
PHYSICAL REVIEW APPLIED 17, 024069 (2022)

Toward Robust Autotuning of Noisy Quantum dot Devices

Joshua Ziegler ,1,* Thomas McJunkin ,1,2 E.S. Joseph ,2 Sandesh S. Kalantre,3,4 Benjamin Harpt,2
D.E. Savage ,5 M.G. Lagally,5 M.A. Eriksson,2 Jacob M. Taylor,1,3,4 and Justyna P. Zwolak 1,†

1
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

2
Department of Physics, University of Wisconsin-Madison, Wisconsin 53706, USA

3
Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA

4
Joint Center for Quantum Information and Computer Science, University of Maryland, College Park,

Maryland 20742, USA
5
Department of Materials Science and Engineering, University of Wisconsin-Madison, Wisconsin 53706, USA

 (Received 30 July 2021; revised 6 November 2021; accepted 24 January 2022; published 25 February 2022;
corrected 21 September 2022)

The current autotuning approaches for quantum dot (QD) devices, while showing some success, lack an
assessment of data reliability. This leads to unexpected failures when noisy or otherwise low-quality data
is processed by an autonomous system. In this work, we propose a framework for robust autotuning of QD
devices that combines a machine learning (ML) state classifier with a data quality control module. The
data quality control module acts as a “gatekeeper” system, ensuring that only reliable data are processed
by the state classifier. Lower data quality results in either device recalibration or termination. To train both
ML systems, we enhance the QD simulation by incorporating synthetic noise typical of QD experiments.
We confirm that the inclusion of synthetic noise in the training of the state classifier significantly improves
the performance, resulting in an accuracy of 95.0(9)% when tested on experimental data. We then validate
the functionality of the data quality control module by showing that the state classifier performance deteri-
orates with decreasing data quality, as expected. Our results establish a robust and flexible ML framework
for autonomous tuning of noisy QD devices.
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I. INTRODUCTION

Gate-defined semiconductor quantum dots (QDs) are a
quantum computing technology that has potential for scal-
ability due to their small device footprint, operation at few
Kelvin temperatures [1,2], and fabrication with scalable
techniques [3–5]. However, minute fabrication inconsis-
tencies present in current devices mean that every qubit
must be individually calibrated or tuned [3,6]. To enable
more efficient scaling, this requirement must be met with
automated methods.

Recently, many advances have been made toward auto-
mated calibration of QD devices [7–10]. Automated meth-
ods have been used to tackle many stages of the cal-
ibration process, from understanding fabrication results
[11] and coarse device tune-up [7,9,10,12–15], to fine
calibrations of device parameters [8,16]. The techniques
used for automation follow two main schools of thought:
script-based algorithms and machine learning (ML) meth-
ods. While appealingly simple, methods that rely on
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conventional algorithms are susceptible to noise and trans-
fer poorly across devices [14]. On the other hand, methods
that rely on ML algorithms have the flexibility to avoid
being confounded by noise if provided with proper train-
ing data [15,17], but require large labeled datasets for
training and lack information on the reliability of the ML
prediction.

Automated tuners, both ML- and non-ML-based, make
many sequential decisions based on limited data acquired
at each step. In such a framework, small error rates can
quite rapidly compound into high failure rates [18]. One
key failure mode of QD autotuning algorithms is signal-
to-noise ratio (SNR) reductions during the tuning process
[14,15,18]. One way to avoid tuning failure and to promote
trust in ML-based automation [19] is to develop assess-
ment techniques to verify the quality of data before moving
forward with tuning.

In this manuscript, we present a framework for robust
automated tuning of QD devices that combines a convo-
lutional neural network (CNN) for device state estima-
tion with a CNN for assessing the data quality, similar
to approaches for general image noise estimation [20].
Inspired by recent efforts on using physics-based data
augmentation to improve training of ML models [21–24],
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we use synthetic noise characteristic of QD devices to train
these two networks. To establish the validity of the noisy
dataset, we first train a CNN module to classify device
states and achieve an accuracy of 95.0(9)% on experi-
mental data [25]—an improvement of 46% over the mean
accuracy of neural networks trained on noiseless simula-
tions. We then use the noisy simulations to train a data
quality control module for determining whether the data is
feasible for state classification. We show that the latter not
only makes intuitive predictions, but also that the predicted
quality classes correlate with changes in classifier perfor-
mance. These results establish a scalable framework for
robust automated tuning and manipulation of QD devices.
Furthermore, we openly publish the datasets of noisy sim-
ulated measurements (QFlow 2.0) as well as a labeled
experimental dataset to further ML research in the QD
domain [26].

The manuscript is organized as follows: In Sec. II we
describe how we establish the simulated and experimental
datasets. In Sec. III we discuss how the noise augmentation
improves state classifier performance, and demonstrate the
effectiveness of the quality classifier. Finally, in Sec. IV we
summarize the results and discuss the outlook.

II. TUNING WITH THE DATA QUALITY
ASSESSMENT FRAMEWORK

While a number of the recent automation proposals for
QDs look promising [10,17,18], they all lack an assess-
ment of the prediction reliability [27]. This largely stems
from a lack of such measures for ML, though for some
approaches the “quantitative” (i.e., assigning fractional

states to images capturing transitions between states) rather
than “qualitative” (i.e., assigning a single most dominant
state to the whole image) nature of labels further compli-
cates this issue. Yet, the quantitative nature of prediction
for intermediate regions in the state space is not only
expected but might be necessary for successful operation
[10]. In other words, a two-state prediction for a given scan
should indicate that the scan captures a transition between
those states, which is crucial for tuning [10,18]. At the
same time, if the SNR is low or in the presence of unknown
fabrication defects, such a mixed prediction might instead
indicate model confusion [27]. In the latter case, if such
confusion is not accounted for and corrected, it is likely to
result in autotuning failure.

To help overcome this issue, we propose a frame-
work where a previously introduced device state estima-
tion (DSE) module [12] is combined with a ML-based
data quality control (DQC) module to alert the autotuning
system when the measured scan is unsuitable for classi-
fication. A diagram depicting the flow of the proposed
framework is shown in Fig. 1. The DQC module includes
a CNN classifier with a three-level output signaling the
quality of a scan. If the scan is classified as “high quality,”
the DSE module followed by an optimization step is exe-
cuted. For scans classified at the intermediate “moderate
quality,” a device recalibration step is initiated. Depend-
ing on the device and the level of system automation, this
step can include readjustment of the sensor, validation of
the gate cross-capacitances, or barrier gate adjustments,
among other things. To better gear the recalibration, this
step could be preceded by a more detailed analysis of
the image aimed at determining, e.g., the most prominent

FIG. 1. Framework for QDs autotuning with data quality assessment. A false-color scanning electron micrograph of a Si/SixGe1−x
quadruple QD device. The gates in the upper channel (barriers SB1, SB2, and a plunger SP1) are used to form a charge sensor for the
QDs formed in the lower channel (using barriers B1, B2, and B3, and plungers P1 and P2). There are two consecutive machine learning
modules guiding the autotuning system: DQC is used to determine the quality of the measured scan and DSE is used to assess the state
of the device. The autotuning loop begins with the QD device shown on the left. A two-dimensional voltage sweep of two plunger
gates (VP1 , VP2) is measured by a QD charge sensor in the upper left channel. The numerical gradients of the measurements are then fed
into the DQC module to determine whether the scan is suitable for classification. Depending on the returned quality class, the scan is
passed to the DSE module for state assessment and optimization (the high-quality class), the device is recalibrated to improve the data
quality (the moderate-quality class), or the autotuning loop is terminated (the low-quality class). Before recalibration or termination,
further data analysis could be performed to better guide the recalibration.
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types of noise, tunnel rate issues, unintentional dots, or
other issues affecting the quality of the scan. Finally,
scans with “low quality” indicate that there might be a
bigger underlying issue. This class results in autotuning
termination.

As shown in Ref. [20,28], relatively shallow CNN-
based noise estimation models can be used for some image
processing and denoising tasks. However, the ability to
develop and prepare such estimators hinges on the avail-
ability of training data. The features compromising data
quality present in QD devices can be complex and vary sig-
nificantly between devices. A reliable training dataset has
to account for the different types and magnitudes of unde-
sirable features that can be encountered experimentally.
While full control over all factors affecting data quality
is unfeasible experimentally, it can be achieved (albeit
within certain limits that we discuss later) with synthetic
data. Here, we show that incorporating different types and
magnitudes of simulated physical noises into the training
dataset not only allows us to establish a data quality con-
trol tool, but also significantly improves performance of a
state classifier on experimental data.

A. Noiseless simulations

To establish a benchmark performance for comparison
with CNN classifiers trained on synthetic noise, we use a
dataset of about 1.6 × 104 simulated noiseless measure-
ments. The QD simulator we use is based on a simple
model of the electrical gates and a self-consistent poten-
tial calculation and capacitance model to determine the
stable charge configuration [12]. This simulator is capable
of generating current maps and charge stability diagrams
as a function of various gate voltages that reproduce the

qualitative features of experimental charge stability dia-
grams [13]. The simulated data represent an idealized
device in which the charge state is sensed with perfect
accuracy. It also assumes the system is always in the
ground state which results in infinitely sharp transitions.
Panel A in Fig. 2(a) shows a sample noiseless simulated
stability diagram.

B. Experimental data

To validate the synthetic noise and test the perfor-
mance of the ML modules, we establish a dataset of
756 manually labeled experimental images. These data
are acquired using two quadruple QD devices, both fabri-
cated on a Si/SixGe1−x heterostructure in an accumulation-
style design with overlapping aluminum gates architecture
[29–32] and operated in a double dot configuration. The
gate-defined QD devices use electric potentials defined by
metallic gates to trap single electrons either in one central
potential, or potentials on the left and right sides of the
device. Changes in the charge state are sensed by a single
electron transistor (SET) charge sensor. The charge states
of the device correspond to the presence and relative loca-
tions of trapped electrons: no dot (ND), single left, central
or right dot (LD, CD, RD, respectively), and double dot
(DD).

Here we use experimental data from Ref. [10], con-
sisting of two different datasets of 82 and 503 images,
respectively, as well as data collected from a second device
from a different fabrication run [33], resulting in 171
images. For optimizing the synthetic noise parameters, we
use randomly selected data from the first device: 80 images
from the first dataset and 134 from the second dataset.
The remaining images from the first device as well as all

(a) (b)

FIG. 2. (a) Sample simulated charge stability diagrams as a function of plunger gates with different types of noise added. Top:
simulated sensor (S) output. Bottom: gradient of sensor in the VP1 direction, dS/dVP1 . Noise magnitudes in these plots match the opti-
mized parameters except for dot jumps (B) and the Coulomb peak (C) which are exaggerated for visibility. (b) Box plot showing the
performance of DSE classifiers on experimental holdout dataset for models trained on: simulated noiseless data without (A) and with
preprocessing (Aproc), simulated data with each noise type incorporated (one at a time; plots B through F), and the optimized combina-
tion of noises (dot jumps, sensor jumps, 1/f , and white noise; plot G). Each box plot depicts the distribution of the performance from
20 models. While 1/f noise (D), white noise (E), and sensor jumps (F) each lead to significant improvement over the model trained
with noiseless simulated data (A), the optimized noise combination (G) provides a large reduction in variability as well as a significant
boost in accuracy. Optimization of the DSE model architecture further improves the performance (Gopt).

024069-3



JOSHUA ZIEGLER et al. PHYS. REV. APPLIED 17, 024069 (2022)

data from the second device comprise the holdout set used
for testing the trained DSE models. The full experimental
dataset is used to test the DQC module.

All images are manually labeled by two team mem-
bers and any conflicting labels are reconciled through
discussions with the researcher responsible for data col-
lection. The resulting dataset is available via the National
Institute of Standards and Technology (NIST) Science
Data Portal [26] and at data.gov.

C. Toward realistic simulations

There are multiple sources of noise in experimental data:
dangling bonds at interfaces or defects in oxides lead to
noise at the device level; thermal noise, shot noise, and
defects in electronics throughout the readout chain result
in noise at the readout level [34–39]. In many QD devices,
changes in the device state are sensed by conductance
shifts in a SET due to their sensitivity to transitions with no
change in net charge. The response of a SET is nonlinear,
which causes variation in the signal of charge transitions.
The various types of noise manifest themselves in the mea-
surement though distortion that might obscure or deform
the features indicating the state of the device (borders
between stable charge regions).

To prepare a dataset for the DQC module, we extend
the QD simulator to incorporate the most common sources
of experimental noise. We consider five types of noise:
dot jumps, Coulomb peak effects, white noise, 1/f (pink)
noise, and sensor jumps. Experimentally, white noise, 1/f
noise, and sensor and dot jumps appear due to differ-
ent electronic fluctuations affecting a SET charge sensor.
White noise can be attributed to thermal and shot noise
while the 1/f noise can have contributions from various
dynamic defects in the device and readout circuit [34,38–
40]. Previously, we modeled the charge sensor with a linear
response, though in reality it has a nonlinear response due
to the shape of the Coulomb blockade peak. We account
for this with a simple model of a SET in the weak coupling
regime [41]. Physically, dot jumps and sensor jumps are
two manifestations of the same process: electrons populat-
ing and depopulating charge traps in the device, which we
model as two-level systems with characteristic excited and
ground state lifetimes. Dot jumps are the effect of these
fluctuations on the quantum dot, while sensor jumps are
the effect on the SET charge sensor. We provide additional
details on how we implement these synthetic noises in
Appendix A. While other factors might contribute to com-
promising data quality, we do not consider them in this
work. However, as we show in Sec. III C, the noise types
presented here are sufficient for identifying regions within
large scans that are compromised due to factors other than
just noise as moderate-quality.

Each of the modeled noises can obscure or mimic charge
transition line features, potentially confusing ML models.

White noise and 1/f noise both generate high-frequency
components that can be picked up in the charge sensor gra-
dient. Additionally, the 1/f noise can generate shapes that
look similar to charge transition lines. Sensor jumps cause
large gradients where they occur. Movement of the SET
Coulomb peak can reduce the visibility of charge transi-
tions if it moves to a point off the sloped sides with lower
gradient and thus lower sensitivity. Finally, dot jumps can
distort the shapes of charge transition lines. Panels B–F in
Fig. 2(a) show charge stability diagrams with each of the
discussed noise types added (one at a time).

For each type of noise, we generate a distinct dataset of
about 1.6 × 104 simulated measurements using the same
device parameters as used for the simulated noiseless
dataset. To determine simulated noise parameters, we first
seek to produce images qualitatively similar to reasonably
noisy experimental data. We then optimize those param-
eters through a semistructured grid search over a range
centered at the initial value levels. At each step, the corre-
lation between the noise level and DSE performance on a
subset of experimental images is used to guide the search.
The dataset used to train models for each noise type are
generated by varying each noise parameter with a stan-
dard deviation of 1% of the parameters’ value. Panel G
in Fig. 2(a) shows a sample image with the optimized
combination of noises.

The final noisy simulated dataset has 1.15 × 105 images
generated by fixing the relative magnitudes of white noise,
1/f noise, and sensor jumps and varying the magnitudes
together in a normal distribution. The means of the magni-
tudes are set to 1.5 times the optimized values (to ensure
that low-quality data are included in the training dataset)
and the standard deviation is one third of each magnitude’s
value. Fixing the relative magnitudes and varying them
together allows this distribution of noise levels to approx-
imate a range of SNR encountered in experiments. This
dataset is also available via the NIST Science Data Portal
[26] and at data.gov.

D. Assessing data quality

In the second phase, we focus on the development of the
DQC module. As we already stressed, the QD state labels
are quantitative, so a mixed label indicates an intermediate
state rather than confusion and is important for the auto-
tuning system proposed in Ref. [10]. This means that a
simple entropy of a model’s prediction cannot be used as a
measure of confusion. Rather, an alternative quality mea-
sure needs to be established. To achieve this, we leverage
the simulated noise framework established in the previous
section to perform a controlled analysis of the DSE module
performance as noise levels are varied.

In the framework presented in Fig. 1, we propose to use
three levels of data quality—high, moderate, and low—to
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determine the subsequent actions. To determine the thresh-
old between the three quality classes, we generate a dataset
of 1.15 × 105 simulated images with varying amounts of
noise added. Since features defining the QD states are
affected in distinct ways by the noise, the performance ver-
sus noise level analysis is carried out separately for each
state rather than for the whole dataset (see Appendix B for
more details). We vary the magnitudes of all noises that
negatively affect the SNR (sensor jumps, 1/f , and white
noise) together from 0 to 7 times the optimized noise mag-
nitudes while keeping the dot jumps noise variation within
the 1% used previously. This distribution of noise includes
a large variation of noise levels from near-perfect data to
data that has nearly no recognizable QD features. This
is necessary for establishing noise thresholds for the data
quality classes that ensure saturation of the performance of
the state classifier at both the low and high levels.

By evaluating a state classifier, trained on a dataset with
all synthetic noises added [box plot G in Fig. 3(b)], on this
dataset we determine the relationship between the noise
level and performance within each QD state class. From
the correlations between noise level and performance, we
establish per-QD state data quality thresholds. The thresh-
olds are chosen to ensure high performance of the state
classifier for the high-quality data, an expected degradation
of performance for data with moderate quality, and poor
performance on data with low quality. Specifically, we
set the cutoffs using the relationship between the model’s
mean absolute error (MAE) and noise level (see Fig. 5 in
Appendix B).

We set these cutoff levels at relatively conservative
amounts of noise, which would enable a fairly risk-averse
tuning algorithm. This parameter choice could be adjusted
to the needs of a given application depending on the error
sensitivity of an autotuning method. To ensure that images
in the high-quality class are very reliably identified, we set
the threshold between high- and moderate-quality classes
to be at the noise level where the average MAE has gone
up by 2.5% of the full range, which is similar to a 2 sigma
cutoff for the lower tail of a normal distribution. We set
the threshold between moderate and low quality where the
average MAE has reached 50% of its full range, that is
where the model is roughly equally likely to be wrong as
right for a single state image.

With these thresholds, state labels, and the known
amount of noise added, we then assign the simulated data
with quality classes for DQC module training. For this
training, we use a distinct dataset with the same distri-
bution of noise used to set quality class thresholds. This
dataset is also available via the NIST Science Data Portal
[26] and at data.gov.

III. RESULTS

To prepare the data quality control module (DQC in
Fig. 1), we validate the simulated noise by training a CNN-
based classifier to recognize the state of QD devices from
charge stability diagrams (module DSE in Fig. 1). We
show how each of the added noises affects the classifi-
cation accuracy on a holdout subset of experimental data

(a) (b)

FIG. 3. (a) Box plots of model accuracy for each assigned quality class for the experimental data. Inset: box plots of the mean
absolute error (MAE) for each quality class. (b) Example data and predictions of both the simplistic (i.e., trained on noiseless simulated
data) and robust (i.e., trained on noisy simulated data) models. Raw sensor data (left), gradient data (middle), and predictions (right).
We show a high-quality DD example, a moderate-quality CD example, and a low-quality CD example. For the bar plot, we include
the full prediction vector for the simplistic and robust models, as well as the assigned label for each image.
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(see Sec. II B) and confirm that their combination leads
to significant improvement in performance, suggesting
increased similarity between the simulated and experimen-
tal data. We then use the noisy simulated data to train
the DQC module. The full experimental dataset is used
to confirm the correlation between the predicted quality
class and classification performance. Finally, we use large
scans to show that the optimized model (called “robust”)
outperforms the model trained on noiseless data (called
“simplistic”) and show how the predicted quality classes
overlap with the confusion of the DSE module.

A. Robust state classification

To determine how the considered noise types affect the
performance of the DSE classifier, we modify the simu-
lation with each type of noise individually and evaluate
models trained with that data on the experimental holdout
dataset. For initial testing, we optimize a CNN architecture
defining the simplistic model used for state recognition on
simulated noiseless data using the Keras Tuner API [42]
(see Appendix C for additional information).

Figure 2(b) summarizes the results of these tests. As a
benchmark, we include the 48.7(5.5)% [25] test accuracy
for models trained on simulated data without noise added
[box plot A in Fig. 2(b)]. As expected, the high valida-
tion accuracy of 93.6(9)% achieved during training drops
significantly when the models are tested on experimental
images. Previous work suggests that some data processing
techniques used to help suppress experimental noise might
help with the performance [10]. Our analysis confirms
that preprocessing of experimental data, as suggested in
Ref. [10], improves the average accuracy and reduces the
variance between models. However, the observed accuracy
of 51.9(3.6)% (box plot Aproc) on the experimental holdout
dataset is still much lower than necessary for reliable state
assessment.

When looking at the various types of noise indi-
vidually, our analysis reveals that 1/f noise [box plot
D in Fig. 2(b)], white noise (box plot E), and sen-
sor jumps (box plot F) most significantly improve the
models’ performance, with 66.4(7.8)%, 66.6(8.7)%, and
70.4(8.7)% accuracy, respectively. Dot jumps (box plot B)
and Coulomb peaks (box plot C) turn out to be unhelpful
on their own. The former seems to affect the performance
negatively. Combining all types of noise results in a signif-
icant improvement in both the performance and variance
of the resulting models, with an accuracy of 91.6(8)%
[box plot G in Fig. 2(b)]. For comparison, in the con-
text of simulated transport data, previous work found that
only the sensor jumps, 1/f , and white noise improved
classifier performance, though the observed improvements
were not significant [23]. We note that, when combining
these noises, we use a varied SNR (by varying sensor
jumps, 1/f , and white noise together). This uniformly

tunes the SNR between simulated images as a replacement
for the explicit Coulomb peak. Effectively, this results in a
varying visibility of charge transition lines but with more
uniformity.

Finally, since the models’ architecture we use is opti-
mized for a noiseless dataset, we reoptimize the CNN
architecture using the noisy simulated dataset. This allows
us to find a model that is structurally best suited to that
type of data and thus further improves the performance.
With these changes, we find an increase in the classifica-
tion accuracy by about 3.4% to 95.0(9)% [box plot Gopt in
Fig. 2(b)]. We also test preprocessing of the data to remove
extreme values for completeness and find no significant
difference at 95.8(1.2)% accuracy. Additional information
about the datasets and model architectures used in Fig. 2(b)
are provided in Table I in Appendix C. Comparing box
plots Aproc and Gopt shows the high level of improve-
ment in QD state classification we are able to achieve by
adding noise to the simulated training set and optimizing
the model.

B. Data quality control system

The purpose of the DQC module is to filter data that
would likely be unsuitable for the DSE module. Identi-
fying the specific issues affecting data quality is left to
the (optional) “further data analysis” module which is not
part of this work. However, we find that even though we
use noise-enhanced data, the DQC module correctly flags
regions affected by other issues, such as incorrectly set
tunnel rates.

To confirm the validity of the thresholds used to define
the three quality classes, we use the full experimental
dataset. The DQC module applied to the experimen-
tal images classified 607 images as high quality, 135
images as moderate quality, and 14 images as low qual-
ity. Figure 3(a) shows the performance of the 20 optimized
state classifiers [shown in box plot Gopt in Fig. 2(b)]
for each quality class. The error bars represent the vari-
ation in performance between the 20 models. The DSE
module performs well on data classified as high quality,
with 96.4(9)% prediction accuracy, and begins to decrease
for the moderate class at 91.9(2.1)%. For data in the
low-quality class, the models’ performance decreases to
69.3(5.6)%. The variance in performance also increases as
the data quality degrades. To account for the expected par-
tial predictions between QD states, we further validate this
correlation using a fine-grained metric. We use the MAE
to capture elementwise deviation. The inset in Fig. 3(a)
shows the MAE between the assigned and predicted labels
for the three quality classes. The observed correlations in
accuracy with the quality class are also seen in MAE.
This analysis confirms that the moderate-quality class does
indeed capture reductions in SNR that mildly affect model
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performance, while the low-quality class identifies images
that are substantially more difficult for the DSE module.

Figure 3(b) shows sample experimental images from
each of the quality classes and bar plots of the state predic-
tion vectors for the simplistic and robust state classifiers,
as well as the manually assigned labels. The top row
shows a high-quality DD example correctly classified by
both models, as indicated by the largest DD component in
the bar plot. The middle row shows a sample CD image
assessed to have moderate quality and the bottom row
shows a low-quality CD image. Both moderate- and low-
quality images are incorrectly classified by the simplistic
model. The quality of the bottom image in Fig. 3(b) makes
it hard for a human to identify the state. Here, the simplis-
tic model is confused between LD and DD states, while
the robust model correctly identifies this image as CD. This
illustrates the level of improvement that noisy training data
provides for our DSE module.

C. Validating autotuning framework

Finally, we assess the viability of the proposed frame-
work by performing tests of the DSE and DQC modules
over two large experimental scans shown in Figs. 4(a)
and 4(b). Figure 4 shows comparisons of classification

performance between sample models trained on noise-
less (c),(d) and noisy (e),(f) simulated data along with the
predicted quality class (g),(h).

We use a series of 60 mV by 60 mV scans sampled at
every pixel [43] within the large scans and leaving a 30 mV
margin at the boundary to ensure that each sampled scan is
within the full scan boundaries. From Figs. 4(c) and 4(d)
we see that the simplistic model does fairly well on the
parts of scans where the SNR is good, but it becomes less
reliable when the charge transitions are less clear. In the
first scan, this is manifested by random speckling of the
DD prediction within the CD region (the top half of the
scan) as well as by the frequent changes in state assessment
for images sampled within a couple of pixels (the left half
of that scan). A similar effect is visible in the left half of
the second scan, where the prediction oscillates between
RD and DD. For comparison, the predictions of the robust
model, shown in Figs. 4(e) and 4(f), are much more stable
and accurate.

While areas with mixed labels are produced by both
models, for the robust model, they are primarily indica-
tive of transitions between states. For the simplistic model,
mixed labels are assigned also within single-state parts
of the scans. Such labels should not be used for auto-
tuning as they will degrade the optimization step (see
Fig. 1). Finally, even for the robust model there are some

(b)

(a)

(d)

(c)

(f) (h)

(e) (g)

FIG. 4. (a),(b) Full charge stability diagrams of two double QD devices. In (a), a few characteristic noises can be seen: minor 1/f
or white noise is seen in the speckling throughout, jumps in the transition due to slow tunnel rates at the bottom of the image, and
smearing of the transitions near the top of the image due to fast tunnel rates. Visualization of the prediction of an average simplistic
state classifier (i.e., model trained on noiseless simulated data) (c),(d), and the optimized robust state classifier (i.e., model trained
on noise-augmented simulations) (e),(f). The color at each point is the average of the color of each state weighted by the model’s
prediction. Hue is averaged by angle in hue space, e.g., blue and green are averaged to teal. (g),(h) Visualization of the predictions of
the DQC module.
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misclassifications in both images, particularly in the top
left of Fig. 4(e) and in areas where interdot transitions are
more prominent in Fig. 4(f).

However, a side-by-side comparison of panels (e) and
(g) [as well as (f) and (h)] in Fig. 4 reveals that regions
that are misclassified by the DSE module closely match
regions flagged as moderate quality by the DQC module.
This validates the DQC module as a tool to determine if
the scan quality is sufficient for reliable state assessment
or whether the device is in need of recalibration. Overall,
these state and data quality classification maps show that
the DQC and DSE modules, when put together, provide
reliable high level information for autotuning algorithms.

IV. SUMMARY

Our results show that adding physical noise to simulated
data can dramatically improve the performance of machine
learning algorithms on experimental data. Importantly, we
are able to achieve high level performance without any pre-
processing or denoising of the data. We also show how the
synthetic noise can be used to develop ML tools to assess
the quality of experimental data and that the assigned
data quality correlates with state classifier performance, as
desired. Combining these tools enables a framework we
outlined in Fig. 1, in which the data quality control module
determines whether to move forward with state classifica-
tion and optimization. This framework is an important step
toward autotuning of QD devices with greater reliability.

We note that the thresholds used to establish the qual-
ity classes in the data quality control module are chosen
to provide meaningful separation. However, depending on
the application’s risk tolerance, these thresholds can be
adjusted to obtain the error rates needed to prevent failure
of an autotuning algorithm. Beyond the classification of the
data quality, our flexible synthetic noise model allows for
extensions in which the data are labeled by the exact type
and level of noise rather than the overall quality. ML mod-
els can then be trained to predict the predominant types
of noise, which in turn would enable tailored recalibration
actions to mitigate them.

Broadly, our noise augmentation approach confirms that
perturbing simulated data with realistic, physics-based
noise can vastly improve the performance of simulation-
trained ML models. This may be a useful insight for
other research combining ML and physics. From a domain
shift perspective, the observed performance increase could
be attributed to the physical noise augmentation shifting
the training data distribution nearer to the experimen-
tal test distribution [44]. Additionally, our data quality
control module presents a paradigm for ML reliability esti-
mation in which physically motivated noise models are
used to determine whether to move forward with data
classification.
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APPENDIX A: NOISE MODEL DETAILS

As discussed in the main text, we add five different types
of noise to the simulated data: dot jumps, Coulomb peak
effects, 1/f noise, white noise, and sensor jumps. Of these,
the white noise is the simplest to implement by adding
normally distributed noise with zero mean and fixed stan-
dard deviation at every pixel. The standard deviation value
is determined as part of the noise optimization process.
The 1/f noise is generated in Fourier space with random
phase sampled uniformly over [0, 2π) and a magnitude
proportional to 1/(f 2

x + f 2
y )1/2. The Coulomb peak effect

is applied using a simple model of a quantum dot in the
weak coupling regime that yields a conductance lineshape
of the form

G/Gmax = cosh−2[A(V − Vmin)], (A1)

where G is the conductance, Gmax is the peak conductance
of the line, A is a parameter that controls the linewidth and
is determined during noise optimization, Vmin is the peak
center, and V is the signal seen by the simulated sensor due
to the quantum dots [41]. Dot jumps and sensor jumps are
generated using the same underlying physics principles.
We model them as charge traps with characteristic excited
and ground state lifetimes necessary for capturing or eject-
ing electrons. We achieve this by performing Bernoulli
trials to determine if a jump occurs at a given pixel. This
allows the jumps to follow a geometric distribution—the
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FIG. 5. Top row: plots of the MAE of the DSE used to set noise thresholds versus the simulated noise level. The scatter plot is
colored by the predicted state. Bottom row: the solid lines show the means of the MAE at each noise level. The dashed lines illustrate
the 2.5% and 50% MAE levels used to set the thresholds for the DQC module.

discrete analogue to an exponential distribution. Magni-
tudes of sensor jumps are drawn from a normal distribution
with zero mean and fixed standard deviation determined
during noise optimization. Magnitudes of dot jumps are
drawn from a Poissonian distribution with fixed rate also
determined during noise optimization.

APPENDIX B: DATA QUALITY CONTROL
THRESHOLDS

To provide better clarity on how we determine the noise
level thresholds for training the DQC module, here we
show plots of the data used to set these thresholds. The
top row in Fig. 5 shows a series of scatter plots of the
MAE between the true labels and the DSE model predic-
tions as a function of noise level. The model’s architecture
is optimized on noiseless data and the model is trained on
noisy data. This plot illustrates how the DSE performance
changes as the noise level increases, revealing a roughly
sigmoidal relationship. The noise level where the MAE
sharply rises varies between the LD, CD, RD, and DD
states. For the ND state, the model has on average small
error regardless of the noise level.

The dashed lines in the bottom row of Fig. 5 indicate
the lower and upper thresholds at 2.5% and 50% of the full
range of the MAE for LD, CD, RD, and DD states. The
lower threshold is fairly conservative and captures a mod-
est rise in MAE. At the upper threshold, on the other hand,
the slope of the mean of the MAE is near its maximum and
the model rapidly becomes less reliable. These thresholds
can be further adjusted based on the specific application.

Since we find no clear dependence of the MAE for ND
on the noise level, the ND thresholds are set separately.
Above the 50% thresholds, the DSE has trouble distin-
guishing between ND and any other state, making the ND
predictions unreliable. Thus, the upper threshold for ND is
set based on the thresholds determined for the remaining
four states. The lower threshold for ND is determined in a
similar fashion for consistency.

APPENDIX C: MACHINE LEARNING MODEL
DETAILS

Both machine learning modules are built and trained
using the TensorFlow (v.2.4.1) Keras PYTHON API. We use
three different model architectures: two for testing the DSE
for noiseless and noisy data, and a third one in the DQC
module. All architectures are optimized to ensure high
performance using the Keras Tuner [42] and the Optuna
hyperparameter tuner [46]. A summary of architectures

TABLE I. Summary of datasets and model architectures.

Label Training data Model architecture

A Noiseless Noiseless DSE
Aproc Noiseless, thresholded Noiseless DSE
B Dot jumps added Noiseless DSE
C Coulomb peak added Noiseless DSE
D 1/f noise added Noiseless DSE
E White noise added Noiseless DSE
F Sensor jumps added Noiseless DSE
G All noises added Noiseless DSE
Gopt All noises added Noisy DSE

024069-9
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TABLE II. Machine learning model architectures for the noiseless DSE, noisy DSE, and DQC modules. Activation functions are
either rectified linear units (ReLU) or Swish [45].

Parameter Noiseless DSE Noisy DSE DQC

Conv. layer 1 (5 × 5) × 23, stride 2 (7 × 7) × 22 , stride 1 (7 × 7) × 184, stride 1
Dropout layer 1 0.12 0.66 0.05
Layer norm. Yes No Yes
Activation ReLU ReLU Swish
Conv. layer 2 (5 × 5) × 7, stride 2 (7 × 7) × 22, stride 2 (3 × 3) × 249 , stride 1
Dropout layer 2 0.28 0.66 · · ·
Layer norm. Yes No Yes
Activation ReLU ReLU Swish
Max pool 1 · · · · · · (2 × 2) × 1, stride 2
Conv. layer 3 (5 × 5) × 18, stride 2 (7 × 7) × 35 , stride 1 · · ·
Dropout layer 3 0.30 0.19 · · ·
Layer norm. Yes No · · ·
Activation ReLU ReLU · · ·
Conv. layer 4 · · · (7 × 7) × 35, stride 2 · · ·
Dropout layer 4 · · · 0.19 · · ·
Activation · · · ReLU · · ·
Ave. pool Yes Yes Yes
Dense layer 1 · · · · · · 161
Dropout layer 5 · · · · · · 0.6
Outputs 5 5 3
Activation Softmax Softmax Softmax
Optimizer Adam Adam Adam
Learning rate 3.45 × 10−3 1.21 × 10−3 2.65 × 10−4

Loss Cross-entropy Cross-entropy Cross-entropy
Trainable parameters 7.99 × 103 1.23 × 105 4.63 × 105

and datasets used and described in Fig. 2 is shown in
Table I.

The optimized neural network architectures are pre-
sented in Table II. We find from our optimization
that architectures with no fully connected layers before

the output layer perform better at state classifica-
tion—consistent with recent results [47]. This is in contrast
with the architecture previously used for similar tasks of
quantum dot state classification [10,15]. These architec-
tures also have up to almost three orders of magnitude

(a)

(c)

(b)

(d)

FIG. 6. (a) An image from the experimental dataset. (b) First layer outputs (after activation) of a robust (Gopt) model. (c),(d) First
layer outputs of two different simplistic (A) models. The robust model is nearly perfectly correct, one of the simplistic models is
somewhat correct, and the other simplistic model is strongly incorrect.
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less parameters compared to the original network used in
Ref. [10].

For testing the performance of our machine learning
models, we train 20 models on the same simulated data
(each time randomly split into training and validation).
The ML models start from a random initialization and
are trained with stochastic batches of data. These random
elements can lead to different final configurations due to
the nonconvex and degenerate optimization landscape. By
training multiple models under the same conditions we can
make a representative sample of models resulting from a
given dataset. An example of two different models trained
under the same conditions (on 1.5 × 104 noiseless images)
with different results can be seen in Fig. 6. Here, it is likely
largely by chance that the model in (c) is more correct than
the model in (d) due to the noisiness in the intermediate
layer outputs for both.
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