp/2)

]2 − |ξ |2
− 1

(4)

(see Appendix E 1 for the derivation). We fit the gain data
with the reflection model and observe excellent agreement
with theory [see Fig. 2(a)]. We extract an average cou-
pling quality factor of Qc = 135, along with a constant
gain-bandwidth product for the KIPA of 53(7) MHz.

When applying a signal tone at half the pump frequency
ωs = ωp/2, the KIPA enters the degenerate mode of opera-
tion, producing phase-sensitive gain as the signal and idler
tones interfere. Figure 2(b) depicts the gain of the KIPA
as a function of the pump phase, where up to 26 dB of
deamplification and close to 50 dB of amplification are
measured. Compared to phase-insensitive amplification,
additional gain is obtained in degenerate mode due to the
constructive interference that occurs between the signal
and idler.

After calibrating the phase of the pump to achieve max-
imum amplification (i.e., ϕp ≈ π/2), we characterize the

degenerate 1-dB compression point of the KIPA as a func-
tion of the gain [see Fig. 2(c)]. For approximately 20 dB of
phase-sensitive gain, we find a 1-dB compression power of
−69.5(8) dBm at the device input, comparable to the per-
formance of kinetic inductance traveling-wave amplifiers
[24,27,39], despite the KIPA’s resonant nature. The out-
put power of the KIPA for this measurement was close to
the input power 1-dB compression point of the cryogenic
HEMT amplifier (approximately −46 dBm). It is thus pos-
sible that the true 1-dB compression point of the KIPA is
even higher than we report here.

V. THE PHASOR TRANSFORMATION

The phase-dependent interference of the signal and idler
fields in a DPA results in an affine transformation applied
to the I -Q plane of the input field [5], which we refer to
here as the phasor transformation. Figure 3(a) illustrates
the distortion of the I -Q plane for coherent inputs that lie
along a contour of constant amplitude, in addition to an
equivalent transformation of a phase-space representation
of a vacuum state input. The fields, which initially occupy
a circular region on the I -Q plane, are stretched to form
an ellipse, with the area being conserved in the process.
Coherent states are useful for studying the phasor transfor-
mation since any noise field that couples into the cavity
through the loss channel (γ ) may be neglected (averaged
away in a measurement), permitting a clear inspection of
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FIG. 2. Amplifier gain characteristics and compression with signal power. (a) Phase-insensitive gain as a function of the signal
frequency ω = 	ω + ωp/2 for different pump powers (circles). The fitted theoretical frequency response is plotted (solid lines) with
fitting parameters provided in Appendix E. (b) Phase-sensitive gain as a function of pump phase ϕp for various pump powers. The
phase response has been aligned such that ϕp = π/2 corresponds to maximum gain. (c) Peak gain [found at ϕp = π/2 in (b)] as a
function of signal power for the same pump powers shown in (b). Inset: output 1-dB compression power P1 dB as a function of gain.
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FIG. 3. The phasor transformation, measured with coherent inputs. (a) An illustration of the phasor transformation that similarly
distorts the I -Q plane for coherent inputs (top) and the quasiprobability distribution of a quantum (vacuum) state (bottom). (b) KIPA
response to coherent inputs of constant amplitude and varying phase, plotted on two different scales. Top: outputs are plotted with an
equal aspect ratio, where the reflected input sweep with the KIPA off is observed as a circle (green) at the center of the plot. Turning the
KIPA on stretches the circle to an ellipse, which resembles a blue line in this plot. Bottom: the same outputs plotted with a zoomed-in
scale along Q so that the elliptical transformation may be observed. Solid lines are a guide for the eye. (c) The deamplification GS and
amplification GA as a function of pump power. Points are extracted from the ellipses (b). The dotted line is the expected deamplification
for an ideal DPA and the solid lines are the amplification and deamplification calculated with a model that includes small reflections
along the measurement lines (see Appendix G 2).

any deviations from the expected transformation. Hamil-
tonian nonidealities manifest as an S-shaped distortion of
the phase space at high gains, as has been experimen-
tally observed [12,13] and modeled [14] in JPAs for gains
typically exceeding approximately 10 dB.

We probe the phasor transformation by sweeping the
phase of a coherent state incident on the KIPA and use
homodyne detection to measure the transformed output.
A coherent tone power of −112 dBm (corresponding to
approximately 16 intracavity photons) was chosen to pro-
vide sufficient SNR without saturating the amplifier chain.
Our results are shown in Fig. 3(b) for different pump
powers. When the KIPA is off, sweeping the phase of
the input coherent state traces out a circle on the I -Q
plane. Activating the KIPA maps the circle to an ellipse
at the detector with no noticeable S-type distortion, even
for a degenerate gain of 30 dB. This exceeds the achiev-
able phase-sensitive gain without distortion observed in
JPAs by approximately two orders of magnitude. Further
increases in gain (up to 50 dB) did not produce any obvious
distortions, though at these higher gains the signal power
had to be reduced to avoid saturating the cryogenic HEMT
and room-temperature amplifiers, resulting in significant
degradation in the SNR. The lack of S-type features at high
gain supports the conclusion that the self-Kerr correction
and other higher-order nonlinearities are negligible.

The deamplification level GS is defined as the greatest
reduction in amplitude of an input coherent state by the
phasor transformation. We additionally define the ampli-
fication level GA as being the corresponding increase in
gain that occurs orthogonal to the axis of deamplification.
GS and GA are measured after aligning the amplification
and deamplification axes along I and Q, respectively, and
averaging multiple measurements (refer to Appendix B 3
for details). Figure 3(c) presents the results, where up to
26 dB of deamplification is observed for 30 dB of amplifi-
cation. Using the input-output theory for an ideal DPA, we
derive the phasor transformation and predict GS and GA for
the DPA parameters obtained from the fits in Fig. 2(a) (see
Appendix G).

We observe some asymmetry GS 
= GA in the data at
high gains, as shown in Fig. 3(c), which we attribute to a
small (approximately 2%) reflection occurring at the input
to the KIPA (see Appendix G 2). This reflected signal adds
to the deamplified coherent state and thus reduces the mea-
sured deamplification level. Such a reflection would occur
for a 2-� impedance mismatch of the printed circuit board
(PCB) to which the amplifier is connected, which is within
its fabrication tolerances. Including a weak reflection along
the signal path in our model accurately reproduces the
slight asymmetry, as shown in Fig. 3(c). We note that the
26 dB of deamplification observed here represents an upper
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bound to the amount of vacuum squeezing that can be
expected in this device, which is sensitive to cavity losses,
heating, and other effects. See Appendix H for a theoreti-
cal analysis of squeezing in the presence of cavity losses.
Such high levels of noise squeezing, if realized, would
be best exploited in on-chip applications, since any small
amount of loss (e.g., in the PCB, diplexer, circulator, and
cables) would mix in vacuum noise and lower the amount
of squeezing. For example, an insertion loss in the range
1–2 dB on the output of the KIPA would already reduce 26
dB of vacuum noise squeezing to a level between 4.3 and
6.8 dB.

VI. NOISE PROPERTIES

We examine the noise performance of the KIPA by
monitoring the output power of the setup on a spectrum
analyzer. Figure 4(a) portrays a simplified noise model of
the detection chain, with the KIPA amplifying an applied
coherent state (i.e., a displaced vacuum). The following
amplifiers and any loss along the output line are modeled
by a single amplifier with a gain of GT (refer to Appendix
I 3). The parameters nk and nsys represent the number of
noise photons added by each amplifier. A conversion factor
z translates the dimensionless units of photons to an equiv-
alent power in watts recorded on the spectrum analyzer.
The measured output power can thus be converted to a
number of photons at the input of the KIPA by dividing by
the conversion factor zGTGk (i.e., nt = Pt/zGTGk), where
Gk represents the gain of the KIPA and is equivalent to the
amplification level GA when in degenerate mode. The fac-
tor zGT is extracted from a detailed analysis of the output
noise spectrum as a function of the KIPA’s gain and tem-
perature (see Appendix I 3). We note that this measurement
makes the underlying assumptions that zGT has negligible
dependencies on the KIPA gain and temperature, which are
not verified here. The following results should therefore
be taken only as an initial estimate, with the noise per-
formance to be accurately quantified in the future using
a calibrated cryogenic noise source [27,40], which will
permit measurements at fixed gain and temperature.

In Fig. 4(b) we plot the input-referred number of pho-
tons recorded in the presence of an applied coherent tone,
with the KIPA in three different configurations: degenerate
mode, nondegenerate mode, and off. Both the degener-
ate and nondegenerate measurements are taken at a pump
power of Ppump = −19.3 dBm, which provides gains of
31 dB and 24.5 dB, respectively. We observe an 18-dB
enhancement in the SNR when operating in nondegener-
ate mode relative to using the HEMT as the first-stage
amplifier (KIPA off) and an additional SNR enhancement
of approximately 6 dB when operating in degenerate mode
[see Fig. 4(b)], which is predicted [see Eqs. (I22) and
(I27) in Appendix I 3] in the limit of large gain (Gk →
∞) and for a near-quantum-limited noise performance. In
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FIG. 4. Noise temperature characterization. (a) Schematic
depicting a simplified detection chain that can be used to model
the noise properties of the KIPA. The KIPA amplifies with a
gain Gk, adding an amount of noise nk. The following ampli-
fiers and components are modeled as a single amplifier with
a total gain of GT and a noise contribution nsys. (b) Measured
noise in the presence of a coherent tone, shown in units of power
(dBm) and photons, referred to the input of the KIPA. The mea-
surement is taken with a bandwidth resolution of 1 kHz. Traces
were recorded with the KIPA in degenerate mode, nondegener-
ate mode, and off. In nondegenerate mode the signal-to-noise
ratio is improved by 18 dB compared to a measurement using
the cryogenic HEMT as the first amplifier. An additional 6-dB
enhancement is observed when the KIPA is in degenerate mode.
The quantum noise limit is indicated by dashed lines for each
mode of operation.

the degenerate measurement of Fig. 4(b), the noise floor
indicates an input-referred noise of approximately 0.35
photons, close to the quantum limit of 0.25 photons. It
should be noted that this measurement contains contri-
butions to the noise from all sources, including from the
following amplifiers. Finally, it is useful to estimate the
noise referred to the rf input of the bias tee [see Fig. 1(a)],
where a device under test would ultimately be connected.
The typical manufacturer-specified insertion loss of the
components and cables between the rf input and the KIPA
port (see Appendix B for details) at room temperature is
3.5 dB, which provides a bias tee input-referred noise of
0.78 photons.

VII. DISCUSSION

We have presented a simple and versatile microwave
parametric amplifier called a KIPA, fabricated from a
thin film of NbxTi1−xN. For the parameter space tested,
we report above 40 dB of phase-insensitive gain and up
to 50 dB of phase-sensitive gain. Our device features
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an exceptionally high input 1-dB compression point of
−69.5 dBm for 20 dB of gain. Using input-output the-
ory, we have been able to model our device using the
Hamiltonian of an ideal DPA, with excellent agreement
between theory and experiment. The close DPA approx-
imation indicates that the KIPA might also serve as an
effective microwave squeezer, which we study through
mapping its phasor transformation out to GA = 30 dB. Our
first attempt to measure the noise properties of the KIPA
indicates that it operates close to the quantum limit; how-
ever, further measurements using a calibrated noise source
should be performed to verify its performance.

Both the power-handling capability of the KIPA acting
as an amplifier and its potential to serve as a squeezer ben-
efit from its reduced self-Kerr strength |K | relative to the
resonator bandwidth κ (i.e., the large ratio κ/|K |). The
stepped-impedance filter design allows us to achieve a
large κ , despite the resonator impedance being relatively
high (Z0 ≈ 118 �) due to the sizable kinetic inductance,
and should be amenable to designs with even greater κ .
The kinetic inductance provides a scaling of the nonlinear
current and inductance that allows large values of I∗ while
maintaining practical inductances LT, which is crucial here
to minimize |K |.

Future experiments will focus on exploring the noise-
squeezing properties of the KIPA by using a second KIPA
as a following amplifier [10,12]. The large levels of deam-
plification without distortion observed here set an upper
bound to its noise- squeezing capabilities as any loss
present will act to mix in the vacuum state and reduce
squeezing, with an ultimate limit (as would be expected
directly at the KIPA output) set by the ratio Qc/Qi = γ /κ

(see Appendix H). Amplification also benefits from a small
Qc/Qi, as it permits a noise performance closer to the quan-
tum limit. We note that planar NbxTi1−xN resonators can
reach exceptionally large internal quality factors (Qi > 106

[33,41]), making this an attractive system for performing
low-noise amplification and noise squeezing.

Squeezed vacuum states are a valuable resource in
quantum computing [42]. Measurement-based computa-
tion using highly entangled cluster states encoded in the
modes of an electromagnetic field is one possible path-
way to achieving large-scale quantum computation [43].
It has been shown that squeezing levels in excess of 17
dB would surpass the fault-tolerant threshold for quan-
tum computation in such a scheme [44]. Circuit-based
microwave squeezers are a particularly attractive platform
in this context, as they combine circuit manufacturability
with another key requirement in cluster-state computing;
the ability to engineer non-Gaussian states of light [45–
47]. To generate this level of direct squeezing with the
KIPA, in addition to minimizing Qc/Qi one must circum-
vent the insertion loss of the components connected along
the signal output path. This could be achieved by spatially
separating the signal input and output from the pump and

dc bias by moving to a two-port architecture with high
coupling asymmetry, or utilizing on-chip circulators [48–
51] to avoid transferring the squeezed states off-chip all
together.

The high dynamic range and large levels of gain attained
with the KIPA could make it useful for measuring small
signals (e.g., in the readout of superconducting qubits)
without the need for a 4-K HEMT amplifier, though its
current bandwidth and tunability make it unsuitable for
multiplexed qubit measurements. The large 1-dB compres-
sion point power could also find it application in reflec-
tometry measurements for spin qubit readout [52], where
the signal-to-noise ratio can be enhanced for signal pow-
ers up to −80 dBm in devices [53], powers that exceed
the available dynamic range in JPAs. Finally, high-kinetic-
inductance NbxTi1−xN resonators can display excellent
magnetic field compatibility, with Qi > 105 at fields up to 6
T reported [31]; we therefore envisage utilizing this ampli-
fier in applications such as electron spin resonance spec-
troscopy, where the KIPA can serve as both the microwave
cavity and first-stage amplifier to push the boundary of spin
detection sensitivity [54,55].
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APPENDIX

APPENDIX A: DEVICE DESIGN

1. Fabrication

The KIPA is fabricated on a 350-μm-thick high-
resistivity silicon wafer. The wafer is cleaned with a
piranha solution (a mixture of sulfuric acid, water, and
hydrogen peroxide) followed by a hydrofluoric acid etch
of the natural silicon dioxide before having a 9.5-nm-
thick film of NbxTi1−xN sputtered on the surface (STAR
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Cryoelectronics). To define the pattern we perform a stan-
dard electron beam lithography process using AR-P 6200
(9%) as a positive resist. Reactive ion etching (RIE)
with CF4 and Ar is used to etch the NbxTi1−xN in the
exposed regions of the chip. After the RIE step any resid-
ual resist mask is removed using solvents before the device
is bonded to a PCB and measured.

2. Material choice

In principle, most low-loss and high-kinetic-inductance
materials would be suitable for constructing a KIPA. The
resonator should have a kinetic inductance that forms a siz-
able fraction of the total inductance, since the geometric
inductance does not facilitate mixing and thus increases the
pump power requirements for amplification. Examples of
potential superconductors in which this might be achieved
include niobium nitride (NbN), titanium nitride (TiN), and
molybdenum-rhenium (MoRe). See the review by Mazin
[56] on materials for kinetic inductance detectors for a
more comprehensive list.

In addition, the current nonlinearity strength I∗ must be
large enough to provide sufficient dynamic range, but small
enough to avoid heating due to excessive pump powers.
I∗ is related to the critical current Ic and is determined
by the material parameters (such as the superconducting
gap energy and normal state resistivity) as well as geome-
try (e.g., the resonator wire cross-sectional area) [29]; see
Appendix C 4 for further details. To achieve substantial
gains, the pump current must reach a sizable fraction of I∗,
typically Ip ≈ 0.1I∗, which implies pump powers of Pp =
I 2
p Z0/2 ≈ I 2

∗ Z0/200 (where Z0 is the resonator impedance)
should be applied. For a resonator impedance of the order
of 50 � and pump powers below the base cooling power
of a typical dilution refrigerator (approximately 10 μW),
practically we are limited to I∗ � 6 mA, with critical cur-
rents typically a few factors lower than this, Ic � 2 mA.
For our 9.5-nm-thick NbxTi1−xN film, we find a critical
current of order 1 mA for a wire width of 2 μm. Using
superconductors with larger gap energies (and thus higher
critical current densities and critical temperatures) than
NbxTi1−xN may present challenges with heating and would
likely require smaller resonator wire geometries. However,
superconductors with critical temperatures below niobium
titanium nitride that exhibit both a high normal state resis-
tivity (i.e., high kinetic inductance) and low loss could in
principle be utilized to make a KIPA.

3. Stepped-impedance filter

The stepped-impedance filter is comprised of alternat-
ing sections of a high-impedance CPW transmission line
(with impedance ZH and length lH ) and low-impedance
CPW transmission line (with impedance ZL and length lL).
One “cell” is made from a single ZH section followed by
a ZL section. The filter contains N = 3 cells in total and is

galvanically connected to the shorted quarter-wavelength
IDC resonator (see Appendix A 6). On the source side, the
stepped-impedance filter sees a Re = 50 � environment.
See Fig. 5(a) for a transmission-line model of the device.

The lengths lH and lL are chosen to equal a quarter-
wavelength at the resonator fundamental frequency ω0.
For ω ≈ ω0 these sections therefore act like quarter-
wavelength transformers, which transform the environ-
mental impedance Re to

Reff =
(

ZH

ZL

)2N

Re, (A1)

as seen by the quarter-wavelength IDC resonator.
On the other hand, at the pump frequency ωp ≈ 2ω0, the

high- and low-impedance segments are half wavelength
transmission lines, providing

Reff = Re. (A2)

More precisely, we may solve for the frequency depen-
dence of Reff by calculating the ABCD matrix of the
stepped-impedance filter and external environment, from
which we can determine the admittance matrix and input
admittance Yin observed by the IDC resonator [17,57]. This
produces in an effective impedance of

Reff(ω) = 1
Re{Yin(ω)} . (A3)

The resulting Reff(ω) is plotted in Fig. 1(b). Close to
the resonant frequency ω0, the IDC quarter-wavelength
shorted resonator can be modeled as a lumped-element
RLC parallel circuit with the following parameters [58]:

Ri = Z0

αl0
, (A4)

L = 1
ω2

0C
, (A5)

C = π

4ω0Z0
, (A6)

where α is the complex component of the transmission-
line propagation constant and characterizes the resonator
loss. See Fig. 5(b) for the equivalent circuit model. We can
thus define the internal and external quality factor of the
resonator as

Qi = Ri

ω0L
, (A7)

Qc = Reff

ω0L
. (A8)
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(a)

(b)

C LRiReff

Re
ZL, lL  ZH, lH  Z0, l0  × N

Yin

FIG. 5. (a) Transmission-line model of the stepped-impedance filter and quarter-wavelength resonator. The red dashed box indicates
one instance of the low-impedance transmission-line segment (impedance ZL), the blue dashed box indicates one instance of the
high-impedance transmission-line segment (impedance ZH ), and the purple dashed box identifies the effective admittance seen by
the quarter-wavelength resonator. The green dashed box represents the shorted quarter-wavelength interdigitated capacitor resonator
(impedance Z0). (b) An LC model of the quarter-wavelength resonator close to its resonant frequency ω0 and the effective impedance
presented by the stepped-impedance filter and 50-� external environment.

Taking the effective impedance seen by the resonator at
ω = ω0 [Eq. (A1)], we find the external quality factor:

Qc =
(

ZH

ZL

)2N
πRe

4Z0
. (A9)

Inserting the impedances used in our device (ZH = 126 �,
ZL = 50 �, Re = 50 �, and Z0 = 118 �) into Eq. (A9), we
expect Qc ≈ 85. In the experiment we measure Qc ≈ 135,
in close agreement with theory. We note that the external
quality factor has a strong dependence on the impedance
ratio ZH/ZL and any small error in this quantity will have
a large effect on Qc.

4. Estimating the kinetic inductance L0

To target specific impedances we first need to know
the “per-square” kinetic inductance of the niobium tita-
nium nitride film L�. We estimate L� by measuring a
test quarter-wavelength resonator and determining its res-
onant frequency. We perform a simulation of the same
device (using the software Sonnet) and adjust L� until
we obtain the measured resonance frequency ω0, which
occurs for our 9.5-nm-thick film when L� = 32 pH. Divid-
ing the per-square kinetic inductance by the resonator wire
width provides the per-unit-length kinetic inductance L0 =
L�/w.

5. Bandwidth

It should in principle be possible to design KIPAs with
larger bandwidths by reducing the impedance ratio ZH/ZL

or the number of cells N (Appendix A 3). However, in
order to achieve the same high levels of gain observed
in the present device (i.e., > 40 dB) the 3WM strength
|ξ | [Eq. (C34d)] must be increased proportionally [see
Eq. (E1) for a relation between gain and |ξ |]. At present,
we believe we are approaching the limit of the pump
power that can be applied (and therefore |ξ |) before device
and refrigerator heating become an issue. This could be
partially resolved by lowering the resonator impedance,
which will produce a larger pump current for a given
power. Apart from this, one could lower I∗ by using thin-
ner NbxTi1−xN films or narrower resonator wires, both of
which should be possible. Lowering I∗ would unavoid-
ably increase the Kerr strength |K | [Eq. (C34c)], but its
small value in the current device (see Appendix C 3 for
an estimation of |K |) indicates that this is a worthwhile
tradeoff. We believe an order-of-magnitude enhancement
in the bandwidth to be achievable with careful device
optimization.

6. Quarter-wavelength IDC resonator

The short-circuit-terminated quarter-wavelength res-
onator is implemented with a CPW that features a dense
interdigitated capacitor to ground (see Fig. 6). The IDC
serves to lower the impedance of the resonator, bringing it
closer to the 50-� port impedance and reducing reflections
at the pump frequency. In addition, the smaller impedance
produces a larger pump current for a given pump power.
Both of these effects help to reduce device heating by
lowering the pump power requirements.
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0

FIG. 6. Sketch of the IDC quarter wavelength resonator
employed in the KIPA. The stepped-impedance filter is galvan-
ically connected to the left side of this schematic. This element
has the smallest track width and hence the lowest I∗, presenting
the largest nonlinearity of any section in the device.

The resonator has a length of l0 = 240 μm and the
inner track is w = 2 μm wide. The capacitor fingers are
s = 2 μm wide and h = 46 μm long, with a g = 2 μm gap
to the ground plane. This provides a resonator impedance
(estimated from Sonnet simulations) of approximately
Z0 ≈ 118 �.

APPENDIX B: EXPERIMENTAL SETUP

All measurements are performed with the device situ-
ated at the mixing chamber plate (T ∼ 20 mK) of a dilution
refrigerator. A schematic of the setup is shown in Fig. 7,
with components described in detail in the subsections that
follow.

1. Wiring

Pump line. A microwave source (E8267D, Keysight
Technologies) supplies the pump tone for all experiments
via a high-pass filter (HFCN-9700+, Mini-Circuits) used
to reduce microwave source subharmonics. A 10-dB cryo-
genic attenuator is used at the 4-K temperature stage,
followed by two 3-dB attenuators at the 900-mK and 100-
mK stages, respectively. The pump line connects to the
KIPA via a diplexer (DPX-1114, Marki Microwave) at
the 20-mK stage (shown in Fig. 7), which provides rejec-
tion exceeding 40 dB at the signal frequency ω0/2π = 7.2
GHz.
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FIG. 7. Schematic depicting the cryogenic experimental setup.
SS, stainless steel coaxial cable; SCN, silver-plated cupronickel
coaxial cable; SC, silver-plated copper coaxial cable.

Signal line. Three 20-dB attenuators are used to mini-
mize the transmission of thermal noise to the device, and
are situated at the 4-K, 900-mK, and 20-mK stages, respec-
tively. The signal line then connects to the rf port of the
bias tee (PE1615, Pasternack Enterprises), as shown in
Fig. 7.

Direct current line. The dc line connects to the bias tee
via a 1-dB attenuator at 4 K and two low-pass filters at 4
K and 100 mK (VLF-7200+ and VLF-105+, Mini-Circuits
Technologies), blocking room-temperature noise at pump
and signal frequencies. The dc line breaks out to a copper
wire that is thermalized to a bobbin fixed to the 20-mK
plate before connecting to the dc port of a bias tee (shown
in Fig. 7).

Detection path. A cryogenic circulator (Quinstar Tech-
nology, CTH0508KCS) routes the reflected output of the
KIPA through the detection chain. The circulator has a typ-
ical isolation of 18 dB at the amplifier frequency (ω0/2π =
7.2 GHz) and an insertion loss of 0.5 dB. A high-rejection
bandpass filter (Micro-Tronics Inc, BPC50403-01) imme-
diately follows and attenuates any power at the pump
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frequency that may leak through the diplexer. A dou-
ble isolator (Quinstar Technology, CTH0508KCS ×2) at
20 mK connects the output of the bandpass filter to a
cryogenic HEMT low-noise amplifier (Low Noise Factory,
LNF-LNC0.3_14A) situated at 4 K.

2. VNA measurements

Port 1 of a vector network analyzer (Rohde & Schwarz,
ZVB-20) is connected to the signal line via an attenu-
ator, used to reduce the minimum signal power of the
network analyzer. We use a low-noise amplifier (Mini-
Circuits, ZX60-06183LN+) at the output of the detection
chain, which connects to port 2 of the VNA.

The data presented in Fig. 1(c) were collected with the
pump source disabled. We apply a dc voltage (Yokogawa
Electric, GS2000) to the dc line, in series with an approx-
imately 10-k� resistor at room temperature. We observe a
2π phase shift in the frequency response measured with
the VNA, as expected for a λ/4 resonator measured in
reflection in the overcoupled regime (see Appendix E 1).
A linear fit to the first 100 MHz of the phase response is
used to estimate the line delay of our setup and is sub-
tracted from the complete phase response. The phase is
then increased by π to correct for the expected phase offset
that is removed by the fit to the line delay. To model the
resonance frequency shift, we fit a quadratic polynomial to
the resonance frequency as a function of the square of the
current.

The 14.318-GHz pump is then enabled with a 0.834-
mA dc bias current for the measurement of the phase-
insensitive gain in Fig. 2(a). We use the VNA to probe
the magnitude response about half the pump frequency.
To estimate the baseline of the magnitude response, we
disable the pump but leave the bias current active, which
yields an approximately flat magnitude response (see
Appendix J). We subtract the magnitude response of the
baseline measurement from the magnitude response of the
gain curve to obtain the data presented in Fig. 2(a). For
an detailed explanation of the fitting procedure, refer to
Appendix E.

To study the phase-sensitive gain, we operate the ZVB-
20 as a spectrum analyzer, using it to measure the incident
power on port 2. The signal line is connected to another
E8267D microwave source (Keysight Technologies) via an
attenuator and is configured for linear phase modulation at
half the pump frequency (7.1905 GHz) and approximately
−112 dBm of signal power at the sample. The pump and
signal sources are phase locked using a 1-GHz reference
clock. With the VNA configured for a zero-span measure-
ment and triggered off the edge of each phase ramp, we
obtain the data presented in Fig. 2(b). Again we disable
the pump, measure the baseline, and subtract the mean
reflected baseline power from each measurement to obtain
the phase-sensitive gain. Due to slow phase drifts between

the VNA local oscillator and the signal tone, we repeat
each measurement 40 times, and use the maximum of the
cross-correlation between pairs of traces to align the data
before averaging. We repeat this measurement for a range
of signal powers and pump powers, and use the maximum
of the gain curve to define the degenerate gain, as pre-
sented in Fig. 2(c). The compression power is determined
by the signal power where the presaturation gain drops by
1 dB. We define the presaturation gain by the average of
the degenerate gains measured for the ten smallest signal
powers.

3. Coherent state measurement

For the remainder of the measurements, the output of the
detection chain is connected to a homodyne detection setup
consisting of an I -Q mixer (Marki Microwave, IQ4509),
with the local oscillator supplied by another independent
ultralow-phase-noise microwave source (Keysight Tech-
nologies, E8267D) which is phase-locked with a 1-GHz
reference clock to the pump and signal sources. The local
oscillator frequency is set to 7.1905 GHz. The I and Q
outputs of the mixer connect to 1.9-MHz low-pass filters
(Mini-Circuits, SLP-1.9+) followed by two 5× preampli-
fiers (Stanford Research Systems, SIM914) connected in
series. I and Q are then digitized using a data acquisition
card (Keysight Technologies, M3300A) configured with a
sample rate of 6.25 MHz.

The ellipse measurements [depicted in Fig. 3(b)] were
performed with the pump and local oscillator phases fixed,
while the signal phase is stepped. Each (I , Q) pair is mea-
sured by averaging 106 samples collected at each phase.
The entire phase sweep is performed in less than 60 s
to minimize errors due to slow phase drift between the
signal and pump. Before each measurement, we calibrate
the phase of the local oscillator by rotating the I -Q plane
in software to measure the angle that produces the least
variance on Q. We refine phase calibration by repeating
the procedure three times in order to ensure measurement
consistency despite small channel imbalances between I
and Q. We measure 16 repetitions of the phase sweep
and software-rotate each data set to further minimize the
variance on Q due to slow phase drifts in the setup.
The repetitions are aligned by maximizing the pairwise
cross-correlation of I (Q) as a function of the signal
phase, and then averaged to produce the data presented in
Fig. 3(b).

We interleave a measurement with the pump off to mea-
sure the circular response of the reflected signal in the I -Q
plane. We measure GS (GA) by taking the ratio of the peak-
to-peak amplitudes of the pump-off response and pump-on
response for Q (I ) after averaging. These results are plot-
ted in Fig. 3(c). Phase calibration is performed with the
pump on, and the calibration phase is kept after the pump
is disabled.
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4. Noise measurements

To collect the data presented in Fig. 4, we replace
the room-temperature amplifier with a low-noise HEMT
amplifier (Low Noise Factory, LNF-LNR1_15A) for
improved noise performance.

APPENDIX C: HAMILTONIAN OF A KINETIC
INDUCTANCE PARAMETRIC AMPLIFIER

1. Zero bias

A kinetic inductance can be described as a nonlinear
inductance

Lk(I) = L0

(
1 + I 2

I 2∗

)
. (C1)

We consider a “telegrapher’s model” for a kinetic induc-
tance resonator, as illustrated in Fig. 8(a), and wish to write
down the Lagrangian for this system. The circuit has a
capacitance C and kinetic inductance Lk(I) per unit length.
We assume that the kinetic inductance is far greater than
the geometric inductance (Lg) along the transmission line
(i.e., L0  Lg). Because the inductance depends on cur-
rent, and current is related to charge in a straightforward
manner, we find it convenient in this situation to formulate
the Lagrangian with charge as the coordinate. We therefore
use the “loop charge” approach described in Ref. [59]. The
loop charges are related to the current across the inductors
and charge on the capacitors through

In = Q̇n, (C2)

qn = Qn − Qn−1, (C3)

respectively. Note that in this particular geometry, the loop
charge equals the cumulative charge Qn = ∑n−1

k=0 qk.
Applying Kirchhoff’s voltage law around a single loop

in the telegrapher’s circuit model [see Fig. 8(b)] yields

V(x + 	x, t) = V(x, t) + Lk(In)	xİn,

V(x + 	x, t) − V(x, t)
	x

= Lk(In)İn,

→ ∂xV(x, t) = Lk(I)∂tI ,

(C4)

where in the third line we take a continuum limit 	x → 0.
This is the well-known telegrapher’s equation, with a non-
linear inductance as provided in Eq. (C1), and describes
the relevant equation of motion for our circuit. The teleg-
rapher’s equation can equivalently be expressed as

1
C

∂2
x Q(x, t) = Lk(∂tQ)∂2

t Q, (C5)

with I = ∂tQ. The Lagrangian for the system that repro-
duces the telegrapher’s equation with its Euler-Lagrange

equation is found to be

LKIPA = 1
2

N−1∑
n=0

[
L0	x

(
1 + 1

6
Q̇2

n

I 2∗

)
Q̇2

n

− 1
C	x

(Qn+1 − Qn)
2
]

,

→ 1
2

∫ l

0
dx

[
L0

(
1 + 1

6
(∂tQ)2

I 2∗

)
(∂tQ)2

− 1
C

(∂xQ)2
]

,

= 1
2

∫ l

0
dx

[
L0(∂tQ)2 − 1

C
(∂xQ)2

]

+ L0

12I 2∗

∫ l

0
dx(∂tQ)4, (C6)

where in the third line we once again take a continuum
limit 	x → 0. We note that this form of the Lagrangian
differs from the work of Ref. [60], but correctly reproduces
the classical telegrapher’s equations for a kinetic induc-
tance transmission line [Eq. (C5)] assumed in recent work
[27,30].

The canonical momentum corresponding to Q is

� = ∂LKIPA

∂Q̇
= L0∂tQ + L0

3I 2∗
(∂tQ)3, (C7)

and the Hamiltonian is given by

H =
∫ l

0
dx�∂tQ − L

= 1
2

∫ l

0
dx

[
L0(∂tQ)2 + 1

C
(∂xQ)2

]

+ 3L0

12I 2∗

∫ l

0
dx(∂tQ)4. (C8)

To express this in terms of � and Q we use the approxima-
tion

∂tQ = 1
L0

� − 1
3I 2∗

(∂tQ)3

= 1
L0

� − 1
3I 2∗ L3

0
�3 + O

(
1
I 4∗

)
(C9)

and

(∂tQ)2 � 1
L2

0
�2 − 2

3I 2∗ L4
0
�4, (C10a)

(∂tQ)4 � 1
L4

0
�4. (C10b)
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Z(ω) QN–1 QN–2 Q1 Q0

x = 0x = l(a)

(b)

C

Lk(QN–1)

QnV(x) V(x+Δx)

Δx

C

Lk(Qn)

QN

FIG. 8. (a) Telegrapher’s model of a kinetic inductance resonator. (b) A single loop of the telegrapher’s model.

Thus, to first order in 1/I 2
∗ we find

HKIPA = H0 + H1, (C11a)

H0 = 1
2

∫ l

0
dx

[
1
L0

�2 + 1
C

(∂xQ)2
]

, (C11b)

H1 = − 1
12I 2∗ L3

0

∫ l

0
dx�4. (C11c)

a. Mode expansion for the quarter-wavelength
resonator

We start by finding the mode functions of a linear
(I∗ → ∞) λ/4 resonator. In this case, the Euler-Lagrange
equation corresponding to LKIPA is the telegrapher’s
equation,

v2
0∂

2
x Q = ∂2

t Q, (C12)

with v0 = 1/
√

L0C the linear phase velocity.
The λ/4 resonator is shorted at x = 0 correspond-

ing to a boundary condition of zero voltage, or (Q1 −
Q0)/C	x → ∂xQ(x = 0)/C = 0 in the continuum limit.
At x = l we leave the boundary condition general by tak-
ing an impedance Z(ω) to ground and imposing Ohm’s law
V(x = l) = −Z(ω)I(x = l) (for an I convention defined in
Fig. 8) at the boundary, with V(x = l) = ∂xQ(x = l)/C and
I(x = l) = ∂tQ(x = l). In summary,

∂xQ(x = 0) = 0 (short circuit), (C13a)

∂tQ(x = l) = − 1
Z(ω)C

∂xQ(x = l) [Z(ω) to ground].

(C13b)

An open (short) boundary condition at x = l is recovered
in the limit Z(ω) → i∞ [Z(ω) → i0].

We use an ansatz,

Q(x, t) = i
∑

m

Am cos (kmx + φm) [am
†(t) − am(t)],

(C14)

with a(t) = ae−iωmt and km = ωm/v0. The first boundary
condition is met by setting φm = 0. The second boundary
condition gives

tan(kml) = ∂tQm(t)
ωmQm(t)

Z(ωm)

Z0
, (C15)

where Z0 = √
L0/C is the characteristic impedance of the

λ/4 resonator and Qm(t) is the time-dependent component
of Q(x, t) oscillating at ωm. The equation must in general
be solved numerically for km. In the case of an open circuit
boundary condition where Z(ω) → i∞, we simply have

cos(kml) = 0 ⇒ km = (2m + 1)π

2l
(open), (C16a)

ωm = (2m + 1)πv0

2l
. (C16b)

The band-stop filter presents the resonator with a
large impedance for frequencies within the stop band.
To simplify the following analysis we assume an infinite
impedance, that is, an open boundary condition at x = l,
which allows us to utilize the relations in Eq. (C16).

In the linear case, the canonical momentum is just � =
L0Q̇, that is,

�(x, t) = −
∞∑

m=0

L0ωmAm cos (kmx) [am
†(t) + am(t)].

(C17)
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Quantization proceeds by imposing the commutation rela-
tions [am(t), an

†(t)] = δnm. The normalization constants Am
are determined by inserting Q(x, 0) and �(x, 0) into HKIPA
and requiring

H0 =
∞∑

m=0

�ωm

(
am

†am + 1
2

)
, (C18)

which leads to Am = 1/
√

lL0ωm. We therefore find

Q(x, t) = i
∞∑

m=0

√
�

LTωm
cos (kmx) [am

†(t) − am(t)],

(C19a)

�(x, t) = − 1
l

∞∑
m=0

√
�LTωm cos (kmx) [am

†(t) + am(t)],

(C19b)

where we define LT = L0l as the total zero-bias kinetic
inductance of the resonator.

More generally, we can interpret Eq. (C19) as a change
of variables from {Q(x, t), �(x, t)} to {am(t), am

†(t)}, sub-
ject to the spatial boundary constraints. Inserting the form
of �(x, t) into Eq. (C11c), keeping only the fundamental
mode and dropping fast-rotating terms and constants, we
find

H1 = − (�ω0)
2

32LTI 2∗
(a† + a)4,

≈ − 3(�ω0)
2

16LTI 2∗
(2a†a + a†2

a2),

= �Ka†a + �K
2

a†2
a2. (C20)

The Kerr nonlinearity is thus

K = −3
8

�ω0

LTI 2∗
ω0. (C21)

Here LTI 2
∗/2 can be interpreted as a characteristic energy

stored in an inductor with inductance LT and current I∗,
which is also related to the superconducting pairing energy
Ep ∝ LTI 2

∗ [29].

2. Current bias

a. Mode expansion

In the presence of a current bias, we modify the bound-
ary condition at x = l to be

∂tQ(x = l) = − 1
Z(ω)C

∂xQ(x = l) + Ib. (C22)

We take the impedance to be a stop-band filter at the
relevant resonator mode frequencies:

Zs(ω) =
{

i∞, ω ∈ �0,
50 �, ω ∈ �1, (C23)

where �0 represents the frequency band over which
we have standing resonator modes, and �1 covers the
impedance matched frequency band, where we will have
traveling waves. For Ib = 0 we can then write

Q(x, t) = i
∑

m

√
�

LTωm
cos (kmx) [am

†(t) − am(t)]

+ i
∫

�1

dω

√
�

πωv0L0
cos

(
ωx
v0

)
[bω

†(t) − bω(t)],

(C24)

with bω
†(t) = bω

†eiωt. We already know that the first term
satisfies the boundary conditions at frequencies ωm from
our previous analysis, with ωm, km given in Eq. (C16). For
frequencies ω ∈ �1, on the other hand, the circuit is mod-
eled as a semi-infinite matched transmission line connected
to ground at x = 0.

In the presence of a current bias, we simply add to
Q(x, t) a term qb(x, t) where q̇b(x, t) = Ib(x, t). We assume
that the pump frequencies are in the traveling-wave band
�1. Equivalently, we can replace bω → bω + β(ω), with
β(ω) representing the frequency component of qb(t) at
frequency ω. This can be interpreted as separating the con-
tinuum mode into a strong average coherent component
β(ω) and a fluctuation (or quantum) term bω. We take the
pump to be infinitely narrow in frequency, and therefore
set β(ω) = βpδ(ω − ωp) + βdcδ(ω). The dc component
is independent of space and trivially satisfies both the
wave equation Eq. (C12) and the short ∂xQ = 0 boundary
condition. We therefore, finally, have

Q(x, t) = i
∑

m

√
�

LTωm
cos (kmx) [am

†(t) − am(t)]

+ i
∫

�1

dω

√
�

πωv0L0
cos

(
ωx
v0

)
[bω

†(t) − bω(t)]

+ qp(x, t) + qdc(t), (C25)

where:

q̇dc(t) = Idc, (C26a)

q̇p(t) = Ip(x, t) = cos
(

ωpx
v0

+ φp

)
Ip(t). (C26b)

In our experiments we apply a pump tone Ip(x, t) that
oscillates at a frequency very close to 2ω0 and we will
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therefore assume ωp = 2ω0 for simplicity. Furthermore,
the boundary condition in Eq. (C13a) implies that φp = 0.
Thus,

Ip(x, t) = cos(2k0x)Ip(t). (C27)

As before, we will use the strategy of taking the mode
expansion of �(x, t) in the absence of any nonlinearity,
and substitute this back into the nonlinear Hamiltonian H1.
Using �(x, t) = L0Q̇(x, t), we find

�(x, t) = −1
l

∑
m

√
�LTωm cos (kmx) [am

† + am]

− 1
v0

∫
�1

dω

√
�ωZ0

π
cos

(
ωx
v0

)
[bω

† + bω]

+ L0 cos(2k0x)Ip(t) + L0Idc. (C28)

b. Hamiltonian

For the linear Hamiltonian we have, as before,

H0 =
∞∑

m=0

�ωm

(
am

†am + 1
2

)
, (C29)

where we have kept only the resonator modes and dropped
the continuum modes in �1. To proceed we will substi-
tute the (Schrödinger picture) flux field into H1. In general
this will lead to coupling (e.g., cross-Kerr) between res-
onator and quantum continuum modes. However, given
that the nonlinearity of the KIPA is extremely weak, we
will neglect the quantum fluctuations of the current, that
is, drop the bω modes completely from the nonlinearity. We
also, for simplicity, truncate to the fundamental resonator
mode, and thus use

�(x, t) = − 1
l

√
�LTω0 cos (k0x) (a† + a)

+ L0 cos(2k0x)Ip(t) + L0Idc. (C30)

Dropping fast-rotating terms in a, a† from H1, we have

H1 = − 3(�ω0)
2

16I 2∗ LT

(
2a†a + a†2

a2
)

− �ω0

8I 2∗

[
2I 2

dc + 2IdcIp(t) + I 2
p (t)

] (
2a†a + a†2 + a2

)
.

(C31)

We take the time-dependent ac current amplitude to be

Ip(t) = Ip

2
(
e−i(ωp t+ϕp ) + ei(ωp t+ϕp )

)
. (C32)

Substituting Ip(t) into H1 and transferring to a frame
rotating at ωp/2, the KIPA Hamiltonian becomes

HKIPA = �

(
ω0 + δdc + δp + K − ωp

2

)
a†a

+ �ξ

2
a†2 + �ξ ∗

2
a2 + �K

2
a†2

a2, (C33)

where any fast-rotating pump terms have been ignored. We
thus define the following important Hamiltonian parame-
ters:

δdc = − 1
2

I 2
dc

I 2∗
ω0, (C34a)

δp = − 1
8

I 2
p

I 2∗
ω0, (C34b)

K = − 3
8

�ω0

LTI 2∗
ω0, (C34c)

ξ = − 1
4

IdcIp

I 2∗
ω0e−iϕp . (C34d)

We note that the term δp arises from the square of the
pump current, which has a nonzero average value of I 2

p /2
and therefore causes an effective detuning of the cavity
frequency.

As a sanity check, in the absence of a pump tone (i.e.,
Ip = 0) we find the resonance frequency of the cavity to be

ω′
0 ≈ ω0

(
1 − 1

2
I 2
dc

I 2∗

)
, (C35)

neglecting the Kerr term. For (Idc/I∗)2 � 1, which is the
approximation used in Eq. (C10), we can write

ω′
0 ≈ ω0√

1 + I 2
dc/I 2∗

= π

2l
√

CLk(Idc)
, (C36)

which is the fundamental frequency of a λ/4 resonator with
a per-unit length capacitance of C and inductance Lk(Idc)

[provided by Eq. (C1)], as expected.

3. DPA approximation

A comparison of the expressions for K [Eq. (C34c)] and
ξ [Eq. (C34d)] reveals why the KIPA exhibits weak higher-
order nonlinearities: the photon energy is a minuscule
fraction of the characteristic nonlinear inductive energy
[i.e., �ω0/(LTI 2

∗ ) � 1] by virtue of I∗ being large.
Using the per-square kinetic inductance of the film L� =

32 pH (see Appendix A 3), we find LT = L�(l/w) = 3.84
nH (with l and w the length and width of the λ/4 res-
onator), which together with the measured value of I∗
gives |K |/2π ≈ 0.13 Hz, a completely negligible quantity
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relative to all other system parameters. Compared to the
coupling rate, we achieve the ratio κ/|K | > 108, greater
than the typical values of κ/|K | < 104 seen in JPAs [14].
Because the Kerr term is so small, we approximate the
Hamiltonian for the KIPA with the Hamiltonian for the
ideal DPA for the remainder of this work:

HKIPA ≈ HDPA = �	a†a + �ξ

2
a†2 + �ξ ∗

2
a2, (C37)

with

	 = ω0 + δdc + δp − ωp/2, (C38)

which is identical to Eq. (C33) with the Kerr terms
neglected.

4. Josephson DPA comparison

To understand why the KIPA is able to closely approx-
imate the DPA Hamiltonian, it is instructive to compare
the scaling of the inductance and critical current with that
observed in JPAs that exploit SQUID loops. Both a single
Josephson junction (JJ) and a kinetic inductance (KI) wire
have an inductance expressed as

LT(J ) = �Rn

π	0
, (C39)

where LT (LJ ) is the total kinetic (Josephson) inductance,
Rn is the normal state resistance of the KI wire (JJ), and 	0
is the superconducting gap energy. The critical current of a
JJ is provided by the Ambegaokar-Baratoff formula,

Ic = π	0

2eRn
, (C40)

which we can use to rewrite the Josephson inductance as

LJ =
(

�0

2π

)
1
Ic

, (C41)

where �0 is the superconducting flux quantum. The self-
Kerr interaction strength of a JPA with a single SQUID
loop is [14,16]

K = −�ω0

8EJ
ω0, (C42)

where ω0 is the amplifier operating frequency and the
Josephson energy EJ is written as

EJ =
(

�0

2π

)
Ic. (C43)

It is desirable to minimize the Kerr term in a DPA, since
it limits the dynamic range and squeezing potential [13–
16,38]. This implies that a large EJ and therefore Ic are

necessary. Consequently, as a result of Eq. (C41) the
Josephson inductance will also be reduced. For a critical
current of Ic = 1 mA, we find LJ ≈ 0.3 pH, a value that
is approximately two to three orders of magnitude smaller
than the geometric inductance in a typical lumped element
or distributed resonator at microwave frequencies. This
is undesirable, since it has been shown that to minimize
the effect of higher-order nonlinearities in the Josephson
cosine potential, the Josephson inductance should not be
much smaller than the geometric inductance [38].

For a thin KI wire, the nonlinear current (which is pro-
portional to the critical current) can be estimated from
Mattis-Bardeen theory [29] and is given by

I∗ =
√

πN0	
3
0V

�Rn
, (C44)

where N0 is the single-spin density of electron states at the
Fermi energy and V is the volume of the wire. This rela-
tion holds in the limit that the film is thin compared to
its penetration depth, which is true for our 9.5-nm-thick
NbxTi1−xN film. From Eq. (C44) it is becomes evident
that one can control the current nonlinearity in a KI wire
independently of its inductance. Increasing both the cross-
sectional area A and the length l of the wire by a factor α

raises the volume V = Al by an amount α2, but leaves the
normal state resistance Rn = ρnl/A (with ρn the resistiv-
ity) unchanged. This in turn leaves the kinetic inductance
LT unchanged. A wire of width w = 0.1 μm and length
l = 10 μm has the same kinetic inductance as a wire of
width w = 10 μm and length l = 1000 μm, but a nonlinear
current I∗ that is two orders of magnitude smaller. In our
resonator we achieve I∗ ≈ 5 mA with LT = 3.84 nH, an
inductance more than four orders of magnitude larger than
what would be accessible using a single JJ with an equiv-
alent critical current. We have summarized the nonlinear
current, inductance, energy, and self-Kerr dependencies for
a single SQUID JJ device and a KI wire in Table I.

Instead of increasing the critical current in a JPA with
a single SQUID loop, the common approach is to use an

TABLE I. Comparison of the nonlinear current, inductance,
energy, and Kerr interaction strength for a single SQUID loop
JJ device and a KI wire.

Josephson junction Kinetic inductance

Ic = π	0

2eRn
I∗ =

√
πN0	

3
0V

�Rn

LJ = �0

2π

1
Ic

= �Rn

π	0
LT = �Rn

π	0

EJ = �0

2π
Ic Ep = 2N0	

2
0V

K = −�ω0

8EJ
ω0 = − �ω0

8LJ I 2
c
ω0 K = −3�ω0

8Ep
ω0 = − 3�ω0

4LTI 2∗
ω0
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array of N SQUIDs, each with a critical current NIc, energy
NEJ , and inductance LJ /N . The total inductance of the
array remains LJ , but the self-Kerr strength of the array
is reduced by a factor N 2 relative to a single SQUID with
a critical current Ic [15,38]. As discussed in Ref. [38], in
practice this is difficult to implement, since not all SQUID
loops will have an identical Josephson energy (due to fab-
rication imperfections and inhomogeneous coupling to the
flux line), and, as further noted in Ref. [16], the validity of
the assumptions that lead to the N 2 reduction in the Kerr
term breaks down when the SQUID array approaches the
size of the wavelength.

An equivalent picture can be formed for the KI wire
by equating the nonlinear kinetic inductance energy with
the superconducting pairing energy Ep ∝ LTI 2

∗ [29], which
itself depends on the effective volume of the inductance
(see Table I). Since |K | ∝ 1/Ep , as the volume over which
LT is spread gets larger, the self-Kerr interaction gets
smaller. This is in a sense analogous to the use of SQUID
arrays in JPAs, where, as noted, distributing many weakly
nonlinear SQUIDs throughout the resonator can substan-
tially lower the self-Kerr interaction strength relative to the
case of a single SQUID [38]. It is interesting to note that if
we fix the length of the wire and only vary its area, then
a similar scaling to the Josephson junction is expected,
where an increase in the nonlinear current is accompanied
by a reduction in the inductance by the same factor (i.e.,
LT ∝ 1/I∗).

APPENDIX D: INPUT-OUTPUT THEORY FOR A
DPA

The field operators a, �, and Q and Hamiltonian HKIPA
so far describe the intracavity field dynamics. In the
experimental setting we stimulate the resonator with an
input field operator ain and measure a reflected response
aout that enter and exit the cavity via the coupling cir-
cuit. For example, a vector network analyzer measures
the reflection parameter S11(ω) = 〈ain〉/〈aout〉. To obtain a
classical description of the microwave response we would
typically adopt a scattering matrix approach [58]. The
derivation below follows that presented in Ref. [61], and
is reproduced here for completeness.

Input-output theory, developed by Gardiner and Collett
[62], extends the scattering matrix formalism to the quan-
tum regime. Let H be the Hamiltonian written in terms of
the creation and annihilation operators a† and a, where H is
coupled to the bath at rate γ , used to model the losses in the
system, and input field ain at rate κ (see Fig. 9). We write
down the following Heisenberg picture master equation to
describe the system:

∂a(t)
∂t

= [a(t), H ]
i�

− κ̄a(t) + √
κain(t) + √

γ bin(t),

(D1)

FIG. 9. The single-port input-output theory system, with input
and output fields ain and aout, intracavity field operator a, and
bath input and output fields bin and bout. The input field is cou-
pled to the cavity at rate κ , and the cavity to the bath at rate γ .
The accompanying circuit is colored according to the correspon-
dence with the associated fields and coupling constants. The bath
continuum is coupled to the circuit via the resistor.

where κ̄ = (γ + κ)/2 and bin is the bath input field oper-
ator. The output field operator aout is then given by the
input-output relation

aout(t) + ain(t) = √
κa(t). (D2)

Consider now the linear λ/4 resonator Hamiltonian pro-
vided in Eq. (C18), truncated to the fundamental mode. We
rewrite Eq. (D1) in the Fourier domain using

a[ω] = 1√
2π

∫ ∞

−∞
eiωta(t)dω, (D3)

which gives

−iωa[ω] = − i
�

(
a[ω], �ω0a†[ω]a[ω]

) − κ̄a[ω]

+ √
κain[ω] + √

γ bin[ω]

−iωa = −iω0a − κ̄a + √
κain + √

γ bin. (D4)

Substituting for a using the input-output relation [Eq. (D2)]
yields the output field operator in terms of the input and
bath fields:

−iω(aout + ain) = −(κ̄ + iω0)(aout + ain)

+ κain + √
γ κbin

⇒ aout =
(

κ

κ̄ − i(ω − ω0)
− 1

)
ain

+
√

γ κ

κ̄ − i(ω − ω0)
bin. (D5)

Treating the bath input field bin as a thermal state such
that 〈bin〉 = 0, we retrieve the expression for the reflection
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parameter:

S11[ω] = 〈aout[ω]〉
〈ain[ω]〉 (D6)

= κ

κ̄ − i(ω − ω0)
− 1. (D7)

We can apply the same mathematics to the idealized
KIPA Hamiltonian [Eq. (C37)]. We first write the master

equation in the Fourier domain, as before [14]:

−iωa = −
(

κ̄a + i	a + i
ξ

2
[
a, a†2] + i

ξ ∗

2
[
a, a2])

+ √
κain + √

γ bin,

−iωa = −[(κ̄ + i	)a + iξa†] + √
κain + √

γ bin. (D8)

Next, we take the Hermitian conjugate of both sides. Note
that in the Fourier domain (a[ω])† = a†[−ω]. To simplify
notation the frequency reversal is implied. We find

iωa† = −[(κ̄ − i	)a† − iξ ∗a] + √
κa†

in + √
γ b†

in. (D9)

Combined with Eq. (D8), we obtain the matrix equation

iω
(−a

a†

)
=

(−i	 − κ̄ −iξ
iξ ∗ i	 − κ̄

) (
a
a†

)
+ √

κ

(
ain

a†
in

)
+ √

γ

(
bin

b†
in

)

⇒
(

a
a†

)
= −√

κ

(−i	 + κ̄ + iω −iξ
iξ ∗ i	 − κ̄ − iω

)−1 [(
ain

a†
in

)
+

√
γ

κ

(
bin

b†
in

)]

= −
√

κ

D[ω]

(−i	 + κ̄ + iω −iξ
iξ ∗ i	 − κ̄ − iω

) [(
ain

a†
in

)
+

√
γ

κ

(
bin

b†
in

)]
, (D10)

where D[ω] = 	2 + (κ̄ − iω)2 − |ξ |2. Substituting the
input-output relation Eq. (D2) gives the input-output
equation for the ideal DPA [14],

aout[ω] = gS[ω]ain[ω] + gI [ω]a†
in[−ω]

+
√

γ

κ

[
(gS[ω] + 1)bin[ω] + gI [ω]b†

in[−ω]
]

,

(D11)

where we make the frequency reversal explicit, and define
the signal and idler gains

gS[ω] = κκ̄ − iκ(	 + ω)

D[ω]
− 1, gI [ω] = −iξκ

D[ω]
.

(D12)

APPENDIX E: PHASE-INSENSITIVE
AMPLIFICATION

Phase-insensitive gain is readily measured with a vec-
tor network analyzer once an appropriate pump tone and
bias current are applied to the device concurrently. For the
measurements in Fig. 2(a), we chose a pump frequency of

ωp/2π = 14.381 GHz ≈ ω0/π , close to twice the resonant
frequency of ω0/2π = 7.1924 GHz for the bias current
Idc = 0.834 mA. Ideally, the KIPA should be operated at
precisely 	 = 0, or ωp ≈ 2(ω0 + δdc + δp) for maximal
gain. However, in our experiments we optimize the pump
frequency for gain at a fixed pump power and bias current,
arriving at a pump configuration close to optimal. A fixed
pump frequency of ωp/2π = 14.381 GHz is used through-
out the experiments, despite the expected shift in resonance
[Eq. (C34)].

The VNA supplies a signal tone, which is swept about
ωp/2, while the reflected response from the KIPA is mea-
sured. Because the magnitude response of the KIPA is
approximately flat, we measure gain by taking the dif-
ference between the response with the pump on and the
pump off, depicted in Fig. 2 at different pump powers. The
KIPA produces an amplified signal tone ωs at its output,
along with an idler at ωi such that energy is conserved in
the 3WM process, ωp = ωs + ωi. Phase-insensitive gain
occurs when ωs = ωp/2 + 	ω with |	ω| exceeding the
bandwidth resolution of the measurement. Gain increases
with the pump power and is found to be in excess of 40 dB
before the KIPA crosses the threshold where spontaneous
parametric oscillations occur (see Appendix E 3).
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1. Gain feature fits

To characterize the line-shape of the nondegenerate
amplification features in the main text, we define the reflec-
tion parameter �(ω), which is simply the signal gain [Eq.
(D12)] written in the laboratory frame (i.e., gS[ω] → �(ω)

with ω → ω − ωp/2) [14]:

�(ω) = κ(κ + γ )/2 + iκ(	 + ω − ωp/2)

	2 + [
(κ + γ )/2 + i(ω − ωp/2)

]2 − |ξ |2
− 1.

(E1)

To fit the data in Fig. 2, we adopt a complex coupling
rate in the reflection model �(ω): κ ∈ R → κ ∈ C, with
complex phase Arg(κ). A complex quality factor may be
used to model an asymmetric response that occurs due to
an impedance mismatch across the coupling circuit where
reflections at the coupler interfere with photons exiting the
resonator [63,64].

The pump current in our device is not precisely known.
We simulate an impedance of Z0 = 118 � for the λ/4 res-
onator (using the software Sonnet) and introduce a loss
parameter λp that quantifies the amount of pump power
transmitted from room temperature down to the sample

such that I 2
p = 2λpPpump/Z0, where Ppump is the pump

power at the microwave source.
We may predict the parameter 	 = ω0 + δdc + δp −

ωp/2 from our theory [Eqs. (C34a) and (C34b)] as ωp and
Idc are known, and we have measured ω0 and I∗. Further,
Eq. (C34d) allows us also to predict |ξ | as a function of the
pump current in the sample. To further constrain the model
we assume the quality factor Qi = ω0/γ to be 105 for all
pump powers. We base this estimate on the internal quality
factors observed in similar devices (e.g., the device mea-
sured in Fig. 23), and note that in the overcoupled regime
in which the KIPA operates Qi has minimal impact on the
predicted gain as κ + γ ≈ κ . We are left with a model
where the only free parameters are |κ|, Arg(κ) and λp . The
fit results are shown in Fig. 10.

We observe that κ varies from approximately 52
MHz to approximately 54 MHz, corresponding to an
average coupling quality factor of Qc ≈ 135. The
root-mean-square pump current increases the kinetic
inductance and thus modifies the coupling circuit (i.e., it
changes the impedance step in the band-stop filter), which
might explain the pump-power-dependent coupling rate κ .
A weak drift (approximately 30 mrad) in the phase of the
coupling rate was necessary to fit the data [see Fig. 10(c)].
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FIG. 10. (a) Phase-insensitive gain as a function of frequency ω = 	ω + ωp/2 for different pump powers (circles). Traces are
labeled by the pump power at the cavity input. The fitted theoretical frequency response is plotted (solid lines). The parameters |κ|,
Arg(κ), and the pump line transmittance λp were the only free parameters. (b) |κ| as a function of the estimated pump current in the
device (circles). (c) Arg(κ) as a function of pump power. (c) Pump transmittance λp as a function of pump power.
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(a)

(b)

FIG. 11. (a) Bandwidth versus peak
phase-insensitive gain. The solid black
line is a log-linear fit to the band-
width as a function of gain in decibels.
(b) Gain-bandwidth product (GBP) ver-
sus peak phase-insensitive gain (bottom).
The dashed black line is the average GBP
across all gains.

This is not unreasonable, as a small shift in the cavity
and coupling circuit impedances due to the pump cur-
rent will influence any reflections that occur at the cavity
input.

From the fits, we extract an average pump attenuation
of −10 log(λp) = 22.8 dB. At room temperature the mea-
sured loss of the lines and components is approximately
30 dB. Since the line and component loss is expected to
reduce at cryogenic temperatures, this fitted average pump
attenuation is realistic. We also note that the extracted
pump attenuation increases marginally as the pump power
increases, rising by approximately 0.4 dB over the range
of powers explored [see Fig. 10(d)]. This could be an indi-
cation that the pump becomes slightly depleted as the gain
rises [19].

Overall, we find excellent quantitative agreement with
our theory, and are able to predict the observed gain curves
from the KIPA Hamiltonian [Eqs. (C33)–(C34)] derived in
Appendix C.

2. Gain-bandwidth product

From the fits to the amplification features depicted in
Fig. 10, we can extract the gain-bandwidth product (GBP),
defined by the product of the peak phase-insensitive ampli-
tude gain G and the bandwidth when the amplitude gain
drops to G/

√
2 [15]. We find that the GBP of the KIPA

shows good consistency across the different pump powers,
as evidenced by the highly linear log-log plot of the gain
and bandwidth (see Fig. 11), and we extract an average
GBP of 53(7) MHz.

3. Parametric self-oscillations

Increasing the pump current Ip , and hence ξ , will not
increase the gain indefinitely. Past a certain threshold, the
device enters the regime of parametric self-oscillation and

ceases to behave as an amplifier [65]. Pumped at twice
the resonant frequency, the cavity spontaneously produces
photons at ω0 that grow rapidly in number. Competi-
tion from system nonlinearities eventually limits growth,
resulting in a fixed power ω0 tone at steady state.

Although we do not study the KIPA in the self-
oscillation regime in this work, we use our theory to predict
the range of pump currents at which the KIPA behaves as
a parametric amplifier. The parametric oscillation thresh-
old corresponds to the zero crossing of the denominator of
|�(ω)|. At the point of maximum phase-sensitive amplifi-
cation, spontaneous oscillations occur when |ξ |2 ≥ 	2 +
(κ + γ )2/4. Using our theory along with the coupling rate
|κ| extracted from the fits depicted in Fig. 10, we can pre-
dict the pump current at which parametric self-oscillation
occurs. We assume a real coupling rate κ to simplify the
analysis.

Figure 12 depicts the predicted |ξ | as a function of pump
power alongside the predicted threshold of parametric self-
oscillation:

√
	2 + (κ + γ )2/4. The threshold increases

with the pump power due to the pump-dependent detun-
ing δp , which increases 	2 as the pump current becomes
larger. The curves intersect at a pump power of Ppump =
4.22 dBm referred to the output of our microwave source.

We found in practice that the KIPA would self-oscillate
beyond a pump power of 4.10 dBm, demonstrating an
excellent quantitative agreement between experiment and
theory.

APPENDIX F: PHASE-SENSITIVE
AMPLIFICATION

1. Phase-sensitive gain

When applying a signal tone at half the pump frequency
ωs = ωp/2, the KIPA enters the degenerate mode of
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operation, producing phase-sensitive gain as the signal and idler tones interfere. From the input-output equations [see
Eq. (D12)], the rotating-frame gain is �(ϕp) = gS[0] + gI [0]. More explicitly, the phase-sensitive gain is

|�(ϕp)| =
∣∣∣∣κ(κ + γ )/2 + iκ	 + iκ|ξ |e−j ϕp

	2 + (κ + γ )2/4 − |ξ 2| − 1
∣∣∣∣

=
√[

κ[(κ + γ )/2 − |ξ | sin(ϕp)]
	2 + (κ + γ )2/4 − |ξ |2 − 1

]2

+
[

κ[	 + |ξ | cos(ϕp)]
	2 + (κ + γ )2/4 − |ξ |2

]2

, (F1)

where we separate out the modulus of ξ and its argument
corresponding to the pump phase ϕp [see Eq. (C34d)].
From Eq. (F1) we observe that the KIPA gain is sensitive
to the pump phase ϕp .

Experimentally, we observe phase-sensitive amplifica-
tion by modulating the phase of a signal tone which has a
frequency of ωp/4π = 7.1905 GHz. As ϕp represents the
phase difference between the signal and the pump, phase
modulation of either tone will allow us to characterize the
phase-sensitive gain. Figure 2(b) of the main text [repro-
duced here in Fig. 13(a)] depicts the gain of the KIPA as a
function of pump phase, where up to 26 dB of deamplifi-
cation and close to 50 dB of amplification are observed.
Compared to phase-insensitive amplification, additional
gain is observed in degenerate mode due to the construc-
tive interference that occurs between the signal and idler.
The traces are aligned such that the point of maximum
deamplification occurs for ϕp = 0.

Figure 13(b) shows the phase-sensitive gain predicted
by our theory [Eq. (F1)], where we use interpolated data
from the fitted κ points in Fig. 10, the extracted pump loss

FIG. 12. The rate |ξ | and parametric self-oscillation threshold√
	2 + (κ + γ )2/4 versus the pump power at the microwave

source output. The parametric self-oscillation threshold occurs
at the intersection of these curves indicated by the black dashed
line at Ppump = 4.22 dBm.

λp = 22.8 dB, and the pump-current-dependent expres-
sions for ξ and δω from our Hamiltonian derivation
(Appendix C). We find excellent agreement with theory for
the amplification regions of each pump power. On the other
hand, the theory predicts greater deamplification than is
observed experimentally for the three highest pump pow-
ers. To obtain the data plotted in Fig. 13(a), significant
averaging was required to reduce the noise. We believe that
the maximum deamplification of 26 dB measured is par-
tially limited by our ability to resolve the sharp gain feature
at ϕp = 0, which is highly sensitive to instrumental phase
noise and slow phase drifts between the signal and pump.
Reflections may also limit the observed deamplification, as
discussed in Appendix G.

2. One-decibel compression point

The 1-dB compression point of the KIPA is character-
ized in phase-sensitive mode. After calibrating the phase
of the pump to achieve maximum amplification (i.e., ϕp ≈
π/2), we characterize the degenerate 1-dB compression
point of the KIPA by increasing the signal power until the
gain drops by 1 dB, as is presented in Fig. 2(c). For approx-
imately 20 dB of phase-sensitive gain, we find a compres-
sion power of −49.5(8) dBm at the KIPA output, com-
parable to the compression performance of kinetic induc-
tance traveling-wave amplifiers [23,24,27]. Our HEMT is
expected to saturate for input powers of approximately
−46 dBm [66]. Factoring in the loss between the KIPA
and the HEMT, we are unable to rule out the possibility
that the measured the 1-dB compression point is limited
by the HEMT, and that the dynamic range of the KIPA is
indeed higher.

APPENDIX G: PHASOR TRANSFORMATION OF
THE DPA

1. The phasor transformation

Rewriting the input-output relation [Eq. (D11)] in the
degenerate case (ω = 0), we find [14]

aout = gsain + gia
†
in +

√
γ

κ

[
(gs + 1)bin + gib

†
in

]
, (G1)
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(a) (b)

FIG. 13. (a) Measured gain and (b) theoretical gain as a function of the relative pump and signal phase for an input signal of
frequency ωs = ωp/2. Traces are labeled by the pump power at the device input (see legend). A slight discrepancy between theory and
experiment at the highest pump power (−18.8 dBm) is due to an increasing sensitivity of the peak theoretical gain to coupling rate |κ|.

a†
out = g∗

s a†
in + g∗

i ain +
√

γ

κ

[
(g∗

s + 1)b†
in + g∗

i bin
]
, (G2)

giving the output quadrature relations

Iout = 1
2
(a†

out + aout)

= 1
2

[
εain + ε∗a†

in +
√

γ

κ

[
(ε + 1)bin + (ε∗ + 1)b†

in

]]

(G3)

Qout = i
2
(a†

out − aout)

= i
2

[
ε′∗a†

in − ε′ain +
√

γ

κ

[
(ε′∗ + 1)b†

in − (ε′ + 1)bin
]]

(G4)

where ε = gs + g∗
i and ε′ = gs − g∗

i . Using the identities

1
2
[
β∗a† + βa

] = Re(β)I − Im(β)Q, (G5)

i
2
[
β∗a† − βa

] = Re(β)Q + Im(β)I , (G6)

where β is an arbitrary complex number (such as ε or ε′),
we arrive at a set of linear equations for the output field
quadratures:

(
Iout
Qout

)
= AG

(
Iin
Qin

)
+

√
γ

κ

(
AG + 1

) (
Ib
Qb

)
, (G7)

where Ib and Qb are the quadrature operators of the bath
field. As a function of the pump phase ϕp , the affine
transformation of the quadratures AG is given by

AG(ϕp) =
(

Re(ε) −Im(ε)

Im(ε′) Re(ε′)

)

= κ

	2 + (κ + γ )2/4 − |ξ |2
(

(κ + γ )/2 − |ξ | sin(ϕp) −|ξ | cos(ϕp) + 	

−|ξ | cos(ϕp) − 	 (κ + γ )/2 + |ξ | sin(ϕp)

)
− 1. (G8)

The pump phase ϕp has the effect of rotating the basis of the transformation. In fact, one can show that AG(ϕp) =
RT(ϕp)AG(0)R(ϕp) where R(θ) is the standard 2 × 2 rotation matrix.
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As the bath is a thermal state, taking the expectation of
both sides of Eq. (G7) gives the simple expression

( 〈Iout〉
〈Qout〉

)
= AG(ϕp)

( 〈Iin〉
〈Qin〉

)
. (G9)

Assuming 	 = 0 we find AG → 1 in the limit that |ξ | →
0, as expected. Conversely, if 	 
= 0 then AG is an affine
transformation that will always mix the input quadratures
to some degree, limiting the achievable squeezing for a
given ξ . Figure 14 illustrates the mapping of points on
the unit circle (I , Q)T = [sin(φ), cos(φ)]T in the vector
space V ∈ R2 by the linear transformation AG(0) : V → W.
Setting ϕp = 0 yields a mapping where the standard unit
vectors in V do not in general map to the standard unit vec-
tors in W, nor do they correspond to the principal axes of
the elliptical output state.

We may align the axis of amplification along Q,
as depicted in Fig. 15, by choosing ϕp = π/2 −
arccos(−	/|ξ |). Note that in Fig. 15 we deliberately set
	 
= 0 to illustrate the fact that orthogonal vectors in
V do not necessarily map to orthogonal vectors in W.
On the other hand, when 	 = 0, the optimal angle of
rotation will correspond to ϕp = 3π/2, giving a strictly
diagonal matrix AG(ϕp) with partial diagonal elements
(κ + γ )/2 + |ξ | and (κ + γ )/2 − |ξ |, such that orthogo-
nality is preserved. Degenerate amplification increases as
|ξ | approaches the asymptote of self-oscillation [|ξ |2 =
	2 + (κ + γ )2/4], while simultaneously deamplification
approaches 0.

The expression for gain as a function of the pump phase
ϕp is given by

g(ϕp) = ||(〈Iout〉, 〈Qout〉)T||
||(〈Iin〉, 〈Qin〉)T|| =

√
[〈Iin〉g11(ϕp) + 〈Qin〉g12(ϕp)]2 + [〈Iin〉g21(ϕp) + 〈Qin〉g22(ϕp)]2

〈Iin〉2 + 〈Qin〉2 , (G10)

where gij are the matrix elements of AG(ϕp). This corre-
sponds exactly with the expression for phase-sensitive gain
provided earlier in Eq. (F1).

2. Reflections with the predicted phasor
transformation

The ellipses depicted in Fig. 3 are not simply a result
of the phasor transformation applied to coherent inputs
of fixed magnitude. Because our setup is not perfectly

(a) (b)

Q

I I

FIG. 14. Visualization of the linear transformation AG(0) act-
ing on points on the unit circle. The red (blue) points/lines
correspond to the standard basis vectors in V. (a) Unit cir-
cle before the transformation AG(0). (b) Unit circle after the
transformation.

impedance- matched, reflections will occur at the input
to the KIPA (e.g., from the PCB and input connector)
that superimpose on the phasor transformation. Although
these reflections only account for a small percentage of the
detected signal, they become considerable as the deampli-
fication increases.

To be precise, we define “reflections” to be the total
microwave signal that propagates towards the HEMT input
that has not been amplified by the KIPA. The total reflected

(a) (b)

Q

I I

FIG. 15. Visualization of the linear transformation AG[π/2 −
arccos(−	/|ξ |)] acting on points on the unit circle. The red
(blue) points and lines correspond to the standard basis vec-
tors in V. (a) Unit circle before the transformation AG[π/2 −
arccos(−	/|ξ |)]. (b) Unit circle after the transformation.
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signal will have a constant amplitude that is a fraction of
the input amplitude, and, relative to the KIPA output, will
be offset in phase according to the difference in path length.
Taking the vector sum between the total reflected signal
and the phase-sensitive output of the KIPA gives a result-
ing ellipse that we observe at the output of our fridge (see
Fig. 16). That is,

( 〈Iout〉
〈Qout〉

)
=

[
T AG(ϕp) + RR(φ)

] ( 〈Iin〉
〈Qin〉

)
, (G11)

where T is the coefficient of the input signal transmitted to
the KIPA, R is reflection coefficient (with T 2 + R2 = 1)
and R(φ) is the standard rotation matrix that accounts for
a phase shift of φ. Figure 16(b) illustrates the effect of a
5% reflection on the measurement of the output of a DPA.
In the worst case of φ = 0, the output of the KIPA and
the reflected signal constructively interfere and degrade the
observed deamplification by approximately 9 dB. The error
introduced by the reflected signal will depend on the phase
relationship between the KIPA output and the reflected sig-
nal, which in general is unknown. To proceed with the
analysis, we define an in-phase reflection coefficient R′
and set φ = 0. The in-phase reflection coefficient R′ there-
fore represents a lower bound for the reflections in the
setup needed to explain a given reduction in the observed
deamplification level [see Fig. 3(c)].

Using Eq. (G11) combined with the DPA parameters
extracted from the fits in Appendix E (κ , |ξ |, 	, etc.),
we are able to predict the transformation of a unit mag-
nitude input by the KIPA for different levels of in-phase
reflection. We fit the in-phase reflection coefficient to be

approximately 2% and find excellent agreement between
theory and experiment (see Fig. 17).

The most likely sources of reflections from our setup
are the connection from the coaxial lines to our bespoke
PCB, and at the wire bonds between the PCB and the chip.
Assuming 50-� lines down to the sample, a 2% reflection
corresponds to an equivalent PCB impedance of

ZPCB = ZCPW
1 − R
1 + R = 48 �, (G12)

which is realistic, accounting for the uncertainty in the
design and manufacturing tolerances of the PCB and the
temperature dependence of the materials.

The maximum deamplification level GS is defined as
the greatest reduction in amplitude of a coherent input by
the phasor transformation, while GA is the corresponding
increase in gain that occurs orthogonal to the axis of deam-
plification. GS and GA are extracted from the ellipse data of
Fig. 3(b) and plot in Fig. 3(c). We reproduce the ellipse
measurement data here in Fig. 17, along with a set of
ellipses generated using our theoretical model. We observe
some asymmetry GS 
= GA in the data, which is captured
accurately by our model that includes weak reflections in
the experimental setup [solid lines in Fig. 3(c)]. The ideal
amplifier symmetrically transforms both quadratures (i.e.,
GS = GA) [5]; however, according to our model for the
squeezing transform, symmetry can also be broken if either
Qi < ∞ or |	| > 0. While some asymmetry is expected,
for our estimate of Qi = 105, this asymmetry is small, as
is evident in Fig. 3(c) (dashed line) where we show the
predicted GS for the reflectionless DPA measurement.

Q

I I

Q

(a) (b)

KIPA
KIPA
KIPA

FIG. 16. (a) An input signal (green) represented by points of constant amplitude on the I -Q plane, with a 5% reflected signal (blue).
(b) The theoretical output of the KIPA (green) superimposed with the total reflected signal with a phase shift of zero (dark blue) and a
phase shift of π/3 (light blue).
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(a)

(b)

FIG. 17. (a) Ellipses measured by sweeping the phase of a fixed amplitude input, normalized by the amplitude of the input (||Ioff|| or
||Qoff||). These are the same data as presented in Fig. 3(b). Pump powers are shown in the legend. (b) Predicted ellipses from the DPA
phasor transformation with a 2% in-phase reflection coefficient.

APPENDIX H: NOISE-SQUEEZING THEORY

In Appendix G we analyzed the gain of the KIPA in
phase-sensitive mode when coherent states were applied
to its input. In this section we consider the case of a vac-
uum input state (i.e., noise) and derive expressions for
the squeezing (noise deamplification) and antisqueezing
(noise amplification) properties of the KIPA. We assume
that noise squeezing is measured over a narrow band such
that the frequency dependence of gs and gi may be ignored,
allowing us to draw on the theory presented in Appendix
G. In terms of the matrix elements gij of the phasor
transformation matrix AG, Eq. (G7) becomes

(
Iout
Qout

)
= AG(θ)

(
Iin
Qin

)

+
√

γ

κ

[
AG(θ) + 1

] (
Ib
Qb

)

=
(

g11 g12
g21 g22

) (
Iin
Qin

)

+
√

γ

κ

(
g11 + 1 g12

g21 g22 + 1

) (
Ib
Qb

)
. (H1)

To obtain expressions for the vacuum squeezing, we model
the input field as a vacuum state with variances 〈	I 2〉 =
〈	Q2〉 and zero mean: 〈I〉 = 〈Q〉 = 0. Assuming the bath

and the input fields are uncorrelated, and using the fact
that 〈IQ〉 + 〈QI〉 = 0, we may write a system of linear
equations for the second-order moments of the output
quadratures:

( 〈I 2
out〉

〈Q2
out〉

)
=

(
g2

11 g2
12

g2
21 g2

22

) ( 〈I 2
in〉

〈Q2
in〉

)

+ γ

κ

(
(g11 + 1)2 g2

12
g2

21 (g22 + 1)2

) ( 〈I 2
b 〉

〈Q2
b〉

)
.

(H2)

Since the vacuum and bath fields are at the same tempera-
ture, we define 〈	I 2

v 〉 = 〈I 2
in〉 = 〈I 2

b 〉 = 1/4 and 〈	Q2
v〉 =

〈Q2
in〉 = 〈Q2

b〉 = 1/4. Thus, the variances of the output
quadratures are given by

( 〈	I 2
out〉

〈	Q2
out〉

)
=

[(
g2

11 g2
12

g2
21 g2

22

)
+ γ

κ

×
(

(g11 + 1)2 g2
12

g2
21 (g22 + 1)2

) ] ( 〈	I 2
v 〉

〈	Q2
v〉

)
.

(H3)
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The increase-decrease in quadrature variance as a function
of the pump phase ϕp is described by

S(ϕp) = 10 log10
〈	I 2

out〉
〈	I 2

v 〉

= 10 log10

(
g2

11 + g2
12 + γ

κ
[(g11 + 1)2 + g2

12]
)

,

(H4)

and the vacuum squeezing level Sv is defined by the
minimum of S ,

Sv = min
ϕp

S(ϕp). (H5)

Using the DPA parameters extracted from the phase-
insensitive gain features (see Appendix E), we can sim-
ulate the expected noise variance gain [Eq. (H4)] as a
function of the pump phase. The results are depicted in
Fig. 18(a), where we observe a similar phase-dependent
response to that measured in Appendix F for strong coher-
ent inputs. In contrast to the phase-sensitive gain for
coherent inputs, the coupling of the bath mode into the cav-
ity requires a strictly asymmetric noise variance gain such
that minϕp S(ϕp) × maxϕp S(ϕp) ≥ 1, where equality holds
only in the limit of Qi → ∞. We observe a weak shift in
the pump phase corresponding to the point of maximum
squeezing as the pump power increases, which is a conse-
quence of the nonzero detuning between the cavity and the
pump 	.

Equipped with this squeezing model and a realistic set
of resonator parameters, we can study the effect of Qi on
the maximum attainable squeezing. Figure 18(b) plots the
vacuum squeezing level Sv against the maximum variance
gain or antisqueezing gain. In the limit of no losses, Cave’s
theory predicts symmetric squeezing and antisqueezing
with zero-noise photons contributed by the amplifier [5].
We observe here that the squeezing and antisqueezing
relationship of the KIPA closely follows the expected sym-
metric behavior before the squeezing level plateaus to a
constant level as the antisqueezing gain increases. The
squeezing level plateaus as the total cavity fluctuations are
limited by the bath mode variance, which is not squeezed
by the KIPA since

(
AG + 1

) (
Var(Ib)

Var(Qb)

)
≥

(
Var(Ib)

Var(Qb)

)
. (H6)

We observe an approximately 10-dB improvement in the
maximum achievable squeezing for each order-of- magni-
tude increase in Qi. The order-of-magnitude improvement
in squeezing performance is a result of the correspond-
ing order-of-magnitude decrease in γ /κ , which sets the
magnitude of the bath variance contribution to the KIPA
output [see Eq. (G7)]. For a Qi = 105, our theory pre-
dicts up to Sv ≈ −29 dB of squeezing could be produced
by the KIPA, corresponding to approximately 40 dB of
phase-sensitive gain.

(a) (b)

in units of π radians

FIG. 18. (a) The simulated noise variance gain S(ϕp) as a function of the pump phase using the DPA parameters obtained in
Appendix E, for a range of pump powers. We fix the internal quality factor to Qi = 105 in this calculation. (b) The vacuum squeezing
level Sv , as a function of the phase-sensitive gain using the DPA parameters obtained in Appendix E for different internal quality
factors Qi. The line of symmetric phase-sensitive gain is plotted (black dashed line).
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APPENDIX I: NOISE TEMPERATURE

1. Nondegenerate noise temperature theory

The output fluctuations of the KIPA operating as a
nondegenerate amplifier are found from Eq. (D11) to be

〈	I 2
out〉 =

〈[
1
2

(
a†

out + aout

)]2
〉

=
(

|gs|2 + γ

κ
|gs + 1|2

)(
nth

2
+ 1

4

)

+ |gi|2
(

1 + γ

κ

)(
nth

2
+ 1

4

)
, (I1)

where the signal and idler gains [gs(ω) and gi(ω)] depend
on the frequency of the signal being amplified. Here we
assume that the input and bath fields (both signal and idler
modes) have a thermal occupation 〈a†

inain〉 = 〈b†
inbin〉 =

nth.
One useful identity of the DPA is the relationship

between the signal and idler gains [14],

|gi|2
(

1 + γ

κ

)
= |gs|2 + γ

κ
|gs + 1|2 − 1, (I2)

which holds for all ω [see Eq. (D12)], and is a by-
product of the KIPA output field satisfying the commu-
tation relation [aout, a†

out] = 1. Substituting Eq. (I2) into
our expression for the quadrature fluctuations along I , we
obtain

〈	I 2
out〉 =

(
|gs|2 + γ

κ
|gs + 1|2

)(
nth + 1

2

)
− nth

2
− 1

4
(I3)

Referring the quadrature fluctuations to the input of the
KIPA and subtracting the vacuum contribution, we find:

〈	I 2
out〉

|gs|2 − 1
4

=
(

1 + γ

κ

|gs + 1|2
|gs|2

)(
nth + 1

2

)

− nth

2|gs|2 − 1
4|gs|2 − 1

4

≥ 1
4

(
1 − 1

|gs|2
)

+ γ

κ

|gs + 1|2
2|gs|2

≥ 1
4

(
1 − 1

|gs|2
)

, (I4)

where in the third line we assume zero temperature
(nth = 0) and in the last line we assume no loss (γ = 0).
As required by Cave’s fundamental theorem of phase-
sensitive amplifiers, the DPA adds 1/4 photons to the
input-referred noise in the limit of high gain [5]. Equality
only holds in the limit of zero temperature and no losses.

To maintain consistency with the input-output models
for phase-sensitive amplifiers used later in this section
[e.g., see Eq. (I14)], we write the phase-insensitive output
of the KIPA as

〈	I 2
out〉 = Gk

(
nth

2
+ 1

4

)
+ (Gk − 1)

(
nth

2
+ nkn

2
+ 1

4

)
,

(I5)

where Gk = |gs|2 and nkn is the input-referred noise con-
tribution of the KIPA in nondegenerate mode. Comparing
Eq. (I3) with the (Gk − 1) term from this expression, we
obtain a relation for the additional noise photons con-
tributed by the KIPA nkn:

nkn = 2
|gs|2 − 1

[
〈	I 2

out〉 − |gs|2
(

nth

2
+ 1

4

)]

− nth − 1
2

= 2
|gs|2 − 1

[(
nth

2
+ 1

4

)
(|gs|2 − 1)

+ γ

κ
|gs + 1|2

(
nth + 1

2

)]
− nth − 1

2

= γ

κ

|gs + 1|2
|gs|2 − 1

(2nth + 1). (I6)

The temperature dependence for nkn is depicted in Fig. 19
for various ratios of the external and internal quality fac-
tors Qc/Qi, and using the same DPA parameters as were
measured previously. Compared to nth, the change in nkn
is small across the range of internal quality factors con-
sidered. At zero temperature nkn appears to decrease by an
approximate order of magnitude for every decrease in the
order of magnitude of Qc/Qi = γ /κ , further motivating
the desire to maximize the Qi of a DPA.

We define the zero temperature noise as

nkn0 = γ

κ

|gs + 1|2
|gs|2 − 1

, (I7)

and plot nkn0 as a function of Qc/Qi in Fig. 19(c), where
we observe rapid convergence to zero as Qc/Qi → 0.

2. Degenerate noise temperature theory

The output fluctuations of the KIPA in degenerate mode
as a function of the pump phase ϕp are given by (see
Appendix H)

〈	Iout(ϕp)
2〉 = |gs + g∗

i (ϕp)|2
(

nth

2
+ 1

4

)

+ γ

κ
|gs + 1 + g∗

i (ϕp)|2
(

nth

2
+ 1

4

)
, (I8)
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(a) (b) (c)

kdkn

FIG. 19. (a) The simulated nondegenerate noise photon number nkn as a function of temperature for different values of Qc/Qi. (b)
The simulated degenerate noise photon number nkd as a function of temperature for different values of Qc/Qi. (c) The simulated nonde-
generate (degenerate) noise photon number at zero temperature as a function of Qc/Qi. All calculations performed at a nondegenerate
(degenerate) gain of Gk = 25 dB (31 dB).

with phase-sensitive power gain Gk(ϕp) = |gs + g∗
i (ϕp)|2.

Referred to the KIPA input, the excess quadrature fluctua-
tions contributed by the amplifier are

〈	Iout(ϕp)
2〉

Gk(ϕp)
− 1

4
= nth

2
+ γ

κ

|gs + 1 + g∗
i (ϕp)|2

|gs + g∗
i (ϕp)|2

×
(

nth

2
+ 1

4

)
≥ 0. (I9)

As predicted by Caves, the excess quadrature fluctuations
referred to the input can be as small as zero in limit of
�ω � kBT and provided there are no losses in the system
(i.e., γ = 0) [5].

Writing Gk = |gs + g∗
i (ϕp)|2, we define a similar

expression to Eq. (I5) for the phase-sensitive amplifier
along the amplified quadrature:

〈	I 2
out〉 = Gk

(
nth

2
+ 1

4

)
+ (Gk − 1)

(
nkd

2

)
, (I10)

with

nkd = γ

κ

|gs + 1 + g∗
i |2

|gs + g∗
i |2 − 1

(
nth + 1

2

)
(I11)

nkd0 = γ

2κ

|gs + 1 + g∗
i |2

|gs + g∗
i |2 − 1

. (I12)

Again, we simulate nkd for varied ratios Qc/Qi = γ /κ and
temperatures and find similar behavior to the nondegener-
ate case.

3. Noise temperature measurement

The detection chain of the KIPA consists of a series of
amplifiers and attenuators, which we depict in Fig. 20(a).
Directly after the KIPA there are microwave losses asso-
ciated with the diplexer, the circulator, and the microwave
lines. To model the detection chain we divide these losses
into two effective attenuators, one at 20 mK and the other
at 4 K. Each attenuator acts like an optical beam splitter,
where the transmitted field is reduced by

√
α and the open

port mixes the thermal field v into the output according to
the beam splitter equation [67]

aout = √
αain + √

1 − αv. (I13)

At 4 K we have the HEMT amplifier, followed by a
second microwave amplifier at room temperature. Each
amplifier contributes additional noise to its output field [5]:

aout = √
Gampain + √

Gamp − 1h†. (I14)

Combining the attenuator models for α1 and α2 [Eq.
(I13)] with the amplifier models for the HEMT and room-
temperature amplifier [Eq. (I14)], we may simplify the
detection chain to a single equivalent amplifier with gain
GT and noise contribution htot [see Fig. 20(b)]. The total
output field at the end of the detection chain is given by

atot =
√

GTaout +
√

GT − 1h†
tot, (I15)
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20 mK 4 K 300 K

(a) (b)

FIG. 20. (a) The complete detection chain model, consisting of the KIPA and attenuator α1 at 20 mK, attenuator α2, and the HEMT
at 4 K, and the room-temperature amplifier at 300 K. The attenuators are modeled as beam splitters, mixing in the thermal operators
v1 and v2 with the detected field as it propagates along the detection chain. Each amplifier contributes noise to its output, denoted here
by the field operators hk (KIPA), hH (HEMT), and hR (room-temperature amplifier). (b) The simplified detection chain model, where
the attenuators and amplifiers after the KIPA may be modeled as an effective amplifier with gain GT and noise field htot.

where,

GT = GRGHα1α2,

h†
tot =

√
GRGH

GT − 1

[√
α1(1 − α1)v1 +

√
(1 − α2)v2

+
√

GH − 1
GH

h†
H +

√
GR − 1
GRGH

h†
R

]
.

Rewriting the output field aout as a pump-phase-dependent
quadrature operator Iout(ϕp) = (a†

oute−iϕp + aouteiϕp )/2, we
have

Itot(ϕp) =
√

GTIout(ϕp) +
√

GT − 1Ih(−ϕp), (I16)

where Iout(ϕp) is the pump-phase-dependent quadrature
operator at the KIPA output, and Ih is the detection
chain noise quadrature operator Ih(−ϕp) = (h†

toteiϕp +
htote−iϕp )/2.

Assuming htot and aout are composed of uncorrelated
thermal states, the quadrature fluctuations at the detector
simplify to

〈	I 2
tot〉 = GT〈	I 2

out〉 + (GT − 1)〈	I 2
h 〉

= GT〈	I 2
out〉 + (GT − 1)

(
nsys

2
+ 1

4

)
, (I17)

where we introduce the effective system noise photon
number nsys, given by

nsys = 〈h†
tothtot〉

= GRGH

GT − 1

[
α2(1 − α1)(n20mK + 1)

+ (1 − α2)(n4K + 1) + GH − 1
GH

nH + GR − 1
GRGH

nR

]
,

(I18)

which is the number of noise photons added by the system
(due to loss and the following amplifiers) referred to the
output of the KIPA.

The average microwave noise power that would be mea-
sured by a spectrum analyzer is simply the sum of the
output quadrature variances:

Ptot = z(〈	I 2
tot〉 + 〈	Q2

tot〉). (I19)

We introduce the parameter z here that converts the units
from photons to watts as is measured by the spectrum
analyzer over a certain measurement bandwidth resolution.

In nondegenerate operation, the variance of both the
KIPA output and the system noise fields is independent
of the pump phase, allowing us to write the measured
microwave power as

Ptn = zGT(〈	I 2
out〉 + 〈	Q2

out〉) + z(GT − 1)

(
nsys + 1

2

)

= 2zGT〈	I 2
out〉 + z(GT − 1)

(
nsys + 1

2

)
. (I20)

In nondegenerate mode, the output fluctuations of the
KIPA are given by (see Sec. I 1)

〈	I 2
out〉 = Gk

(
nth

2
+ 1

4

)
+ (Gk − 1)

(
nth

2
+ nkn

2
+ 1

4

)
,

(I21)

with Gk = |gs|2 as defined in Eq. (D12), thermal noise pop-
ulation nth = 〈a†

inain〉, and an additional number of noise
photons added by the KIPA, nkn = 〈h†

khk〉. In the non-
degenerate case, the idler mode contributes a minimum
nth/2 + 1/4 input-referred photons to the variance of each
quadrature at the signal frequency, while an additional
nkn/2 photons arise from internal cavity losses. We note
that it is important to include the effect of the idler to
correctly capture the temperature dependence of the out-
put noise, as discussed in recent work on traveling-wave
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FIG. 21. (a) The difference power reported by the spectrum analyzer for the KIPA on vs off in nondegenerate mode as a function
of the thermal photon population at the mixing plate for different nondegenerate gains (see legend). Solid lines are linear fits. (b) The
gradient m of the linear fits presented in (a) (Ptn − Poff = m × nth + b) versus Gk − 1 = |gs|2 − 1.

devices [27,68]. The excess noise nkn is expected to vary
with temperature (see Appendix I 1); however, for Qi >

104 (or Qc/Qi < 10−2) this dependence is predicted to be
weak.

Substituting Eq. (I21) into Eq. (I20), we arrive at

Ptn = zGTGk

(
nth + 1

2

)
+ zGT(Gk − 1)

(
nth + nkn + 1

2

)

+ z(GT − 1)

(
nsys + 1

2

)
. (I22)

It is instructive to restate the origin of each component
in Eq. (I22). The first term, zGTGk(nth + 1/2), represents
the noise at the output due to the signal, while the second
term, zGT(Gk − 1)(nth + nkn + 1/2), is the output noise
contributed by the idler [zGT(Gk − 1)(nth + 1/2)] together
with the excess KIPA noise that mixes in through the
internal amplifier loss [zGT(Gk − 1)nkn]. The final term,
z(GT − 1)(nsys + 1/2), represents the total noise added by
components in the chain after the KIPA.

Both nsys and the conversion factor zGT in Eq. (I22) are
unknown. We begin by finding zGT, observing that when
the KIPA is off (i.e., Gk = 1), Eq. (I22) simplifies to

Poff = zGT

(
nth + 1

2

)
+ z(GT − 1)

(
nsys + 1

2

)
. (I23)

Evaluating the difference in power between when the KIPA
is on compared to off removes the dependence on nsys:

Ptn − Poff = zGT(Gk − 1)

(
2nth + nkn + 1

)
. (I24)

To extract zGT we sweep the temperature of the mix-
ing chamber of our dilution refrigerator (and thus nth)
while operating the KIPA as a nondegenerate amplifier
(500-kHz detuned from ωp/2). At each temperature, we
measure the noise power at the output of our detection
chain using a spectrum analyzer configured in zero-span
mode with a measurement bandwidth of 130 kHz. We con-
strain the experiment to nondegenerate gains below 20 dB,

(a)
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FIG. 22. (a) Measured magnitude and (b) phase response of
the KIPA investigated in this work. No pump is applied in this
measurement and Idc = 0.85 mA.
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(a) (b)

FIG. 23. (a) Measured magnitude response of a similar device to the KIPA, as a function of Idc. (b) Coupling and internal quality
factors extracted from fits to the magnitude response in panel (a).

since below this the KIPA gain responses are completely
flat over the 500 kHz detuned measurement band and
we can therefore approximate Gk by measuring the gain
using a (narrow band) coherent tone. At each KIPA gain
Gk = |gs|2 we expect the difference in power to increase
linearly according to Ptn − Poff = m × nth + b with gradi-
ent m = 2zGT(Gk − 1). The data are shown in Fig. 21(a),
which displays a clear linearity with nth for various nonde-
generate gains. We plot m against Gk − 1 and extract the
conversion factor zGT = 93.2 fW/photon [see Fig. 21(b)].
This analysis relies on the assumptions that zGT is inde-
pendent of both gain and temperature. These assumptions
are not verified here and may lead to an overestimation
of zGT, since, for example, nkn in Eq. (I24) might exhibit
slight Gk and nth dependencies in practice. We therefore
caution that the extracted conversion factor allows for an
estimation of the noise performance only; a more rigor-
ous measurement using a calibrated cryogenic noise source
should permit a precise evaluation of the KIPA noise in the
future.

The conversion factor zGT includes the total gain and
attenuation from the output of the KIPA to the spectrum
analyzer (i.e., GT = α1α2GH GR). It therefore allows us to
calculate an equivalent number of noise photons referred
to the KIPA output plane from a measurement of the noise
power at the output of the detection chain. Combining this
with the KIPA gain Gk (i.e., zGTGk), we can refer the noise
to the input plane of the KIPA.

We can provide an estimate of the system noise nsys
(which is referred to the output of the KIPA) using

Eq. (I23):

nsys ≈ Poff

zGT
− (nth + 1). (I25)

Taking the noise power measured with the KIPA off at
base temperature (where �ω � kBT) and thus assuming
nth � 1, we calculate nsys = 81.5 photons. To validate
our estimate of nsys, we substitute data-sheet values for
the HEMT and room-temperature amplifier into Eq. (I18)
and estimate α1 and α2 based on manufacturer values for
cable, circulator, and diplexer insertion losses. Equation
(I18) then gives nsys ≈ 64 photons. This discrepancy could
be explained by a 1-dB uncertainty in the estimate of
the losses, which we believe represents a reasonable
agreement.

Finally, we turn our attention now to the degenerate
gain. Because the fluctuations along one quadrature of
the KIPA output are squeezed and are therefore consid-
erably smaller than the fluctuations along the orthogonal
amplified quadrature, the total noise power measured at the
spectrum analyzer may be approximated by

Ptd = zGT(〈	I 2
out〉 + 〈	Q2

out〉) + z(GT − 1)

(
nsys + 1

2

)

≈ zGT〈	I 2
out〉 + z(GT − 1)

(
nsys + 1

2

)
. (I26)
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From Eq. (I10), we have

Ptd = zGTGk

(
nth

2
+ 1

4

)
+ zGT(Gk − 1)

(
nkd

2

)

+ z(GT − 1)

(
nsys + 1

2

)
. (I27)

The first term in Eq. (I27), zGTGk(nth/2 + 1/4), originates
from noise in the input field, which is amplified along a
single quadrature in degenerate mode. The second term,
zGT(Gk − 1)nkd/2, comes from the noise that mixes in
through the internal amplifier loss (i.e., the KIPA excess
noise). The last term, z(GT − 1)(nsys + 1/2), represents the
noise added by components in the chain after the KIPA,
which is taken for both field quadratures since detection
is performed using a spectrum analyzer that measures the
total power of the amplified output field.

4. Signal line attenuation

In Fig. 4(b) we plot the input-referred number of pho-
tons recorded in the presence of an applied coherent tone,
with the KIPA in three different configurations: degener-
ate mode, nondegenerate mode, and off. We calculate the
input-referred number of photons by dividing the measured
output power by zGTGk and then the equivalent input-
referred power by multiplying the number of photons by
�ω0B, where B = 1 kHz is the measurement bandwidth
resolution. Knowing the power at the output of the sig-
nal generator (−60 dBm) used in this measurement, the
input-referred coherent tone power (−132 dBm) can be
used to calculate a 72-dB loss along the input signal line.
This loss is consistent with the 60 dB of fixed attenua-
tion in our setup, plus our estimates for additional cable
and component insertion loss based on manufacturer data
sheets.

APPENDIX J: KIPA LOSSES

The KIPA operates in the overcoupled regime, where the
external coupling rate far exceeds the rate of internal losses
(κ  γ ). As such, the magnitude response in the absence
of a pump tone [Fig. 22(a)] is flat, as predicted by input-
output theory [Eq. (E1)]. We can place a lower bound on
the internal quality factor based on the ripple of approx-
imately 0.7 dB observed in our reflection measurement,
which indicates Qi > 3350.

Figure 23 depicts the reflection response of a device sim-
ilar to the KIPA, fabricated on a 50-nm-thick NbxTi1−xN
film and with additional cells in the band-stop region to
produce a larger external quality factor (i.e., smaller κ).
This device operates close to critical coupling where both
γ = ω0/Qi and κ = ω0/Qc may be extracted. Although
resonator losses are sensitive to the exact device geometry,
this measurement provides an indication of the attainable

internal quality factors for step-impedance filter-coupled
microwave resonators.

We note that the loss in the KIPA will almost cer-
tainly depend on its operating conditions. Large intra-
cavity fields can induce two-photon losses [23,60] and we
observe a nontrivial dependence of Qi on the dc current
bias [Fig. 23(b)]. Future work will explore the noise prop-
erties of the KIPA in further detail, including the search for
optimal working points in the device parameter space that
maximize noise squeezing.
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